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Abstract 

Dating population divergence within species from molecular data and relating such dating to 

climatic and biogeographic changes is not trivial. Yet it can help formulating evolutionary 

hypotheses regarding local adaptation and future responses to changing environments. Key issues 

include statistical selection of a demographic and historical scenario among a set of possible 

scenarios, and estimation of the parameter(s) of interest under the chosen scenario. Such inferences 

greatly benefit from new statistical approaches including approximate Bayesian computation - 

Random Forest (ABC-RF), the latter providing reliable inference at a low computational cost, with 

the possibility to take into account prior knowledge on both biogeographical history and genetic 

markers. Here, we used ABC-RF, including independent information on evolutionary rate and 

pattern at microsatellite markers, to decipher the evolutionary history of the African arid-adapted 

pest locust, Schistocerca gregaria. We found that the evolutionary processes that have shaped the 

present geographical distribution of the species in two disjoint northern and southern regions of 

Africa were recent, dating back 2.6 Ky (90% CI: 0.9 – 6.6 Ky). ABC-RF inferences also supported 

a southern colonization of Africa from a low number of founders of northern origin. The inferred 

divergence history is better explained by the peculiar biology of S. gregaria, which involves a 

density-dependent swarming phase with some exceptional spectacular migrations, rather than a 

continuous colonization resulting from the continental expansion of open vegetation habitats during 

more ancient Quaternary glacial climatic episodes.  
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Introduction 

As in other regions of the world, Africa has gone through several major episodes of climate change 

since the early Pleistocene (deMenocal 1995 and 2004). The prevalent climate was colder and drier 

than nowadays during glaciation periods, and became more humid during warmer interglacial 

periods. These climatic phases resulted in shifts of vegetation (de Vivo and Carmignotto 2004) and 

are most likely at the origin of the current isolation between northern and southern distributions of 

arid-adapted species (Monod 1971). In Africa, at least fifty-six plant species show disjoint 

geographical distributions in southern and northern arid areas (Monod 1971; Jurgens 1997; Lebrun 

2001). Similarly, a number of animal vertebrate species show meridian disjoint distributions on this 

continent, including eight mammals and 29 birds (Monod 1971; de Vivo and Carmignotto 2004; 

Lorenzen et al. 2012). The desert locust, Schistocerca gregaria, is among the few examples of 

insect species distributed in two distinct regions along the north-south axis of Africa. Other known 

disjunctions in insects are interspecific and concern species of the families Charilaidae (Orthoptera) 

and Mythicomyiidae (Diptera), and of the genus Fidelia (Hymenoptera) (Le Gall et al. 2010). 

Similarities in extant distributions of African arid-adapted species across divergent taxonomic 

groups point to a common climatic history and an important role of environmental factors. Yet, to 

our knowledge, studies relating evolutionary history and climatic history have rarely been carried 

out in this continent; but see mitochondrial studies by Miller et al. 2011 on the ostrich, Atickem et 

al. 2018 on the black-backed jackal, and Moodley et al. 2018 on the white rhinoceros. 

Relating evolutionary and climatic histories often requires dating population differentiation 

events so that species or subspecies divergence can be understood in a broad biogeographic context. 

However, finding a reliable calibration to convert measures of genetic divergence into units of 

absolute time is challenging, especially so for recent evolutionary events (Ho et al. 2008). Internal 

fossil records are often lacking and extra-specific fossil calibration may lead to considerable 

overestimates of divergence times (Ho et al. 2008). A sensible approach is to use an evolutionary 

rate estimated from sequence data of a related species for which internal fossil calibration is 
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available (Ho et al. 2008). Unfortunately, on the African continent, fossils, such as radiocarbon-

dated ancient samples, remain relatively rare and are often not representative of modern lineages 

(e.g., Le Gall et al. 2010 for insects). The lack of paleontological and archaeological records is 

partly due to their fragility under the aridity conditions of the Sahara. The end-result is that the 

options to relate population divergence to biogeographic events in this region are very limited. 

Finding a dating strategy that does not rely on fossils would therefore constitute a key advance in 

understanding the region’s biogeography.  

In this context, the use of versatile molecular markers, such as microsatellite loci, for which 

evolutionary rates can be obtained from direct observation of germline mutations in the species of 

interest, represents a useful alternative. Microsatellite mutation rates exceed by several orders of 

magnitude that of point mutation in DNA sequences, ranging from 10-6 to 10-2 events per locus and 

per generation (Ellegren 2000). Such rates allow one to both observe mutation events in parent-

offspring segregation data of realistic sample size and to reconstruct the recent history of related 

populations. However, the use of microsatellite loci to estimate divergence times at recent 

evolutionary time-scales still needs to overcome significant challenges. Since microsatellite allele 

sizes result from the insertion or deletion of single or multiple repeat units and are tightly 

constrained, these markers can be characterized by high levels of homoplasy that can obscure 

inferences about gene history (e.g., Estoup et al. 2002). In particular, at large time scales (i.e., for 

distantly related populations), genetic distance values no longer follow a linear relationship with 

time. Rather, they reach a plateau and therefore provide biased and hence unreliable estimation of 

divergence time over a certain time threshold (Takezaki and Nei 1996; Feldman et al. 1997; Pollock 

et al. 1998). Microsatellites remain informative with respect to divergence time only if the 

population split occurs within the period of linearity with time (Feldman et al. 1997; Pollock et al. 

1998). The exact value of the differentiation threshold above which microsatellite markers would no 

longer accurately reflect divergence times will depend on constraints on allele sizes and population-

scaled mutation rates (Feldman et al. 1997; Pollock et al. 1998). In this context, the approximate 
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Bayesian computation - random forest (ABC-RF) approach recently proposed by Raynal et al. 

(2019) is a singular statistical advance, as it allows both to take into account prior knowledge on 

genetic markers (including mutation rate and pattern) and to compute accuracy of parameter 

estimation at a local (i.e., posterior) scale. Using this methodological framework, one can envisage 

to evaluate the divergence time threshold above which posterior estimates of divergence time would 

become biased under a given evolutionary scenario, and hence in this way thoroughly evaluate the 

robustness of inferences about divergence time events. 

The desert locust, S. gregaria, is a generalist herbivore that can be found in arid grasslands 

and deserts in both northern and southern Africa (Figure 1a). In its northern range, the desert locust 

is one of the most widespread and harmful agricultural pest species, with a very large potential 

outbreak area, spanning from West Africa to Southwest Asia. The desert locust is also present in the 

south-western arid zone (SWA) of Africa, which includes South-Africa, Namibia, Botswana and 

south-western Angola. The southern populations of the desert locust are termed S. g. flaviventris 

and are geographically separated by nearly 2,500 km from populations of the nominal subspecies 

from northern Africa, S. g. gregaria (Uvarov 1977). The isolation of S. g. flaviventris and S. g. 

gregaria lineages was recently supported by highlighting distinctive mitochondrial DNA 

haplotypes and male genitalia morphologies (Chapuis et al. 2016). Yet, the precise history of 

divergence remains elusive.  

The main objective of the present study is to unravel the historical and evolutionary 

processes that have shaped the present disjoint geographical distribution of the desert locust and the 

genetic variation observed both within and between populations of its two subspecies. To this aim, 

we applied an ABC-RF approach and show its full potential to help discriminate between 

alternative biogeographic scenarios. We first start by identifying a set of evolutionary alternatives 

relevant to the species from African paleo-vegetation maps that reflect potential past distributions of 

the desert locust. We then used molecular data obtained from microsatellite markers for which we 

could obtain independent information on evolutionary rates and allele size constraints in the species 
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of interest from direct observation of germline mutations (Chapuis et al. 2015). We applied recently 

available algorithms of the ABC-RF on our microsatellite population genetic data to compare a set 

of thoroughly formalized and justified evolutionary scenarios and estimate the divergence time 

between S. g. gregaria and S. g. flaviventris under the most likely of our scenarios. Finally, we 

interpret our results in light of past vegetation cover and desert locust biology. 

 

Results 

Table 1 shows the values of the summary statistics obtained from the observed population dataset 

consisting in two unstructured pooled samples of the subspecies S. g. gregaria and S. g. flaviventris. 

A total of 170 individuals (i.e., 80 and 90 individuals for S. g. gregaria and S. g. flaviventris, 

respectively) were genotyped at 23 microsatellite markers derived from either genomic DNA (14 

loci) or messenger RNA (9 loci) resources (hereafter referred to as untranscribed and transcribed 

microsatellite markers, respectively). The level of differentiation between the two subspecies (as 

measured by the parameter FST) was 0.04 and 0.12 for untranscribed and transcribed microsatellite 

markers, respectively. The level of genetic diversity was higher within the northern subspecies S. g. 

gregaria (+7% and +14% for the mean number of alleles and expected heterozygosity, 

respectively). 

 

Formalization and choice of evolutionary scenarios 

Using a rich corpus of vegetation data, we reconstructed the present time (Fig. 1c) and past time 

(Figs. 1d-f) distribution ranges of S. gregaria in Africa, going back to the Last Glacial Maximum 

period (LGM, 26 to 14.8 Ky ago). Maps of vegetation cover for glacial arid maximums (Figs. 1e 

and 1f) showed an expansion of open vegetation habitats sufficient to make the potential range of 

the species continuous from the Horn of Africa in the north-west to the Cape of Good Hope in the 

south. Maps of vegetation cover for interglacial humid maximums (Fig. 1d) showed a severe 

contraction of deserts. These maps helped us formalize twelve competing evolutionary scenarios 
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(Figure 2), as well as bounds of prior distributions for various parameters (see the section Prior 

setting for historical and demographical parameters in Materials and methods). The twelve 

competing scenarios were generated by the combinations of presence vs. absence of three key 

evolutionary events that we identified as having potentially played a role in setting up the observed 

disjoint distribution of the two locust subspecies: (i) a long population size contraction in the 

ancestral population, due to the reduction of open vegetation habitats during the interglacial periods, 

(ii) a bottleneck in the southern subspecies S. g. flaviventris right after divergence reflecting a single 

long-distance migration event of a small fraction of the ancestral population, and (iii) a discrete 

genetic admixture event either unidirectional from the ancestral northern subspecies S. g. gregaria 

into S. g. flaviventris, or bidirectional, in order to consider the many climatic transitions of the last 

Quaternary. 

ABC-RF analyses supported the same group of scenarios or the same best individual 

scenario for all ten replicate analyses (Table 2). The classification votes and posterior probabilities 

estimated for the observed microsatellite dataset were the highest for the groups of scenarios in 

which (i) S. g. flaviventris experienced a bottleneck event at the time of the split (scenarios 

SB+SCB+SBAU+SBAB+SCBAU+SCBAB in Figure 2; average of 2,829 votes out of 3,000 RF-

trees; posterior probability = 0.926), (ii) the ancestral population experienced a population size 

contraction (scenarios SC+SCB+SCAU+SCAB+SCBAU+SCBAB;  2,035 of 3,000 RF-trees; 

posterior probability = 0.682), and (iii) no admixture event occurred between populations after the 

split (scenarios S+SC+SB+SCB; 2,013 of 3,000 RF-trees; posterior probability = 0.700). When 

considering the twelve scenarios separately, the highest classification vote was for scenario SCB 

(1,521 of 3,000 RF-trees), which congruently excludes a genetic admixture event and includes a 

population size contraction in the ancestral population as well as a bottleneck event at the time of 

divergence in the S. g. flaviventris subspecies. The posterior probability of scenario SCB averaged 

0.564 over the ten replicate analyses (Table 2). Table S1.1 (Supplementary Material S1) shows that 

only two other scenarios (SB and SCBAU) obtained at least 5% of the votes. The scenario SB 
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included only a single bottleneck event in S. g. flaviventris (mean of 15.7% of votes) and the 

scenario SCBAU included a bottleneck event in S. g. flaviventris, a population size contraction in 

the ancestral population and an unidirectional genetic admixture event from S. g. gregaria into S. g. 

flaviventris (mean of 10.8% of votes). All other scenarios obtained less than 5% of the votes and 

were hence even more weakly supported.  

