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A1 Overview

A1.1 Setting

When can we unambiguously identify the state of an ecosystem, demarcate its boundaries and
follow its change over time? This is most easily done if its many component species, each with
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A1.2 Model 2

their individual goals and needs, behave and respond as a collective. Multiple mechanisms can
plausibly lead to such large-scale self-organization in ecological communities.

A first possibility is a community of purpose, when all species have shared goals. This brings
to mind the picture of a superorganism [1], a network of interactions carefully arranged toward
self-perpetuation. But this picture has long been contested in ecology [2].

A second possibility is a community of means – a public good or marketplace tying together
many individuals with different interests. When we can identify a large-scale ecosystem function,
it is often tied to some shared resource – water, energy, basic elements. The existence of such
a “common currency”, through which a species can affect all others in a coherent fashion, is a
widespread source of collective behavior.

This second possibility has already been largely explored in ecological theory, where resource
competition plays a central role [3], and can indeed lead to collective organization [6]. Public goods
models often assume that all agents benefit from accumulating some common resource; these works
thus focus on setting up a tension between individual and collective means to achieve that profit.

Yet, the environment is no mere stockpile of resources: it is not only used, but also constructed
and transformed. The environmental state – say, the concentration of various nutrients – differ-
entially advantages some species over others, and the changes induced by a species need not be
beneficial to itself. This can prompt many complex dynamics, such as a succession of different
community stages, each benefitting from the outputs of the previous one.

A1.2 Model

We have S species, each with abundance Ni, growth rate ri and interference competition αij

dNi
dt

= riNi

(
1−

Ni +
∑
j αijNj

Ki(E)

)
(1)

Their carrying capacities are given by their environmental niche

Ki(E) = kmax
i e−(E−Ci)

2/2T 2
i (2)

with a maximum of kmax
i when the environmental variable equals the species’ optimum E = Ci,

and a tolerance (niche width) of Ti. For numerical stability and clarity of interpretation, we can
decide of an extinction threshold θ (e.g. a single individual) such that we treat smaller carrying
capacities as being zero

Ki(E) < θ ∼ Ki(E) = 0. (3)

Finally, each species affects the environment at a rate mi (the species’ “engineering ability”),
pushing it toward some value εi, while the environment tends to return to its baseline value B
with rate µ,

dE

dt
= µ(B − E) +

∑
i

miNi(εi − E) (4)

Perfect engineer species will have εi = Ci and always draw the environment toward their own
optimum. By contrast, imperfect engineers may create an environment which is suboptimal for
themselves, εi 6= Ci, for instance by depleting resources that they need, or accumulating harmful
byproducts.

To understand the long-term consequences of these dynamics, we will first study the equilibrium
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3

conditions

0 = Ni

Ki(E)−Ni −
∑
j

αijNj


E =

µB +
∑
imiNiεi

µ+
∑
imiNi

(5)

A2 Perfect coexisting engineers

Throughout this section, we assume perfect engineer species (εi = Ci) without interference compe-
tition, αij = 0. Then, all species (with nonzero carrying capacity) can coexist, and at equilibrium

Ni = Ki(E). (6)

A2.1 Potential landscape and equilibria

A2.1.1 Slow environment

If the dynamics of species abundances is much faster than that of the environment ri � mi, µ,
we expect that species quickly reach their carrying capacity for a given environment value, Ni =
Ki(E), and hence the dynamics of the system is given by

dE

dt
= µ(B − E) +

∑
i

miKi(E)(Ci − E) (7)

We now show that is in fact a gradient descent dynamics, similar to

dx

dt
= −dU(x)

dx
(8)

where U(x) is a potential function, with the dynamics always going toward the closest minimum
of U(x).

