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2 

Abstract 1 

Background: Sequencing and PCR errors are a major challenge when characterising genetic 2 

diversity using high-throughput amplicon sequencing (HTAS). 3 

 4 

Results: We have developed a multiplexed HTAS method, MAUI-seq, which uses unique 5 

molecular identifiers (UMIs) to improve error correction by exploiting variation among 6 

sequences associated with a single UMI. We show that two main advantages of this approach 7 

are efficient elimination of chimeric and other erroneous reads, outperforming DADA2 and 8 

UNOISE3, and the ability to confidently recognise genuine alleles that are present at low 9 

abundance or resemble chimeras. 10 

 11 

Conclusions: The method provides sensitive and flexible profiling of diversity and is readily 12 

adaptable to most HTAS applications, including microbial 16S rRNA profiling and 13 

metabarcoding of environmental DNA.  14 
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3 

Introduction 1 

 2 

The evaluation of DNA diversity in environmental samples has become a pivotal approach in 3 

microbial ecology [1] and is increasingly also used to assess the distribution of larger 4 

organisms [2]. If a core gene can be amplified from environmental DNA with universal primers, 5 

the relative abundance of species in the community can be estimated from the proportions of 6 

species-specific variants among the amplicons. High throughput amplicon sequencing 7 

(HTAS), often termed metabarcoding, has become a cost-effective way to detect multiple 8 

species simultaneously within a range of environmental samples [3–8]. While shotgun 9 

sequencing of the whole community (metagenomics) can provide a richer description of the 10 

functions in a community, HTAS remains a more efficient tool for comparing the species 11 

diversity of a large number of community samples. Despite the extensive use of HTAS for 12 

interspecies ecological diversity studies, few investigations have utilised HTAS for 13 

intraspecies analysis [9, 10]. As 16S rRNA amplicons are too highly conserved to estimate 14 

microbial within-species diversity, other target gene candidates need to be considered in order 15 

to sufficiently discern intraspecies sequence variation.  16 

Many studies have evaluated the extent of PCR-based amplification errors and bias for HTAS 17 

diversity studies [4, 6, 7, 11]. Numerous known PCR biases reduce the accuracy of diversity 18 

and abundance estimations, with the major concern being the inability to confidently 19 

distinguish PCR error from natural sequence variation in environmental samples, which is an 20 

especially limiting factor for intraspecific studies. 21 

Polymerase errors, production of chimeric sequences by template switching, and the 22 

stochasticity of PCR amplification can be major causes of PCR errors [11–13].  Polymerase 23 

errors introduce new sequences into the template population during amplification. These 24 

sequence errors include not only substitutions but also insertions and deletions. The use of 25 

proofreading polymerases, optimised DNA template concentration, and reduced PCR cycle 26 

number have been suggested to reduce these errors [7, 11, 14]. 27 

In order to account for the introduction of sequence variants in PCR amplification, several 28 

sequence-classification approaches have been established to manage diversity estimates. 29 

The most common method is the use of operational taxonomic units (OTUs) in microbial 30 

diversity studies which analyse target gene sequences and cluster based on an arbitrary fixed 31 

similarity threshold (QIIME [15]; UPARSE [8, 16–20]. Within species boundaries this technique 32 

could dramatically reduce the resolution of naturally occurring sequence variation. 33 

Most recent methods rely on the formation of sequence groups called amplicon sequence 34 

variants (ASVs) (DADA2, [19]; UNOISE3, [20, 21]. This approach allows sequence resolution 35 

down to one nucleotide, which is advantageous for determining intraspecies allelic variation, 36 
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but noise from PCR errors is also more evident. Variation induced by PCR errors often cannot 1 

be differentiated from rare natural allelic variation without the use of sequence denoising 2 

methods [11]. DADA2 relies on a quality-aware parametric error model, which is developed 3 

on a per sequencing run basis. This increases the run time compared to UNOISE3, which 4 

uses a one-pass technique [22].  5 

An approach that can reduce sequencing noise is to assign a unique molecular identifier (UMI) 6 

to every initial DNA template within an HTAS sample, which also enables evaluation of PCR 7 

amplification bias [23]. Additionally, the UMI provides a potential route to address polymerase 8 

errors in metabarcoding studies. The UMI is provided by a set of random bases in the gene-9 

specific forward inner primer, which introduces a unique DNA sequence into every initial DNA 10 

template upstream of the amplicon region during the first round of amplification. Once all 11 

original DNA template strands are assigned a unique UMI, an outer forward primer and the 12 

gene-specific reverse primer can be used for further amplification. Consequently, all 13 

subsequent DNA amplified from the original template will have the same UMI, so the number 14 

of reads amplified from the initial template can be calculated. Grouping sequences by shared 15 

UMI allows identification of a consensus, which is assumed to be the correct sequence [24]. 16 

To our knowledge, UMIs have previously only been used for single-amplicon interspecies 17 

investigations [25–28]. 18 

Here, we present a method for metabarcoding using amplicons with unique molecular 19 

identifiers to improve error correction – MAUI-seq. The innovative approach is that we use 20 

variation among sequences associated with a single UMI to identify erroneous sequences, 21 

and we show that this improves error correction compared to non-UMI based analysis using 22 

the state-of-the-art software packages DADA2 and UNOISE3. 23 

 24 

Results 25 

Laboratory protocol: UMI labelling and amplicon multiplexing 26 

We developed a procedure (MAUI-seq) to amplify multiple target genes from environmental 27 

samples, while assigning a random UMI to each initial copy of a template.  We opted for a 28 

straightforward protocol using a “one-pot” initiation and amplification system. Forward primers 29 

consist of two modules; an inner primer bearing the UMI and designed to amplify the target 30 

gene, and a universal outer primer that binds only to a linker on the inner primer (Figure 1A). 31 

We used a 12-base UMI that allowed over 4 million distinct sequences, which is adequate to 32 

ensure that duplicate use is negligible for samples with a few thousand sequenced UMIs. For 33 

studies with greater sequencing depth, a longer UMI can easily be designed. As a test case, 34 

we used MAUI-seq to investigate the genetic diversity of the nitrogen-fixing bacterium 35 

Rhizobium leguminosarum symbiovar trifolii (Rlt) by characterising amplicons from the 36 
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chromosomal core genes rpoB and recA and the plasmid-borne nodulation genes nodA and 1 

nodD. Each gene was amplified separately in a single reaction, using a target-specific inner 2 

forward primer (at low concentration) to assign the UMI and a universal outer primer (at high 3 

concentration) to amplify the resulting molecules (Figure 1A). The resulting amplicons were 4 

pooled and tagged by Nextera to identify the sample, then further pooled for high-throughput 5 

paired-end sequencing (Figure 1B). The full MAUI-seq step-by-step laboratory protocol can 6 

be found in Additional File 1. 7 

 8 

Analysis protocol: filtering using UMI-based error rates 9 

The resulting paired-end reads were merged and then separated by gene prior to downstream 10 

analysis, where UMIs are critical in two ways. Firstly, sequences are clustered by UMI, and 11 

the number of unique UMIs is counted for each distinct sequence, selecting the most abundant 12 

sequence associated with each UMI (Figure 1C). UMIs are discarded as ambiguous if the 13 

most abundant sequence does not have at least two reads more than the next in abundance. 14 