We found that the posterior error rates (i.e., 1 minus the posterior probabilities) were lower 

than the prior error rates for the analyses considering either groups of scenarios based on the 

presence (or not) of a bottleneck in S. g. flaviventris (i.e., 7.4% versus 19.0%) or the scenarios 

separately (i.e., 43.6% versus 58.4%). For other groups of scenarios, the discrimination power was 

similar at both the global (prior error rates) and local (posterior error rates) scales, with values 

ranging from 26.1% to 32.1% (Table 2). Altogether, these results indicate that the observed dataset 

belongs to a region of the data space where the power to discriminate among scenarios is higher 

than the global power computed over the whole prior data space, and that the presence or absence of 

a bottleneck in S. g. flaviventris is the demographic event with the most robust prediction in our 

ABC-RF treatments. These results can be visually illustrated by the projection of the reference table 

datasets and the observed one on a single (when analyzing pairwise groups of scenarios) or on the 

first two linear discriminant analysis (LDA) axes (when analyzing the twelve scenarios considered 

separately) (Figure S1.1, Supplementary Material S1).  

Figure S1.2, Supplementary Material S1, illustrates how RFs automatically rank the 

summary statistics according to their level of information. It shows that the number and set of most 

informative statistics is different depending on the comparisons (groups of scenarios or individual 

scenarios). Two sample statistics that measure the amount of genetic variation shared between 

populations (FST, DM2 and LIK) were among the most informative when discriminating among 

groups of scenarios including or not an admixture event. For groups of scenarios differing by 

population size variation events, statistics summarizing variation between the two subspecies 

samples (FST and DM2 for the bottleneck event in S. g. flaviventris; DAS and LIK for the 
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population size contraction in the ancestral population) and statistics summarizing genetic variation 

within subspecies samples (mean expected heterozygosity and mean number of alleles for both 

population size variation events) were among the most discriminative ones. Only fifteen single 

sample statistics were not informative (according to their position relatively to the noise statistics 

added to our treatments) when considering the twelve individual scenarios separately. Most of those 

non informative statistics were associated to the set of transcribed microsatellites (Figure S1.3, 

Supplementary Material S1).  

 

Parameter estimation under the best evolutionary scenario 

Figure 3a shows point estimates with 90% credibility intervals of the posterior distribution of the 

divergence time between the two subspecies under the best supported scenario SCB. Our 

estimations point to a young age of subspecies divergence, with a median divergence time of 2.6 Ky 

and a 90% credibility interval of 0.9 to 6.6 Ky, when assuming an average of three generations per 

year (Roffey and Magor 2003; see Table 3 and Table S1.2, Supplementary Material S1, for details). 

The accuracy of divergence time estimation was almost similar at both the global and local scales 

(i.e., normalized mean absolute errors of 0.369 and 0.359, respectively; Table 3). Constraints on 

allele sizes in conjunction with high population-scaled mutation rates potentially strongly affect the 

linearity of the relationship between mutation accumulation and time of divergence estimated from 

microsatellite data. We thus evaluated the accuracy of ABC-RF estimation of the population 

divergence time as a function of the time scale, under scenario SCB. Analyses of simulated pseudo-

observed datasets showed that the ABC-RF median estimate of divergence time reached a plateau 

for time scales ≥ 100,000 generations (Figure 4). Thus, the divergence time between S. g. 

flaviventris and S. g. gregaria estimated on our real microsatellite dataset (~10,000 generations) is 

positioned within the period of linearity with time, well before reaching a plateau reflecting a 

saturation of genetic information at microsatellite markers. It is hence expected to represent a 

sensible estimation of the actual divergence time. 
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Using the median as a point estimate, we estimated that the population size contraction in 

the ancestor could have occurred at a time approximately three times older than the divergence time 

between the subspecies (cf. estimation of the parameter ratio tC / tS in Table 3). Estimations of the 

ratio of stable effective sizes of the S. g. gregaria and S. g. flaviventris populations (i.e., Nf  / Ng) 

showed large 90% credibility intervals and include the rate value of 1 (Table 3). Accuracy analysis 

indicates that our genetic data withhold little information on the composite parameter Nf  / Ng (cf. 

the high associated NMAE values in Table 3). The bottleneck intensity during the colonization of 

south-western Africa (corresponding to the composite parameter dB / NB) shows the highest 

accuracy of estimation among the parameters of interest (cf. the lowest associated NMAE values in 

Table 3). The median of 1 and the 90% credibility interval of 0.5 to 2.4 support a strong to moderate 

bottleneck event (Table 3). 

For the time since divergence between the two subspecies, the most informative statistics 

corresponded to the expected heterozygosity computed within the S. g. flaviventris sample and the 

mean index of classification from S .g. flaviventris to S. g. gregaria (Figure S1.4, Supplementary 

Material S1). The addition of noise variables in our treatments showed that most statistics 

characterizing genetic variation within the S. g. gregaria sample were not informative. The most 

informative summary statistics were different depending on the parameter of interest (results not 

shown). 

  

Discussion 

 

A young age of subspecific divergence 

With a 90% credibility interval of the posterior density distribution of the divergence time at 0.9 to 

6.6 Ky, our ABC-RF analyses clearly point to a divergence of the two desert locust subspecies 

occurring during the present Holocene geological epoch (0 to 11.7 Ky ago; Figure 3a). The 

posterior median estimate (2.6 Ky) and interquartile range (1.8 to 3.7 Ky) postdated the middle-late 
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Holocene boundary (4.2 Ky). The latter past time boundary corresponds to the last transition from 

humid to arid conditions in the African continent (Figure 3b). This increasing aridity was shown to 

be a progressive change, with a concomitant maximum in northern and southern Africa at around 

4.0 to 4.2 Ky ago, where aridity caused a contraction of the forest at its northern and southern 

peripheries without affecting its core region (Guo et al. 2000; Maley et al. 2018). Interestingly, the 

earliest archeological records of the desert locust found in Tin Hanakaten (Algeria) and Saqqara 

(Egypt) archaeological sites date back to this period (Figure 3b; Meinzingen 1993; Malek 1997; 

Aumassip 2002). Pollen records also showed that during this period the plant community was 

dominated by the desert and semi-desert taxa found today, including some species of prime 

importance for the current ecology of the desert locust (Kröpelin et al. 2008, Shi et al. 1998, 

Duranton et al. 2012). Then, the past 4 Ky are thought to have been under environmental stability 

and as dry as at present. One can therefore reasonably assume that, at the inferred divergence time 

between the two locust subspecies, the connectivity between the two African hemispheres was still 

limited by the moist equator, in particular at the west, and by the savannahs and woodlands of the 

eastern coast (Figure 1c). Consequently, contrary to most phylogeographic studies on other African 

arid-adapted species (Atickem et al. 2018, Moodley et al. 2018), it is unlikely that the rather ancient 

Quaternary climatic history explained the Southern range extension of the desert locust. 

Recent geological and palynological research has shown that a brief fragmentation of the 

African primary forest occurred during the Holocene interglacial from 2.5 Ky to 2.0 Ky ago 

(reviewed in Maley et al. 2018). This forest fragmentation period is characterized by relatively 

warm temperatures and a lengthening of the dry season rather than an arid climate. Although this 

period does not correspond to a phase of general expansion of savannas and grasslands, it led to the 

opening of the Sangha River Interval (SRI) in the core of the tropical forest in Central Africa (see 

Fig. 1 in Maley et al. 2018). The SRI corresponds to a 400 km wide (14–18° E) open strip 

composed of savannas and grasslands dividing the rainforest in a north-south direction. The SRI 

corridor is thought to have facilitated the southern migration of Bantu-speaking pastoralists, along 
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with cultivation of the semi-arid sub-Saharan cereal, pearl millet, Pennisetum glaucum (Schwartz 

1992; Bostoen et al. 2015). The Bantu expansion took place between approximately 5 and 1.5 Ky 

ago and reached the southern range of the desert locust, including northern Namibia for the Western 

Bantu branch and southern Botswana and eastern South Africa for the Eastern Bantu branch 

(Vansina 1995). We cannot exclude that the recent subspecific distribution of the desert locust has 

been mediated by this recent ecological disturbance, which included a north-south corridor of open 

vegetation habitats and the diffusion of agricultural landscapes through the Bantu expansion. The 

progressive reappearance of forest vegetation 2 Ky ago would have then led to the present-day 

isolation and subsequent genetic differentiation of the new southern populations from northern 

parental populations. The level of climatic and habitat favorability of the SRI environmental 

disturbance to the species, and thereby the likelihood of a south-eastern colonization through the 

SRI corridor, remains however to be evaluated in line with further data on this period. 

 

On the role of dispersal on subspecific divergence 

Our ABC-RF results indicate that a demographic bottleneck (i.e., a strong transitory reduction of 

effective population size) occurred in the nascent southern subspecies of the desert locust. The high 

posterior probability value (92.6%) shows that this evolutionary event could be inferred with strong 

confidence. This result is compatible with the abovementioned colonization hypothesis if the 

proportion of suitable habitats for the desert locust in the SRI corridor was low, strongly limiting 

the carrying capacity during the time for range expansion. This scenario reduces, at the same time, 

the likelihood of a successful colonization through the SRI corridor. A more plausible alternative 

for a bottleneck event in S. g. flaviventris is a southern colonization of Africa through an 

exceptional long-distance migration event. In winged migratory species, movements are assisted by 

high velocity winds and may ascend to high altitudes (2000 m in the desert locust; Uvarov 1977) 

(Pedgley et al. 1995). Although largest insects exert some control over their direction of migration 

by flying actively, or at least gliding within (Pedgley et al. 1995), accidental displacements in wind 
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directions markedly different from that of seasonal dominant winds that assist migrations are likely. 

Such accidental displacements at long-distance (i.e., a few to several thousand km) were recorded in 

a number of migratory species, such as cicadas, butterflies, moths and locusts (Pedgley et al. 1995; 

Lorenz, 2009).  

To survive in its erratic arid and semi-arid habitat, the desert locust migrates downwind to 

reach areas where rain has recently fallen and exploit newly available resources. The dynamics of 

prevailing winds and pressure over Africa predicts the likelihood of a south-eastern transport of 

locusts (Nicholson 1996, Waloff and Pedgley 1986). In northern Africa, at least since 2.7Ky, the 

strong northeast trade winds bring desert locust swarms equatorward in the moist intertropical 

convergence zone (Figures 1a-b; Kröpelin et al. 1998). Most winds are westerlies (Figures 1a-b), 

nevertheless easterly winds flow parallel to the eastern coast of Africa in northern winter (e.g., 

January; Figure 1b). In southern Africa, winds blow mostly from the north-east toward the extant 

south-western distribution of the desert locust in southern winter (e.g., August; Figure 1a). In 

agreement with this, southward movements of desert locust have been documented along the 

eastern coast of Africa, in southern Tanzania during the plagues of 1926-1934, 1940-1948 and 

1949-1963 (Waloff 1976), and even in Mozambique in January 1945 during the peak of the major 

plague of 1940-1948 (Waloff 1966).  

Furthermore, most travels off the range listed in the history of the desert locust were 

associated with plague events (Waloff 1976), with other records including Portugal, the British Isles 

and the famous trans-Atlantic crossing observed in October 1988, where large numbers of locusts 

landed in the Caribbean islands (Richardson and Nemeth, 1991). Plagues typically culminate 

several years of above average rainfall, resulting in abundant vegetation that supports both 

cumulative locust population growth and full development of gregarious characteristics (Richardson 

and Nemeth, 1991). The gigantic numbers (over a billion) of swarming locusts may facilitate the 

success of long-distance migrations, in spite of high mortality. In addition, flight capacity and 

endurance of the gregarious phase are remarkable, with swarms of winged adults regularly 
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travelling up to hundreds km in a day, in case of sudden lack of resources (Roffey and Magor 

2003). Therefore, out-of-range displacements of the desert locust may be explained by the 

synergistic effects of exceptional environmental conditions (e.g., unusual winds in strength or 

direction, rain favorable to plague) and peculiar biology of the gregarious phase of this species (e.g., 

swarming behavior, huge numbers of dispersers).  

In conclusion, dynamics of dominant winds in subtropical desert, historical records of 

exceptional migrations in the desert locust, and the very robust prediction for the presence of a 

bottleneck in S. g. flaviventris right after divergence by our ABC-RF treatments altogether support 

that a single or a few swarm(s) from the central region of the desert locust range sourced during a 

plague the colonization of south-western Africa, suggesting a role of dispersal in the disjoint 

distribution and divergence of desert locust populations. Interestingly, an exceptional trans-Atlantic 

flight of the desert locust from Africa to South America was revealed to give rise to the radiation of 

some 50 Schistocerca species in the western hemisphere (Lovejoy et al., 2006).  