Indeed, notice that

Ki(E)(Ci − E) = T 2
i

d

dE
Ki(E) (9)

Thus,

dE

dt
= − d

dE
U(E) (10)

where the potential takes the form:

U(E) =
µ

2
(E −B)2 −

∑
i

miT
2
i Ki(E) (11)

=
µ

2
(E −B)2 −

∑
i

mik
max
i T 2

i e
−(E−Ci)

2/2T 2
i (12)

We see it has two components: a parabolic well (E −B)2 which has a single minimum at B, and
a sum of Gaussian wells created by each of the engineer species. If mi are large enough, U(E) can
have local minima corresponding to these engineered wells, and if mi � µ, these wells are deeper
than the parabola, so engineered states are more stable than the natural state.
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A2.1 Potential landscape and equilibria 4

The effective strength of a species’ long term action on the environment is thus

λi = mik
max
i T 2

i (13)

meaning that a species can be an important ecosystem engineer either through large engineering
ability mi, large maximum abundance kmax

i , or wide niche Ti.
At a given patch, as E(t) changes over time, U(E(t)) will decrease until it reaches the bottom

of the local basin:
dU

dt
=
dU

dE

dE

dt
= −

(
dE

dt

)2

≤ 0 (14)

See Fig. 4 for a map of the potential in a simulation and how it can be used to predict the final
environmental state.

A2.1.2 Fast environment

We now consider the opposite limit, when the dynamics of the environment variable E are faster
than the species’. Crucially, equilibria are independent from the relative timescale of environment
and species dynamics. Therefore, equilibria must always be minima of the potential U(E), even
for fast environment dynamics. However, in that case, there is no guarantee that these dynamics
can be approximated by gradient descent, meaning that E(t) will not necessarily remain within
the initial basin of attraction.

To move out of the initial basin, there must be some time during which the dynamics are
climbing up the potential landscape, i.e. dU/dt > 0. Notice that

dU

dt
=
dU

dE

dE

dt
=
dU

dE

(
−dU
dE

+
∑
i

mi(Ni −Ki(E))(Ci − E)

)
(15)

hence dU/dt > 0 requires the second term in parentheses to be larger than the slope dU/dE of the
potential. Given a potential barrier, the dynamics may climb it if:

• there exist basins beyond the barrier (in the same direction as the slope, i.e. same sign of
dU/dE and Ci − E) that are created by species with Ni > Ki(E)

• there exist basins in the other direction (opposite sign of dU/dE and Ci − E) created by
species with Ni < Ki(E)

In other words, faster environmental dynamics will be able to climb out of shallow wells provided
that there are overabundant species attracting them, or, more likely for barren initial conditions,
if the species creating these wells remain at low abundance Ni < Ki(E) for sufficiently long. Thus,
the dynamics are most likely to settle in a deep (and not necessarily wide) basin. By contrast,
slow environment dynamics might favor the widest basin, which is more likely to contain the initial
condition E(0) (see Discussion).

A2.1.3 Effective species interactions for fast environment

Let us set µ = 1 for simplicity (i.e. mi is measured in units of µ). Then the equilibrium environment
value is

E =
B +

∑
imiNiCi

1 +
∑
imiNi

If the environment quickly reaches this value for any species abundance Ni, the dynamical equation
for species becomes

1

riNi

dNi
dt

= 1− Ni
kmax
i

exp

 1

2T 2
i

(
(B − Ci) +

∑
jmjNj(Ej − Ci)

1 +
∑
jmjNj

)2
 (16)

Supporting Information



A2.2 Effective facilitation and competition 5

For mi � 1, we can do a series expansion

(B − Ci) +
∑
jmjNj(Ej − Ci)

1 +
∑
jmjNj

≈ (B − Ci) +
∑
j

mjNj(Ej −B) (17)

and thus

1

riNi

dNi
dt
≈ 1− Ni

Ki(B)

1 +
1

T 2
i

∑
j

mjNj(B − Ci)(Ej −B)

 . (18)

At equilibrium

Ni =
Ki(B)

1 +
1

T 2
i

∑
jmjNj(B − Ci)(Ej −B)

(19)

Once again, we do a Taylor expansion to get

Ni = Ki(B)

1− 1

T 2
i

∑
j

mjNj(B − Ci)(Ej −B)

 (20)

which is equivalent to the equilibirum of a Lotka-Volterra model

Ni = Ki(B)

1−
∑
j

AijNj

 , Aij =
d logKi

dNj
(B) =

mj

T 2
i

(B − Ci)(Ej −B). (21)

A2.2 Effective facilitation and competition

A2.2.1 When does an engineer species create an equilibrium?