The most abundant sequence will usually be the correct one (Figure 2A Case 1) but, because 15 

most UMIs are represented by just a small number of reads, it can sometimes happen that an 16 

erroneous sequence is sampled more often than the true sequence, so the primary sequence 17 

of the UMI becomes this erroneous sequence (Figure 2A Case 2). Secondly, we reasoned 18 

that it may be possible to eliminate these errors by using the UMIs to provide information on 19 

global error rates across all samples. We implemented this in MAUI-seq by noting both the 20 

most abundant (primary) and the second most abundant (secondary) sequence if two or more 21 

sequences were associated with the same UMI. MAUI-seq then distinguishes between true 22 

and erroneous sequences based on the ratio of primary and secondary occurrences of each 23 

sequence, eliminating sequences that show a high ratio (default is 0.7) of secondary to primary 24 

occurrences (Figure 1C and Figure 2B). The 0.7 threshold was chosen empirically, based on 25 

the ratios observed for known true and erroneous sequences, but it is a compromise because 26 

the incidence of secondary sequences varies across genes and studies. An examination of 27 

the results may suggest choosing  different thresholds in other studies.  Finally, globally rare 28 

sequences are discarded (default threshold is 0.1% averaged across samples - a lower 29 

threshold could be used if samples were sequenced to a greater depth). Python scripts for 30 

separating the genes and for the UMI analysis are available at 31 

https://github.com/jpwyoung/MAUI. 32 

 33 

Validation using purified DNA mixed in known proportions 34 

We first evaluated the accuracy of MAUI-seq by profiling DNA mixtures with known strain DNA 35 

ratios. DNA was extracted from two Rlt strains differing by a minimum of 3bp in each of their 36 

recA, rpoB, nodA, and nodD amplicon sequences, and the extracted DNA was mixed in 37 
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different ratios (Supplementary Table S1). After amplification and sequencing, assembled 1 

reads were assigned to their target gene and analysed using MAUI-seq and two programs 2 

frequently used for de-noising of amplicon sequencing data, DADA2 and UNOISE3 [19, 21]. 3 

Since rare sequences have a high error rate, we discarded (for each of the three methods) 4 

sequences that fell below a threshold frequency of 0.1% of accepted sequences. The 5 

observed and expected strain ratios were highly correlated for all four genes across the three 6 

analysis methods, and we found that the performances of the proofreading (Phusion) and non-7 

proofreading (Platinum) polymerases were gene-dependent, which could be due to 8 

differences in amplification efficiency for the four templates (Table 1 and Supplementary 9 

Figures S1-S4). On average, MAUI-seq detected between 98.5% and 100% true sequences 10 

exactly matching those of the two strains in the mixture, while DADA2 ranged from 89.7% to 11 

100%, and UNOISE3 from 79.8% to 100% (Table 1). The better performance of MAUI-seq 12 

was due to more effective elimination of chimeras, which were especially abundant when the 13 

PCR reaction was carried out using the Platinum non-proofreading polymerase (Table 1 and 14 

Supplementary Figures S1-S4). For the proofreading polymerase, DADA2 detected 100% 15 

true sequences for all four genes, whereas MAUI-seq detected 99.03% for nodA, failing to 16 

eliminate three rare sequences that did not have sufficient secondary counts. This suggests 17 

that DADA2 performs equally well or even slightly better than MAUI-seq, when a proofreading 18 

polymerase is used to amplify DNA from a simple, two-component mix. The prevalence of 19 

secondary sequences varied with gene and polymerase: the secondary/primary ratio for 20 

accepted sequences was 0.0322 for rpoB using Phusion, but just 0.0002 for nodD using 21 

Platinum. When the ratio was very low, there were insufficient secondary counts for MAUI-seq 22 

to eliminate erroneous sequences effectively. 23 

 24 

Validation using environmental samples 25 

To test the method on more complex samples, we compared Rlt populations in root nodules 26 

from two locations in Denmark, a clover trial station in Store Heddinge on Zealand and a lawn 27 

at Aarhus University in Jutland (the Field-Samples-1 dataset; Supplementary Figure S5). 28 

One hundred nodules were pooled for each sample and each plot was sampled in four 29 

replicates. Platinum Taq polymerase enzyme was used for amplification. Each clover root 30 

nodule is usually colonised by a single Rhizobium strain, so a maximum of 100 unique 31 

sequences per gene is expected per sample.  32 

For Field-Samples-1, the total number of distinct sequences for MAUI-seq and DADA2 were 33 

in the same range as the number of distinct alleles observed in a population of 196 natural 34 

European Rlt isolates [29] (Table 2). In contrast, UNOISE3 produced a substantially higher 35 

number of distinct sequences, suggesting that its default filtering might be too lenient for our 36 

data (Table 2). The sequences accepted as true by MAUI-seq were nearly all also included in 37 
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the DADA2 and UNOISE3 outputs (Figure 3). On the other hand, DADA2 and UNOISE3 both 1 

accepted a number of sequences that were filtered out by MAUI-seq, and many of these were 2 

eliminated by MAUI-seq because a high ratio of secondary to primary occurrences strongly 3 

suggested that they represent errors and not real sequences (Figure 3 and Additional file 4 

2). To provide independent evidence as to whether sequences were likely to be genuine, we 5 

checked whether they matched (or differed by a single nucleotide from) known sequences in 6 

either a reference database of 196 natural European Rlt isolates [29], or the NCBI whole-7 

genome shotgun database (Figure 3). The great majority of sequences rejected by MAUI-seq 8 

did not have exact matches to these known sequences.  A few sequences that exactly 9 

matched known alleles were included by DADA2 and UNOISE, but not by MAUI-seq. These 10 

sequences were not reported by MAUI-seq because their UMI counts were below the 11 

abundance threshold, not because the secondary/primary occurrence filter identified them as 12 

erroneous (Figure 3).  The count threshold could be lowered to include rarer sequences, if 13 

the study required it. 14 

The allele frequency distributions were different at Aarhus and Store Heddinge (Figure 3), 15 

and the two sites were clearly separated by the first principal component in a Principal 16 

Component analysis (PCA) for MAUI-seq, DADA2 and UNOISE3 sequences. (Figure 4 and 17 

