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Abstract 

Myosin motor domains perform an extraordinary diversity of biological functions despite 
sharing a common mechanochemical cycle. Motors are adapted to their function, in part, by 
tuning the thermodynamics and kinetics of steps in this cycle. However, it remains unclear how 
sequence encodes these differences, since biochemically distinct motors often have nearly 
indistinguishable crystal structures. We hypothesized that sequences produce distinct 
biochemical phenotypes by modulating the relative probabilities of an ensemble of 
conformations primed for different functional roles. To test this hypothesis, we modeled the 
distribution of conformations for twelve myosin motor domains by building Markov state 
models (MSMs) from an unprecedented two milliseconds of all-atom, explicit-solvent 
molecular dynamics simulations. Comparing motors reveals shifts in the balance between 
nucleotide-favorable and nucleotide-unfavorable P-loop conformations that predict 
experimentally-measured duty ratios and ADP release rates better than sequence or individual 
structures. This result demonstrates the power of an ensemble perspective for interrogating 
sequence-function relationships. 
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Introduction 
 
Myosin motors (Figure 1A) perform an extraordinary diversity of biological functions despite 
sharing a common mechanochemical cycle. For example, myosin-II motors power muscle 
contraction, whereas myosin-V motors engage in intracellular transport. This diversity is in 
part due to differences in myosins’ tails and light chain-binding domains, which influence 
properties like localization and multimerization (Krendel and Mooseker, 2005). However, some 
of this diversity is encoded in the motor domains themselves (Greenberg et al., 2016). These 
differences stem from variations in the tunings of the thermodynamics and kinetics of the 
individual steps of the myosins’ conserved mechanochemical cycle, which couples ATP 
hydrolysis to actin binding and the swing of a lever arm (De La Cruz and Ostap, 2004). 
 
Two important and highly variable parameters for motor function are the rate of ADP release, 
which sets the speed of movement along actin, and the duty ratio, which is the fraction of time 
a myosin spends attached to actin during one full pass through its mechanochemical cycle. For 
example, in muscle, myosin-II motors are arranged into multimeric arrays called thick 
filaments and the individual motors typically have a strong preference for the actin free state 
(i.e., low duty ratio). These motors quickly detach after pulling on the actin filament to avoid 
creating drag for other motors in the array, much as a rower quickly removes their oar from the 
water to minimize drag. In contrast, individual myosin-Va motors have high duty ratios (i.e. 
prefer the actin-bound state), helping them to processively walk along actin filaments in 
intracellular transport. Similarly, the speed of myosin movement along actin (in the absence of 
opposing forces) is set by the rate of ADP dissociation (De La Cruz and Ostap, 2004), and it 
varies by four orders of magnitude from ~0.4 s-1 for non-muscle myosin-IIb (Nagy et al., 2013) 
to >2800 s-1 for myosin-XI (Ito et al., 2007). 
 
Unfortunately, inferring the relationship between a motor’s sequence and its biochemical 
properties is not trivial. For example, one cannot simply predict the duty ratio or ADP release 
rate of a motor based on phylogeny. Myosin-V family members contain both high duty ratio 
motors, like myosin-Va, (De La Cruz et al., 1999) and low duty ratio motors, like myosin-Vc 
(Takagi et al., 2008). Similarly, ADP release rates within the myosin-II family vary from ~0.4 s-1 
(non-muscle myosin-IIb) (Nagy et al., 2013) to >400 s-1 (extraocular myosin-II) (Bloemink et al., 
2013; Johnson et al., 2019). Insertions and deletions in the myosin motor domain sequence also 
convey useful, but typically incomplete, information. For instance, pioneering biochemical 
work (Sweeney et al., 1998) demonstrated a correlation between the length of loop 1 and ADP 
release rates in myosin-II motors. However, this observation does not explain how other 
myosin isoforms that have virtually the same loop 1 lengths have ADP release rates that differ 
by an order of magnitude (Deacon et al., 2012). It is also difficult to predict the effects of 
mutations implicated in human disease, as the effects cannot be easily predicted from the 
location of the mutation. For example, in human β-cardiac myosin, an A223T mutation causes 
a dilated cardiomyopathy (Ujfalusi et al., 2018) while an I263T mutation has the opposite 
effect, resulting in a hypertrophic cardiomyopathy (Tesson et al., 1998), despite being 
separated by less than 6 Å (Planelles-Herrero et al., 2017). 
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Structural studies have provided detailed pictures of many key states in the mechanochemical 
cycle, but have yet to enable the routine prediction of a motor’s biochemical properties from 
its sequence. For example, high-resolution structures have illuminated many shared features 
of myosin motor domains, such as the lever arm swing (Fischer et al., 2005) and 
conformational rearrangements associated with changes in nucleotide binding (Coureux et al., 
2004; Rayment et al., 1993). They have also revealed the strain-sensing elements of myosin-I 
motors (Greenberg et al., 2015; Mentes et al., 2018; Shuman et al., 2014) and the binding 
modes of many small molecules (Allingham et al., 2005; Planelles-Herrero et al., 2017; 
Winkelmann et al., 2015). However, the structures of motor domains with vastly different 
biochemical properties are often nearly indistinguishable. Similarly, computer simulations 
have begun to reveal aspects of motor function (Blanc et al., 2018; Chinthalapudi et al., 2017; 
Hashem et al., 2017; Powers et al., 2019). However, simulating an individual motor domain 
(~700 residues) is a huge computational expense, so most simulation studies have been based 
on less than a microsecond of data. Thus, adding binding partners like actin to simulate the full 
mechanochemical cycle and infer properties like duty ratio is currently infeasible, especially if 
one wanted to compare multiple isoforms to infer sequence-function relationships. 
 