Let us consider a single engineer species and ask when it can create an equilibrium with a value
of E distinct from B. The equilibrium criterion is dU/dE = 0, i.e.

µ(E −B) = m1k1(C1 − E)e−(E−C1)2/2T 2
1 (22)

For simplicity, let us consider the case C1 − B > T1. Then, we can approximate our question
by asking whether the maximum of the right-hand term at some particular value Em is larger in
absolute value than the left-hand term µ(Em−B) at that point. The maximum of the right-hand
term is given by a zero of its derivative

m1k1

(
(Em − C1)2

T 2
1

− 1

)
e−(Em−C1)2/2T 2

1 = 0 (23)

hence Em = C1 − T1, and a sufficient condition for species 1 to create a new equilibrium is

µ(C1 −B − T1) . m1k1T1e
−1/2. (24)

We see that it is harder to create a new equilibrium far away from the baseline environment value,
i.e. when C1 −B is large.
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Figure 1: Joint effect of two species on the potential landscape: sum of two Gaussian functions of
equal standard deviation T , separated by ∆C ∈ {0, 2, 4, 8} (left to right). Up to ∆C = 2T , the sum
of Gaussians is unimodal, indicating that the two species can create a single equilibrium together.
Afterward, species are effectively in competition, as each one prevails in a different equilibrium
state. Still, until ∆C ≈ 8T , the overlap increases the height of each peak, while beyond, there is
little to no positive effect of one species on the other.

A2.2.2 Two species

To understand the long-term interactions between two species through their engineering capabil-
ities, we can study the environmental variable’s potential landscape U(E) and ask: does each
species create a potential well (are there as many alternative stable states as there are species)?

The contribution of engineers to U(E) is a sum of Gaussian terms,

U(E) =
µ

2
(E −B)2 −

∑
i

λie
−(E−Ci)

2/2T 2
i (25)

where λi is defined in (13). If we assume for now µ = 0, our question becomes: when is the sum
of two Gaussians unimodal?

Consider two species that are equal in every respect, save their optimum

λ1 = λ2, T1 = T2 = T, C2 − C1 = ∆C (26)

We find three cases (see Fig. 1)

• Pure competition: if ∆C � 2T , the two Gaussians are well separated and each species
forbids the other from existing

• Mixed facilitation and competition: if ∆C & 2T (e.g. ∆ ∈ [2T, 8T ]), the two species allow
each other to exist, and even facilitate each other to some extent (making the other’s potential
well deeper, and thus more likely to overcome environment inertia or other competitors). Still,
the sum of Gaussians remains bimodal: there are two possible equilibria, each favoring one
of the species. This is a form of moderate competition between facilitators.

• Coalescence: if ∆C < 2T , the sum of Gaussians becomes unimodal, with a peak halfway
between the species optima. Now, the two species act together as a single, more influential
species.

If species differ in other parameters, the same qualitative picture holds, although the weaker species
(smaller λ) will need a larger ∆C to maintain its own distinct peak, rather than be absorbed in
the stronger species’. There exists a general quantitative criterion for bimodality in a mixture of
two arbitrarily different Gaussians [5], which we report in the next section, but it does not easily
generalize to more species.
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A2.2 Effective facilitation and competition 7

A2.2.3 Criterion for bimodality of a Gaussian mixture

According to [5], a weighted sum of two gaussians

pG(x, 0, 1) + (1− p)G(x, µ, σ) (27)

is bimodal if µ > µ0 with

µ0 =
1

σ

√
2(σ4 − σ2 + 1)3/2 − (2σ6 − 3σ4 − 3σ2 + 2) (28)

and p ∈ [p1, p2] where
1

pi
= 1 +

σ3yi
µ− yi

e−
1
2y

2
i +(yi−µ)2/(2σ2) (29)

with y1 and y2 the roots of the equation

(σ2 − 1)y3 − µ(σ2 − 2)y2 − µ2y − µσ2 = 0 (30)

with 0 < y1 < y2 < µ. Otherwise, the sum is unimodal.