 

On the influence of climatic cycles 

It may appear surprising, at least at first sight, that the southern colonization of the desert locust did 

not occur during one of the major glacial episodes of the last Quaternary cycle, since these periods 

are characterized by a more continuous range of the desert locust (see paleo-vegetation maps in 

Figures 1e-f). In particular, during the last glacial maximum (LGM, -14.8 Ky to -26 Ky), the Sahara 

desert extended hundreds of km further South than at present and annual precipitation were lower 

(i.e. ~200–1,000 mm/year). Several hypotheses explain why our evolutionary scenario choice 

procedure provided low support to the possibility of a birth of the locust subspecies S. g. flaviventris 

at older periods. First, we cannot exclude that our microsatellite genetic data allow making 

inferences about the last colonization event only. Error rates at both local and global scales for the 

choice of scenario groups including or not a genetic admixture event after the split indicated that 

our discrimination power to infer this specific evolutionary event was poor (i.e., local and global 
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error rates of 32.1% and 30.0%, respectively). The recent north-to-south colonization event selected 

by our ABC-RF treatment may hence have blurred traces of older colonization events.  

Second, while there is large evidence that much of Africa was drier during the last glacial 

phase, this remains debated for south-western Africa (see the gray coloration in Figure 3b). Some 

climate models show that at least some parts of this region, such as the Kalahari Desert, may have 

experienced higher rainfall than at present (Cockcroft et al. 1987; Ganopolski et al. 1998; Chase 

and Meadows 2007). Such regional responses to glacial cycles may have prolonged until the middle 

Holocene. In particular, the northern Younger Dryas (i.e., -12.9 to -11.7 Ky) can be correlated only 

partly with an arid period in the southern hemisphere (i.e., -14.4 to -12.5 Ky). Such older climate 

episodes in antiphase between hemispheres (see the sandy brown coloration in Figure 3b) may have 

prevented from either a successful north-to-south migration event or a successful establishment and 

spread in the new southern range.  

Third, although semi-desert and desert biomes were more expanded than at present during 

the LGM, extreme aridity and lowered temperatures may have actually been unfavorable to the 

species. For instance, mean temperatures lowered by 5 to 6°C in both southern-western Africa 

(Stute and Talma 1997) and Central Sahara (Edmunds et al. 1999).The maintenance of desert locust 

populations depends on the proximity of areas with rainfalls at different seasons or with the 

capacity to capture and release water. For instance, in the African northern range, breeding success 

of locust populations relies on seasonal movements between the Sahel-Saharan zones of inter-

tropical convergence, where the incidence of rain is high in summer, and the Mediterranean-

Saharan transition zone, with a winter rainfall regime (Rainey and Waloff 1951). In addition, adult 

migration and nymphal growth of the desert locust are dependent upon high temperature (Roffey 

and Magor 2003). It is hence possible then that the conjunction of hyper-aridity with intense cold 

could not easily support populations of the desert locust, despite the high extent of their migrations. 

Interestingly, climatic reconstructions during the Last Glacial Maximum (LGM) showed dramatic 

decreases of mean temperature throughout all of Africa and of precipitation in the Sahelian region 
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(see Figs. S2.3 and S2.4, Supplementary Material S2). Accordingly, species distribution modelling 

showed a LGM distribution for the desert locust very similar to its current distribution (Figs. S2.5, 

S2.6 and S2.7, Supplementary Material S2), excluding the hypothesis of a more continuous range of 

the species at this time. 

While ABC-RF analyses did not support that the Quaternary climatic history explained the 

subspecific divergence in the desert locust, they provided evidence for the occurrence of a large 

contraction of the size of the ancestral population preceding the divergence. Using the median as a 

point estimate, we estimated that the population size contraction in the ancestor could have occurred 

at a time about three fold older than the divergence time between the subspecies. This corresponds 

to the African humid period in the early and middle stages of the Holocene, though the large 

credibility interval also included the last interglacial period of the Pleistocene (Figure 3b). Such 

population size contraction was likely induced by the severe(s) contraction(s) of deserts that 

prevailed prior the estimated divergence between the two subspecies. Interestingly, these humid 

periods were more intense and prolonged in northern Africa, which corresponded to the presumed 

center of origin of the most recent common desert locust ancestor (Scott 1993; Partridge 1997; Shi 

et al. 1998).  

 

Statistical advances by means of ABC Random Forest 

To our knowledge, the present study is the first one using recently developed ABC-RF algorithms 

(Raynal et al. 2019) to carry out inferences about parameter estimation on a real multi-locus 

microsatellite dataset (for scenario choice see for example Rougemont et al. 2016 and Fraimout et 

al. 2017). When compared with various ABC solutions, this new RF method offers several 

advantages: a significant gain in terms of robustness to the choice of the summary statistics, 

independence from any type of tolerance level, and a good trade-off in terms of quality of point 

estimator precision of parameters and credible interval estimations for a given computing time 

(Raynal et al. 2019).  
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The RF approach that we used here includes three novelties in statistical analyses that were 

particularly useful for reconstructing the evolutionary history of the divergence between S. g. 

gregaria and S. g. flaviventris subspecies. First, our ABC-RF statistical treatments benefited from 

the incorporation of previous estimations of mutation rates and allele size constraints for the 

microsatellite loci used in this study (for details see the Materials and methods section 

Microsatellite dataset, mutation rate and mutational model). Microsatellite mutation rate and 

pattern of most eukaryotes remains to a large extent unknown, and, to our knowledge, the present 

study is a rare one where independent information on mutational features was incorporated into the 

microsatellite prior distributions. Second, given the low RF computing time, we could simulate 

large pseudo-observed datasets to compute error measures conditionally to a subset of fixed 

divergence time values chosen to cover the entire prior interval. In this way, we showed that 

posterior distributions for estimation of divergence time between the two subspecies accurately 

reflected true divergence time values. Third, because error levels may differ depending on the 

location of an observed dataset in the prior data space (e.g., Pudlo et al. 2016), prior-based 

indicators are poorly relevant, aside from their use to select the best classification method and set of 

predictors, here our summary statistics. Therefore, in addition to global prior errors, we computed 

local posterior errors, conditionally to the observed dataset. The latter errors measure prediction 

quality exactly at the position of the observed dataset. For parameter estimation accuracy, we 

propose an innovative way to approximate local posterior errors, relying partly on out-of-bag 

predictions and implemented in a new version of the R library abcrf (version 1.8) available on R 

CRAN (see the Supplementary Material S3 for a detailed description). Such statistical advances are 

of general interest and will be useful for any statistical treatments of massive simulation data, 

including for inferences using single nucleotide polymorphisms (i.e., SNPs) obtained from new 

generation sequencing technologies. 

 

Materials & Methods 
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Formalization of evolutionary scenarios 

 To help formalize the evolutionary scenarios to be compared, we relied on maps of vegetation 

cover in Africa from the Quaternary Environment Network Atlas (Adams and Faure 1997). We 

considered the periods representative of arid maximums (YD and LGM; Figs. 1e-f), humid 

maximums (HCO; Fig. 1d), and present-day arid conditions (Fig. 1c), for which reliable vegetation 

reconstructions have been published. Desert and xeric shrubland cover fits well with the present-day 

species range during remission periods. Tropical and Mediterranean grasslands were added 

separately since the species inhabits such environments during outbreak periods only. The 

congruence between present maps of species distribution (Fig. 1a) and of open vegetation habitats 

(Fig. 1c) suggests that vegetation maps for more ancient periods could be considered as good 

approximations of the potential range of the desert locust in the past (but see section On the 

influence of climatic cycles in Discussion). Maps of vegetation cover during ice ages (Figs. 1e-f) 

show an expansion of open vegetation habitats (i.e., grasslands in the tropics and deserts in both the 

North and South of Africa) sufficient to make the potential range of the species continuous from the 

Horn of Africa in North-West to the Cape of Good Hope in the South. It is worth stressing that we 

also explored species distribution modelling for the HCO and LGM periods as an alternative to 

using vegetation as a surrogate for the locust range (detailed in Supplementary Material S2). 

However, distribution modelling provided a narrower set of alternative hypotheses than the 

vegetation-based scenarios mentioned above and are therefore not discussed any further.  

Based on the above paleo-vegetation map reconstructions, we considered a set of alternative 

biogeographic hypotheses formulated into different types of evolutionary scenarios. First, we 

considered scenarios involving a more or less continuous colonization of southern Africa by the 

ancestral population from a northern origin. In this type of scenario, effective population sizes were 

allowed to change after the divergence event, without requiring any bottleneck event (i.e., without 

any abrupt and strong reduction of population size) right after divergence. Second, we considered 
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the situation where the colonization of Southern Africa occurred through a single (or a few) long-

distance migration event(s) of a small fraction of the ancestral population. This situation was 

formalized through scenarios that differed from a continuous colonization scenario by the 

occurrence right after divergence of a bottleneck event in the newly founded population (i.e., S. g. 

flaviventris), which was modelled through a limited number of founders  during a short period.  

Because the last Quaternary cycle includes several arid climatic periods, including the 

intense punctuation of the Younger Dryas (YD) and the last glacial maximum (LGM), we also 

considered scenarios that incorporated the possibility of a discrete genetic admixture event, either 

bidirectional or unidirectional from S. g. gregaria into S. g. flaviventris. Since previous tests based 

on simulated data showed a poor power to discriminate between a single versus several admixture 

events (results not shown), we considered only scenarios including a single admixture event. 

Finally, at interglacial humid maximums, the map of vegetation cover showed a severe 

contraction of deserts, which were nearly completely vegetated with annual grasses and shrubs and 

supported numerous perennial lakes (Fig. 1d; deMenocal et al. 2000). We thus considered the 

possibility that vegetation-induced contractions of population sizes have pre-dated the separation of 

the two subspecies. Hence, whereas so far scenarios involved a constant effective population size in 

the ancestral  population, we formalized alternative scenarios in which we assumed that a long 

population size contraction event occurred into the ancestral population.  

Combining the presence or absence of the three above-mentioned key evolutionary events (a 

bottleneck in S. g. flaviventris, a bidirectional or unidirectional genetic admixture from S. g. 

gregaria into S. g. flaviventris, and a population size contraction in the ancestral population) 

allowed defining a total of twelve scenarios, that we compared using ABC-RF. The twelve 

scenarios with their historical and demographic parameters are graphically depicted in Figure 2. All 

scenarios assumed a northern origin for the common ancestor of the two subspecies and a 

subsequent southern colonization of Africa. This assumption is supported by recent mitochondrial 

DNA data showing that S. g. gregaria have higher levels of genetic diversity and diagnostic bases 
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shared with outgroup and congeneric species, whereas S. g. flaviventris clade was placed at the 

apical tip within the species tree (Chapuis et al. 2016). In agreement with this assumption, 

preliminary analyses based on observed data showed a low support for a southern origin for the 

common ancestor of the two subspecies and a subsequent northern colonization of Africa (results 

not shown). 

All scenarios considered three populations of stable effective population sizes Nf for S. g. 

flaviventris, Ng for S. g. gregaria, and Na for the ancestral population, with S. g. flaviventris and S. 

g. gregaria diverging tS generations ago from the ancestral population. The bottleneck event which 

potentially occurred into S. g. flaviventris was modelled through a limited number of founders NB 

during a short period dB. The potential unidirectional genetic admixture into S. g. flaviventris 

occurred at a time tA, with a proportion rAU of genes of S. g. gregaria origin. In the case of a 

bidirectional genetic admixture, still occurring at a time tA, the proportion of S. g. gregaria genes 

entering into the S. g. flaviventris population was rAB and the proportion of S. g. flaviventris genes 

entering into the S. g. gregaria population was 1- rAB. The potential population size contraction 

event occurred into the ancestral population at a time tC, with an effective population size NC during 

a duration dC.  

 

Prior setting for historical and demographical parameters 

Prior values for time periods between sampling and admixture, divergence and/or ancestral 

population size contraction events (tC, tS and tA, respectively) were drawn from log-uniform 

distributions bounded between 100 and 500,000 generations, with tC > tS > tA. Assuming an 

average of three generations per year (Roffey and Magor 2003), this prior setting corresponds to a 

time period that goes back to the second-to-latest glacial maximum (150 Ky ago) (de Vivo and 

Carmignotto 2004, deMenocal et al. 2000). Preliminary analyses showed that assuming a uniform 

prior shape for all time periods (instead of log-uniform distributions) do not change scenario choice 

results, with posterior probabilities only moderately affected, and this despite a substantial increase 
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of out-of-bag prior error rates (e.g., + 50% when considering the twelve scenarios separately; Table 

S4.1, Supplementary Material S4). Analyses of simulated pseudo-observed datasets (pods) showed 

that assuming a uniform prior rather than a log-uniform prior for time period parameters would 

have also biased positively the median estimate of the divergence time and substantially increased 

its 90% credibility interval (Figure S4.1 and Table S4.2, Supplementary Material S4). Using a log-

uniform distribution remains a sensible choice for parameters with ranges of values covering 

several if not many log-intervals, as doing so allows assigning equal probabilities to each of the log-

intervals. 