Here, we investigate the possibility that the distribution of structures that an isolated motor 
domain explores correlates with its biochemical properties, allowing the prediction of 
sequence-function relationships. This hypothesis was inspired by a growing body of work 
showing that protein dynamics encode function (Henzler-Wildman and Kern, 2007; Knoverek 
et al., 2018), even in the absence of relevant binding partners (Bowman and Geissler, 2012; 
Hart et al., 2016; Porter et al., 2019a). In the case of myosin, we reasoned that as sequence 
changes modulate motors’ preferences for different states of the mechanochemical cycle, they 
likely also have a systematic effect on the distribution of conformations explored by the motor, 
even in the absence of binding partners. Therefore, comparing the distribution of 
conformations that isolated motor domains sample in solution should reveal signatures of their 
biochemical differences. 
 
To test this hypothesis, we ran an unprecedented two milliseconds of all-atom, explicit solvent 
molecular dynamics (MD) simulations of twelve myosin motors with diverse but well-
established biochemical properties (Figure 1B, Table S1 and S2). Such simulations are adept at 
identifying excited states, which are lower-probability conformational states that are often 
invisible to other structural techniques. Indeed, our simulations reveal a surprising degree of 
conformational heterogeneity, particularly in the highly conserved P-loop (or Walker A motif), 
a common structural element for nucleotide binding that is highly conserved across myosin 
motor domains (Saraste et al., 1990). Because of its high conservation, we reasoned that the P-
loop would report on the conformation of the nucleotide binding site while still being 
comparable between motors with otherwise differing sequences. To enable quantitative 
comparisons, we constructed Markov state models (MSMs) from the MD data for each motor. 
MSMs are network models of protein free energy landscapes composed of many 
conformational states and the probabilities of transitioning between these states. They are a 
powerful means to capture phenomena far beyond the reach of any individual simulation by 
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integrating information from many independent trajectories (Bowman et al., 2013; Chodera 
and Noé, 2014). Analyzing our MSMs, we find they capture sufficient information about 
myosin motor domains’ thermodynamics and kinetics to produce reasonable estimates of duty 
ratio and ADP release rates. Thus, MD and MSMs constitute a powerful platform for identifying 
relationships between the sequence of individual motor domains and their mechanochemical 
cycles. 

 
Figure 1: The conserved myosin motor domain fold across a diverse phylogeny of motors. (A), 
A crystal structure (PDB ID 4PA0) (Winkelmann et al., 2015) of Homo sapiens β-cardiac myosin 
motor domain as an example of the conserved myosin motor domain fold. We note the 
structural elements most relevant to our work here (loop 1, in purple backbone sticks, and the 
P-loop, in orange sticks), along with the actin binding region (blue spheres). For orientation, we 
include the location of the lever arm (black line) and, to indicate the active site, the estimated 
location of ADP (yellow sticks). (B) The phylogenetic relationship the various myosin motor 
domains examined in this work. Except MYH11, all genes are from Homo sapiens. Gene names 
in blue indicate high duty ratio motors and red indicates low duty ratio. Common protein 
names are indicated as parentheticals to the left of each gene name. Phylogenetic 
relationships were inferred from the sequence of the motor domain using k-mer distances 
(Edgar, 2004a). 

Results & Discussion 
In simulation, the P-loop adopts conformational states that are rare in crystal structures. 

 
We reasoned that any differences between myosin motor domains in nucleotide handling—
ADP release rate or duty ratio, for instance—must somehow be manifest at the active site to 
have an effect. The P-loop is a highly conserved element of the myosin active site that plays an 
important role in interacting with the phosphates of the ATP substrate (Gulick et al., 1997). 
Consequently, we reasoned that the P-loop would report on the conformation of the 
nucleotide binding site while still being comparable between motors whose sequences differ 
elsewhere in the protein. To assess the degree of conformational heterogeneity captured by 
crystal structures, we first analyzed structures deposited in the PDB (Figure 2A). We queried 
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the PDB (Berman et al., 2000) for myosin motor domains (see Methods), yielding 114 crystal 
structures. Using sequence alignments (see Methods) we identified the P-loop in each of these 
models and computed the backbone root mean square deviation (RMSD) of each of these 
models to a reference structure (β-cardiac myosin, PDB ID 4PA0) (Winkelmann et al., 2015). 
We found very little structural diversity among crystal structures, which rarely sample any 
conformations with P-loop backbone RMSD > 0.6 Å away (Figure 2A). 
 
Then, to assess the capacity of the P-loop to adopt conformations not observed in crystal 
structures, we used molecular dynamics to simulate the myosin motor domain. These 
simulations of human β-cardiac myosin (Hs MYH7) were performed in the actin-free, 
nucleotide-free state for roughly a quarter-millisecond in all-atom explicit-solvent detail used 
to construct an MSM (see Methods). All simulations were conducted using the same force fields 
and conditions that we have previously used to analyze other systems’ conformational 
distributions, including β-lactamases (Bowman et al., 2015; Porter et al., 2019a; Zimmerman et 
al., 2017), E. coli catabolite activator protein (Singh and Bowman, 2017), Ebola virus 
nucleoprotein (Su et al., 2018), and G-proteins (Sun et al., 2018). Then, using the MSM, we 
computed the distribution of backbone RMSDs of the P-loop relative to the reference crystal 
structure. 
 