Supplementary Figure S6-S8). The amplicon sequencing has sufficient resolution to 18 

characterize geospatial variation in allele frequencies.  For example, MAUI-seq, DADA2 and 19 

UNOISE3 can all clearly identify several highly abundant sequences from one location that 20 

are either absent or present in very low frequency in samples from the other location (Figure 21 

3). To quantify the genetic differentiation between the Aarhus and Store Heddinge sites, we 22 

calculated fixation indices (FST). Considering all four target genes combined, the MAUI-seq 23 

output resulted in the highest FST value followed by DADA2 and UNOISE3 (Table 2, Figure 4 24 

and Supplementary Figure S9-S11). For all individual genes, MAUI-seq also produced the 25 

highest FST estimates, and the differences were especially pronounced for nodA, which also 26 

showed the highest overall level of differentiation (Table 2 and Supplementary Figure S9-27 

S11). The lower genetic differentiation estimated based on DADA2 and UNOISE3 results, 28 

compared to those of MAUI-seq, reflects the inclusion of an increased number of erroneous 29 

sequences, which are less differentiated between the two sampled sites than the real 30 

sequences (Figure 3). 31 

Since it was clear from the DNA mixture experiment that the choice of DNA polymerase could 32 

significantly affect error rates, we sampled root nodules from 13 additional clover field plots 33 

(the Field-Samples-2 dataset) and amplified each sample (a pool of one hundred root nodules) 34 

using Platinum and Phusion polymerases in parallel. For samples amplified using Platinum, 35 

MAUI-seq detected fewer sequences than DADA2 and UNOISE3 for the two core genes, but 36 

the same number of reference sequences were detected (Table 3). DADA2 included two 37 
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chimeric sequences that were filtered out by MAUI-seq due to a high ratio of secondary to 1 

primary occurrences (Additional File 2). UNOISE3 detected twice as many sequences as 2 

DADA2 and MAUI-seq for the accessory genes, but most of the additional sequences had no 3 

associated UMIs and were classified as “other” (Table 3, Additional File 2). For samples 4 

amplified using Phusion, MAUI-seq and DADA2 detected a similar number of sequences 5 

(Table 3). All nine UNOISE3 rpoB sequences that were not accepted by either MAUI-seq or 6 

DADA2 (Additional File 2) are putative chimeric sequences with two parental sequences of 7 

higher abundance. For nodA, MAUI-seq includes three sequences that have a single 8 

nucleotide difference from a reference sequence, but all have a good ratio of secondary to 9 

primary reads, so we hypothesise that these are true sequences. Some reference or exact 10 

blast hit sequences were included by DADA2 but not by MAUI-seq because their abundance 11 

was estimated by DADA2 to be above the 0.001 threshold, but MAUI-seq estimated that they 12 

were rarer.   13 

Both MAUI-seq and DADA2 identify and remove sequences that appear to be errors (base 14 

substitutions or chimeras), but they use completely different evidence. As a result, they do not 15 

always make the same decision, as illustrated for a small set of representative data in Table 16 

4 (the rpoB sequences amplified by Phusion). While DADA2 examines the sequences and 17 

rejects those that are likely to be generated from more abundant sequences in the sample, 18 

MAUI-seq does not use the actual sequence but bases decisions on how frequently a 19 

sequence occurs as a secondary sequence with the same UMI as another (primary) 20 

sequence. Sequences ranked 5 and 6 (Table 4) are both potential chimeras of the more 21 

abundant sequences 1-4. Both DADA2 and MAUI-seq reject sequence 6 and accept sequence 22 

5. Sequence 6 has a secondary/primary ratio of 103/118, which is above the default threshold 23 

of 0.7, so MAUI-seq rejects it as a likely error. On the other hand, the ratio for sequence 5 is 24 

71/229. This is well below the threshold, but it is higher than other sequences with a similar 25 

primary count, e.g. sequence 9 (15/270). A possible explanation is that some of the reads for 26 

sequence 5 are generated as chimeras but others are genuine, since is entirely plausible that 27 

new alleles are generated by recombination between existing alleles. To some extent, MAUI-28 

seq compensates for this because it allocates sequence 5 a relatively low count and hence 29 

lower ranking (8) than it has in the raw reads or the DADA2 analysis. There are two further 30 

sequences, 10 and 29, that are rejected by DADA2 as potential chimeras but accepted by 31 

MAUI-seq (Additional file 2 Field-Samples-2-phusion-rpoB); in both cases they have 32 

secondary sequence counts well below the threshold, so MAUI-seq accepts them as genuine. 33 

DADA2 included an rpoB sequence that does not have any associated UMIs (sequence 41), 34 

and appears to be a chimera of two more abundant sequences (sequence 3/4/5 and sequence 35 

11) (Table 4). MAUI-seq counts UMIs, not individual reads, and the default setting is to require 36 

that the primary sequence has at least two more reads than the next most frequent sequence 37 
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(if any) that has the same UMI. This enriches for genuine sequences, which are generally 1 

more abundant than errors, but it means, of course, that the number of counts is much lower 2 

than the number of reads. In fact, for this particular set of data, the number of UMIs is orders 3 

of magnitude smaller than either the raw reads or the DADA2 count, although still sufficient to 4 

provide good estimates of the relative abundance of the sequences that make up the bulk of 5 

the population. The main reason for the low UMI count is that the number of reads per UMI 6 

was suboptimal in these data for the rpoB gene: only 18% of the UMIs had more than one 7 

read, and MAUI-seq discards single-read UMIs by default. By contrast, in the equivalent data 8 

for the recA gene in the same study (Additional file 2 Field-Samples-2-phusion-recA), 37.5% 9 

of UMIs had more than one read, making more effective use of the available sequence reads.   10 

  11 

Discussion   12 

We propose a new HTAS method (MAUI-seq) designed to assess genetic diversity 13 

within or across species. It uses global UMI-based errors rates to detect potential PCR 14 

artefacts such as chimeras and single-base substitutions more robustly than the widely-used 15 

ASV clustering methods, DADA2 and UNOISE3. The approach is potentially applicable to any 16 

study of amplicon diversity, including community diversity estimates based on 16S rRNA and 17 

other metabarcoding surveys using environmental DNA.    18 

 19 

Using UMIs to filter out chimeras and other errors 20 

In the MAUI-seq approach, UMIs are used to reduce errors in two distinct ways. Since 21 

all reads with the same UMI should, in principle, be derived from the same initial template 22 

copy, any variation among them reflects errors. In some implementations, a consensus 23 

sequence is calculated [24], but we adopt the simpler approach of accepting the most 24 

abundant sequence, which will usually give the same result. Requiring more than one identical 25 

read before accepting a UMI creates an important quality filter that greatly reduces the number 26 

of rare (and usually erroneous) sequences, but as more reads are required, an increasing 27 

number of the original reads are discarded and the number of accepted counts declines. To 28 

strike a balance between quantity and quality, we chose to count a sequence provided it had 29 

at least two more reads than the next most frequent sequence with the same UMI, but this 30 

threshold could be adjusted if, for example, a markedly larger number of reads were available. 31 