We used uniform prior distributions bounded between 1x104 and 1x106 diploid individuals 

for the different stable effective population sizes Nf, Ng and Na (Chapuis et al. 2014). The 

admixture rate (i.e., the proportion of S. g. gregaria genes entering into the S. g. flaviventris 

population), was drawn from a uniform prior distribution bounded between 0.05 and 0.50 for a 

unidirectional event (rAU) and between 0.05 and 0.95 for a bidirectional event (rAB). We used 

uniform prior distributions bounded between 2 and 100 for both the numbers of founders (in diploid 

individuals) and durations of bottleneck events (in number of generations). For the contraction 

event, we used uniform prior distributions bounded between 100 and 10,000 for both the population 

size NC (in diploid individuals) and duration dC (in number of generations). Assuming an average 

of three generations per year (Roffey and Magor 2003), such prior choice allowed a reduction in 

population size for a short to a relatively long period, similar for instance to the whole duration of 

the HCO (from 9 to 5.5 Ky ago) which was characterized by a severe contraction of deserts. 

 

Microsatellite dataset, mutation rate and mutational model 

We carried out our statistical inference on the microsatellite dataset previously published in Chapuis 

et al. (2016). The 23 microsatellite loci genotyped in that dataset were derived from either genomic 

DNA (14 loci) or messenger RNA (9 loci) resources, and were hereafter referred to as untranscribed 

and transcribed microsatellite markers (following Blondin et al. 2013). These microsatellites were 
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shown to be genetically independent, free of null alleles and at selective neutrality (Chapuis et al. 

2016). Previous levels of FST (Weir 1996) and Bayesian clustering analyses (Pritchard et al. 2000) 

among populations showed a weak genetic structuring within each subspecies (Chapuis et al. 2014, 

2017). For each subspecies, we selected and pooled three population samples in order to ensure 

both a large sample size (i.e., 80 and 90 individuals for S. g. gregaria and S. g. flaviventris, 

respectively), while ensuring a non-significant genetic structure within each subspecies pooled 

sample, as indicated by non-significant Fisher’s exact tests of genotypic differentiation among the 

three initial population samples within subspecies and exact tests of Hardy-Weinberg equilibrium 

for each subspecies pooled sample (i.e., P-value > 0.05 when using Genepop 4.0; Rousset 2008). 

More precisely, the S. g. gregaria sample consisted in pooling the population samples 8, 15 and 22 

of Chapuis et al. (2014) and the S. g. flaviventris sample included the population samples 1, 2 and 6 

of Chapuis et al. (2017). 

Mutations occurring in the repeat region of each microsatellite locus were assumed to follow 

a symmetric generalized stepwise mutation model (GSM; Zhivotovsky et al. 1997; Estoup et al. 

2002). Prior values for any mutation model settings were drawn independently for untranscribed 

and transcribed microsatellites in specific distributions. Because allele size constraints exist at 

microsatellite markers, we informed for each microsatellite locus their lower and upper allele size 

bounds using values estimated in Chapuis et al. (2015), following the approach of Pollock et al. 

(1998) and microsatellite data from several species closely related to S. gregaria (Blondin et al. 

(2013). Prior values for the mean mutation rates (𝜇𝑅���) were set to the empirical estimates inferred 

from observation of germline mutations in Chapuis et al. (2015), i.e., 2.8x10-4 and 9.1x10-5 for 

untranscribed and transcribed microsatellites, respectively. The mutation rates for individual 

microsatellites were then drawn from a Gamma distribution with mean = 𝜇𝑅��� and shape = 0.7 

(Estoup et al. 2001) for both types of microsatellites. We ensured that the chosen value of shape 

parameter generated the same inter-loci variance as estimated in Sun et al. (2012) from direct 

observations of thousands of human microsatellites. Prior values for the mean parameters of the 
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geometric distributions of the length in number of repeats of mutation events (𝑃�) were set to the 

proportions of multistep germline mutations observed in Chapuis et al. (2015), i.e., 0.14 and 

0.67 for untranscribed and transcribed microsatellites, respectively. The P parameters for individual 

loci were then standardly drawn from a Gamma distribution (mean = 𝑃� and shape = 2). We also 

considered mutations that insert or delete a single nucleotide to the microsatellite sequence. To 

model this mutational feature, we used the DIYABC default setting values (i.e., a uniform 

distribution bounded between [10-8, 10-5] for the mean parameter 𝜇𝑆𝑁𝐼������ and a Gamma distribution 

(mean = 𝜇𝑆𝑁𝐼������ and shape = 2) for individual loci parameters; Cornuet et al. 2010; see also DIYABC 

user manual p. 13, http://www1.montpellier.inra.fr/CBGP/diyabc/). 

 

Analyses using ABC Random Forest 

We used the software DIYABC v.2.1.0 (Cornuet et al. 2014) to simulate datasets constituting the 

so-called reference tables (i.e., records of a given number of datasets simulated using the scenario 

ID and the evolutionary parameter values sampled from prior distributions and summarized with a 

pool of statistics). Random-forest computations were then performed using a new version of the R 

library ABCRF (version 1.8) available on the CRAN. This version includes all ABC-RF algorithms 

detailed in Pudlo et al. (2016), Raynal et al. (2019) and Estoup et al. (2018a) for scenario choice 

and parameter estimation, as well as several statistical novelties allowing to compute error rates in 

scenario choice and accuracy measures for parameter estimation (see details below). An overview 

of the ABC-RF methods used in the present paper is provided in Supplementary Material S3. 

Readers can also consult Pudlo et al. (2016), Rougemont et al. (2016), Fraimout et al. (2017), 

Estoup et al. (2018a,b) and Marin et al. (2018) for scenario choice, and Raynal et al. (2019) for 

parameter estimation to access to further detailed statistical descriptions, testing and applications of 

ABC-RF algorithms.  

For scenario choice, the outcome of the first step of the ABC-RF statistical treatment applied 

to a given target dataset is a classification vote for each scenario which represents the number of 
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times a scenario is selected in a forest of n trees. The scenario with the highest classification vote 

corresponds to the scenario best suited to the target dataset among the set of compared scenarios. 

This step also provides an error rate relevant to the entire prior sampling space, the global prior 

error. See the section Global prior errors in Supplementary Material S3 for details. The second RF 

analytical step provides a reliable estimation of the posterior probability of the best supported 

scenario. One minus such posterior probability yields the local posterior error associated to the 

observed dataset (see the section Local posterior errors in Supplementary Material S3). In practice, 

ABC-RF analyses were processed by drawing parameter values into the prior distributions 

described in the two previous sections and by summarizing microsatellite data using a set of 32 

statistics (see Table 1 for details about such summary statistics) and the one LDA axis or eleven 

LDA axes (i.e. number of scenarios minus 1; Pudlo et al. 2016) computed when considering 

pairwise groups of scenarios or individual scenarios, respectively. We processed ABC-RF 

treatments on reference tables including 150,000 simulated datasets (i.e., 12,500 per scenario). 

Following Pudlo et al. (2016), we checked that 150,000 datasets was sufficient by evaluating the 

stability of prior error rates and posterior probabilities estimations of the best scenario on 50,000, 

80,000 and 100,000 and 130,000 simulated datasets (Table S1.3, Supplementary Material S1). The 

number of trees in the constructed random forests was fixed to n = 3,000, as this number turned out 

to be large enough to ensure a stable estimation of the prior error rate (Figure S1.5, Supplementary 

Material S1). We predicted the best scenario and estimated its posterior probability and prior error 

rate over ten replicate analyses based on ten different reference tables. 

In order to assess the power of our approach to infer each specific evolutionary event of 

interest, we first processed ABC-RF analyses by grouping scenarios based on the presence or 

absence of each type of evolutionary event that we identified as having potentially played a role in 

setting up the disjoint distribution of the two locust subspecies (e.g., Roux et al. 2016, Leroy et al. 

2017 and Estoup et al. 2018a). We conducted ABC-RF treatments on three pairwise groups of 

scenario: groups of scenarios with vs. without a bottleneck in S. g. flaviventris, groups with vs. 
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without a population size contraction in the ancestral population, and groups with vs. without an 

asymmetrical genetic admixture event from S. g. gregaria into S. g. flaviventris. We then conducted 

ABC-RF treatments on the twelve scenarios considered separately.  

For parameter estimation, we conducted ten independent replicate RF treatments based on 

ten different reference tables for each parameter of interest (Raynal et al. 2019): the time since 

divergence, the ratio of the time of the contraction event into the ancestral population on the time 

since divergence, the intensity of the bottleneck event in the sampled S. g. flaviventris population 

(defined as the ratio of the bottleneck event of duration dB on the effective population size NB ) and 

the ratio of the stable effective population size of the two sampled populations. For each RF 

treatment, we simulated a total of 100,000 datasets for the selected scenario (drawing parameter 

values into the prior distributions described in the two previous sections and using the same 32 

summary statistics). Following Raynal et al. (2019), we checked that 100,000 datasets was 

sufficient by evaluating the stability of the measure of accuracy on divergence time estimation using 

50,000, 80,000 and 90,000 simulated datasets (Table S1.4, Supplementary Material S1). The 

number of trees in the constructed random forests was fixed to n = 2,000, as such number turned out 

to be large enough to ensure a stable estimation of the measure of divergence time estimation 

accuracy (Figure S1.6, Supplementary Material S1). For each RF treatment, we estimated the 

median value and the 5% and 95% quantiles of the posterior distributions. It is worth noting that we 

considered median values as the later provided more accurate estimations (according to out-of-bag 

predictions) than when considering mean values (results not shown). Accuracy of parameter 

estimation was measured using out-of-bag predictions and the normalized mean absolute error 

(NMAE). NMAE corresponds to the mean of the absolute difference between the point estimate 

(here the median) and the (true) simulated value divided by the simulated value (formula detailed in 

Supplementary Material S3).  

Finally, because microsatellite markers tend to underestimate divergence time for large time 

scales due to allele size constraints, we evaluated how the accuracy of ABC-RF estimation of the 
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time of divergence between the two subspecies was sensitive to the time scale. To this aim, we used 

DIYABC to produce simulated pseudo-observed datasets assuming fixed divergence time values 

chosen to cover the prior interval (100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 

100,000; 250,000 generations) and using the best scenario. We simulated 5,000 of such test datasets 

for each of the eleven divergence time values. Each of these test dataset was treated using ABC-RF 

in the same way as the above target observed dataset. 
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Supporting Material 

Additional supporting information may be found in the online version of this article. 

 

Figure legends 

 

Figure 1. Present time distribution range of Schistocerca gregaria in Africa under remission 

periods with winds in August a) and January b), and vegetation habitats suitable for the 

species during the present period c), the Holocene Climatic Optimum (HCO, 9 to 6 Ky ago) 

d), the Younger Dryas (YD, 12.9 to 11.7 Ky ago) e) and the Last Glacial Maximum (LGM, 26 

to 14.8 Ky ago) f).  

(a-b) Distribution range and winds are adapted from Sword et al. (2010) and Nicholson (1996), 

respectively. (c-f) Vegetation habitats are adapted from Adams and Faure (1997). Open vegetation 

habitats suitable for the desert locust correspond to deserts (dark orange), xeric shrublands (light 

orange) and tropical - Mediterranean grasslands (pink). Other unsuitable habitat classes (white) are 

forests, woodlands and temperate shrublands and savannas. 

 

Figure 2. Evolutionary scenarios compared using ABC-RF.  

The subscripts g, f and a refer to the subspecies S. g. gregaria, S. g. flaviventris and their unsampled 

common ancestor, respectively. Twelve scenarios are considered and identified by an acronym. 