In contrast to the relative uniformity among crystal structures, simulations revealed extensive 
conformational heterogeneity in the P-loop (Figure 2B). Where crystal structures rarely 
sampled conformations with RMSD >0.6 Å, in simulation we observe broad sampling (i.e. high-
probability density) in regions from 0.2 Å RMSD all the way to ~1.5Å RMSD from the starting 
structure. Only 10 of 114 (9%) crystal structures’ conformations were >0.6 Å RMSD from the 
reference conformation, whereas fully 58% of the distribution observed in silico is above 0.6Å 
RMSD from the reference conformation. These results suggest our simulations may provide 
mechanistic insight not previously accessible from crystal structures alone. 
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Figure 2: The P-loop conformational distribution observed in silico is substantially broader than 
that found in crystal structures. (A) P-loop conformations in the PDB are largely restricted to 
backbone RMSD ≤ 0.6 Å to a reference conformation (PDB ID 4PA0). Inset, the 114 myosin 
crystal structures superimposed, with the P-loop shown as sticks. (B) P-loop conformations 
from simulations of Hs β-cardiac myosin frequently explore conformations that are rare or not 
seen in crystal structures. Inset, the 114 most probable P-loop conformations extracted from 
our simulations of Hs β-cardiac myosin. 
 
Simulations suggest that the nucleotide-free motor explores distinct nucleotide-favorable 

and nucleotide-unfavorable states. 

 
We reasoned that P-loop conformations identified by our simulations might have important 
implications for motors’ nucleotide handling. For example, modulating the relative 
probabilities of these conformations would provide a facile mechanism by which sequence 
variation might tune the mechanochemical cycle. 
 
To assess the nucleotide compatibility of the P-loop conformations we observe in simulation, 
we sought to systematically compare these conformations with crystal structures with and 
without nucleotide. To do this, we built a map of P-loop conformational space using the 
dimensionality reduction algorithm Principal Components Analysis (PCA) to learn a low-
dimensional representation of the pairwise interatomic distances between P-loop atoms that 
retains as much of the geometric diversity in the input as possible (see Figures S1-3, and 
Methods for details) (Shlens, 2014). We then projected the states of our MSM built from our 
MYH7 simulations onto two principle components (PCs) to visualize the free energy surface 
sampled by our simulations (Figure 3A, green level sets). Using the same PCA, we then 
projected each crystal structure’s P-loop conformation into this space, plotting each as a point 
(Figure 3A, points). Points labeled with PDB IDs represent crystal structures with P-loops >0.6 
Å backbone RMSD away from the reference structure 4PA0 used above. We also classified 
each structure (see Methods) as nucleotide-bound (yellow points) or nucleotide-free (purple 
points). Then, we compared the frequency at which nucleotide-bound and nucleotide-free P-
loop conformations were found in various conformations. 
 
This analysis revealed two dominant conformational states that likely constitute nucleotide-
favorable and nucleotide-unfavorable states (Figure 3A and B). Once the distribution of P-loop 
conformations is projected onto two PCs (the green level sets in Figure 3A), we observe two 
broad minima in the P-loop conformational landscape. We refer to these apparent minima as 
the upper and lower basin for brevity but recognize that other minima may exist and be 
obscured by the projection of a high-dimensional space into a low-dimensional space. The 
lower basin (<0.6 Å RMSD from the reference structure) contains 91% of crystal structures 
(104/114) and, because 80% (84/105) of these structures are bound to nucleotide, it is highly 
likely to represent a nucleotide-compatible conformation. In contrast, despite being populated 
roughly equally in simulation, regions outside the lower basin (≥0.6 Å RMSD) contain only 9% 
(10/114) of crystal structures. And, because only one (11%) of these structures is nucleotide 
bound, these regions are significantly depleted in nucleotide-bound structures (odds ratio = 
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0.03, p < 1.3�10-5 by Fisher’s exact test), strongly implying that they are less or not at all 
nucleotide compatible. Interestingly, this single exception (PDB ID 2Y8I, Dictyostelium 

discoideum myosin-II G680V) is a highly perturbed motor that has been shown to have low 
ATPase activity, low motility and a disordered allosteric network (Kinose et al., 1996; Patterson 
et al., 1997, p.), potentially contributing to its aberrant conformation. 
 
To characterize the structural differences between nucleotide-favorable and nucleotide-
unfavorable states captured in the simulations, we coarse-grained our MSM into a model with 
just five states, called A-E. We used hierarchical clustering to group the thousands of states 
explored by Hs MYH7 into five states based only on their P-loop conformations (see Methods). 
Then, using the assignment of each frame from our simulations to one of these five states, we 
fit a five-state MSM (Figure 3D, node sizes indicate equilibrium probabilities, arrow weights 
indicate transition probabilities). The most probable single state is the A state (49%), which 
encompasses the entire lower basin and, as we will see below, appears to form favorable 
interactions with nucleotide based on the conformation of the P-loop. The excited, apparently 
nucleotide-disfavoring conformations in the upper basin are split into 3 states, B-D, which 
together account for 50% of the equilibrium probability. Thus, β-cardiac myosin spends about 
equal time in nucleotide-favorable (state A) and nucleotide-unfavorable states (states B-D) in 
simulations. Finally, state E (1%, too low to be seen clearly in Figure 3A), involves a 
condensation of the P-loop into an extension of the HF helix, similar to the crystal structure 
4L79 (Shuman et al., 2014). The reduced number of states in this MSM allowed us to inspect a 
small number of high-probability conformations near the mean of each P-loop state, which we 
took as exemplars of each of the five P-loop states. 
 
