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Summary  

Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active            
during cortical neurogenesis. However, the mechanisms mediating the effects of genetic           
variants on gene regulation are poorly understood. To determine the functional impact of             
common genetic variation on the non-coding genome longitudinally during human cortical           
development, we performed a chromatin accessibility quantitative trait loci (caQTL) analysis in            
neural progenitor cells and their differentiated neuronal progeny from 92 donors. We identified             
8,111 caQTLs in progenitors and 3,676 caQTLs in neurons, with highly temporal, cell-type             
specific effects. A subset (~20%) of caQTLs were also associated with changes in gene              
expression. Motif-disrupting alleles of transcriptional activators generally led to decreases in           
chromatin accessibility, whereas motif-disrupting alleles of repressors led to increases in           
chromatin accessibility. By integrating cell-type specific caQTLs and brain-relevant         
genome-wide association data, we were able to fine-map loci and identify regulatory            
mechanisms underlying non-coding neuropsychiatric disorder risk variants. 

Keywords chromatin accessibility QTL, gene regulation, human neuronal differentiation,         

neuropsychiatric disorders, GWAS, fine-mapping  
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Highlights  
 

● Genetic variation alters chromatin architecture during human cortical        
development 

● Genetic effects on chromatin accessibility are highly cell-type specific 
● Alleles disrupting TF motifs generally decrease accessibility, except for         

repressors 
● caQTLs facilitate fine-mapping and inference of regulatory mechanisms of GWAS          

loci 
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Introduction 
 
Genome-wide association studies (GWAS) have revealed many common single nucleotide          

polymorphisms (SNPs) that are associated with risk for neuropsychiatric disorders          

(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Geschwind and Flint,           

2015; Sullivan et al., 2018). A crucial next step is to understand the molecular mechanisms by                

which these variants impact disease risk (Sullivan and Geschwind, 2019). This is complicated             

by many factors, including: (1) risk loci are often comprised of many SNPs in high linkage                

disequilibrium (LD) and thus the causal variant(s) are not known (Barešić et al., 2019), (2) most                

risk loci have been mapped to non-coding regions with unknown, but presumed gene regulatory              

function (Lee et al., 2018b), (3) it is not known in which cell-type(s), tissue-type(s), or               

developmental time period(s) that a genetic risk variant exerts its effects (Gamazon et al., 2018).               

Nevertheless, a commonly assumed model to explain molecular mechanisms underlying risk           

loci is that non-coding risk alleles disrupt transcription factor (TF) binding motifs within cell-type              

specific regulatory elements (REs) leading to alterations in gene expression and downstream            

impacts on risk (Albert and Kruglyak, 2015; Nord and West, 2019). Thus, understanding tissue-              

and cell-type specific regulatory mechanisms are essential for moving from genetic association            

to a meaningful biological understanding.  

 

With this in mind, several consortia including ENCODE, GTEx and PsychENCODE have taken             

major steps to build maps of non-coding genome function across the body (Davis et al., 2018;                

ENCODE Project Consortium, 2012; GTEx Consortium et al., 2017; Wang et al., 2018). These              

and other efforts have connected non-coding genetic variation to genes they regulate in             

developing and adult brain tissue by profiling 3-dimensional chromatin interactions and by            

measuring the impact of genetic variation on gene expression, termed expression quantitative            

trait loci (eQTLs) (Walker et al., 2019; Wang et al., 2018; Won et al., 2016). Although these                 

studies are an important first step in connecting non-coding risk loci to their cognate genes, they                

do not elucidate the mechanisms by which human genetic variation alters gene regulation.             

Moreover, most of these resources focus on bulk tissue rather than specific cell-types, in which               

genetic variation can exert differing effects (Cuomo et al., 2019; Strober et al., 2019).  

 

Risk variants for multiple neuropsychiatric disorders are enriched in REs active at mid-gestation             

in humans, during the peak of cortical neurogenesis (de la Torre-Ubieta et al., 2018). Histone               
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acetylation QTL (haQTLs) and chromatin accessibility QTL (caQTLs) are powerful tools           

employed to identify the effect of genetic variation on non-coding REs and provide further              

understanding of gene regulatory mechanisms at both bulk and cell-type specific levels (Bryois             

et al., 2018; Degner et al., 2012; Gate et al., 2018; Schwartzentruber et al., 2018; Tehranchi et                 

al., 2019, 2016; Wang et al., 2018). However, the ability to connect human allelic variation to                

longitudinal changes in regulatory architecture that occur during this foundational stage of            

human brain development is severely limited by the inaccessibility of brain tissue from the same               

individual over multiple time points. Here, we leveraged a well validated model of in vivo human                

brain development based on the in vitro culture of primary human neural progenitors (Dolmetsch              

and Geschwind, 2011; Stein et al., 2014) to study the functional effects of allelic variation on                

chromatin architecture during neurogenesis. We measured chromatin accessibility (Buenrostro         

et al., 2013) in neural progenitor cultures in a cell-type specific manner at two key stages of                 

neural development, during progenitor proliferation (Ndonor= 73) and after differentiation using           

their labeled and sorted neuronal progeny (Ndonor= 61). We identified thousands of caQTLs,             

many of which were highly cell-type specific. We use the effects of these inherent genetic               

variations to understand how disrupting TF binding motifs impact chromatin accessibility and            

gene expression, as well as to understand the cell-type specific regulatory mechanisms            

underlying risk for neuropsychiatric disorders. 
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Results 
 
Profiling genome-wide chromatin accessibility in progenitors and neurons 

We generated primary human neural progenitor cell (phNPC) lines from 14-21 gestation week             

genotyped human fetal brain (N=92) using a neurosphere isolation method that results in             

cultures with high fidelity to the in vivo developing brain (Konopka and Wexler, 2010; Palmer et                

al., 2001; Rosen et al., 2011; Stein et al., 2014; Wexler et al., 2011) (Figure 1A; Methods).                 