A2.2.4 Many species

For many species, no exact results exist but we can provide a scaling estimate of the average
number of alternative states. Given S the number of species, with their optima distributed over
interval [0, L], the average distance between their optima is

〈∆C〉 = L/S. (31)

If the optima are uniformly distributed, the number of optima within a certain interval follows
a Poisson distribution, and thus, the probability that ∆C > 2T (avoiding coalescence) is the
probability of having no optima within a span of 2T , i.e.

P (∆C > 2T ) ≈ e−2〈T 〉/〈∆C〉 (32)

Hence, the typical number of clusters of coalesced species scales like

S0 ∼ Se−2〈T 〉S/L. (33)

This approximation will only hold up to 〈∆C〉 ∼ T , i.e. S ∼ L/2 〈T 〉, after which adding more
species will typically not contribute more equilbria.

Now recall that species i on its own can create an alternative equilibrium despite the natural
environmental dynamics only if

µ(Ci −B) . mik
max
i Ti (34)

meaning that the potential well created by the species is deep enough to compensate the recovery
of the environment, which gets faster as E moves away from B. This means that species can only
contribute to an equilibrium if their optimum falls within a range

L′ ≤ min

(
L,

2 〈mkT 〉
µ

)
. (35)

Only the fraction L′/L of species clusters with optima within that range can create new equilibria.
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Figure 2: Number of alternate stable states Neq as a function of number of species S (left panel) and
environment recovery µ (right panel). Species have identical niches (blue dots) or heterogeneous
niche widths Ti drawn from a Gamma distribution with variance 0.3 (orange dots). The solid lines
represent the analytical prediction (36). The dashed line indicates S = L/2 〈T 〉, the threshold
above which Neq saturates.

Therefore, the expected number of equilibria (including the natural equilibrium at B) is

Neq ∼ 1 + S0
L′

L

. 1 + Se−2〈T 〉S/L min

(
1,
〈mkT 〉
µL

)
. (36)

This simple formula reproduces the qualitative behaviors within a wide range of parameters, see
Fig. 2. Deviations happen if species are heterogeneous in their properties kmax

i , mi or Ti, and
as mentioned above, our calculation does not account for the saturation beyond a threshold S >
L/2 〈T 〉 shown by the dashed line in Fig. 2.

A3 Interference competition and imperfect engineers

Let us now consider the case of direct interference competition αij 6= 0 and imperfect engineers
εi 6= Ci. Now, some species can go extinct even while their carrying capacity is nonzero. Recall
the equilibrium condition

0 = Ni

Ki(E)−Ni −
∑
j

αijNj
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A3.1 Equivalence 9

The abundance of surviving species N∗i 6= 0 is given by

N∗i +
∑
j

αijN
∗
j = Ki(E) (37)

or in vector form,

N∗ = (I + α∗)−1K∗(E) (38)

where I is the identity matrix, α∗ is the matrix of interactions restricted to the S∗ surviving
species, and K∗(E) the vector of carrying capacities of surviving species. For convenience, define
the matrix

Vij = (I + α∗)−1
ij (39)

so that

N∗ = V K∗(E). (40)

A3.1 Equivalence

Taking once again the limit of fast species dynamics, we now have

dE

dt
= µ(B − E) +

∑
ij

mi(εi − E)N∗i

= µ(B − E) +
∑
ij

mi(εi − E)VijKj(E) (41)

which we can rewrite as

dE

dt
= µ(B − E) +

S∗∑
i

m̂i(ε̂i − E)Ki(E) (42)

with

m̂i =

S∗∑
j

Vjimj , ε̂i =

∑S∗

j Vjimjεj∑S∗

j Vjimj

(43)

Thus, we see that direct competition appears equivalent, in terms of its equilibrium effect, to
imperfect engineering with effective values of species engineering capability mi and target environ-
ment value εi. An important consequence is that even perfect engineers (εi = Ci) will behave like
imperfect ones if they also interact directly.

It is, however, crucial to note that the calculation above involves summing only on the S∗ species
that survive the direct competitive interaction. While the matrix Vij depends only on interactions
αij and not on the environment, it does depend on who survives, which is controlled by the carrying
capacities as well. Thus, direct competition cannot simply be replaced by imperfect engineering,
except in the regime where all species coexist (i.e. for weak direct interactions). In particular,
if direct competition allows for alternate equilibria (mutual exclusion), each will correspond to a
different equation (42).