While the most abundant sequence associated with a UMI will usually be the correct 32 

one, it will sometimes happen that an erroneous sequence will predominate among the small 33 

number of reads actually sequenced, leading to these sequences being included among the 34 

recorded counts. These errors can be detected, though, by aggregating information across 35 

the whole set of samples. When a UMI is associated with more than one sequence, the 36 
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secondary sequences are most often erroneous, so sequences that are relatively more 1 

abundant as secondary sequences than as the primary sequences associated with UMIs are 2 

likely to be erroneous. We recorded the number of times each sequence was found as the 3 

second sequence associated with a UMI, and found empirically that a suitable threshold for 4 

accepting sequences as genuine was that they occurred less than 0.7 times as often as 5 

secondary sequences as they occurred as primary sequences. This threshold can, however, 6 

be adjusted to reflect the error distribution observed in a particular study. We found that this 7 

approach was very effective in identifying known errors, particularly chimeras, which were 8 

generally the most abundant errors. Chimeras were rejected more effectively by MAUI-seq 9 

than by the two established ASV clustering methods, DADA2 and UNOISE3. Both of these 10 

rely on de novo rejection of sequences that could be constructed as recombinants of other 11 

sequences that are more abundant in the sample [13]. This method risks rejecting sequences 12 

that appear to be recombinant but are genuine alleles, which may not be uncommon, 13 

particularly in intraspecific samples. Our approach, by contrast, uses information on the 14 

observed error rates in the data (detected using UMIs) to decide whether a sequence is likely 15 

to be genuine, regardless of its actual sequence and relationship to other sequences. 16 

Sequences that could be generated as chimeras, or that differ by a single nucleotide from a 17 

more abundant sequence, may be accepted as genuine if they are more abundant than 18 

expected from their rate of occurrence as minor sequences associated with UMIs. In our study, 19 

this approach eliminated many known errors and substantially improved our confidence in the 20 

remaining data, providing a powerful additional reason for using UMIs in metabarcoding 21 

studies of all kinds. While we found that a simple empirical threshold was effective, we noticed 22 

that the proportion of secondary sequences varied markedly across studies and genes, 23 

suggesting that an adjustable threshold might give further improvement. A useful future 24 

development might be to use the abundance of minor sequences associated with UMIs to 25 

generate a statistical model of error processes that would provide a firmer theoretical basis for 26 

the classification of sequences. 27 

 28 

Using UMIs to reduce amplification bias 29 

One motivation for the use of UMIs is to obtain more accurate relative abundance data 30 

by eliminating possible sequence-specific bias in the PCR amplification, which may be 31 

introduced by variation in polymerase and primer affinity for some DNA templates. Indeed, we 32 

observed that the Platinum polymerase preferentially amplified the SM170C rpoB allele, 33 

whereas the Phusion enzyme did not have this bias (Table 1 and Supplementary Figure 34 

S1A-C). Allele variant bias was also shown for other target genes, although the ranking of the 35 

two enzymes was not always the same (Table 1 and Supplementary Figures S1-S4). 36 

However, in our study, the use of UMIs did not correct the allele bias. This suggests that the 37 
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bias was present in the initial round of copying using the target-specific primer, rather than in 1 

the subsequent amplification rounds. For our case study, at least, the choice of polymerase 2 

was much more important for accurate relative abundance data than the use of UMIs. The 3 

main advantage of UMIs was, rather, the ability to remove most sequencing errors, as 4 

discussed in the preceding section. 5 

 6 

Advantages of multiplexing several amplicons  7 

Increasing the number of monitored amplicons to four increased our ability to robustly 8 

distinguish samples from two locations (Figure 3-4 and Supplementary Figure S6-S11). 9 

Multiplexing could be used in other ways, for example to monitor several organisms in the 10 

same environment, or to increase read coverage profiling of single genetic markers such as 11 

16S [30]. In addition, there is a technical benefit in sequencing multiple different targets 12 

together, because a lack of sequence diversity can cause Illumina base-calling issues [31]. 13 

 14 

Optimization of the protocol 15 

As with any metabarcoding project, the first important step is to design the primers 16 

carefully to amplify the entire target community with minimum bias, and we used a large 17 

database of known gene sequences to achieve this. Another consideration that is shared with 18 

other approaches is the choice of polymerase for PCR. For the samples studied here, with 19 

abundant template DNA, the proofreading enzyme was clearly superior in performance, 20 

although more costly. On the other hand, this enzyme may provide less robust amplification 21 

when the template is weak, as we have observed in another project aimed at rhizobial DNA in 22 

soil [32]. The use of UMIs introduces other design considerations. We used twelve random 23 

nucleotides (with some constraints), giving over four million potential UMI sequences, which 24 

was sufficient for the scale of our studies, but it would be simple to increase the UMI length if 25 

greater sequencing depth was planned.  In any metabarcoding study, the choice of 26 

sequencing depth is, to some degree, made blindly because the diversity of templates is not 27 

known in advance, but UMI-based approaches need greater depth because it is UMIs that are 28 

counted, not reads, and the aim is to have several reads per UMI. There are  many factors 29 

that affect the average number of reads per UMI, but our study is encouraging in that, without 30 

separate optimization, all of our target genes in all of our samples gave usable data. In fact, 31 

the number of reads per UMI were suboptimal in most cases. Given a fixed sequencing effort, 32 

reads per UMI could, if necessary, be increased by reducing the concentration of the forward 33 

UMI-bearing primer and/or of the sample DNA so that fewer distinct UMIs were initiated. With 34 

our parameters, at least two reads are needed before a UMI is counted, and a sufficient 35 

fraction of the UMIs need at least four reads so that some will have a secondary sequence as 36 

well as the primary sequence (with at least two reads more than the secondary).  37 
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 1 

Future directions for MAUI-seq 2 

HTAS is a valuable and widely-used approach for the study of microbial community 3 

diversity, but handling erroneous sequences introduced by the amplification and sequencing 4 

procedures has always been challenging. The use of UMIs allows MAUI-seq to greatly reduce 5 

the incidence of errors through two mechanisms. Firstly, the requirement that a UMI is 6 

associated with at least two identical reads eliminates many rare sequences that are 7 

predominantly erroneous. Secondly, sequences that are frequently generated as errors can 8 

be identified and removed because they occur unexpectedly often as minor components 9 

associated with UMIs that are assigned to more abundant sequences. These mechanisms are 10 

independent of any reference database and can recognise and retain genuine alleles that 11 

differ by a single nucleotide or match a potential chimera. This makes MAUI-seq particularly 12 

suited to studies of intraspecific variation, where the range of sequence divergence may be 13 

limited and not fully known in advance. However, the efficient elimination of erroneous 14 

sequences is also important in community studies such as those based on widely-used 16S 15 

primers, and MAUI-seq should be readily adaptable to this field. The analysis pipeline is very 16 

fast because no sequence alignment or database searching is involved; only the accepted 17 

final sequences would need to be characterised by comparison to a reference database.  18 