phNPCs were cultured and isolated at two stages for downstream experiments: progenitor cells             

and 8-week differentiated and sorted neurons. Over 90% of the undifferentiated progenitor cells             

were positive for SOX2 and PAX6 via immunofluorescence, indicating a highly homogenous            

population of radial glia cells (Figure 1A) (Hansen et al., 2010). After differentiation for 8 weeks,                

we FACS sorted the virally labeled differentiated neurons which showed typical neuronal            

morphology (Figure 1A; Supplemental Figure 1A; Methods). We performed ATAC-seq on intact            

nuclei and found that resultant libraries were high quality based on a sensitivity analysis and               

nucleosome periodicity (Supplemental Figure 1B-1D; (Buenrostro et al., 2013)). We quantified           

accessibility as batch effect-corrected reads within accessible peaks normalized for GC content,            

peak length and sequence depth (Supplemental Figure 2A and 2C-2D). We found higher             

correlations of chromatin accessibility from libraries prepared from the same donors cultured at             

different times as compared to correlations across donors (Progenitor: average within-donor           

correlation was 0.94 ( ± s.d. 0.009), average across-donor correlation was 0.91 ( ± s.d. 0.03 );              

Neuron: average within-donor correlation was 0.93 ( ± s.d. 0.03 ), average across-donor           

correlation was 0.90 ( ± s.d. 0.04 ); Supplemental Figure 2B). To ensure independence for             

subsequent analyses, we randomly selected one library from each donor for each cell-type             

(N_progenitor=86 and N_neuron=67) to identify accessible peaks (N=136,714; average peak          

length of 508 bp; Methods).  

 

To determine the in vivo relevance of these accessible peaks, we performed an overlap analysis               

with REs derived from different human tissues (Figure 1B), utilizing previously classified            

chromatin states from 93 in vivo tissues and cell types (Roadmap Epigenomics Consortium et              

al., 2015), including fetal brain (male and female). The accessible peaks generated here from              

progenitors and neurons most strongly overlap enhancers identified in fetal brain tissue (Rank of              

enrichment across tissues: 1st for male (25.7% overlap) and 3rd (25.0% overlap) for female fetal               
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brain), followed by other brain regions such as germinal matrix and dorsolateral prefrontal             

cortex, indicating that these peaks derived from phNPC cultures were highly representative of             

the in vivo fetal brain. The principal component analysis of chromatin accessibility revealed that              

progenitor and neuron samples clearly separate along the first principal component (Figure 1C),             

indicating that cell-type was associated with the largest variability in global chromatin            

accessibility profiles (49.66% of variance explained). These results demonstrate that chromatin           

accessibility measured from hNPC cultures are representative of REs present in the developing             

human brain and that chromatin accessibility patterns are broadly different between progenitors            

and neurons, consistent with previous bulk tissue data from fetal brain (de la Torre-Ubieta et al.,                

2018). 

Identifying cell-type specific regulatory elements during neuronal differentiation 

To reveal cell-type specific REs involved in neuronal differentiation, we performed an analysis to              

determine which peaks had significantly different chromatin accessibility between neural          

progenitors and neurons (Figure 1D; Methods). We identified 16,121 peaks with greater            

accessibility in progenitors than neurons (progenitor peaks; FDR < 0.05 and log2 fold change              

(LFC) > 1) and 12,007 peaks with greater accessibility in neurons than progenitors (neuron              

peaks; FDR < 0.05 and LFC < -1; Table S1). At the promoter of SYN1, which was used to label                    

neurons for sorting during differentiation, we observed considerably higher accessibility in           

neurons as compared to progenitors, as expected (LFC=-3.32, P-value=2.71e-59; Figure 1D).           

Among significant differentially accessible peaks, we found greater accessibility in progenitors at            

the promoters of genes highly or uniquely expressed in progenitors, including WNT2B,            

NOTCH1, HOPX and the dorsal telencephalic marker gene EMX2 (Figure 1E) (Brunelli et al.,              

1996; Gaiano et al., 2000; Harrison-Uy and Pleasure, 2012; Pollen et al., 2015; Simeone et al.,                

1992). Moreover, promoters of genes highly expressed in neurons, such as DCX, BDNF,             

CAMK2B and SYT13 (Fukuda and Mikoshiba, 2001; Polioudakis et al., 2019), showed greater             

chromatin accessibility in neurons (Figure 1D,E).  

 

We identified the biological processes involved in differentially accessible peaks near           

protein-coding TSSs (2kb upstream and 1kb downstream from TSSs) during neuronal           

differentiation using Gene Ontology (GO) terms ((Ashburner et al., 2000); Supplemental Figure            

3A). In promoter peaks more accessible in progenitors, we found an enrichment of GO terms               

related to known progenitor cell function, including forebrain development and neuron projection            
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guidance. Conversely, in promoter peaks more accessible in neurons, we found enrichment of             

GO terms related to synaptic function, including signal release from synapse and            

neurotransmitter secretion, as well as learning, consistent with biological processes central to            

neuronal function. These results demonstrated that chromatin accessibility differences         

correspond to expected cell-type specific biological processes.  

 

We also found that differentially accessible peaks were significantly enriched in ATAC-seq            

peaks from the relevant in vivo fetal brain laminae (Figure 1F) (de la Torre-Ubieta et al., 2018).                 

Specifically, peaks more accessible in progenitors were more enriched in peaks with higher             

accessibility in the neural progenitor-enriched germinal zone. Conversely, peaks more          

accessible in neurons were more enriched in peaks more accessible in the neuron-enriched             

cortical plate. These comparisons showed the differentially accessible peaks represent cell-type           

specific active REs and were in strong agreement with biological processes and gene regulatory              

behavior present in in vivo fetal brain tissues.  

 

To detect TFs involved in neuronal differentiation, we conducted a differential motif enrichment             

analysis to identify predicted TF binding sites more active in either progenitors or neurons. We               

detected 62 TFs (FDR < 0.05) with binding sites present more often in progenitor peaks than                

neuron peaks (here, called progenitorTFs), and 241 TF motifs presents more often in neuron              

peaks than progenitor peaks (here, called neuronTFs) (Methods; Supplemental Figure 3B).           

Within progenitorTFs, we found TFs previously characterized to have key roles for neural stem              

cell renewal and reprogramming, such as SOX2 and KLF4 (Ellis et al., 2004; Han et al., 2012;                 

Wang et al., 2015), and those known to be required for the maintenance of stem cells in cortex,                  

such as NR2F1, ETV5 , and SP2 (Liang et al., 2013; Liu and Zhang, 2019; Naka et al., 2008).                  