Comparing the states of our MSM reveals that the dominant geometrical difference between 
nucleotide-favorable and nucleotide-unfavorable P-loop states is the orientation of the 
peptide bond between S180 and G181 (Figure 3C). In the nucleotide-favorable state A (Figure 
3D, lower right inset), the S180 backbone carbonyl (shown in pink sticks with a white arrow) is 
oriented away from the phosphates of the nucleotide, enabling the nucleotide to bind to the 
active site. In contrast, nucleotide-disfavoring states (labeled B-D in Figure 3D) orient the S180 
backbone carbonyl toward the phosphate groups of the nucleotide. This positions the carbonyl 
oxygen in a way that appears to sterically clash with the phosphates of nucleotide. It also 
orients the negative end of the carbonyl bond’s electric dipole toward the nucleotide binding 
site and the negatively charged phosphates of ADP and ATP. Taken together, our observations 
about the geometry of the excited, nucleotide-disfavoring state in the upper basin are 
consistent with a lowered capacity for nucleotide binding. 
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Figure 3: Excited P-loop states are less compatible with nucleotide than the states preferred in 
crystal structures. (A) The P-loop conformational space projected onto two principal 
components (PCs) reveals two distinct free energy basins (green level sets). Yellow and purple 
points represent crystal structures with and without ligand, respectively. Structures farther 
than 0.6 Å from the β-cardiac myosin structure (red empty circle) are labeled with their PDB ID. 
(B) Proximity to the β-cardiac myosin reference conformation is associated with the presence 
of a nucleotide in crystal structures (p < 1.3�10-5 by Fisher’s exact test), suggesting that the 
ligand stabilizes the A state. Error bars represent the 95% confidence interval of 1000 
bootstrap realizations. (C) The re-orientation of the S180 backbone carbonyl accounts for the 
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split between upper and lower basins. Points represent P-loop conformations from each state 
in the β-cardiac whole-motor MSM projected onto the same PCs as in panel A. Points are sized 
by their probability from the MSM and colored by the angle between the backbone carbonyl 
bond vectors of S180 and K184. (D) Center, each of the five states of the P-loop MSM are 
indicated as nodes in a network, sized by their equilibrium probability and connected by arrows 
with line width proportional to the transition probabilities between them. Surrounding the 
model, insets show example configurations of the P-loop in sticks colored to match the state 
they represent. State A is associated with a conformation of the S180 (pink sticks) carbonyl 
bond vector (white arrow) directed away from the nucleotide binding pocket, whereas states 
B-D are associated with the opposite orientation of the S180 backbone carbonyl bond vector. 
The A state conformation is the conformation found in most crystal structures. For reference, 
PDB 1MMA is shown in grey sticks and the crystallographic position of ATP is shown in semi-
opaque grey sticks. For all states, important interactions with the Switch-I loop are shown as 
two-dimensional sketches for visual clarity. An interaction between R237 and E179 is specific to 
state A, whereas various interactions with S242 are indicative of other states (Figure S4). 
 
The balance between nucleotide-favorable and nucleotide-unfavorable P-loop states 

predicts duty ratio. 

 
We reasoned that motors with a higher probability of adopting nucleotide-favorable P-loop 
conformations in isolation are likely to have an increased affinity for nucleotide and, therefore, 
spend more time in nucleotide-bound states of the mechanochemical cycle. Our reasoning is 
that motors that prefer nucleotide-favorable P-loop conformations in isolation pay a lower 
energetic cost to adopting these same nucleotide-favorable conformations when they form a 
complex with nucleotide. Supporting this logic, it has been observed that, absent load, a large 
free energy difference between ADP-bound and nucleotide-free states is associated with a low 
duty ratio (Bloemink and Geeves, 2011; Nyitrai and Geeves, 2004). Thus, we hypothesized that 
a preference for the nucleotide-favorable A state should correlate with low duty ratio. 
 
To test if differences in the probability of excited states encodes information about duty ratio, 
we simulated an additional seven myosin isoforms of differing duty ratio for a total of ~2 ms of 
aggregate simulation in all-atom, explicit solvent detail. Specifically, we simulated four human 
low duty ratio myosin motor domains (from myosin-II genes MYH13, MYH7, MYH10, and 
myosin-I gene MYO1B) and four human high duty ratio myosin motor domains (from genes 
MYO5A, MYO6, MYO7A, and MYO10), for between 125 and 325 µs each (see Methods). These 
motors were selected because extensive kinetic characterization (Bloemink et al., 2013; De La 
Cruz et al., 2001, 1999; Deacon et al., 2012; Homma and Ikebe, 2005; Lewis et al., 2012; Nagy 
et al., 2013; Watanabe et al., 2006) has revealed very diverse kinetic tuning, providing a robust 
test of our hypotheses. Because no crystal structure of the human sequence was available for 
any of these proteins except MYH7, homology models were built in each case and used as 
starting points for simulations (see Methods and Table S1). To allow for direct comparisons 
between motors, we used the same PCA and state definitions as described above for MYH7. 
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As expected, high duty ratio motors have a stronger in silico preference for nucleotide-favoring 
P-loop states than low duty ratio motors (Figure 4A). Figure 4A shows an example of this effect 
on the P-loop conformational distributions of high duty ratio motor MYO6 and low duty ratio 
motor MYH7. The low duty ratio motor explores both upper and lower basins (Figure 4A, left) 
while the high duty ratio motor strongly prefers the lower basin (Figure 4A, right). 
Provocatively, when motors are crystallized without ligand, only motors with low unloaded 
duty ratios have been crystallized with P-loops outside the nucleotide-favorable conformation 
(Figure 4A, red and blue points). Of 29 unliganded crystal structures, 8/20 (40%) of low duty 
ratio motors’ P-loops crystallized outside the A state, whereas 0/9 (0%) high duty ratio motors’ 
P-loops crystallized outside state A (p < 0.034 by Fisher’s exact test, see Methods). 
 