Most HTAS studies report the relative proportions of the taxa in a community, but it 19 

would sometimes be valuable to estimate the absolute abundance of the microbes in the 20 

environmental sample. UMIs can potentially provide such information, if the initial template 21 

copying is carefully controlled so that the total number of distinct UMIs reflects the number of 22 

templates [26, 33]. While this would necessitate some additional steps at the start of the 23 

experimental protocol, it should still be possible to analyse the resulting sequences using the 24 

error-removal approaches provided by MAUI-seq. Alternatively, absolute abundance can be 25 

estimated by adding a spike of a known quantity of a recognisable target sequence to the 26 

sample before processing [11, 34, 35]. 27 

The addition of a UMI shortens the maximum length of target sequence that can be 28 

read, and the counting of UMIs rather than reads requires a higher depth of sequencing, but 29 

these limitations are increasingly unimportant as improvements in sequencing technology lead 30 

to increasing length, enabling long-read amplicon sequencing [36, 37], and numbers of reads. 31 

As implemented in MAUI-seq, UMIs are very effective in reducing the errors inherent in HTAS, 32 

and have the potential to improve the quality of any amplicon-based study of diversity.   33 
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Materials and methods  1 

Preparation of DNA mixtures 2 

Two Rlt strains (SM3 and SM170C) were chosen based on their recA, rpoB, nodA, and nodD  3 

sequence divergence, with a minimum of 3 base pair differences in the amplicon region 4 

required for each gene. Strains were grown on Tryptone Yeast agar (28°C, 48hrs). Culture 5 

was resuspended in 750ul of the DNeasy Powerlyzer PowerSoil DNA isolation kit (QIAGEN, 6 

USA) and DNA was extracted following the manufacturer’s instructions. DNA sample 7 

concentrations were calculated using QuBit (Thermofisher Scientific Inc., USA). DNA samples 8 

of the two strains were diluted to the same concentration and mixed in various ratios 9 

(Supplementary Table S1). 10 

  11 

Preparation of environmental samples 12 

For Field-Samples-1 data, white clover (Trifolium repens) root nodules were collected from 13 

two locations: Store Heddinge, Denmark (6 plots) and Aarhus University Science Park, 14 

Aarhus, Denmark (2 plots) (Supplementary Figure S4). The clover varieties sampled were 15 

Klondike (Store Heddinge) and wild white clover, (Aarhus). 100 large pink nodules were 16 

collected from 4 points on each plot, making a total of 32 samples. Nodules were stored at -17 

20°C until DNA extraction. Nodule samples were thawed at room temperature and crushed 18 

using a sterile homogeniser stick. Crushed nodules were mixed with 750µl Bead Solution from 19 

the DNeasy PowerLyzer PowerSoil DNA isolation kit (QIAGEN, USA) and DNA was extracted 20 

following the manufacturer’s instructions. DNA sample concentrations were measured using 21 

a Nanodrop 3300 instrument (Thermofisher Scientific Inc., USA). 22 

For Field-Samples-2 data, root nodules were additionally sampled from 13 white clover 23 

conventionally-managed field trial plots at Store Heddinge, Denmark (Sample 1A-13A, 24 

Additional File 2). All plots were sown under the same conditions in 2017. Three to ten clover 25 

plants were sampled from one point in each plot and the 100 largest nodules collected. 26 

Nodules were stored at -20°C, and DNA was extracted for each sample using the Qiagen 27 

DNeasy PowerLyzer PowerSoil DNA isolation kit, as above. Samples were processed 28 

independently with Platinum (non-proofreading) and Phusion (proofreading) polymerases to 29 

evaluate the method dependency on polymerase choice, as described in the following 30 

sections.  31 

 32 

PCR and purification 33 

Primer sequences were designed for two Rlt housekeeping genes, recombinase A (recA) and 34 

RNA polymerase B (rpoB) and for two Rlt specific symbiosis genes, nodA and nodD 35 

(Additional File 1: Table S1). 36 
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The three primers are a target-gene forward inner primer, a universal forward outer primer, 1 

and a target-gene reverse primer. The concentration of the inner forward primer was 100-fold 2 

lower than the universal forward outer primer and the reverse primer (Figure 1) in order to 3 

reduce the competitiveness of this primer compared to the outer primer. The inner primer is 4 

essential for the first round of amplification, but its participation is undesirable in later rounds 5 

as it would assign a new unique UMI to an existing amplicon. The PCR reaction mixture and 6 

thermocycler programme are provided (Additional File 1: Tables S2 and S3). 7 

PCRs were undertaken individually for each primer set using Platinum Taq DNA polymerase 8 

(Thermofisher Scientific Inc., USA) (Additional File 1: Table S2) and subsequently pooled 9 

and purified using AMPure XP Beads following the manufacturer’s instructions (Beckman 10 

Coulter, USA). Successful PCR amplification was confirmed by running a 0.5X TBE 2% 11 

agarose gel at 90V for 2 hours. 12 

For the DNA mixture samples, PCRs were run in triplicate. DNA from single strains was also 13 

processed as a control to determine the level of cross contamination between samples. Some 14 

samples were also amplified using Phusion High-Fidelity polymerase (Thermofisher Scientific 15 

Inc., USA), to evaluate whether use of a proof-reading polymerase improved the quality of the 16 

results using the PCR program described in Additional File 1: Table S2 and Table S4. 17 

  18 

Nextera indexing for multiplexing and MiSeq sequencing 19 

Samples were indexed for multiplexed sequencing libraries with Nextera XT DNA Library 20 

Preparation Kit v2 set A (Illumina, USA) using the Phusion High-Fidelity DNA polymerase 21 

(Thermofisher Scientific Inc., USA). PCR reaction mixture and programme are detailed in 22 

Additional File 1: Tables S6 and S7  Indices were added in unique combinations as specified 23 

in the manufacturer’s instructions (Illumina, USA). 24 

The PCR product was purified on a 0.5X TBE 1.5% agarose gel and extracted with the 25 