Within neuronTFs, NEUROG2 and LMX1A were identified, which are known to drive neuronal             

differentiation (Araújo et al., 2018; Fathi et al., 2015), as well as TFs shown to induce neuronal                 

identity from fibroblasts, including ASCL2 and the POU family (Tsunemoto et al., 2018).             

NeuronTFs also included CUX2, a marker for layer II-III neurons (Cubelos et al., 2015; Zimmer               

et al., 2004) and other laminar markers such as TBR1 and FOXP1/2 . Thus, motifs within               

differentially accessible peaks allow the identification of known TFs that are essential for neural              

progenitor proliferation and differentiation in vivo, providing further support that TF binding within             

chromatin accessibility peaks in this in vitro system reflect the expected in vivo developmental              

processes (Supplemental Figure 3C). We also note that we identified several TFs that have not               
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been previously associated with neuronal differentiation, such as MEF2A, MIX-A and HOXD8,            

which may be useful for directed differentiation of human neural progenitor cells (Table S2). 

Chromatin accessibility quantitative trait loci (caQTLs) 

To identify genetic variants that influence chromatin accessibility within two key cell types             

present during cortical development, we performed caQTL analyses separately for progenitors           

and neurons (Figure 2A; Supplemental Figure 4A-4B). Because our sample was composed of             

multiple ancestries (Supplemental Figure 4C), we stringently controlled for population          

stratification in our association tests using a linear mixed effects model including a kinship              

matrix as a random effect, and 10 genotype MDS components as fixed effects (Kang et al.,                

2010; Price et al., 2010; Yang et al., 2014). In addition, we included sex, gestation week, and                 

principal components (PCs) across the chromatin accessibility matrix (4 PCs in neurons; 7 PCs              

in progenitors) as fixed effect covariates to reduce the impact of unmeasured technical variation              

(Pickrell et al., 2010).  

 

We identified 8,111 LD-independent caQTLs (caSNP-caPeak pairs) regulating 4,682 caPeaks in           

progenitors (Ndonor=73) and 3,676 LD-independent caQTLs regulating 2,760 caPeaks in neurons           

(Ndonor=61). We found that the caSNP or an LD-proxy was located in a known functional region                

for ~73% of caQTLs detected (Figure 2C; Table S3). These caPeaks were significantly enriched              

in active REs such as enhancers and promoters from fetal brain (Supplemental Figure 4D),              

consistent with their expected regulatory function. Index caSNPs are most often found near the              

peaks they are associated with (Figure 2B), half of index caSNPs of progenitor caQTLs are               

located within -24.3kb to 19.1kb around peak centers. Similarly, half of index caSNPs of neuron               

caQTLs are located within -27.5kb to 20.2kb around peak centers (Figure 2B). We found that               

one caPeak could be affected by multiple genetic variants (Figure 2D), indicating that caSNPs              

could disrupt multiple TF motifs within one regulatory element or the caPeak was regulated by               

other REs, including correlated peaks, differentially accessible peaks, or active chromatin           

regions. These results imply that most genetic variants affect chromatin accessibility by altering             

the sequence (and presumably transcription factor binding sites) at the peak impacted by the              

variant or disrupt chromatin accessibility at distal peaks which have secondary effects on the              

caPeak (Kumasaka et al., 2019).  
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To identify if genetic influences on chromatin accessibility were also associated with differences             

in gene expression, we compared progenitor and neuron caQTLs with recent eQTLs from the              

mid-gestation cortical wall (Walker et al., 2019) (Methods). Twenty percent of progenitor caQTLs             

and 23% of neuron caQTLs were shared with fetal cortical eQTLs (Figure 2E, Table S4). The                

effect sizes of shared caQTL-eQTL pairs showed positive correlations (r=0.41 for fetal cortical             

wall eQTLs and neuron caQTLs; r=0.32 for fetal cortical wall eQTLs and progenitor caQTLs).              

Among shared caQTL-eQTL pairs, alleles have the same direction of effect on chromatin             

accessibility and gene expression for most shared caQTL-eQTL pairs (63.4% of shared            

progenitor caQTLs and 64.5% shared neuron caQTLs), indicating that alleles associated with            

increased chromatin accessibility tend to be associated with increased gene expression (Figure            

2F). For 36.6% of shared progenitor caQTLs and 35.5% shared neuron caQTLs, alleles have              

the opposite direction of effect on chromatin accessibility and gene expression, indicating a             

repressive function of these caPeaks on eGenes. We subsampled the eQTL dataset to ensure              

that caQTLs and eQTLs have the same sample sizes (Methods), and then assessed whether              

genetic variation explained more variation in chromatin accessibility as compared to gene            

expression (Figure 2G), observing that caQTLs generally explain more variance than eQTLs            

(neurons: average caQTL r2=0.350 and average eQTL r2=0.332, t-test p-value=1.088e-29;          

progenitors: average caQTL r2=0.292 and average eQTL r2=0.281, t-test p-value=4.369e-20).          

This indicates that caQTL studies may have higher power than eQTL studies and/or that              

cell-type specificity increases power for molecular-level genetic associations (Gate et al., 2018). 