Such scenarios differ by the presence or absence of three evolutionary events: a bottleneck in S. g. 

flaviventris (B) right after divergence between the two subspecies, a population size contraction in 

the ancestral population (C) and a discrete genetic admixture event either unidirectional from S. g. 

gregaria into S. g. flaviventris (AU) or bidirectional (AB) . For convenience, parameters associated 

with an evolutionary event are represented graphically only in the first shown scenario that include 

this event. Looking forward in time, time periods are tC, the time of ancestral population size 

contraction, tS, the time of split between the two subspecies, and tA, the time of the genetic 
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admixture between subspecies (with tC > tS > tA). rAU is the unidirectional admixture rate, i.e. the 

proportion of genes from the S. g. gregaria lineage entering the S. g. flaviventris population at time 

tA. rAB is the bidirectional admixture rate, i.e. the proportion of genes exchanged between the S. g. 

gregaria lineage and the S. g. flaviventris lineage at time tA. Ng, Nf and Na are the stable effective 

population sizes of S. g. gregaria, S. g. flaviventris and the ancestor, respectively. NC is the 

effective population size during the contraction event of duration dC in the ancestor. NB is the 

effective population size during the bottleneck event of duration dB.  

 

Figure 3. Divergence time between S. g. gregaria and S. g. flaviventris inferred under the best 

supported scenario (scenario SCB) a) in relation to bioclimatic changes in Northern b) and 

Southern Africa c).  

a) Dashed and solid lines represent the formal subdivision of the Holocene and Pleistocene epochs 

(Walker et al. 2012). Dotted lines with labels on the right side are the median value and 90% 

credibility interval of the posterior density distributions of the divergence time (assuming an 

average of three generations per year; Roffey and Magor 2003). Asterisks refer to earliest 

archeological records of the desert locust. In the Algerian Sahara, remains of locusts were found in 

a special oven dating back to about 6Ky ago, in the rock shelter of Tin Hanakaten (Aumassip 2002). 

In Egypt, locusts were depicted on daggers of the pharaoh Ahmose, founder of the Eighteenth 

Dynasty (about 3.5 Ky ago) (Malek 1997) and, at Saqqara, on tombs of the Sixth Dynasty (about 

4.2 to 4.4 Ky ago) that is thought to have felt with the impact of severe droughts (Meinzingen 

1993). b-c) Climatic episodes include major cycles and additional transitions of aridity (sandy 

brown) and humidity (steel blue). The grey coloration means that there is debate on the climatic 

status of the period (arid versus humid). HCO: Holocene Climatic Optimum; YD: Younger Dryas; 

LGM: Last Glacial Maximum; LIG: Last Inter Glacial. Delimitations of climatic periods were based 

on published paleoclimatic inferences from geological sediment sequences (e.g., eolian deposition, 

oxygen isotope data) and biological records (e.g., pollen or insect fossils assemblages) from marine 
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cores or terrestrial lakes. References are Bond et al. (1997), Guo et al.(2000), Kröpelin et al. 

(2008), Roberts et al. (1993) and van Andel and Tzedakis (1996) for northern Africa, and Talma 

and Vogel (1992), Stokes et al. (1997), and Shi et al. (1998) for southern Africa. See also Gasse 

(2000) for a review.  

 

Figure 4. Median and 90% credibility interval a) and local accuracy b) of ABC-RF posterior 

distributions of the divergence time under the best supported scenario (scenario SCB) as a 

function of the time scale.  

Simulated pseudo-observed datasets (5,000 per divergence time) were generated for fixed 

divergence time values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; 

and 250,000 generations (cf. x-axis with a log-scale). a) The estimated median (plain lines) and 

90% credibility interval (90% CI; dashed lines), averaged over the 5,000 datasets, are represented 

(y-axis). b) The local accuracy is measured using out-of-bag predictions and the normalized mean 

absolute error (NMAE). See Supplementary Material S3 for details. 
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Tables 

Table 1. Summary statistics provided by DIYABC with corresponding values computed from the observed microsatellite dataset.  
 

 Summary statistics 
Observed values at 14 

untranscribed markers 
Observed values at 9 
transcribed markers 

S. g. gregaria  
one-sample statistics 

NAL 28.8 15.8 
HET 0.92 0.79 

 VAR 36.1 13.3 
 MGW 0.92 0.86 

S. g. flaviventris  
one-sample statistics 

NAL 23.4 14.4 
HET 0.86 0.69 

 VAR 33.4 16.7 
 MGW 0.96 0.95 

Two-samples statistics FST 0.04 0.12 
 DAS 0.07 0.16 
 LIKSgg Sgf 3.61 2.82 
 LIKSgf  Sgg 3.20 2.55 
 DM2 22.7 12.4 
 N2P 35.0 21.1 
 H2P 0.91 0.79 
 V2P 40.2 18.2 

The names of summary statistics are those given in the program DIYABC (Cornuet et al. 2014). NAL: mean number of alleles; HET: mean expected heterozygosity; VAR: 
variance of allele sizes in base pairs; MGW: M index of Garza and Williamson (2001); FST: pairwise differentiation estimator of Weir (1996); DAS: shared allele distance 
(Chakraborty and Jin 1993); LIK: the mean index of classification (Rannala and Moutain, 1997; Pascual et al. 2007); DM2: distance of Golstein et al. (1995). N2P, H2P and 
V2P: NAL, HET and VAR statistics computed after pooling the two population samples. Note that five “noise variables”, randomly drawn into uniform distributions bounded 
between 0 and 1, and denoted NOISE1 to NOISE5 in the concerned illustrations, were added to the set of summary statistics processed by RF, in order to evaluate which 
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summary statistics of our genetic datasets were informative in our different inferential ABC-RF settings, when conducting scenario choice or parameter estimation. Such 
noise variables do not alter ABC-RF inferences (see Marin et al. 2018; Raynal et al. 2019). 
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Table 2. Scenario choice when analyzing groups of scenarios or scenarios separately. 

 

 

 

Analyses of groups of scenarios Analysis of 
scenarios separately 

Group 1 = no B vs.  
group 2 = B 

Group 1= no C vs. 
group 2 = C 

Group 1 = no A vs.  
group 2 = AU vs.  

group 3 = AB 

Prior error rate 19.0% 26.1% 32.1% 58.4% 

Posterior probability 
(selected group or individual 

scenario) 

0.926 
(group 2) 

0.682 
(group 2) 

0.700 
(group 1) 

0.564 
(scenario SCB) 

Scenarios were grouped based on the absence or presence of a bottleneck in S. g. flaviventris (group 1 = no B or group 2 = B), of a population size contraction in the ancestor 
(group 1 = no C or group 2 = C), and of an asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris or a symmetrical (i.e., bidirectional) admixture (group 1 
= no A or group 2 = AU or group 3 = AB). We reported values for prior error rates and posterior probabilities of the selected group of scenarios or individual scenario, 
averaged over ten replicate analyses. The local posterior error rate (corresponding to a confidence measure of the selected scenario given the observation) can be computed as 
1 minus the posterior probability (see Supplementary material S3 for details). The number of records for each reference datasets simulated from DIYABC was set to 150,000 
and the number of RF- trees was 3,000. 
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Table 3. Parameter estimation under the best supported scenario (scenario SCB).  
 
 

         Posterior values        Prior values 

  Median 90% CI NMAE Median 90% CI NMAE 

tS 7,723 2,785 – 19,708 0.369 1,212 124 – 73,795 0.359 

tC / tS 2.75 1.11 – 35.47 0.596 12.17 1.24 – 762.26 1.077 

Nf  / Ng 5.43 0.52 – 25.56 1.332 1.00 0.12 – 8.11 1.726 

dB / NB 1.06 0.49 – 2.41 0.323 1.00 0.13 – 7.57 0.299 

tS: time of divergence between the two desert locust subspecies (in number of generations); tC: time of ancestral population size contraction; Nf : stable effective population 
size of S. g. flaviventris; Ng: stable effective population size of S. g. gregaria; d B : duration of the bottleneck event; NB: effective population size during the 
bottleneck event. For each evolutionary parameter, we reported posterior point estimates averaged over ten replicate analyses. CI: credibility interval. The number of records 
for each reference datasets simulated from DIYABC was set to 100,000 and the number of RF-trees was 2,000. Accuracy has been measured with the normalized mean 
absolute error (NMAE) which corresponds to the mean of the absolute difference between the point estimate of the parameter (here the median) and the (true) simulated value 
divided by the (true) simulated value. NMAE measures were computed using out-of-bag predictions either on the whole data space defined by the prior distributions (prior 
NMAE) or conditionally to the observed dataset (posterior NMAE); see Supplementary material S3 for details.  
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Fig. 1 
a) Present distribution 
(winds in Aug) 

b) Present distribution 
(winds in Jan) 

d) HCO habitats e) YD habitats 

c) Present habitats 

f) LGM habitats 

Legend: Desert Xeric shrubland Tropical and Mediterranean grassland 
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Fig. 2 
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Fig. 3
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Fig. 4

a) Posterior estimation
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Outline: 

Supplementary material S1. Details on results from ABC Random Forest (ABC-RF) treatments. 

Supplementary material S2. Hindcasting the desert locust potential distribution into the mid-

Holocene (HCO) and the last glacial maximum (LGM) using distribution modelling. 

Supplementary material S3. Overview of the used ABC Random Forest (ABC-RF) methods. 

Supplementary material S4. Details on results from ABC-RF treatments when assuming uniform 

priors for the three time period parameters of the studied scenarios. 
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Supplementary Material S1. Details on results from ABC-RF treatments.  

Table S1.1. Scenario choice for each of the ten replicate analyses. 

Reference 
table 

Best 
scenario 

Votes 
S 

Votes 
SC 

Votes 
SB 

Votes 
SCB 

Votes 
SAU 

Votes 
SCAU 

Votes 
SBAU 

Votes 
SCBAU 

Votes 
SAB 

Votes 
SCAB 

Votes 
SBAB 

Votes 
SCBAB 

Prior error 
rate 

Posterior 
probability 

(best 
scenario) 

1 scenario 
SCB 

0.004 0.033 0.171 0.513 0.011 0.022 0.040 0.094 0.017 0.041 0.024 0.031 0.583 0.572 

2 scenario 
SCB 

0.003 0.026 0.178 0.515 0.006 0.018 0.023 0.093 0.023 0.022 0.051 0.042 0.583 0.549 

3 scenario 
SCB 

0.003 0.024 0.196 0.497 0.010 0.019 0.030 0.101 0.025 0.033 0.036 0.024 0.583 0.545 

4 scenario 
SCB 

0.004 0.026 0.144 0.483 0.006 0.018 0.043 0.126 0.041 0.032 0.050 0.026 0.586 0.570 

5 scenario 
SCB 

0.004 0.025 0.126 0.537 0.007 0.017 0.030 0.117 0.017 0.021 0.063 0.036 0.582 0.607 

6 scenario 
SCB 

0.004 0.039 0.161 0.501 0.004 0.023 0.036 0.128 0.020 0.026 0.037 0.021 0.585 0.568 

7 scenario 
SCB 

0.014 0.021 0.136 0.536 0.005 0.022 0.029 0.099 0.022 0.044 0.037 0.035 0.585 0.588 

8 scenario 
SCB 

0.005 0.016 0.149 0.491 0.005 0.019 0.026 0.124 0.042 0.030 0.034 0.058 0.586 0.565 

9 scenario 
SCB 

0.003 0.036 0.151 0.506 0.009 0.019 0.017 0.113 0.049 0.024 0.034 0.040 0.584 0.551 

10 scenario 
SCB 

0.006 0.031 0.178 0.491 0.002 0.029 0.028 0.082 0.041 0.032 0.033 0.047 0.585 0.528 

Mean scenario 
SCB 

0.005 0.028 0.159 0.507 0.007 0.021 0.030 0.108 0.030 0.030 0.040 0.036 0.584 0.564 

We report values for the proportion of votes, prior error rates and posterior probabilities of the best scenario on ten replicate analyses based on ten different reference tables. 
Scenarios are depicted in Figure 2. For each reference table, the number of datasets simulated using DIYABC was set to 150,000 and the number of RF-trees was 3,000. The 
scenario SCB was the best supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the 
ancestral population and not any genetic admixture event.  
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Table S1.2. Estimation of the divergence time between S. g. gregaria and S. g. flaviventris for the ten replicate analyses processed under 
the best supported scenario (scenario SCB).  
  

tdiv (G) Median q5% q95% 
reference table 1 7440.0 2485.0 19380.0 
reference table 2 8257.1 2668.0 21086.0 
reference table 3 7930.3 2771.0 20310.9 
reference table 4 7301.0 2888.0 19639.5 
reference table 5 7598.6 2376.0 18260.6 
reference table 6 7426.0 2975.7 19704.7 
reference table 7 7776.0 3190.0 19290.2 
reference table 8 7960.0 2812.0 19664.2 
reference table 9 7552.3 2717.0 20685.0 
reference table 10 7991.0 2966.9 19060.7 