QIAQuick gel extraction kit (QIAGEN, USA) (expected band length: ~454bp). PCR amplicon 26 

concentrations were quantified using GelAnalyzer2010a and normalised to 10nM [38]. A 27 

pooled sample was quantified and checked for quality by Bioanalyzer (Agilent, USA) before 28 

sequencing using Illumina MiSeq (2x300bp paired end reads) by the University of York 29 

Technology Facility. A detailed protocol is available in Additional File 1.  30 

  31 

Read processing and data analysis 32 

The PEAR assembler was used to merge paired ends [39]. Python scripts were used to 33 

separate the merged reads by gene (MAUIsortgenes.py) and to calculate allele frequencies 34 

both with and without the use of UMIs (MAUIcount.py).  The scripts are available in the GitHub 35 

repository https://github.com/jpwyoung/MAUI. Sequences were clustered by UMI, and the 36 

number of unique UMIs was counted for each distinct sequence, provided that sequence had 37 
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at least two more reads with that UMI than any other sequence. In cases where two or more 1 

sequences were associated with the same UMI, the second most abundant sequence was 2 

noted, and sequences that occurred more than 0.7 times as often as second sequences than 3 

as the main sequence associated with a UMI were filtered out of the results as putative PCR-4 

induced chimeras or other errors. Sequences with primers removed (ignoring UMIs) were also 5 

clustered using DADA2 (version 1.8) [19] and UNOISE3 (USEARCH version 11.0.667) [21] 6 

with default settings. An overall read frequency filter of 0.1% was applied to DADA2 and 7 

UNOISE3 outputs to match MAUI-seq accepted sequences filtering. Scripts used for DADA2, 8 

UNOISE3, and figure generation are available in Additional file 3, 4, and 5, respectively. 9 

Output abundance data were then processed for statistical analysis and figure generation 10 

using various R packages (Additional File 3, 4, and 5; [40, 41]). Principal components were 11 

calculated with the R ‘prcomp’ package using singular value decomposition to explain the 12 

Rhizobium diversity and abundance within each sub-plot sample. Differences in allele 13 

frequencies between samples were quantified using Bray-Curtis beta-diversity estimation 14 

using the R package ‘vegdist.’ PERMANOVA tests were performed using the R package 15 

‘adonis’. Empirical Bayes estimator of FST was calculated using the R package ‘FinePop’.  16 
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2. 4 

  5 

Ethics approval and consent to participate 6 

Not applicable 7 

 8 

Consent for publication 9 

Not applicable 10 

 11 

Competing interests 12 

The authors declare that they have no competing interests. 13 

 14 

Funding 15 

This work was funded by grant no. 4105-00007A from Innovation Fund Denmark (S.U.A.). 16 

Initial development of the method was funded by the EU FP7-KBBE project LEGATO 17 

(J.P.W.Y).  18 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 12, 2020. ; https://doi.org/10.1101/538587doi: bioRxiv preprint 

https://doi.org/10.1101/538587
http://creativecommons.org/licenses/by-nd/4.0/


17 

References 1 

1. Birtel J, Walser JC, Pichon S, Bürgmann H, Matthews B. Estimating bacterial diversity for 2 

ecological studies: Methods, metrics, and assumptions. PLoS ONE. 2015. 3 

2. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. 4 

Environmental DNA metabarcoding: Transforming how we survey animal and plant 5 

communities. Molecular Ecology. 2017. 6 

3. Fonseca VG. Pitfalls in relative abundance estimation using edna metabarcoding. 7 

Molecular Ecology Resources. 2018. 8 

4. Krehenwinkel H, Kennedy SR, Rueda A, Lam A, Gillespie RG. Scaling up DNA barcoding 9 

– Primer sets for simple and cost efficient arthropod systematics by multiplex PCR and 10 

Illumina amplicon sequencing. Methods in Ecology and Evolution. 2018. 11 

5. Tessler M, Neumann JS, Afshinnekoo E, Pineda M, Hersch R, Velho LFM, et al. Large-12 

scale differences in microbial biodiversity discovery between 16S amplicon and shotgun 13 

sequencing. Scientific Reports. 2017. 14 

6. Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species 15 

abundance? Testing primer bias and biomass-sequence relationships with an innovative 16 

metabarcoding protocol. PLoS ONE. 2015. 17 

7. Gohl D, Gohl DM, MacLean A, Hauge A, Becker A, Walek D, et al. An optimized protocol 18 

for high-throughput amplicon-based microbiome profiling. Protocol Exchange. 2016. 19 

8. Poisot T, Péquin B, Gravel D. High-Throughput Sequencing: A Roadmap Toward 20 

Community Ecology. Ecology and Evolution. 2013. 21 

9. Poirier S, Rué O, Peguilhan R, Coeuret G, Zagorec M, Champomier-Vergès MC, et al. 22 

Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using 23 

gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3-V4 amplicon 24 

sequencing. PLoS ONE. 2018. 25 

10. Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic amplicon 26 

deep sequencing to determine Ilarvirus species diversity in Australian Prunus. Frontiers in 27 

Microbiology. 2017. 28 

11. Kebschull JM, Zador AM. Sources of PCR-induced distortions in high-throughput 29 

sequencing data sets. Nucleic Acids Research. 2015. 30 

12. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity 31 

and speed of chimera detection. Bioinformatics. 2011. 32 

13. Edgar R. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. 33 

2016. 34 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 12, 2020. ; https://doi.org/10.1101/538587doi: bioRxiv preprint 

https://doi.org/10.1101/538587
http://creativecommons.org/licenses/by-nd/4.0/


18 

14. Oliver AK, Brown SP, Callaham MA, Jumpponen A. Polymerase matters: Non-1 

proofreading enzymes inflate fungal community richness estimates by up to 15%. Fungal 2 

Ecology. 2015. 3 

15. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing 4 

taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-5 

classifier plugin. Microbiome. 2018. 6 

16. Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. 7 

Nature Methods. 2013. 8 

17. Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the rare 9 

biosphere through improved OTU clustering. Environmental Microbiology. 2010. 10 

18. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, et al. Fungal 11 

community analysis by high-throughput sequencing of amplified markers - a user’s guide. 12 

New Phytologist. 2013. 13 

19. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: 14 

High-resolution sample inference from Illumina amplicon data. Nature Methods. 2016. 15 

20. Fierer N, Brewer T, Choudoir M. Lumping versus splitting – is it time for microbial 16 

ecologists to abandon OTUs? 2017. 17 

21. Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 18 

sequencing. 2016. 19 

22. Nearing JT, Douglas GM, Comeau AM, Langille MGI. Denoising the Denoisers: An 20 

independent evaluation of microbiome sequence error- correction approaches. PeerJ. 2018. 21 

23. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations 22 

for high-throughput amplicon sequencing. Nature Methods. 2013. 23 

24. Kou R, Lam H, Duan H, Ye L, Jongkam N, Chen W, et al. Benefits and challenges with 24 

applying unique molecular identifiers in next generation sequencing to detect low frequency 25 

mutations. PLoS ONE. 2016. 26 

25. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. 27 

The long-term stability of the human gut microbiota. Science. 2013. 28 

26. Hoshino T, Inagaki F. Application of stochastic labeling with random-sequence barcodes 29 

for simultaneous quantification and sequencing of environmental 16S rRNA genes. PLoS 30 

ONE. 2017. 31 

27. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. Accurate sampling and 32 

deep sequencing of the HIV-1 protease gene using a Primer ID. Proceedings of the National 33 

Academy of Sciences of the United States of America. 2011. 34 

28. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification 35 

of rare mutations with massively parallel sequencing. Proceedings of the National Academy 36 

of Sciences of the United States of America. 2011. 37 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 12, 2020. ; https://doi.org/10.1101/538587doi: bioRxiv preprint 

https://doi.org/10.1101/538587
http://creativecommons.org/licenses/by-nd/4.0/


19 

29. Cavassim MIA, Moeskjaer S, Moslemi C, Fields B, Bachmann A, Vilhjalmsson B, et al. 1 

The genomic architecture of introgression among sibling species of bacteria. bioRxiv. 2019. 2 

30. Fuks G, Elgart M, Amir A, Zeisel A, Turnbaugh PJ, Soen Y, et al. Combining 16S rRNA 3 

gene variable regions enables high-resolution microbial community profiling. Microbiome. 4 

2018. 5 

31. Krueger F, Andrews SR, Osborne CS. Large scale loss of data in low-diversity illumina 6 

sequencing libraries can be recovered by deferred cluster calling. PLoS ONE. 2011. 7 

32. Boivin S, Lahmidi NA, Sherlock D, Bonhomme M, Dijon D, Heulin‐Gotty K, et al. Host‐8 

specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. 9 

New Phytologist. 2020. 10 

33. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting 11 

absolute numbers of molecules using unique molecular identifiers. Nature Methods. 2012. 12 

34. Edgar RC. UNBIAS: An attempt to correct abundance bias in 16S sequencing, with 13 

limited success. bioRxiv. 2017. 14 

35. Palmer JM, Jusino MA, Banik MT, Lindner DL. Non-biological synthetic spike-in controls 15 

and the AMPtk software pipeline improve mycobiome data. PeerJ. 2018. 16 

36. Kumar V, Vollbrecht T, Chernyshev M, Mohan S, Hanst B, Bavafa N, et al. Long-read 17 

amplicon denoising. bioRxiv. 2018. 18 

37. Karst SM, Ziels RM, Kirkegaard RH, Albertsen M. Enabling high-accuracy long-read 19 

amplicon sequences using unique molecular identifiers and Nanopore sequencing. bioRxiv. 20 

2019. 21 

38. Lazar I. Gelanalyzer 2010a: Freeware 1d gel electrophoresis image analysis software. 22 

2010. 23 

39. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-24 

End reAd mergeR. Bioinformatics. 2014. 25 

40. R Core team. R Core Team. R: A Language and Environment for Statistical Computing. 26 

R Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL 27 

http://www.R-project.org/. 2015. 28 

41. Wickham H. ggplot 2: Elagant graphics for data analysis. 2016. 29 

  30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 12, 2020. ; https://doi.org/10.1101/538587doi: bioRxiv preprint 

https://doi.org/10.1101/538587
http://creativecommons.org/licenses/by-nd/4.0/


20 

Tables 1 

Table 1. Total number of detected sequences in the synthetic mix samples using MAUI-seq, DADA2 
and UNOISE3. The percentage of true sequences is averaged over 23 samples for Platinum (non-
proofreading) and 14 samples for Phusion (proofreading).  

  Platinum Phusion  

  MAUI- 
seq 

DADA2 UNOISE3 MAUI- 
seq 

DADA2 UNOISE3 exp. 
seq* 

rpoB n seq 2 3 4 2 2 2 2 

%true* 100 96.96 93.80 100 100 100 - 

Cor.exp/obs*  0.956 0.977 0.981 0.996 0.999 0.9998 - 

chim.freq* 0 0.07 0.13 0 0 0 - 

recA n seq 2 2 2 2 2 2 2 

%true 100 100 100 100 100 100 - 

Cor.exp/obs  0.984 0.991 0.989 0.948 0.952 0.947 - 

chim.freq 0 0 0 0 0 0 - 

nodA n seq 6 5 4 5 2 4 2 

%true 99.04 89.70 89.93 99.03 100 90.43 - 

Cor.exp/obs  0.985 0.998 0.999 0.989 0.999 0.999 - 

chim.freq 0.10 0.25 0.22 0.04 0 0.16 - 

nodD n seq 7 6 21 3 3 14 3† 

%true 98.49 93.93 90.10 100 100 79.83 - 

Cor.exp/obs  0.998 0.998 0.995 0.990 0.998 0.995 - 

chim.freq 0.05 0.05 0.13 0 0 0.11 - 

all %true-overall* 99.76 93.73 91.93 99.74 100 91.71 - 

*n seq is the total number of sequences occurring across all samples. %true is calculated by dividing 2 
the number of counts for the true sequences by the total number of counts accepted by the method. 3 
%true-overall is based on summed counts for all four genes. Cor.exp/obs is the Pearson correlation 4 
for the observed proportion of SM170C reads versus the expected proportion. Chim.freq is the 5 
proportion of chimeras compared to total reads at 0.5 expected proportion of sequences. Exp.seq is 6 
the expected number of detected sequences. 7 
†  SM170C has a second copy of nodD [29].   8 
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Table 2. Total number of detected sequence clusters in root nodule samples (Field-Samples-1) using 
MAUI-seq, DADA2, and UNOISE3 clustering and genetic differentiation between populations.  

  Detected sequence clusters* FST
† 

Gene  Method  Total Reference Exact BLAST Single nt Other  

rpoB MAUI-seq 12 7 3 1 1 0.032 

DADA2 15 7 3 3 2 0.032 

UNOISE3 30 7 2 7 14 0.012 

Reference 13 - - - - - 

recA MAUI-seq 8 6 2 - - 0.110 

DADA2 13 8 2 3 - 0.090 

UNOISE3 14 5 2 2 5 0.028 

Reference 17 - - - - - 

nodA MAUI-seq 9 8 - 1 - 0.369 

DADA2 18 12 1 1 4 0.191 

UNOISE3 43 13 - 5 25 0.061 

Reference 14 - - - - - 

nodD MAUI-seq 18 11 1 2 4 0.139 

DADA2 22 11 1 3 7 0.124 

UNOISE3 57 11 1 4 41 0.031 

Reference 16 - - - - - 

All 
genes  

MAUI-seq 47 32 6 4 5 0.139 

DADA2 68 38 7 10 13 0.105 

UNOISE3 144 36 5 18 85 0.032 

* Output sequences were classified into reference (100% identity in at least 1 of 196 Rhizobium 1 
leguminosarum symbiovar trifolii genomes [29]), exact BLAST (100% query coverage and 100% 2 
identity against the whole-genome shotgun contigs BLAST database), single nt (one nt difference from 3 
either reference or exact BLAST match), and other.  4 
†  The population global FST (fixation index) is an estimate of genetic differentiation among populations 5 
based on relative allele abundance.    6 
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Table 3. The effect of polymerase choice. Total number of detected sequence clusters in root nodule 
samples (Field-Samples-2) amplified using Phusion (proofreading) or Platinum (non-proofreading) 
polymerases. Sequences were clustered using MAUI-seq, DADA2, and UNOISE3.  