Genetic effects on cell-type specific regulatory elements 

By integrating cell-type specific caQTLs and fetal cortical eQTLs, we were able to annotate              

cell-type specific REs active during human neuronal differentiation and identify their cognate            

genes. We subsequently leveraged these data to fine map causal variants within eQTL loci and               

predict regulatory mechanisms of these non-coding SNPs associated with both chromatin           

accessibility and gene expression. We identified 161 RE-Gene pairs in neurons and 285             

RE-Gene pairs in progenitors. Within these RE-Gene pairs, we found many genes involved in              

neuronal differentiation such as SCN1A, FABP7, NEK3 and VAT1 (Chang et al., 2009; Escayg              

and Goldin, 2010; Feng et al., 1994; Loeb-Hennard et al., 2004). We also identified RE-gene               

pairs where the caSNP disrupted motifs of TFs that have known functions in early stem cell                

differentiation and neuronal differentiation (Ballas et al., 2005; Nitzsche et al., 2011). For             

example, the C allele of rs11544037 is associated with increased chromatin accessibility of a              
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progenitor caPeak (chr4:158,667,741-158,667,880) located ~5 kb upstream from the ETFDH          

TSS and also associated with increased expression of ETFDH (Figure 3A-3C). We found that              

rs11544037 disrupted several TF motifs. These TFs were ranked by their level of expression in               

progenitors and neurons using fetal brain scRNA-seq data (Polioudakis et al., 2019). We             

prioritized RAD21 as the TF with altered binding due to the caSNP based on its high level of                  

expression in progenitors (Figure 3D). The C allele of rs11544037 matched the motif of RAD21               

(Figure 3E), which suggests that RAD21 binding was associated with increased chromatin            

accessibility of this enhancer in progenitors and increased expression of EFTDH. Another            

example was the G allele of rs185220 which was associated with increased chromatin             

accessibility in neurons and progenitors of a caPeak (chr5:56,909,071-56,910,960) that          

overlapped with the SETD9 TSS and was associated with increased expression of SETD9             

(Figure 3F-3H). We found that rs185220 disrupted several TF motifs, but we prioritized REST              

due to its high expression in progenitors ((Polioudakis et al., 2019) Figure 3I-J). In contrast to                

the previous example, the G allele of rs185220 led to disruption of the REST motif and                

increased chromatin accessibility, consistent with the function of REST as a repressor (Chong et              

al., 1995; Schoenherr and Anderson, 1995). The predicted regulatory mechanism of rs185220 is             

that the G allele of rs185220 disrupted REST binding, resulting in increased chromatin             

accessibility and increased expression of SETD9.  

 

Allele Specific Chromatin Accessibility 
 

We next performed an analysis to detect allele specific chromatin accessibility (ASCA) for each              

heterozygous SNP located within accessible peaks (Methods). ASCA analysis contrasts          

accessibility between two alleles within an individual heterozygous at a given SNP, so it              

inherently controls for cross-individual confounding factors, such as population structure          

(Pastinen, 2010). In total, we identified 1,598 significant (FDR < 0.05) progenitor ASCA and              

3,332 significant neuron ASCA (Table S5). To determine if caQTLs also show ASCA, we filtered               

to keep significant caQTLs (non-clumped, FDR < 0.05) using the same heterozygous donor and              

read level criteria described for ASCA, observing that 91.2% of filtered neuron caQTLs were              

shared with neuron ASCA (Fisher’s test: OR=56.76, p-value=3.9e-207) and 87.7% of filtered            

progenitor caQTLs were shared with progenitor ASCA (Fisher’s test: OR=48.97,          

p-value=1.6e-215). This demonstrates extremely high overlap between caQTLs and ASCA          

(Figure 4A), which indicates minimal influence of cross-individual confounding effects, such as            
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population stratification, on the caQTL results. Similarly, for all filtered caQTLs and significant             

ASCA in Figure 4A, we found high correlations of effect sizes between caQTLs and ASCA               

(r=0.67 for neurons; r=0.75 for progenitors), indicating a shared direction and degree of effect              

(Figure 4B). Subsetting to only significant caQTLs and ASCAs, the correlation of effect sizes is               

greater than 0.9 for both neurons and progenitors (Figure 4B), again consistent with the lack of                

confounding due to population factors for most caQTLs discovered.  

 

However, we also detected significant ASCAs that were not significant caQTLs (Figure 4B).             

These variants were found in larger peaks than those detected in both caQTL and ASCA               

(Supplemental Figure 5A). These ASCA-but-not-caQTL variants likely have an effect on the            

accessibility of a sub-region of the larger active region. They are more detectable using ASCA               

because only reads containing the variant at the location where accessibility is affected are              

tested for association, whereas they are not detectable in caQTLs which integrate reads across              

the entirety of the region. For example, we detected ASCA at SNP rs2547972, which was               

associated with differences in chromatin accessibility of a sub-peak, but was not a caQTL for               

the called larger peak where it resides (9,139 bp; Supplemental Figure 5B). Other ASCA, but               

not caQTL sites, were presumably due to lower power for caQTL detection (Supplemental             

Figure 5C). 

 
We identified several loci that shared caQTLs, ASCA, and eQTLs. For example, the previously              

described SETD9 locus also demonstrated strong ASCA at rs185220 in both neurons and             

progenitors (Supplemental Figure 5D). We were also interested in FABP7 (also known as             

BLBP), which is a marker for radial glia that plays an important role in the establishment of the                  

radial glial fibers spanning the cortical anlage during cortical development (Feng et al., 1994)              

(Figure 4C). The A allele of rs149644985 (and its LD proxies found within the same caPeak                

rs144376334 r2rs149644985-A:rs144376334-C=1 and rs148791690 r2rs149644985-A:rs148791690-C=1) was associated       

with increased chromatin accessibility of the caPeak (chr6:122,832,331-122,834,250) in both          

progenitors and neurons and increased gene expression of FABP7 (Figure 4D). The A allele of               

rs149644985 (C allele of rs144376334) also manifested increased allele-specific chromatin          

accessibility in both progenitors and neurons (Figure 4E). rs149644985 and rs144376334           

disrupted several TF motifs, and we prioritized SMARCC1 and FOS::JUN due to their higher              

expression in progenitors (Polioudakis et al., 2019) (Figure 4E). The motif disrupting allele for              

both SNPs was associated with decreased chromatin accessibility, consistent with activating           
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REs (Figure 4G). Based on these data, we suggest two potential regulatory mechanisms             

underlying one genetic locus based on different disrupted TF motifs: 1) genetic variation             

simultaneously disrupts both SMARCC1 and FOS::JUN binding to the RE leading to decreased             

expression of FABP7 or 2) genetic variation disrupting either SMARCC1 or FOS::JUN is             

sufficient to decrease the expression of FABP7.  