Mean 7723.2 2785.0 19708.2 
SD 307.3 240.5 817.8 

Replicate analyses have been processed on different reference tables. For each reference table, the number of datasets simulated using DIYABC was set to 100,000 and the 
number of RF-trees was 2,000. Divergence times are given in number of generations (G). SD stands for standard deviations computed from the ten values of median, 5% 
quantile and 95% quantile estimated from the ten replicate analyses.  
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Table S1.3 Effect of the number of simulated datasets in the reference table on scenario choice. 

nref 50,000  80,000  100,000  130,000  150,000  

 Mean SD Mean SD Mean SD Mean SD Mean SD 
Votes S 0.006 0.002 0.005 0.002 0.006 0.003 0.006 0.004 0.005 0.003 
Votes SC 0.030 0.015 0.031 0.009 0.029 0.006 0.028 0.006 0.028 0.007 
Votes SB 0.155 0.025 0.155 0.028 0.165 0.033 0.164 0.036 0.159 0.022 
Votes SCB 0.496 0.035 0.506 0.036 0.500 0.034 0.502 0.025 0.507 0.019 
Votes SAU 0.006 0.003 0.007 0.004 0.006 0.004 0.006 0.004 0.007 0.003 
Votes SCAU 0.025 0.005 0.023 0.004 0.020 0.005 0.022 0.006 0.021 0.008 
Votes SBAU 0.033 0.009 0.031 0.007 0.033 0.008 0.030 0.009 0.030 0.016 
Votes SCBAU 0.117 0.027 0.113 0.019 0.108 0.017 0.109 0.017 0.108 0.012 
Votes SAB 0.031 0.009 0.030 0.011 0.027 0.010 0.029 0.010 0.030 0.008 
Votes SCAB 0.032 0.012 0.029 0.007 0.029 0.009 0.031 0.012 0.030 0.011 
Votes SBAB 0.039 0.014 0.039 0.013 0.043 0.014 0.042 0.013 0.040 0.011 
Votes SCBAB 0.030 0.013 0.031 0.009 0.032 0.009 0.032 0.009 0.036 0.011 
Prior error rate 0.594 0.002 0.589 0.002 0.587 0.001 0.585 0.001 0.584 0.001 
Posterior probability 
(best model) 0.567 0.037 0.562 0.034 0.555 0.034 0.563 0.028 0.564 0.023 
Scenarios are depicted in Figure 2. The number of records in the reference datasets (n ref) simulated from DIYABC varied from 50,000 to 150,000. We report mean and 
standard deviation values for the proportion of votes for each scenario, and for prior error rates and posterior probabilities of the best scenario for ten replicate analyses. 
Replicate analyses have been processed on different reference tables. The number of RF-trees was 3,000. The scenario SCB was the best supported for all replicate analyses: it 
involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not any genetic admixture event. 
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Table S1.4. Effect of the number of simulated datasets in the reference table on posterior point estimation values a) and estimation 
accuracy b) of the divergence time between S. g. gregaria and S. g. f laviventris under the best supported scenario (scenario SCB).  

 a) 

 nref  50,000 80,000 90,000 100,000 

 
  Mean SD Mean SD Mean SD Mean SD 

Posterior 
estimations 

         
Median 7731.8 448.9 7691.8 357.5 7724.8 318.0 7723.2 307.3 

q5% 2697.0 129.7 2706.8 235.2 2764.4 172.9 2785.0 240.5 
q95% 20295.5 1763.6 19711.6 1451.3 19508.7 1264.1 19708.2 817.8 

 

b) 

nref 50,000 80,000 90,000 100,000 
      

Accuracy 
measures 

 

Prior NMAE  0.378 0.365 0.362 0.359 

Posterior NMAE  0.375 0.370 0.365 0.369 
The number of records in the reference datasets (n ref) simulated from DIYABC varied from 50,000 to 100,000. The number of RF-trees was set to 2,000. (a) Replicate 
analyses have been processed on ten reference tables. (b). The normalized mean absolute error (NMAE) is the absolute difference between the point estimate (here the 
median) and the (true) simulated value divided by the (true) simulated value. 
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Figure S1.1. Projection on a single (when analyzing pairwise groups of scenarios) or on the first two LDA axes (when analyzing the 
twelve scenarios separately) of the observed dataset and the simulated datasets recorded in the reference table.  Colors correspond to 
group of scenarios or individual scenarios. The location of the desert locust observed dataset is indicated by a vertical black line or a star. 
Scenarios were grouped based on the presence or not of a bottleneck in S. g. flaviventris (B or no B), a population size contraction in ancestor (C 
or no C) and a genetic admixture either unidirectional from S. g. gregaria into S. g. flaviventris or bidirectional (AU or AB or no A). When 
considering the whole set of twelve scenarios separately d), the projected points substantially overlapped for at least some of the scenarios. This 
suggests an overall low power to discriminate among scenarios considered. Conversely, considering pairwise groups of scenarios, one can 
observe a weaker overlap of projected points (at least for a) and b)) suggesting a stronger power to discriminate among groups of scenarios of 
interest than when considering all scenarios separately. One can note that the location of the observed dataset (indicated by a vertical line) 
suggests an association with the scenario group with a bottleneck event in S. g. flaviventris and with the scenario group with a population size 
contraction in the ancestral population.  
 
 a) Group g1= no B vs. group g2 = B                      b) Group g1 = no C  vs. group g2 =C 
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   c) Scenario group 1 = no A vs. group 2 = AU vs. group 3 = AB     d) All twelve scenarios considered separately 
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Figure S1.2. Contributions of ABC-RF summary statistics when choosing between groups of scenarios. The contribution of each 32 summary statistics 
and one LDA axis (or two LDA axes) is evaluated as the total amount of decrease in the Gini criterion (variable importance on the x-axis). The higher the 
contribution of the statistics, the more informative it is in the inferential process. The microsatellite set and subspecies sample are indicated at the end of each 
statistics by indices k_i for single population statistics and k_i.j for two population statistics, with k=1 for the set of untranscribed microsatellites or k=2 for the 
set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S1 for details on the 
summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions bounded between 0 and 1, and denoted NOISE1 to NOISE5 
were added to the set of summary statistics processed by RF, in order to evaluate from which amount of decrease in the Gini criterion the summary statistics 
computed from our genetic datasets were not informative anymore (indicated by a red star). a) B = demographic bottleneck event, b) C = demographic 
contraction event and c) AU or AB or no A = unidirectional from S. g. gregaria into S. g. flaviventris or bidirectional genetic admixture event. 

 

a) Group 1= no B vs. group 2 = B                             b) Group 1 = no C  vs. group 2 =C                             c) Group 1 = no A vs. group 2 = AU vs. group 3 = AB

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/671867doi: bioRxiv preprint 

https://doi.org/10.1101/671867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1.3. Contributions of ABC-RF summary statistics when choosing among the twelve 
individual scenarios. The contribution of each 32 summary statistics and eleven LDA axes is 
evaluated as the total amount of decrease in the Gini criterion (variable importance on the x-axis). 
The higher the contribution of the statistics, the more informative it is in the inferential process. The 
microsatellite set and subspecies sample are indicated at the end of each statistics by indices k_i for 
single population statistics and k_i.j for two population statistics, with k=1 for the set of 
untranscribed microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. 
flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table 1 for details on the 
summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions 
bounded between 0 and 1, and denoted NOISE1 to NOISE5 were added to the set of summary 
statistics processed by RF, in order to evaluate from which amount of decrease in the Gini criterion 
the summary statistics computed from our genetic datasets were not informative anymore (indicated 
by a red star). 
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Figure S1.4. Contributions of ABC-RF summary statistics when estimating the divergence time 
between the two desert locust subspecies under the best supported scenario (scenario SCB). The 
contribution of each 32 summary statistics is evaluated as the total amount of decrease of the residual 
sum of squares, divided by the number of trees, (variable importance on the x-axis). The higher the 
contribution of the statistics, the more informative it is in the inferential process. The microsatellite 
set and subspecies sample are indicated at the end of each statistics by indices k_i for single 
population statistics and k_i.j for two population statistics, with k=1 for the set of untranscribed 
microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris 
subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S6.1 for details on the summary 
statistics abbreviations. Five noise variables, randomly drawn into uniform distributions bounded 
between 0 and 1, and denoted NOISE1 to NOISE5 were added to the set of summary statistics 
processed by RF, in order to evaluate from which amount of decrease in the variable importance 
criterion the summary statistics computed from our genetic datasets were not informative anymore 
(indicated by a red star). 
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Figure S1.5. Effect of the number of RF-trees for scenario choice. We here illustrate the effect 
of the number of trees in the forest on the prior error rate when comparing the twelve scenarios 
separately. The number of datasets in the reference table simulated using DIYABC was 150,000. 
The shape of the curve shows that the prior error rate stabilizes for a number of RF-trees > 2,000. 
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Figure S1.6. Effect of the number of RF-trees for parameter estimation. We here illustrate the 
effect of the number of trees in the forest on the out-of-bag mean square error of the divergence time 
between S. g. gregaria and S. g. flaviventris under the selected scenario SCB. The number of datasets 
in the reference table simulated using DIYABC was 100,000. The shape of the curve shows that the 
prior error rate stabilizes for a number of RF-trees > 1,500. 
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Supplementary Material S2. Hindcasting the desert locust 

potential distribution into the mid-Holocene (HCO) and the last 

glacial maximum (LGM) using distribution modelling.  
 

Motivation 

To complement distribution projections based on vegetation during the mid-Holocene (HCO; 
~6,000 years ago) and Last Glacial Maximum (LGM; ~120,000 years ago) periods, we used 
species distribution modelling along with climatic reconstructions of the past. However, 
results from this modelling effort do not fully match vegetation reconstructions presented in 
the main text. Given that most Global Climate Models (GCMs) have been calibrated and 
tested largely with northern hemisphere data, uncertainties related to current and past 
extrapolations of climate over large areas of Africa are often unknown (e.g., Rowell et al. 
2016). In this appendix, we present the results of the distribution modelling effort, while in 
the main text we base our formalization of evolutionary scenarios on paleo-vegetation 
reconstructions. Notice that the difference between the two approaches does not affect our 
major conclusions. Indeed, since paleo-vegetation maps show more severe changes of open 
vegetation distributions during glacial and interglacial periods, their use make us consider a 
wider spectrum of key biogeographic events than we would have identified based on climatic 
modelling (e.g. continuous colonization of southern Africa, population size contraction), and 
thus a larger set of possible scenarios. In addition, our inference of a most likely scenario 
including a long-distance migration event, and our estimation of a short time scale of 
divergence between the two clades, do not conflict with the results of any of these approaches 
(see also the section On the influence of climatic cycles in the Discussion of the main text). 

Methods 

In a previous study (Meynard et al. 2017), we used Climond data (Kriticos et al. 2012) to 
characterize the current distribution of the two desert locust subspecies, and project their 
potential fate under different climate change scenarios into 2070. Here, we could not use the 
same models because the climatic variables used to calibrate those models, in particular 
radiation and wetness indices, are not available into the mid-Holocene (HCO) and Last 
Glacial Maximum (LGM) periods. However, we apply here a similar modelling procedure 
with a different subset of environmental predictors. Instead of Climond, here we downloaded 
Worldclim v1.4 data (Hijmans et al. 2005) at a 5 min resolution (approximately 9 km at the 
equator).  

For hindcasting, we first need to calibrate a model under current conditions, which can 
then be used to draw maps of potential ranges under HCO and LGM conditions. To do so, we 
used the occurrence data published in Meynard et al. (2017), which included decades of 
monitoring of S. g. gregaria in northern Africa, the middle east and southern Asia during 
remission periods, as well as field records and literature records of S. g. flaviventris in 
southern Africa. However, rather than modelling each clade independently as we did before, 
here we decided to group presence records for the two clades as a single unit for the following 
reasons: (1) here the emphasis is in paleo-climates, at a time scale where the two clades were 
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not yet supposed to be differentiated; (2) a niche analysis in Meynard et al. (2017) did not 
show evidence of niche differentiation between S. g. gregaria and S. g. flaviventris, 
suggesting that the environment occupied by the southern clade is a subset of that occupied by 
the northern one; and (3) the biogeographic hypothesis supported by the molecular analysis 
presented here involves the colonization of the southern tip of south Africa by an isolated 
population of the northern sub-species, which is more generalist in terms of its environmental 
niche. We therefore considered that grouping occurrence records regardless of the subspecies 
would provide for a more accurate hindcasting scenario. However, preliminary analysis using 
separate modelling for each subspecies showed qualitatively similar projections when using S. 
g. gregaria alone (results not shown). 