Given this trend, we reasoned that the relative free energies of the nucleotide-favorable state 
and the nucleotide-disfavoring excited states would provide a useful predictor of a motor’s 
duty ratio. We assigned every whole-motor MSM state to one of the five P-loop states and 
used these assignments to compute the free energies of each of the five states for each of the 
eight motors (see Methods). We then took the difference in free energy between states A and 
B, which are the two best sampled states and therefore give statistically robust results. 
Numerical values and references for these experimental values can be found in Table S3. 
 
As expected, we find a strong correlation between motors’ duty ratios and their preferences for 
the nucleotide-favorable A state over the nucleotide-unfavorable B state (Figure 4B). 
Specifically, high duty ratio motors have a strong preference for the A state (negative free 
energy difference) while low duty ratio motors spend more time in state B (positive free energy 
difference). Decreased stability of the nucleotide-favorable conformation in these low duty 
ratio motors could explain this observation. 
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Figure 4: The free energy landscape of the P-loop encodes duty ratio. (A) Free energy 
landscapes in the PC1/PC3 plane demonstrate that the upper basin is well sampled by an 
example low duty ratio motor (MYH7, left) and poorly sampled by an example high duty ratio 
motor (MYO6, right). Ligand-free crystal P-loop conformations from high and low duty ratio 
motors are shown as blue and red points, respectively. (B) Experimental duty ratio (x-axis) is 
correlated with the simulated free energy difference between nucleotide favorable and 
nucleotide-unfavorable states (y-axis, more negative values mean higher probability of the 
nucleotide-favorable A state). Error in simulated free energy differences were estimated by 
jackknife resampling and were too small to be visualized as error bars. 
 

Simulations predict ADP release rates better than loop 1 length does by capturing 

sequence-specific effects. 

 
Because ADP release allows a motor to adopt nucleotide-incompatible P-loop conformations, 
we reasoned that the rate at which a motor can transition to these conformations in silico 
might correlate with in vitro ADP release kinetics. While we expect a correlation, we 
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acknowledge that the absolute rates will almost certainly differ, since the rates themselves 
likely differ in the presence and absence of nucleotide. To test for a correlation, we first focus 
on data sets that examine several motors under the same experimental conditions. Identical 
conditions are important because in vitro biochemical rates depend strongly on experimental 
conditions such as salt and temperature (Chizhov et al., 2013; De La Cruz and Ostap, 2009; 
Lewis et al., 2012). We focus on low duty ratio motors, since their frequent transitions to 
nucleotide-unfavorable states make it possible to estimate their transition rates with 
confidence. In contrast, in high duty ratio motors, transitions between these states are 
sufficiently rare that their rates cannot be estimated with confidence. 
 
An especially useful dataset for comparing relative ADP release rates was created by Sweeney 
et al (Sweeney et al., 1998), which carefully dissected the effect of variation in loop 1 length 
and sequence on ADP release rates using the same experimental conditions. These authors 
established a positive relationship between loop 1 length and ADP release rate using 
engineered constructs of chicken gizzard myosin-II (shown in Figure 5A, henceforth Gg 
MYH11). A notable exception, however, was the myosin with wild-type loop 1, which had an 
ADP release rate more than three times faster than predicted by the length-based model 
(Figure 5B). This deviation from a purely length-driven ADP release rate led these authors to 
hypothesize that there must also be sequence-specific effects of loop 1 on ADP release rate. 
They then identified an alanine mutant that ablated the sequence-specific effects of the wild-
type loop (henceforth Gg MYH11-ala). 
 
To assess the capacity of in silico P-loop kinetics to capture the experimentally measured ADP 
release rates in the constructs investigated by Sweeny et al, we simulated and analyzed four 
Gg MYH11 constructs. These constructs are a subset of the variants considered by Sweeny et 

al. We selected the wild-type loop (Gg MYH11-wt) because it was the primary outlier in their 
length-only model. We selected the alanine mutant (Gg MYH11-ala) because it, with just 5 
mutations, shifted the wild type loop in line with the length-only model proposed by Sweeny et 

al. Then, we selected the extreme points that were well fit by the loop length-only model: the 
loop 1 deletion (Gg MYH11-∆loop1) and the construct using the loop 1 from Xenopus non-
muscle myosin (Gg MYH11-xeno). We simulated these four constructs for 6-16 µs each 
beginning from a homology model (see Methods and Table S1) and built whole-motor MSMs 
which, as before, were used to compute five-state P-loop MSMs. Each P-loop MSM contains a 
parameter P(A→B) which captures the probability that a conformation in state A transitions to 
state B within a fixed period of time (known as the lag time of the model). We then compared 
P(A→B) to ADP release rates measured in vitro for these four constructs. 
 
As expected, there is a strong positive relationship (Pearson’s R=0.99) between the P(A→B) fit 
by our MSMs and in vitro ADP release rate (Figure 5C). This is stronger than the equivalent 
correlation for the length-based model (Pearson’s R=0.72). Importantly, the rank order of the 
four isoforms is correct, whereas using a loop 1 length-only model dramatically underestimates 
the ADP release rate for the wild-type motor. Together, the fact that the sequence change is 
small (only five residues differ between wild type and the alanine mutant) and the change is 
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distant (~25Å) from the P-loop indicate that our model is exquisitely sensitive to sequence, 
even at sites distant from the active site. 
 
P-loop kinetics in silico correlate with ADP release rates across conditions. 
 