Genetic effects on chromatin accessibility are cell-type specific 

To determine the cell-type specificity of caQTLs between progenitors and neurons, we            

quantified the degree of overlap using LD-independent progenitor and neuron caQTLs. We            

identified if any neuron caSNPs (or their LD proxies; 0.5 <= r2 <=1) overlapped with progenitor                

caSNPs (or their LD proxies), and the converse. Only 10.8% of progenitor caQTLs             

(caSNP-caPeak pairs) overlapped with neuron caQTLs and 17.4% of neuron caQTLs           

overlapped with progenitor caQTLs (Figure 5A). To determine if genetic variation impacts the             

same peaks in both progenitors and neurons, we quantified the degree of overlap in caPeaks.               

We found only 8.9% of progenitor caPeaks overlapped with neuron caPeaks, and that 15.1% of               

neuron caPeaks overlapped with progenitor caPeaks (Figure 5B). For ASCA, we found 24.2%             

progenitor ASCA and 17.6% neuron ASCA are shared, which was in agreement with the              

cell-type specificity observed in caQTLs. These results suggest that genetic variants often            

impact chromatin accessibility only within specific cell-types.  

 

To further characterize the cell-type specificity of caQTLs, we assessed the differential            

accessibility of progenitor and neuron caPeaks (Figure 5C). We found the caPeaks of 75.4% of               

progenitor caQTLs were more accessible in progenitors as compared to neurons (LFC > 0).              

Similarly, the caPeaks of 52.6% neuron caQTLs were more accessible in neurons as compared              

to progenitors (LFC < 0). This implies genetic variants that disrupted the binding of DNA-binding               

proteins, like transcription factors, affected chromatin accessibility of the REs. 

 

We next characterized the location of caPeaks relative to the nearest promoter (2kb upstream              

and 1kb downstream from TSS) when the caSNP is located within the caPeak (Figure 5D). We                

found there was a higher percentage of cell-type specific caPeaks (86% of progenitor caPeaks              

and 80% of neuron caPeaks) that were distal to promoters than shared caPeaks (78%;              

Progenitor: p=9.532e-10 and Neuron: p=0.041). This result indicates cell-type specific caQTLs           

were more likely to affect the chromatin accessibility of distal REs, which is consistent with distal                

12 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904862
http://creativecommons.org/licenses/by/4.0/


REs such as enhancers having higher cell-type specificity than promoters (Heinz et al., 2015;              

Roadmap Epigenomics Consortium et al., 2015).  

 

To determine the direction and magnitude of the effect of a genetic variant on chromatin               

accessibility between cell types, we related the effect sizes from the most significant caQTLs for               

every caPeak detected in one cell-type to the other. Consistent with the observation that              

caQTLs significant in one cell-type are rarely significant in another, we noted a relatively low               

correlation between effect sizes from the most significant neuron caQTLs compared with those             

same SNP-peak pairs in progenitors (r=0.359; p-value=1.056e-82; Figure 5E). Similarly, effect           

sizes from the most significant progenitor caQTLs showed a relatively low correlation with the              

same SNP-peak pairs in neurons (r=0.354; p-value=4.159e-127).  

 

Previous research has shown surprisingly high consistency of genetic effects on expression            

across many tissues in the body (GTEx Consortium et al., 2017). We therefore sought to               

determine if caQTLs have higher tissue/cell-type specificity than eQTLs. We compared the            

effect size correlations between cell-types from caQTL analyses to effect size correlations            

between tissue types from eQTL analyses derived from GTEx. We selected the most significant              

liver eQTL for each eGene and compared effect sizes for the same SNP-gene pairs to brain                

cortex, finding considerably higher correlation (r=0.509, p-value=4.333e-237; Figure 5F) than          

those observed from caQTLs. The converse analysis, selecting the most significant brain eQTLs             

and comparing effect sizes for the same SNP-gene pairs to liver similarly yielded a stronger               

correlation (r=0.477, p-value=1.340e-292) than those observed from caQTLs. To more globally           

compare tissue-type specificity of eQTLs to the cell-type specificity of caQTLs, we used the              

same method to calculate effect size correlation between independent significant eQTLs from            

other tissues (Ntissues=45, excluding highly related tissues - see Methods). We found the average              

effect size correlation is 0.616 between different tissues in the body and brain cortex, which is                

much higher than the effect size correlations observed between neuron and progenitor caQTLs             

(Figure 5G). Together, these results suggested that caQTLs were highly cell-type specific            

between progenitors and neurons, in comparison with eQTLs which were more correlated            

between different tissues and brain cortex.  

Comparison to adult dorsolateral prefrontal cortex (DLPFC) caQTLs  
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Previous work identified common variant associations with chromatin accessibility in adult           

post-mortem DLPFC using a sample of 272 individuals (Bryois et al., 2018). We tested whether               

caQTLs present during neuronal differentiation of the cortex modeling a prenatal time period             

were also present in adult cortex (Supplemental Figure 6A-6C). Only 2.4% of DLPFC caQTLs              

overlapped with neuron caQTLs and 19.9% of neuron caQTLs overlapped with DLPFC caQTLs.             

Similarly, only 4.7% of DLPFC caQTLs overlapped with progenitor caQTLs and 17.5% of             

progenitor caQTLs overlapped with DLPFC caQTLs. In general, there are few variants that have              

similar impacts on chromatin accessibility in the cortex during fetal development, as compared             

to adulthood. The peaks impacted by genetic variation (caPeaks) were shared with adult cortex              

in only 17.5% of neuron caPeaks and 16.2% of progenitor caPeaks (Supplemental Figure 6D).              

For the subset of genetic variants that shared effects on chromatin accessibility between             

neuronal differentiation and in adult cortex, there were very strong correlations in the effect              

sizes (r=0.92 for DLPFC and neurons; r= 0.89 for DLPFC and progenitors) (Supplemental             

Figure 6E). Together, these results indicate that caQTLs have high temporal specificity, as well              

as cell-type specificity, but for the subset of shared caQTLs similar effects are observed in brain                

at different stages of development.  