Finally, since here the emphasis is on Africa, we included only occurrence records in 
this continent, and used 10,000 pseudo-absences drawn at random from outside the combined 
current ranges of the two clades by using the distribution maps proposed in Meynard et al. 
(2017) to mask out areas available for pseudo-absence selection. We also assumed here that 
most of the African continent was accessible to the species during this geological time-scale, 
given the long known dispersal distances during outbreak periods, the wide distribution of the 
northern clade, and the fact that the species is present in both extremes of the continent. 
Consequently, here we do not delimit an accessible area, but we limit our modelling to 
continental Africa. 

To model the species distribution, we used four climatic variables to represent mean 
and variability in temperature and precipitation, while minimizing correlation between them. 
The four variables selected using these criteria were annual mean temperature (BIO1), annual 
precipitation (BIO12), annual temperature range (BIO7) and precipitation seasonality 
(BIO15). We also tested the same forward variable selection procedure presented in Meynard 
et al. (2017), which provided very similar predictions but, for simplicity, we will not present 
those results here. Using these four climatic predictors, we applied three statistical models in 
Rv3.6.1 to draw a consensus map for all predictions: Generalized Additive Model (GAM) 
using library mgcv, and limiting the maximum model complexity to k=4 (Wood 2006); 
boosted regression trees (BRT) using the library gbm, with 2000 trees and no interactions 
(Elith et al. 2008); and MAXENT, using the library dismo and all default parameters (Elith et 
al. 2011). As mentioned above, background data was sampled at random in Africa from 
outside the species current distribution. Pseudo-absences received a combined weight of 50% 
when using GAM or BRT, in order to balance the large number of pseudo-absences with 
respect to presence records in the modelling process while representing the range of values of 
the environmental predictors in the study area (Barbet-Massin et al. 2012). The consensus was 
drawn as the median predicted probability between the three models, and four different 
threshold values were calculated from this consensus: the MST threshold (the threshold that 
maximizes the sum of sensitivity + specificity), often recommended as a good strategy to 
optimize presence and absence classification rates (Liu et al. 2005), was calculated to delimit 
the predicted range of the species and calculate classification rate statistics; and 3 different 
thresholds that represent the highest predicted values that include a fixed percentage of 
presences (50%, 75% and 90%). These thresholds were used to visualize on the maps the core 
(50% threshold) versus the more marginal (between 75% and 90% thresholds) habitats within 
the range. In this context, the 50% threshold represents the core distribution, i.e. the highest 
predicted values that contain more than half of the occurrences, the 90% threshold represents 
the area that includes most of the occurrences, and the area outside the 90% threshold 
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represents marginal or no habitat, where the species is unlikely to occur. The area between the 
75% and 90% threshold can be considered as habitat that is rather marginal but that is still 
part of the predicted range. 

Classification success rates (AUC, TSS, sensitivity and specificity) were calculated for 
the consensus on all the dataset, using an MST threshold when needed. The thresholds 
calculated using current climate and occurrence data were then projected into past scenarios 
(HCO and LGM) using 3 different global circulation models at the same resolution: CCSM4, 
MIROC-ESM and MPI-ESM-P. We chose these three GCMs because their projections were 
available for both time steps of interest. Although the three GCMs are based on climatological 
principles, each one works in slightly different ways, and therefore produces different results. 
Consensus between GCMs presented below represents median values of predictions between 
the three GCMs.  

Results 

The current distribution of S. gregaria, as modelled using both subclades as a single unit and 
limited to continental Africa, is quite similar to the one already published in Meynard et al. 
(2017) (see Figure S2.1). There are, however, differences in the outline of the distributions, 
but the overall predicted area is largely overlapping and classification rates were excellent for 
this model under current conditions (% correctly classified = 87%; AUC = 0.960 ± 0.003; 
sensitivity = 0.911 ± 0.014; specificity = 0.870 ± 0.002; TSS = 0.788 ± 0.016). As expected, 
the species is more likely to occur in regions with mid to high temperatures, wide annual 
temperature range, low precipitation and high precipitation seasonality (Figure S2.2).  

 

Figure S2.1: Current range as predicted by a model combining both subspecies’ occurrences and using four climatic 
predictors. The range predicted by this model (black contour) is compared to the one published in Meynard et al. (2017) 
using a different set of predictors and separating occurrences by subspecies (blue contour).  
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Figure S2.2: Response curves of S. gregaria against the four environmental predictors used in the modelling process, as 
derived from the GAM model. Notice that temperature is expressed as the real temperature x 10.  

To better understand the results in terms of distributional changes, Figure S2.3 shows 
a comparison of the climatic variables used in the modelling process in the study region 
during the present, the HCO and the LGM periods across Africa. Although only one GCM 
scenario is shown (CCSM4), climatic conditions for the other two GCMs present similar 
trends. Notice that, although temperatures are thought to have been warmer than present 
during the HCO globally, those changes are not uniform across regions and are not reflected 
in these HCO scenarios for Africa. In all the scenarios in Figure S2.3, mean temperature 
showed a slight decrease across Africa, while precipitation increased slightly.  
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Figure S2.3: Comparison of climates across times (current climate, mid-Holocene, Last Glacial Maximum=LGM). Variables 
shown are those used in the modelling process. BIO1 = Mean Annual Temperature; BIO7 = Annual Temperature Range; 
BIO12 = Annual Precipitation; BIO15 = Precipitation Seasonality (Coefficient of Variation). Vertical color lines indicate mean 
values for each period: blue = current mean; red = HCO mean; green = LGM mean. 

However, when looking at the distribution of those changes (Figure S2.4) some 
regions showed a decrease and others an increase in temperatures during the same period. 
Most of Africa shows changes that represent less than 10% of their current mean temperature 
values (Figure S2.4, upper left). Overall, conditions under HCO in Africa were therefore 
similar to current climatic conditions in terms of temperature but were moister in many 
regions that are relevant to the potential distribution of the desert locust (Figure S2.4, upper 
row).  
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Figure S2.4: Relative changes in annual mean temperature (BIO1) and annual precipitation (BIO12) during the HCO and 
LGM, expressed as a percent of current values per grid cell. Positive values therefore indicate an increase whereas negative 
values represent a decrease with respect to current climatic conditions. 

During the LGM (Figure S2.3, right column), mean temperature decreased more 
dramatically throughout all of Africa, while precipitation increased in some regions but 
decreased in others (Figure S2.4, lower row). While the entire continent experienced a 
decrease in temperature, changes in precipitation were more heterogeneous (Figure S2.4, 
lower right). Given that these changes are heterogeneous across regions, changes in the 
potential distribution of S. gregaria are less dramatic than one would expect given global 
simplifications of these changes.  

Indeed, the predicted distribution during the HCO and the LGM are very similar to the 
current distribution (Figure S2.5). There is an overall shrinkage of the core habitat (in red in 
all maps), but the contour of the distribution (black contour) remains large and mostly 
overlapping with the current distribution.   
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Figure S2.5: Comparison of current versus past potential distribution of S. gregaria during the HCO and LGM periods. 

Although each GCM resulted in differences in terms of the projected distribution maps 
of S. gregaria, in the consensus distribution is projected to be very similar to the current 
distribution during the HCO, and slightly reduced during the LGM, with a shift of the core 
favorable climatic conditions towards a much reduced area, especially during the LGM 
(Figure S2.5). 

Although climatic projections for each GCM result in different projected distributions 
during the HCO (Figure S2.6) and the LGM (Figure S2.7), overall the tendencies are the 
same: a similar distribution when comparing present and HCO conditions, and a more 
restricted potential distribution when considering LGM conditions.   

 

Figure S2.6: Projected potential distribution of S. gregaria during the mid-Holocene (~6000 years BP) using three different 
Global Circulation Models (GCMs): CCRM4, MIROC-ESM and MPI-ESM-P. 
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Figure S2.7: Projected potential distribution of S. gregaria during the LGM (~20,000 years BP) using three different Global 
Circulation Models (GCMs): CCRM4, MIROC-ESM and MPI-ESM-P. 
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Supplementary Material S3: Overview of the used ABC Ran-

dom Forest (ABC-RF) methods

In this supplementary material, we provide readers with an overview of the Approximate Bayesian 
Computation Random Forest (hereafter ABC-RF) methods used in the present paper. We invite 
the reader to consult Pudlo et al. (2016), Estoup et al. (2018), and Raynal et al. (2019) for more 
in-depth explanations.

ABC framework

Let y denote the observed data and θ a vector of parameters associated to a statistical model whose
likelihood is f(. | θ). Under the Bayesian parametric paradigm the posterior distribution

π(θ | y) ∝ f(y | θ)π(θ)

is of prime interest. It characterizes the distribution of θ given the observation y and can be
interpreted as an update of the prior distribution π(θ) by the likelihood of y. The likelihood is
hence pivotal, but unfortunately intractable in the evolutionary scenarios (models) we consider in
the present study, as well as in many other evolutionary studies. As a matter of fact, the underlying
Kingman’s coalescent process (Kingman, 1982) does not allow a close expression for the likelihood
because all the possible genealogies and mutational process yielding y should be considered. To
solve this issue, some likelihood-free methods have been developed using the fact that, even though
the likelihood is not available, generating artificial (i.e. simulated) data for a given value of θ is
much easier if not feasible (e.g. Beaumont (2010). Approximate Bayesian computation (ABC) is
one of them (Beaumont et al., 2002).

In a nutshell, ABC consists in generating parameters θ′ and associated pseudo-data z from
the scenario, and accepting θ′ as a realization from an approximated posterior if z is similar to y.
In standard ABC treatments, the notion of similarity is defined through the use of a distance ρ
to compare η(z) and η(y), where η(.) is a projection of the data in a lower dimensional space of
summary statistics. Only pseudo-data providing distance lower than a threshold ε are retained.
The choice of ρ, η(.) and ε is a major issue in ABC (Beaumont, 2010).

ABC-RF is a recently derived ABC approach based on the supervised machine learning tool 
named Random Forest (Breiman, 2001), which has as major advantage to avoid the three above-
mentioned difficulties. Initially introduced in Pudlo et al. (2016) for model choice and then extended 
to parameter inference in Raynal et al. (2019), ABC-RF relies on the use of random forests on a set of 
simulated pseudo-data according to the generative Bayesian models under consideration. Let 
consider M Bayesian parametric models. For a given model index m ∈ {1, . . . , M}, a prior 
probability P(M = m) is defined, with θm its associated parameters and fm(y | θm) its likelihood. 
The generation process of a reference table made of H elements is described in Algorithm 1.

Algorithm 1: Generation of a reference table with H elements

1 for j ← 1 to H do
2 Generate m(j) from the prior P(M = m)
3 Generate θm(j) from the prior πm(j)(.)

4 Generate z(j) from the model fm(j) (. | θm(j))

5 Compute η(z(j)) =
(
η1(z(j)), . . . , ηd(z

(j))
)

6 end

1
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The output takes the form of a matrix containing simulated model indexes, parameters and
summary statistics, as described below

m(1) θm(1) η1(z(1)) η2(z(1)) . . . ηd(z
(1))

m(2) θm(2) η1(z(2)) η2(z(2)) . . . ηd(z
(2))

...
...

...
...

...
...

m(H) θm(H) η1(z(H)) η2(z(H)) . . . ηd(z
(H))

 .

ABC-RF for model choice

The ABC-RF strategy for model choice is described in Algorithm 2. The output is the affectation
of y to a model (scenario), this decision being made based on the majority class of the RF tree
votes.

Algorithm 2: ABC-RF for model choice

Input : a reference table used as learning set, made of H elements, each one composed of a model
index m(H) and d summary statistics. A possibly large collection of summary statistics can
be used, including some obtained by machine-learning techniques, but also by scientific
theory and knowledge

Learning : construct a classification random forest m̂(·) to infer model indexes

Output : apply the random forest classifier to the observed data η(y) to obtain m̂(η(y))

The selected scenario is the one with the highest number of votes in his favor. In addition to
this majority vote, the posterior probability of the selected scenario can be computed as described
in Algorithm 3.