To further assess the generalizability of our model, we considered several additional datasets 
that relax constraints placed on data sets in the previous section. First, we relaxed the 
constraint that motors differ by just one structural element (loop 1). Specifically, we 
considered several skeletal myosin isoforms, including MYH7 and MYH13 that Johnson et al 

(35) studied under the same conditions (Figure 5D and E, yellow points). These motor domains 
are an interesting case because, at 80% sequence identity, their sequences differ much more 
than Sweeney et al’s constructs, and these differences are distributed throughout the protein. 
Crucially, and despite having roughly the same loop 1 length, their ADP release rates differ by 
about an order of magnitude (59 s-1 vs 400 s-1). Owing to the fact that Johnson et al’s data were 
collected under different experimental conditions than Sweeny et al’s data (5 mM MgCl2 at 25 
°C vs 1 mM MgCl2 at 20 °C with different light chains), we only expect a general trend to hold, 
since motors’ properties are very sensitive to magnesium, temperature, and light chain identity 
(Chizhov et al., 2013; Heissler and Sellers, 2014; Lewis et al., 2012). Second, we assessed the 
trend in two human non-muscle motor domains, MYO1B and MYH10 with measurements 
carried out under different conditions. Notably, because they both release ADP very slowly, 
they test our model’s capacity to evaluate very slow ADP release rates. 
 
Consistent with our expectations, and despite the diverse experimental conditions, we still 
observe a reasonable correlation between P(A→B) and ADP release across all data sets (Figure 
5E, Pearson’s R = 0.75). This dramatically improves on the length-based model (Pearson’s R = 
0.14). Importantly, under the matched experimental conditions for MYH7 and MYH13 we still 
find the correct order of ADP release rates (Figure 3C, yellow points), suggesting that this 
method generalizes well to the larger phylogenic distances between myosin isoforms. 
Furthermore, MYO1B and MYH10 are correctly identified as very slow releasers of ADP, 
although the point estimates appear to be quite noisy. MYH10 is known to be exquisitely 
sensitive to light chains (Heissler and Sellers, 2014), so it is not surprising that it is one of the 
greatest outliers given that we did not include these in our simulations. 
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Figure 5: The probability of transitioning from nucleotide-favorable to nucleotide- unfavorable 
P-loop conformations (P(A→B)) predicts ADP release rates for motors with low duty ratios. (A) 
Loop 1 sequences and lengths considered in this work. Residues mutated to alanine in the wild-
type chicken gizzard MYH11 (wt Gg MYH11) are bolded in the appropriate row. (B) For the 
Sweeney dataset, there is a moderate relationship between loop 1 length and ADP release rate 
(Pearson’s R = 0.75) but, (C) there is a much stronger correlation between P(A→B) and ADP 
release rate (Pearson’s R = 0.99). (D) Across all datasets, the relationship between loop 1 length 
and ADP release rate is weak (Pearson’s R = 0.14), and (E) there is a much stronger correlation 
between P(A→B) and ADP release rate (Pearson’s R = 0.75). Error in MSM parameters was 
estimated by jackknife resampling and errors in ADP release rates are those reported in the 
relevant original publication, where available. 

Conclusions 
In this work, we used computer simulations of isolated myosin motor domains to predict the in 

vitro ADP release rate and duty ratio of unloaded myosin motors. To do this, we identified 
systematic shifts in the distribution of conformations that a motor explores that correlate with 
changes in biochemistry, rather than by directly simulating the biochemical processes 
themselves, which would have been prohibitively expensive. While binding partners (actin and 
nucleotide, for instance) and structural elements outside the motor domain almost certainly 
affect the distribution of conformations, our results demonstrate that it is nevertheless 
possible to extract reasonable estimates for at least some unloaded biochemical properties 
from only the isolated motor domain’s conformational distribution. The ability of the isolated 
motor domain’s fluctuations to predict these parameters likely stems from a link between the 
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isolated and bound conformational distributions. In other words, because the motor domain 
active site must adopt certain key conformations during its functional interactions with binding 
partners (i.e., nucleotide and actin), it is nearly guaranteed to at least transiently sample those 
conformations even in the absence of those binding partners. Importantly, our simulations 
only require a reasonable homology model as a starting point, so our methods should be 
applicable to a broad range of motor variants, including mutations implicated in disease. 
 
Given the high degree of structural conservation of the myosin motor domain, it was not 
previously possible to directly predict the duty ratio or kinetics for a given myosin isoform from 
the sequence or structure of a motor domain alone. Our studies demonstrate that the duty 
ratio and the rate of ADP release are not captured by a single structural element, but rather by 
the distribution of conformations that the motor explores in solution. Throughout our 
simulations, we observed that the distribution of P-loop conformations is sensitive to relevant 
sequence changes, both large and small, throughout the myosin motor domain. Presumably, 
these changes are allosterically propagated through the myosin motor domain through 
complex networks of coupled motions. Thus, capturing the difference between the wild-type 
and alanine-substituted chicken gizzard myosins (Figure 5C), for instance, required the model 
to capture the allosteric perturbation induced by a change of a few dozen atoms in a molecule 
of ~12,500 atoms at a distance of ~25 Å (Figure 1A). Meanwhile, classifying the duty ratio of 
diverse myosin motors requires the P-loop to integrate signals from across the molecule into a 
single overall conformational preference. This underscores a key advantage of physics-based 
simulations, which is the ability to represent these allosteric networks by modeling in detail the 
complex, nonlinear couplings throughout the molecule. 
 