Perhaps counter-intuitively, it is the action of species i on others that appears in the effective
parameters above. For instance, if direct interactions are weak,

V = (I + α∗)−1 ≈ I− α∗ (44)

m̂i ≈ mi −
S∗∑
j

αjimj , ε̂i ≈ εi −
S∗∑
j

mjαji(εj − εi) (45)
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A3.2 Skewed potential 10

and we see that a species’ effective engineering ability m̂i decreases due to its competitive effect
on others, αji, while its effective target environmental value ε̂i moves away from the optima εj of
the species it affects.

A3.2 Skewed potential

From equation (42), we can construct the corresponding potential by noticing that

dE

dt
= −dU(E)

dE
= µ(B − E) +

S∗∑
i

m̂i(Ci − E)Ki(E) +

S∗∑
i

m̂i(ε̂i − Ci)Ki(E) (46)

The last term is the only one that differs significantly from the equation in the case of perfect
engineers, (7). Thus, we can separate the resulting potential into two contributions: first, the
usual potential for perfect engineers, obtained here with the S∗ surviving species and effective
engineering rates m̂i, and second, a correction ∆U(E) coming from the last term above. We write

U(E) = Upe(E) + ∆U(E) (47)

where

Upe(E) =
µ

2
(E −B)2 −

S∗∑
i

m̂iT
2
i Ki(E) (48)

is the contribution that is similar to the perfect engineer case. Since Ki(E) is Gaussian, its integral
is an error function, and the correction to the potential takes the form

∆U(E) =

S∗∑
i

m̂iT
2
i (ε̂i − Ci) erf

(
E − Ci√

2Ti

)
(49)

Error functions are sigmoidal and comprised between 0 and 1, so ∆U(E) will have the general
shape of a “staircase”, i.e. a sum of step-like functions going up or down, with a step height of
m̂iT

2
i (ε̂i − Ci).

This could create new potential wells, if two (or more) species push E in the direction of
each other’s optimum, giving rise to a new type of interaction: obligate facilitation (or mutual
stabilization), where each species degrades its environment from its own perspective, but improves
it from the perspective of the other.

If ε̂i − Ci has the same sign for many species (e.g. all species tend to degrade complex sugars
into simpler ones, pushing the environment variable E in a constant direction), the effect will be
to create a general slope in that direction, and thus, dynamics akin to succession.

A4 Ecotones and succession

A4.1 Ecotones on an environmental gradient

Let us assume an environmental (e.g. latitudinal or altitudinal) gradient, reflected in the fact that
the baseline value of the environmental variable B = B(x) now depends on position x along the
gradient.

If we choose a solution of (5) and follow it along the gradient, as we progressively change
parameters such as B(x), we do not expect sharp ecotones (transition zones between communities
with different species compositions and abundances). The only option for a singular transition
is to have alternative stable states, with the transition occurring when one of the states loses its
stability.

Whenever two or more attractors exist for the same patch x, see black lines on Fig. 4 top-right,
there is potential for hysteresis.
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Figure 3: Realized abundance for species in the community (left) and values of the environmental
variable (right) along a spatial gradient defining the baseline environmental variable B(x) = x
which is also the initial state at each point. Increasing m̄/µ from 0.1 (a) to 10 (b) to 100 (c), we
go from an environment that closely follows B, and thus a continuous turnover of species, to the
existence of alternate stable states engineered by these species, and separated by sharp transitions.
Finally, reducing the rate of species dynamics from r = 10 (c) to r = 0.1 (d) increases the difference
between the pure gradient descent prediction (red line, right panels) and the observed environment
value E at each position x. Possible equilibria are independent of r, but which equilibrium is
reached does depend on it: as we explain in Fig. 4, high r entails gradient descent toward the
closest equilibrium, while low r allows the dynamics to climb a potential wall, and tends to favor
the deeper basins rather than the ones closest to the initial condition.