Algorithm 3: ABC-RF computation of the posterior probability of the selected scenario

Input : the values of I
{
m(h) 6= m̂(η(z(h)))

}
for the trained random forest and corresponding

summary statistics of the reference table, using the out-of-bag classifiers

Learning : construct a regression random forest Ê(.) to infer E (I {m 6= m̂(η(y))} | η(y))

Output : an estimate of the posterior probability of the selected model m̂(η(y))

P̂ (m = m̂(η(y)) | η(y)) = 1− Ê (I {m 6= m̂(η(y))} | η(y))

Such posterior probability provides a confidence measure of the previous prediction at the point
of interest η(y). It relies on the building of a regression random forest designed to explain the
model prediction error. More specifically, and as a first step, posterior probability computation
makes use of out-of-bag predictions of the training dataset. Because each tree of the random forest
is built on a bootstrap sampling of the H elements of the reference table (i.e. the training dataset),
there is about one third of the reference table that remains unused per tree, and this ensemble of
left aside datasets corresponds to the “out-of-bag”. Thus, for each pseudo-data of the reference

2
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table, one can obtain an out-of-bag prediction by aggregating all the classification trees in which
the pseudo-data was out-of-bag. In a second step, the out-of-bag predictions m̂(η(z(h))) are used
to compute the indicators I

{
m(h) 6= m̂(η(z(h)))

}
. These 0 - 1 values are used as response variables

for the regression random forest training, for which the explanatory variables are the summary
statistics of the reference table. Predicting the observed data thanks to this forest allows the
derivation of the posterior probability of the selected model (Algorithm 3). Note that using the
out-of-bag procedure prevents over-fitting issues and is computationally parsimonious as it avoids
the generation of a second reference table for the regression random forest training.

Model grouping A recent useful add-on to ABC-RF has been the model-grouping approach de-
veloped in Estoup et al. (2018), where pre-defined groups of scenarios are analysed using Algorithm
2 and 3. The model indexes used in the training reference table are modified in a preliminary step
to match the corresponding groups, which are then used during learning phase. When appropriate,
unused scenarios are discarded from the reference table. This improvement is particularly useful
when a high number of individual scenarios are considered and have been formalized through the
absence or presence of some key evolutionary events (e.g. admixture, bottleneck, ...). Such key
evolutionary events allow defining and further considering groups of scenarios including or not such
events. This grouping approach allows to evaluate the power of ABC-RF to make inferences about
evolutionary event(s) of interest over the entire prior space and assess (and quantify) whether or
not a particular evolutionary event is of prime importance to explain the observed dataset (see
Estoup et al. (2018) for details and illustrations).

ABC-RF for parameter estimation

Once the selected (i.e. best) scenario has been identified, the next step is the estimation of its 
parameters of interest under this scenario. The ABC-RF parameter estimation strategy is described 
in Algorithm 4 and takes a similar structure to Algorithm 2. The idea is to use a regression random 
forest for each dimension of the parameter space (i.e. for each parameter). For a given parameter of 
interest, the output of the algorithm is a vector of weights wy that can be used to compute posterior 
quantities of interest such as expectation, variance and quantiles. wy provides an empirical posterior 
distribution for θm,k; see Raynal et al. (2019) for more details.

Algorithm 4: ABC-RF for parameter estimation

Input : a vector of θm(h),k values (i.e. the k-th component of θm(h)) and d summary statistics

Learning : construct a regression random forest to infer parameter values

Output : apply the random forest to the observed data η(y), to deduce a vector of weights

wy = {w(1)
y , . . . , w

(H)
y }, which provides an empirical posterior distribution for θj,k

wy is used to compute the estimators of the mean, the variance and the quantiles of the
parameter of interest

Ê(θm,k | η(y)), V̂(θm,k | η(y)), Q̂α(θm,k | η(y))

3
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Global prior errors

In both contexts, model choice or parameter estimation, a global quality of the predictor can be
computed, which does not take the observed dataset (about which one wants to make inferences)
into account. Random forests make it possible the computation of errors on the training reference
table, using the out-of-bag predictions previously described in the section “ABC-RF for model
choice”.

For model choice, this type of error is called the prior error rate, which is the mis-classification
error rate computed over the entire multidimensional prior space. It can be computed as

1

H

H∑
h=1

I
{
m(h) 6= m̂(η(z(h)))

}
.

For parameter estimation, the equivalent is the prior mean squared error (MSE) or the nor-
malised mean absolute error (NMAE), the latter being less sensitive to extreme values. These
errors are computed as

MSE =
1

H

H∑
h=1

(
θm(h),k − θ̂m(h),k

)2
,

NMAE =
1

H

H∑
h=1

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ .
They can be perceived as Monte Carlo approximation of expectations with respect to the prior
distribution.

Local posterior errors

In the present paper, we propose some posterior versions of errors, which target the quality of
prediction with respect to the posterior distribution. As such errors take the observed dataset η(y)
into account, we mention them as local posterior errors.

For model choice, the posterior probability provided by Algorithm 3 is a confidence measure of
the selected scenario given the observation. Therefore

1− P̂ (m = m̂(η(y)) | η(y))

directly yields the posterior error associated to η(y): P̂ (m 6= m̂(η(y)) | η(y)).

For parameter estimation, when trying to infer on θm,k, a point-wise analogous measure of a
local error can be computed as the posterior expectations

E
((

θm,k − θ̂m,k
)2
| η(y)

)
and E

(∣∣∣∣∣θm,k − θ̂m,kθm,k

∣∣∣∣∣ | η(y)

)
. (1)

We approximate these expectations by

H∑
i=1

w(h)
y

(
θm(h),k − θ̂m(h),k

)2
and

H∑
i=1

w(h)
y

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ .
4
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We again uses the out-of-bag information to compute θ̂m(h),k, hence avoiding the (time consuming)
production of a second reference table, and assume that the weights wy from the regression random
forest are good enough to approximate any posterior expectations of functions of θm,k:
E(g(θm,k) | η(y)).

Another more expensive strategy to evaluate the posterior expectations (1) is to construct new
regression random forests using the out-of-bag vector of values

(
θm(h),k − θ̂m(h),k

)2
or

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ ,
depending on the targeted error. The observation η(y) is then given to the forests, targeting the
expectations (1).

Note that the values θ̂m(h),k in the previous formulas can be replaced by either the approximated

posterior expectations Ê(θm(h),k | η(y)) or the posterior medians Q̂50%(θm(h),k | η(y)), again using
the out-of-bag information, to provide the local posterior errors. We found that both in the present
paper (see main text, Materials and Methods section) and for various tests that we carried out on
different inferential setups and datasets (results not shown), the posterior median provides a better
accuracy of parameter estimation than the posterior expectation (aka posterior mean). This trends
also holds for global prior errors that can be computed using either the mean or the median as
point estimates.

As final comment, it is worth noting that so far a common practice consisted in evaluating
the quality of prediction (for model choice or parameter estimation) in the neighborhood of the
observed dataset, that is around η(y) and not exactly for η(y). For model choice, Estoup et al.
(2018) use the so called posterior predictive error rate which is an error of this type. In this case,
some simulated datasets of the reference table close to the observation are selected thanks to an
Euclidean distance, then new pseudo-observed datasets are simulated using similar parameters, on
which is computed the error (see also Lippens et al., 2017, for a similar approach in a standard
ABC framework). However, the main problem of processing this way is the difficulty to specify the
size of the area around the observation, especially when the number of summary statistics is large.
We therefore do not recommend the use of such a “neighborhood” error anymore, but rather to
compute the local posterior errors detailed above as the latter measured prediction quality exactly
at the position of interest η(y).
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Supplementary Material S4. Details on results from ABC-RF treatments when using uniform priors 
for the three time period parameters of the studied scenarios. 
 
Table S4.1. Scenario choice for each of the ten replicate analyses using uniform priors for the three time period parameters of the 
studied scenarios. 
 

Reference 
table 

Best 
scenario 

Votes 
S 

Votes 
SC 

Votes 
SB 

Votes 
SCB 

Votes 
SAU 

Votes 
SCAU 

Votes 
SBAU 

Votes 
SCBA

U 

Votes 
SAB 

Votes 
SCAB 

Votes 
SBAB 

Votes 
SCBA

B 

Prior 
error rate 

Posterior 
probability 

(best scenario) 

1 scenario 
SCB 0.013 0.045 0.147 0.462 0.007 0.022 0.020 0.040 0.041 0.099 0.034 0.069 0.778 0.596 

2 scenario 
SCB 0.018 0.027 0.140 0.365 0.012 0.026 0.033 0.096 0.044 0.075 0.072 0.092 0.776 0.398 

3 scenario 
SCB 0.012 0.077 0.182 0.326 0.006 0.030 0.019 0.069 0.038 0.102 0.064 0.074 0.775 0.426 

4 scenario 
SCB 0.014 0.035 0.175 0.405 0.007 0.022 0.022 0.061 0.023 0.091 0.040 0.104 0.777 0.563 

5 scenario 
SCB 0.019 0.048 0.101 0.416 0.010 0.024 0.026 0.063 0.039 0.092 0.055 0.106 0.778 0.547 

6 scenario 
SCB 0.018 0.030 0.130 0.295 0.011 0.030 0.013 0.124 0.075 0.093 0.098 0.082 0.778 0.398 

7 scenario 
SCB 0.016 0.057 0.094 0.308 0.011 0.018 0.015 0.050 0.028 0.113 0.058 0.231 0.775 0.511 

8 scenario 
SCB 0.019 0.037 0.109 0.359 0.007 0.018 0.015 0.049 0.057 0.080 0.105 0.145 0.777 0.474 

9 scenario 
SCB 0.010 0.052 0.114 0.286 0.017 0.023 0.014 0.070 0.069 0.136 0.098 0.113 0.777 0.460 

10 scenario 
SCB 0.013 0.057 0.124 0.249 0.009 0.016 0.012 0.067 0.061 0.133 0.091 0.168 0.778 0.442 

Mean scenario 
SCB 0.015 0.047 0.132 0.347 0.010 0.023 0.019 0.069 0.048 0.101 0.072 0.118 0.777 0.481 
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We empirically evaluated the influence of shape of prior distributions for the time periods on our inferences by re-conducting all ABC-RF analyses assuming a set of uniform 
priors bounded between 100 and 500,000 generations for those time periods. As a reminder, prior values for time periods were initially drawn from log-uniform distributions 
bounded between 100 and 500,000 generations in the main document. We here report values for the proportion of votes, prior error rates and posterior probabilities of the 
best scenario on ten replicate analyses based on ten different reference tables (assuming a set of uniform priors bounded for time periods). Scenarios are depicted in Figure 2. 
For each reference table, the number of datasets simulated using DIYABC was set to 150,000 and the number of RF-trees was 3,000. The scenario SCB was the best 
supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not 
any secondary contact with asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris.  
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Table S4.2. Estimation of the divergence time between S. g. gregaria and S. g. 
flaviventris for ten replicate analyses using uniform prior distributions for the three 
time period parameters under the best supported scenario (scenario SCB).  
 

tdiv (G) Median q5% q95% 
reference table 1 10236.6 3678.5 25457.0 
reference table 2 7603.0 2311.2 23020.3 
reference table 3 8500.0 2788.8 19401.0 
reference table 4 10598.5 3564.4 24444.5 
reference table 5 9226.0 3147.9 21286.6 
reference table 6 9665.0 3381.5 24445.2 
reference table 7 8675.5 2572.3 26375.8 
reference table 8 10281.6 2919.8 27349.0 
reference table 9 8845.0 3271.9 24094.7 
reference table 10 7909.7 2040.1 21333.4 

Mean 9154.1 2967.6 23720.8 
SD 1027.5 541.6 2476.4 

We empirically evaluated the influence of shape of prior distributions for the time periods on our inferences by 
re-conducting all ABC-RF analyses assuming a set of uniform priors bounded between 100 and 500,000 
generations. Median value and 90% CI for priors are 146,936 and 13,195 – 498,867, respectively. Replicate 
analyses have been processed on different reference tables. For each reference table, the number of datasets 
simulated using DIYABC was set to 100,000 and the number of RF- trees was 2,000. Divergence times are 
given in number of generations. SD stands for standard deviations computed from the ten values of median, 5% 
quantile and 95% quantile estimated from the ten replicate analyses.  
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Figure S4.1. Estimation of the time since divergence between the two desert locust 
subspecies as a function of time scales using uniform prior distributions for the three 
time period parameters under the best supported scenario (scenario SCB).  
Simulated datasets (5,000 par divergence time) were generated for fixed divergence time 
values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; and 
250,000 generations. The median (plain lines) and 90% credibility interval (90% CI; dashed 
lines), averaged over the 5,000 datasets, are represented. Divergence time values are in 
number of generations. 
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