Prediction of disrupted transcription factor (TF) binding due to genetic variation 

One favored model of how genetic variation leads to changes in chromatin accessibility is that               

SNPs disrupt TF motifs, decreasing the probability of TF binding to chromatin, and resulting in               

decreased chromatin accessibility (Behera et al., 2018; Gate et al., 2018). To determine which              

TF motifs are disrupted by cell-type specific caSNPs, we mapped known TF motifs to the               

sequence surrounding the neuron-specific/progenitor-specific caSNPs and determined if an         

allele at the caSNP sufficiently decreases the relative entropy of TF binding using the position               

possibility matrix (PPM; Methods; Table S6; (Coetzee et al., 2015)). Most often, caSNPs only              

disrupted one TF motif (Figure 6A). However, given the ubiquitousness of motifs in the genome,               

some caSNPs can disrupt motifs of as many as 93 TFs (Figure 6A). Conversely, we found one                 

motif could be disrupted by many genetic variants in different peaks (the SOX9 motif was               

disrupted by 141 caSNPs). In progenitors, a motif often disrupted by caSNPs (accounting for the               

number of motifs disrupted by SNPs in accessible peaks) and expressed in progenitors was              

SMARCC1 (Figure 6B; (Polioudakis et al., 2019)), a member of the BAF complex known to be                

involved in fate decisions during neurogenesis (Ronan et al., 2013). In neurons, we found the               

motif of DLX3, which is a critical TF for induced neuronal cell reprogramming, was the most                
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often disrupted by caSNPs (Figure 6B) (Wapinski et al., 2017). These results suggest that the               

TFs whose motifs are disrupted by caSNPs are involved in neural proliferation and             

differentiation, indicating that the genetic variants that impact the activity of REs by disrupting              

the binding of TFs play functional roles during these biological processes.  

 

We next tested the impact of the TF motif-disrupting alleles on chromatin accessibility. We found               

alleles at caSNPs disrupting SMARCC1 motifs are generally associated with decreased           

chromatin accessibility in progenitors (Methods; Figure 6C). Similarly, alleles at caSNPs           

disrupting DLX3 motifs are associated with decreased chromatin accessibility in neurons (Figure            

6D). We then performed this analysis using all available TF motifs where we observed at least                

10 motif disrupting caSNPs. Among 629 tested TFs in progenitors and 348 tested TFs in               

neurons, we found that motif disrupting alleles often led to decreased accessibility for 156 (25%)               

TFs in progenitors and 129 (37%) TFs in neurons (Figure 6E). Conversely, we found the caSNP                

motif-disrupting allele was associated with increased chromatin accessibility at the motif of            

ZEB1 , a known transcriptional repressor (Figure 6F) (Wang et al., 2019). Interestingly, we found              

the motif of TCF12 in progenitors was disrupted by caSNPs associated with increased             

chromatin accessibility. However, in neurons, this motif was disrupted by caSNPs associated            

with decreased chromatin accessibility. TCF12 is a basic helix loop helix (bHLH) transcription             

factor (Zhang et al., 1991) involved in the expansion of precursor cell populations during              

neurogenesis (Uittenbogaard and Chiaramello, 2002). TCF12 forms homo and heteroduplex          

complexes with other bHLH factors and can act both as a repressor and activator of               

transcription depending on the cellular context (Hu et al., 1992; Wu et al., 2012; Zhang et al.,                 

1991). Based on these results, we hypothesize that TCF12 functions as a repressor of              

transcription in progenitors, but an activator in neurons. These results suggest that binding of              

transcriptional activators was associated with increased chromatin accessibility. However,         

binding of transcriptional repressors was associated with decreased chromatin accessibility. 

 
Regulatory mechanisms underlying GWAS loci 
 

To investigate if genetic variants associated with common neuropsychiatric disorders or traits            

are enriched in differentially accessible peaks during cortical neurogenesis, we calculated           

partitioned heritability enrichment using LD score regression (Bulik-Sullivan et al., 2015;           

Finucane et al., 2015a) (Figure 7A). Similar to a previous study in mid-gestation fetal brain (de                
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la Torre-Ubieta et al., 2018), we found cell-type specific enrichments for neuropsychiatric            

disorders and associated behaviors in regions of open chromatin in fetal brain. Genetic variants              

associated with several childhood or adult onset neuropsychiatric disorders or traits, including            

ASD, schizophrenia, major depressive disorder (MDD), neuroticism and depressive symptoms,          

showed significant partitioned heritability enrichment in peaks more accessible in neural           

progenitors. With the exception of schizophrenia, these disorders and traits did not show             

significant enrichment in peaks more accessible in neurons. We observed partitioned heritability            

enrichment for both intelligence and educational attainment within peaks differentially accessible           

in both cell types. As a negative control, we did not observe enrichment of inflammatory bowel                

disease (IBD) heritability in differentially accessible peaks, as expected. These results are            

consistent with the model (de la Torre-Ubieta et al., 2018; Walker et al., 2019) that genetic                

variants alter the function of REs during cortical neurogenesis, which then leads to risk for               

neuropsychiatric disorders or related traits in childhood or adulthood.  

 

To study the cell-type specific gene-regulatory impact of specific genetic variants associated            

with these neuropsychiatric disorders or traits, we performed a colocalization analysis of            

caQTLs in progenitors and neurons with existing GWAS data. We identified putatively            

co-localized signals (pairwise LD r2 > 0.8 between the GWAS index and caQTL index) and then                

performed conditional analysis to verify that the two variants mark the same locus (Methods).              

We found co-localized loci in several neuropsychiatric disorders, including schizophrenia (N=8),           

major depressive disorders (N=4), Alzheimer’s disease (N=3), neuroticism (N=1) and bipolar           

disorder (N=1), as well as IQ (N=6) and educational attainment (N=15) (Figure 7B). We also               

found additional ASCA located in GWAS loci (NNeuronpyschiatric disorders=83) (Figure 7C). These results             

indicate that SNPs impact risk for these diseases by regulating the activity of REs in these two                 

cell types during mid-fetal brain development, and provide a framework for exploring the             

mechanistic bases for these specific disease-associated risk loci. 