  Platinum Phusion 

Gene   MAUI- 
seq 

DADA2 UNOISE3 MAUI- 
seq 

DADA2 UNOISE3 

rpoB Total 16 24 26 15  15 20 

Reference* 9 9 7 8 9 7 

Exact 
BLAST* 

3 3 2 3 3 2 

Single nt* 3 7 8 3 2 5 

Other* 1 5 9 1 1 6 

recA Total 9 10 12 8 9 10 

Reference 5 5 4 5 5 4 

Exact 
BLAST 

0 1 1 0 1 1 

Single nt 3 3 3 3 2 3 

Other 1 1 4 0 1 2 

nodA Total 18 14 35 17 11 34 

Reference 7 10 8 9 9 9 

Exact 
BLAST 

0 1 0 0 0 0 

Single nt 6 1 4 6 1 4 

Other 5 2 22 2 1 21 

nodD Total 20 17 46 27 24 71 

Reference 10 12 12 16 16 15 

Exact 
BLAST 

0 0 0 0 0 0 

Single nt 6 3 6 5 4 6 

Other 4 2 28 6 3 50 

* Output sequences were classified into reference (100% identity in at least 1 of 196 Rhizobium 1 
leguminosarum symbiovar trifolii genomes [29]), exact BLAST (100% query coverage and 100% 2 
identity against the whole-genome shotgun contigs BLAST database), single nt (one nt difference from 3 
either reference or exact BLAST match), and other.   4 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 12, 2020. ; https://doi.org/10.1101/538587doi: bioRxiv preprint 

https://doi.org/10.1101/538587
http://creativecommons.org/licenses/by-nd/4.0/


23 

Table 4. A comparison between DADA2 and MAUI-seq for a subset of the Field-Samples-2 data 
summarised in Table 3: the rpoB sequences from samples amplified by Phusion (proofreading) 
polymerase. Red cells refer to rejected sequences. Green cells refer to sequences, which are accepted 
by MAUI-seq, while DADA2 rejects them as potential chimeras. Yellow cells refer to sequences filtered 
out due to low UMI count by MAUI-seq.  

Raw reads MAUI DADA2 

Rank  count rank UMI primary 
count 

UMI 
secondary 

accepted rank count accepted 

1 99431 1 7459 197 yes 1 54758 yes 

2 86751 2 7067 155 yes 2 48402 yes 

3 70318 3 3668 95 yes 3 44412 yes 

4 47337 4 1898 106 yes 4 28339 yes 

5 13190 8 229 71 yes 5 7854 yes 

6 11786 9 118 103 no none NA no 

7 10490 5 489 19 yes 6 6009 yes 

8 9630 6 362 13 yes 7 5414 yes 

9 4738 7 270 15 yes 8 2757 yes 

10 4290 12 62 15 yes none NA no 

11 3223 11 90 3 yes 9 2041 yes 

20 1950 10 96 6 yes 10 981 yes 

29 1504 13 42 10 yes none  NA no 

39 1063 14 35 2 yes 12 618 yes 

41 946 none 0 0  11 721 yes 

43 826 15 34 0 yes 13 434 yes 

51 567 16 22 3 yes 14 341 yes 

63 415 24 7 0 (yes) 15 208 yes 

  1 
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Figure Legends 1 

Figure 1. Primer design and method workflow. A: Primer design using the sense strand of the target 2 

DNA template as an example. The amplicon region of interest should be no longer than 500bp. The 3 

target-gene forward inner primer, universal forward outer primer and the target-gene reverse primer are 4 

all used in the initial PCR. The Nextera XT indices provide sample barcodes in a separate PCR step. 5 

The unique molecular identifier (UMI) region is shown in turquoise on the target-gene forward inner 6 

primer. B: Sample preparation workflow. C: MAUI-seq data analysis workflow. 7 

 8 

Figure 2. Erroneous read formation and filtering. A: Schematic showing the formation of different 9 

sequences with identical UMIs, and bias introduced when sampling for sequencing. B: Example data 10 

showing the occurrence of real and chimeric rpoB sequences as primary and secondary sequence (log 11 

scale).  S1 and S2: Real sequences derived from two different rhizobium strains (SM170C and SM3). 12 

Chi1-4: Chimeric sequences. 13 

 14 

Figure 3. Amplicon diversity reported by MAUI-seq compared with the DADA2 and UNOISE3 analysis 15 

pipelines. Data are for four genes from nodule samples from two geographic locations, Store 16 

Heddinge (1-6) and Aarhus (7-8). Letters A-D denote the replicates within each plot (Supplementary 17 

Figure 5). Heatmap of the log10 transformed relative allele abundance of sequence clusters for 18 

individual genes. Lines connect identical sequences found by different clustering methods. Evidence 19 

that sequences are likely to be genuine is denoted by classifying them as reference (100% identity in 20 

at least 1 of 196 Rhizobium leguminosarum symbiovar trifolii genomes [29]), exact BLAST (100% 21 

query coverage and 100% identity against the whole-genome shotgun contigs BLAST database), 22 

single nt (one nt difference from either reference or exact BLAST match), and other. Sequences not 23 

reported by MAUI were classified as sec/pri ratio (rejected as erroneous because of a high 24 

secondary to primary ratio), low UMI count (not reported because too rare), not found by MAUI (no 25 

accepted UMIs).  26 

 27 

Figure 4. Genetic differentiation between populations visualised by Principal Component Analysis (A-28 

C) and FST (D-F) of Rlt diversity in root nodule samples (8 sites, 4 replicates). Three analysis pipelines 29 

are compared: MAUI-seq (A,D), DADA2 (B,E), UNOISE3 (C,F). The PCA analysis was based on log10 30 

transformed relative allele abundance. FST analysis was based on relative allele abundance. Data from 31 

all four genes (rpoB, recA, nodA, and nodD) were included in the analysis.  32 
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