One tantalizing interpretation of the excited states of the P-loop we observe in silico is that 
they may be related to the biochemically-observed “open” and “closed” states that nucleotide-
free myosin motors populate in vitro (Geeves et al., 2000). In our simulations, we see that the 
P-loop fluctuates between conformations that are nucleotide-compatible and conformations 
that probably are not. In biochemical experiments, at least some myosin isoforms in the 
nucleotide-free actin-bound state fluctuate between a state that binds nucleotide and a state 
that does not. It has also been shown that the equilibrium between these two biochemical 
states (Kα), correlates with duty ratio and the transition rate from the nucleotide binding 
incompetent state to the nucleotide binding competent state (k+α) correlates with the ADP 
release rate (Bloemink and Geeves, 2011). Similarly, we showed that the equilibrium between 
nucleotide-favorable and nucleotide-disfavorable conformations predicted duty ratio, while 
the rate of transition predicted ADP release rate. A simple explanation for these similarities is 
that there may be a correspondence between these biochemical states and the structural 
states that we observe in our MSMs in silico. 
 

Finally, our results highlight the general capacity of computational modeling to link sequence 
and function. One immediate application of our work here is to estimate in silico the 
biochemical parameters of new or difficult-to-study myosins. In the near term, constructing 
such models could help us learn more about the atomic basis for healthy functional diversity in 
myosin motors, and how small changes can give rise to malfunction and disease. Indeed, in the 
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coming years it may prove possible to use these models as a tool for studying patient-specific 
mutations by understanding the atomic basis for diseases caused by dysfunction of myosin 
motors or to aid in developing therapeutics. Finally, because we find no reason to believe our 
approach’s applicability is limited to myosin motors, we expect the techniques we have 
presented here to be of use for any protein where the physics that maps sequence to 
biochemistry is not straightforward. 
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Materials & Methods 
 
Preparation of homology models 

 
For simulations, the initial structure of each myosin motor domain was prepared by first 
obtaining the full-length protein’s sequence from PubMed Protein, trimming the sequence 
down to include only the motor domain using crystal structure 4PA0 of MYH7 as a guide, and 
submitting that sequence to SWISS-MODEL for homology modeling (Waterhouse et al., 2018). 
Templates were chosen with a preference for those that were high-resolution, high sequence 
similarity, and in the rigor state. A complete list of sequences, templates, and motor domains 
can be found in table S1. 
 
Preparation of example myosin conformation 

 
In Figure 1A, the position of ATP is based on ligand-bound crystal structure 1MMA (Gulick et 
al., 1997). The actin binding region was defined by all atoms within 10 Å of the actin filament 
after alignment to 6BNP chain K (Gurel et al., 2017).  
 
Sequence alignments 

 
All sequence alignments were performed with MUSCLE 3.8.1551 (Edgar, 2004b) using default 
parameters. Phylogenetic trees were inferred with the neighbor joining method using these 
alignments. Distances between sequences were k-mer distances (Edgar, 2004a). 
 
Molecular dynamics simulations 

 
For each protein simulated, the following procedure was used to prepare the simulation. The 
protein structure was solvated in a dodecahedron box of TIP3P water (Jorgensen et al., 1983) 
that extended 1 nm beyond the protein in every dimension. Thereafter, sodium and chloride 
ions were added to produce a neutral system at 0.1 M NaCl. The proteins were minimized and 
briefly equilibrated with all atoms restrained in place. Molecular dynamics were performed 
using GROMACS (Abraham et al., 2015; Berendsen et al., 1995) using the AMBER03 force field 
(Duan et al., 2003). Details of minimization, equilibration, and trajectories can be found in 
Supplementary Materials. 
 
Production simulations were performed on a mixture of Folding@home (Shirts and Pande, 
2000) and an in-house supercomputing cluster (see Supplementary Materials). 
 
Markov state models 

 

Fine-grain, whole-motor domain Markov state models were constructed first by defining 
microstates using the k-hybrid clustering algorithm with five rounds of k-medoids refinement 
using the Euclidean distance between residue sidechain solvent accessible surface area 
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(scSASA) as a distance metric. This approach first appeared in Porter, et al, (Porter et al., 
2019a) and was chosen because it scales well for extremely large datasets compared to 
traditional RMSD clustering. The reasons for this are discussed in ref. (Porter et al., 2019b) but, 
briefly, although scSASA calculations are initially expensive, they realize substantial 
performance gains in clustering because each frame’s scSASA need only be computed once. 
ach frame can be computed independently, allowing for massive parallelization. It also reduces 
the size of the input data size, since only a single floating point number represents an entire 
residue, and allows the use of a cheaper distance metric (Euclidean distance rather than 
RMSD). 
 
Markov state models were then fit for each variant by applying a 1/n pseudocount to each 
element of the transition counts matrix and row-normalizing, as recommended in 
Zimmerman, et al (Zimmerman et al., 2018). Lag times were chosen by the implied timescales 
test and by examining the equilibrium probability distribution for unrealistically overpopulated 
states (suggesting insufficient sampling of a particular transition or internal energy barriers). 
Important hyperparameters are listed in Table S2. 
 
Fitting coarse-grained P-loop MSMs used the same procedure, but assignments based on P-
loop state were used, rather than assignments to whole-motor SASA states. P(A → B) is a 
parameter of these MSMs. In all cases for coarse-grained P-loop MSMs, a lag time of 37.5 ns 
was used. 
 
Clustering and Markov state model routines are implemented in enspara, git revision f874ba. 
Solvent accessibility, atomic distance, and RMSD calculations were performed with MDTraj 
(McGibbon et al., 2015). 
 
We made extensive use of jug (Coelho, 2017) and GNU Parallel (Tange, 2011) for task-level 
parallelization and management of dependencies between tasks. 
 