 

Next, we investigated regulatory mechanisms underlying co-localized loci using cell-type          

specific caQTLs. Combining fetal cortical eQTL data, we found a co-localized locus across             

progenitor specific caQTLs, fetal cortical eQTLs and MDD GWAS (Figure 7D). We found more              

than 30 SNPs in high LD with an MDD GWAS index SNP (rs1950826). Eight of these variants                 

were located in a caPeak (chr14:41,604,261-41,610,620). We prioritized one putatively causal           

SNP among those 8 by testing for ASCA, finding that the A allele of the caSNP rs1950834                 

16 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904862doi: bioRxiv preprint 

https://paperpile.com/c/YqJUm9/Wv4T9
https://paperpile.com/c/YqJUm9/E8Hr+Wv4T9
https://doi.org/10.1101/2020.01.13.904862
http://creativecommons.org/licenses/by/4.0/


(protective allele for MDD), was associated with decreased accessibility of this caPeak in             

progenitors (Figure 7F-7G). We also found rs1950834 was a fetal cortical eSNP, of which the A                

allele was associated with decreased expression of lncRNA AL121821.1 (ENSG00000258636)          

in fetal cortex (Figure 7E). After conditioning on the MDD index SNP, rs1950826, the caQTL               

was no longer significant, indicative of co-localization (Figure 7D). We found evidence to             

support that this SNP disrupts the binding of ETV1 (Figure 7I; Methods; (Polioudakis et al.,               

2019)). This suggests that the protective mechanism of this locus for MDD is via the protective                

allele at the caSNP disrupting binding of ETV1 at a RE in progenitors, decreasing chromatin               

accessibility of this caPeak, and resulting in decreased expression of lncRNA AL121821.1.  

 

Another example is the co-localized locus between a neuron specific caQTL and schizophrenia             

GWAS (Supplemental Figure 7A). We found the C allele (schizophrenia protective allele) of the              

caSNP, rs9930307, was associated with decreased chromatin accessibility of a caPeak           

(chr16:9,805,171-9,805,430) in neurons (Supplemental Figure 7B). This caSNP was also a           

neuron-specific ASCA site, providing further evidence of this allele’s impact on chromatin            

accessibility (Supplemental Figure 7B-7C). After conditioning on the schizophrenia index SNP           

(rs7191183) in the caQTL analysis, the caSNP was no longer significant (Supplemental Figure             

7A). Two possible TF motifs, IRX2 and TP53, were disrupted by this caSNP (Supplemental              

Figure 7D). Here we prioritize TP53 because TP53 exhibited increased expression in            

progenitors and maturing neurons. The C allele of rs11643173, a LD proxy of this caSNP               

(R2rs11643173-C:rs9930307-C=0.865 in fetal cortical eQTLs), was significantly (FDR < 0.05) associated           

with increased expression of lncRNA AC022167.1 that is ~952kb from the caPeak. This data              

suggests that a possible mechanism leading to risk for schizophrenia is that the risk allele at                

the caSNP disrupted TP53 binding in a neuron RE, affecting chromatin accessibility of this              

caPeak, resulting in expression level differences of AC022167.1, with downstream impacts on            

risk for schizophrenia. We also found a co-localized locus between a progenitor specific caQTL              

and neuroticism GWAS (Supplemental Figure 7E). The T allele (associated with increased            

neuroticism) of the caSNP, rs56980069, was significantly associated with increased chromatin           

accessibility of the caPeak (chr7:38,880,481-38,881,330) in progenitors (Supplemental Figure         

7F), but not in neurons. After conditioning on the neuroticism index SNP, rs10244302, the              

caQTL was no longer significant, indicating a co-localization (Supplemental Figure 7E). We            

found that the T allele of the caSNP, rs56980069, is associated with disruption of the ZNF713                

motif (Supplemental Figure 7G). Using these data, we hypothesize that the neuroticism risk             
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allele disrupted binding of ZNF713, which changes chromatin accessibility of the RE in             

progenitors.  
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Discussion 

Our caQTL analysis identified regulatory mechanisms underlying risk variants for          

neuropsychiatric disorders, cortical structure, and other brain-relevant traits (Supplemental         

Table S7). The function of genetic variants associated with these traits are often difficult to               

interpret because most of these variants are mapped to non-coding regions in the genome (Tak               

and Farnham, 2015). Currently, the function of individual non-coding brain-relevant risk loci is             

understood through co-localization with eQTLs in adult post-mortem brain tissue or chromatin            

interaction (Wang et al., 2018; Won et al., 2016). Our study and dataset is able to complement                 

this previous work in several ways: (1) caQTL analysis allows fine mapping of causal variants               

within correlated LD-blocks by identifying putatively causal variants within peaks; (2) cell-type            

specific caQTL analysis can prioritize cell-types mediating the risk for neuropsychiatric illness            

because genetic effects on REs are highly specific; (3) most previous eQTL studies have been               

performed in post-mortem adult brain cortex (Dobbyn et al., 2018; GTEx Consortium et al.,              

2017; Wang et al., 2018), but cell-types contributing to the heritability for multiple disorders and               

traits are not present at this developmental stage suggesting that temporal specificity matters for              

understanding risk for these disorders (Figure 7; (de la Torre-Ubieta et al., 2018)); and (4)               

integration of caQTL, eQTL, and brain-trait GWAS allows a more complete understanding of the              

gene regulatory mechanism leading to risk for neuropsychiatric disorders, where non-coding           

genetic variants disrupt TF binding to REs, affecting chromatin accessibility, influencing           

expression of downstream genes, leading to downstream risk for neuropsychiatric disorders.           

Our study provides a resource to understand the impact of genetic variation on gene regulation               

during human cortical neurogenesis and provides an additional layer of information to explain             

the function of common variants associated with risk for neuropsychiatric illness and            

brain-related traits. 

 

There are several existing methods to map REs in the non-coding genome to the genes they                

regulate, including chromatin interaction, peak-peak correlation, and high-throughput CRISPRi         

screens (Corces et al., 2018; Fulco et al., 2019; Won et al., 2016). Here, we integrate caQTL                 

and eQTL studies as an additional method to both identify the genes regulated by REs and to                 

propose causal variants altering the function of these REs. This is complementary to chromatin              

interaction assays, such as Hi-C, which demonstrate physical interaction with a promoter region,             

but are not always indicative of regulation (Alexander et al., 2019; Benabdallah et al., 2019).               
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caQTL and eQTL studies require genetic variation to be present in a population in order to                

detect their impact. Strong negative selection for genetic variation within REs of genes critical to               

life may lead to the absence of these variants in the population sampled. Therefore, RE-gene               

mapping would not be possible for these REs through the integration of caQTL/eQTL datasets.              