Supporting Information



A4.1 Ecotones on an environmental gradient 12

0.0 25.0 50.0 75.0 100.0
x

100.0

75.0

50.0

25.0

0.0

E
U'

100000

75000

50000

25000

0

25000

50000

75000

100000

0 20 40 60 80 100

Attractors

0.0 25.0 50.0 75.0 100.0
x

100.0

75.0

50.0

25.0

0.0

E

U'

10000

5000

0

5000

10000

0 20 40 60 80 100

Attractors

0.0 25.0 50.0 75.0 100.0
x

100.0

75.0

50.0

25.0

0.0

E

U'

3000

2000

1000

0

1000

2000

3000

0 20 40 60 80 100

Attractors

Figure 4: Using the potential landscape U(E) to predict the equilibrium state, for µ = 1000, 100, 1
(top to bottom). Left column: dU/dE as a function of the environment variable E (y-axis) and
the position x on the gradient (x-axis) which controls the natural environment value B(x) = x.
Equilibria correspond to white lines dU/dE = 0 (stable if red is above and blue below, or unstable
the other way around). Right column. Following the stable equilibria (black dots) and predicting
where gradient descent should go if E(x, t = 0) = B(x) (red line).
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A4.2 Succession trajectories

In this model, including direct competition and imperfect engineering, one can imagine three
different succession scenarios.

The reference scenario is the usual competition-colonization tradeoff setting [7]. In that case,
species at later stages are expected to have slower growth but stronger competitive ability, either
through direct competition, engineering ability, or a combination of both. As a consequence, later
stages will be longer, but transitions between stages will also be slower.

Another scenario is succession driven by the environmental variable slowly descending down
the potential landscape created by the engineer species. In that case, there is no implication that
later stages will be longer. If the landscape is shaped by perfect engineers, we can expect a rather
smooth change of the environmental variable. If it is shaped by imperfect engineers, it is possible
to have long transition periods where all species have low abundance, separating shorter periods
where a set of imperfect engineers dominates. There may be stabilization at low abundances if
two sets of engineers are pushing the environment toward each other.

The third scenario is perturbation-driven succession: jumps between equilibria, either due to
random noise, or to directed perturbations (e.g. a gradual increase in the baseline environmental
value B). It is only in this scenario that succession will generically exhibit discrete stages separated
by sudden transitions. Under random perturbations, succession will proceed on average toward
deeper wells, and thus later stages will be longer on average (deeper wells resist perturbations
longer), but there may be reversions to earlier stages.

A5 Supplementary Discussion

A5.1 Slow and fast environment

An intuitive aspect of the speed of environment change is its inertia upon removal of some engineer
species. In one limit, the environmental state may remain the same for long times (for instance,
peat created by Sphagnum mosses can remain for thousands of years [8]), long enough that the
species could potentially recolonize at the same abundance before any significant change occurred.
In the other limit, the environmental state may revert suddenly, even instantaneously when the
engineering results from physical properties of the species themselves (e.g. shielding of light by the
canopy).

As noted in Sec. A2, when the environment dynamics are slow, the environmental variable
effectively follows a gradient descent. This means that the species (or group of species) creating the
widest basin of attraction control the dynamics for a broad range of initial conditions. By contrast,
when the environment dynamics are fast, they are drawn toward the optimum of the species with
the largest carrying capacity and best engineering abilities, even if its niche is narrow. We thus
predict a prevalence of generalists in slow environments, and specialists in fast environments.

A5.2 Multiple environmental variables

A single environmental variable E may not suffice to accurately represent the ways in which species
interact through modifications of their surroundings. On the other hand, our modelling approach
for ecosystem engineers is most relevant if the number of environmental variables is limited, and
small compared to the number of species – otherwise, it may be simpler to directly model pairwise
species interactions.

There is one important qualitative feature that distinguishes the outcomes of this model, and
those of a model with multiple environmental “dimensions”: with only one dimension E, there can
be at most as many equilibria as there are engineer species. This stops being the case with more
environmental variables. A corresponding mathematical result states that a mixture of Gaussian
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components can have more maxima than components in dimension d > 1 [4, 9]. This means that
some equilibria could not be assigned to, nor expected from, the action of any given species on its
own.
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