Construction of the P-loop free energy surface 

 
Pairwise interatomic distances in the P-loop were computed using MDTraj (McGibbon et al., 
2015), selecting all possible pairs of a backbone amide nitrogen and a backbone carbonyl 
oxygen atom in the GESGAG portion of the Walker A motif (i.e., the conserved P-loop 
sequence) that makes up the P-loop. 
 

Principle components analysis (PCA) was performed on the 36-dimensional pairwise atomic 
distance vectors for each MSM microstate using the PCA implementation in sklearn 
(Pedregosa et al., 2011). No whitening was employed and the full SVD was calculated. 
 
The surface was then estimated by constructing a weighted two-dimensional histogram in the 
PC1/PC3 plane with 50 bins between the minimum and the maximum data in each direction. 
The resulting array of probabilities was then converted into free energies of units kT by taking 
the natural logarithm of each value. It was then convoluted with a gaussian of variance 0.3 per 
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grid cell using scipy’s gaussian_filter method (Oliphant, 2007). The resulting array was then 
level-set into six level sets. 
 

Selection of myosin motor domain PDB crystal structures 

 
We selected crystal structures to map on to the P-loop free energy landscape by querying the 
PDB (Berman et al., 2000) for all structures with sequence identities to the motor domain of Hs 

MYH7 greater than 10%, resolution <= 5.0 Å and a BLAST E-value less than 10-10. We then 
selected the largest chain in each crystal structure, used muscle (Edgar, 2004b) to align that 
chain’s sequence to the motor domain of Hs MYH7, and used the resulting alignment to 
identify the P-loop. P-loop distances were computed and projected into the low-dimensional 
space as described above. Sequence bookkeeping and I/O relied heavily on scikit-bio 
(github.com/biocore/scikit-bio). 
 

Crystal structures were classified as bound to a nucleotide or nucleotide analogue if they 
contained a residue with the name ADP, ATP, ANP, MNQ, MNT, ONP, PNQ, DAE, DAQ, NMQ, 
AGS, AD9, AOV, or FLC. 
 

Hierarchical clustering of the P-loop 

 

The five coarse-grained MSM microstates for MYH7 were learned using agglomerative 
clustering on the four-dimensional P-loop features learned by PCA for the free energy surface. 
Ward linkage and a Euclidean distance metric were used. Briefly, the states are recursively 
combined in a way that minimizes the within-cluster variance in a until the specified number of 
clusters is reached. The number of clusters were increased until no obvious internal free energy 
barriers were seen in the four PC dimensions. Agglomerative clustering was implemented by 
sklearn 0.21.2 (Pedregosa et al., 2011). 
 
Assignment of new conformations to P-loop states 

 
P-loop state assignments for conformations of motors other than Hs MYH7 were made using a 
k-nearest neighbors (Pedregosa et al., 2011) approach. In this approach, a query conformation 
is assigned to a cluster based on the assignments of nearest k points in the labeled dataset (i.e. 

MYH7). In other words, the nearest k points to the query point “vote” on the assignment of the 
query point to a cluster. In our case, k was 5, but we did not appreciate any differences for 
values of k from 3 to 15. 
 

Implementation of k-nearest neighbors was from sklearn 0.21.2. A ball tree was used to speed 
the search for neighbors (Omohundro, 1989). 
 

Estimation of equilibrium probability of P-loop states 

 

For each motor, the probability of a P-loop state was calculated by summing the equilibrium 
probabilities of all states in the whole-motor MSM assigned to that P-loop state. 
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Duty Ratios of Crystal Structures 

 
While many myosin motors’ duty ratios have been well characterized, some constructs’ 
unloaded duty ratio have not been measured. For these motors, it was therefore necessary to 
infer duty ratios from phylogeny. For our analysis of duty ratio and P-loop crystal position, we 
considered only the 29 ligand-free structures, namely: 4DBP, 2MYS, 3I5H, 2Y0R, 2BKH, 6I7D, 
1DFK, 1OE9, 3I5I, 2OS8, 4P7H, 5V7X, 4ZLK, 1MNE, 1FMV, 2AKA, 3MYL, 2EC6, 4L79, 3L9I, 
2BKI, 2Y9E, 1KK7, 1W8J, 2X51, 4PA0, 4PD3, 3I5G, and 1SR6. Based upon previous biochemical 
experiments, myosin-Is and IIs were assumed to have low duty ratios. Myosin-VIs were 
assumed to have high duty ratio. Myosin-Va and Vb from all organisms were assumed to have 
high duty ratios and Myosin-Vc was assumed to have a low duty ratio. Plasmodium falciparum 
MyoA (6I7D) has been shown to have a high duty ratio (Robert-Paganin et al., 2019). 
 
Myosin class was inferred as follows. Where a roman numeral was given in the PDB description 
(e.g. Myosin-II) this classification was used. Otherwise, if “muscle” or “striated” was appeared 
in the PDB polymerDescription field, the myosin was classified as a myosin-II. Finally, in the 
absence of other indicators, myosins from Doryteuthis pealeii, Placopecten magellanicus, and 
Argopecten irradians were classified as Myosin-IIs, and myosins from Plasmodium falciparum 
were classified as Myosin-XIVs. 
 
Visualization 

 

Proteins structures were visualized and rendered with PyMOL. Data plots were constructed 
with matplotlib (Hunter, 2007). Free energy surface colormaps were constructed with the 
cubehelix color system (Green, 2011). 
 

Code and model availability 

 
MSMs and starting conformations for each of the myosin constructs studied in this have been 
uploaded to the Open Science Framework as project ID 54G7P, along with the parameters for 
the PCA used in Figures 2 and 3. This OSF project also includes a CSV that lists the P-loop 
definition, P-loop RMSD from the reference state, and assignment to P-loop state A-E for each 
crystal structure.  
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