However, for the class of common genetic variation, which is demonstrated to have a large               

impact on risk for neuropsychiatric disorders and brain traits in aggregate (Sullivan and             

Geschwind, 2019), this method is useful for both fine mapping and identifying genes regulated              

by REs. 

 

We provide evidence to support that caQTLs both have higher effect sizes and more cell-type               

specificity than eQTLs. This suggests that there are a limited number of mechanisms whereby              

sequence variation impacts chromatin accessibility (caQTL), including TF binding to DNA,           

whereas there are considerably more mechanisms by which sequence variation can impact            

transcript levels (eQTL), such as altering TF binding, impacting methylation, or altering miRNA             

binding sites (Bell et al., 2011; Chen and Rajewsky, 2006; Gaffney et al., 2012). This also                

suggests that caQTL analyses will identify more genetic variants involved in gene regulation             

than eQTLs given a limited sample size. Future cell-type specific caQTL analyses will be better               

powered to identify cell-types involved in the mechanism of GWAS risk variants. However,             

because our comparison was conducted between cell-type specific caQTLs and tissue-type           

specific eQTLs, cell-type specific eQTL studies will be necessary to confirm whether the higher              

effect sizes are caused by stronger genetic impacts on chromatin accessibility or cell-type             

specificity.  

 

We found that genetic variants associated with differences in chromatin accessibility often            

disrupted the motifs of TFs involved in neurogenesis, which supports the hypothesis that genetic              

variation affects chromatin accessibility by disrupting the binding of TFs (Behera et al., 2018).              

Moreover, we identified which TF motifs were disrupted by genetic variants and found that              

disruption of motif binding generally leads to decreased chromatin accessibility, with the            

exception of repressive TFs. These results support a model where chromatin accessibility is             

increased when activating TFs are bound (Janicki et al., 2004). Our results also support a model                

where binding of repressive TFs condenses chromatin in REs (Kornberg and Lorch, 1999).  
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caQTL analysis is able to identify genetic variants associated with REs and to prioritize causal               

variants, but cannot be used directly to predict the genes regulated by these elements. Most               

caQTLs did not result in changes in gene expression in bulk fetal cortical tissue. Previous work                

has suggested that the motif-disrupting alleles do not result in changes to gene expression              

without the presence of additional transcription factors binding to the same RE (Alasoo et al.,               

2018). These additional transcription factors may be translocated to the nucleus in response to              

an external stimulus. caQTLs may therefore be more likely to co-localize with risk loci even in                

the absence of external stimuli (context-independence), whereas eQTLs would require          

additional stimuli (context-dependence). This also suggests that future work identifying          

caQTL/eQTLs in response to environmental stimuli relevant to neural proliferation,          

differentiation, or function will be especially useful to interpret GWAS risk loci, which is optimally               

performed in vitro under a controlled setting. 

 

 

 
  

21 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904862doi: bioRxiv preprint 

https://paperpile.com/c/YqJUm9/IA29s
https://paperpile.com/c/YqJUm9/IA29s
https://doi.org/10.1101/2020.01.13.904862
http://creativecommons.org/licenses/by/4.0/


Acknowledgments 
 

This work was supported by NIH (R00MH102357, U54EB020403, R01MH118349,         

R01MH120125), Brain Research Foundation, and NC TraCS Pilot funding to JLS. DHG was             

supported by NIH (5R37 MH060233, 5R01 MH094714, and 1R01 MH110927). The following            

core facilities were utilized for this project: UNC Neuroscience Center Microscopy Core            

(P30NS045892), UNC Mammalian Genotyping Core, CGIBD Advanced Analytics Core (NIH          

grant P30 DK034987), UNC Flow Cytometry Core Facility, UNC Vector Core, UNC Research             

Computing. Additional core facilities utilized for this project were: UCLA CFAR (5P30 AI028697),             

and the UCLA Neuroscience Genomics Core. The eQTL data used for the analyses described              

in this manuscript were obtained from: [https://gtexportal.org/home/] the GTEx Portal on           

04/14/19 (v7). The Genotype-Tissue Expression (GTEx) Project was supported by the Common            

Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI,                 

NHLBI, NIDA, NIMH, and NINDS. We thank Dr. Karen L. Mohlke for helpful comments. 

 

Author Contributions 
JLS, DHG, and LTU conceived the study. JLS provided funding to support the study. ALE, KEC,                

KPC, MY, LTU, and JLS cultured human neural progenitor cells. ALE performed library             

preparation. MJL pre-processed the RNA-seq data for eQTL. NA performed eQTL analysis. OK             

performed immunocytochemistry. MEG, AAK, GEC provided access to adult dlPFC caQTL data.            

MIL aided in ASCA methodology. DL performed pre-processing, differential accessibility,          

caQTL, ASCA, co-localization, and motif analyses. JLS and DL wrote the manuscript. All             

authors commented on and approved the final version of the manuscript. 

 

Declaration of Interests 
The authors declare no competing interests. 

 

  

22 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904862doi: bioRxiv preprint 

https://www.sciencedirect.com/topics/neuroscience/neurosciences
https://gtexportal.org/home/faq#citePortal
https://commonfund.nih.gov/GTEx
https://commonfund.nih.gov/GTEx
https://doi.org/10.1101/2020.01.13.904862
http://creativecommons.org/licenses/by/4.0/


Figure Legends: 
 

Figure 1:  Profiling genome-wide chromatin accessibility in progenitors and neurons.  

(A) Schematic cartoon of experimental design. SOX2 and PAX6 immunolabeled neural          

progenitors (left), showing over 90% of cells were radial glia. EGFP labeled differentiated             

neurons (right), showing expected neuronal morphology. 

(B) Percentage of accessible peak base pairs (bp) detected in these cultures overlapped            

with with epigenetically annotated regulatory elements from multiple tissues. From top to            

bottom, tissues ordered by bp percentage overlap with enhancers. 

(C) PCA plot of ATAC-seq read count after batch effect correction colored by cell types,              

showing two separate clusters for progenitors and neurons. 

(D) MA plot for differentially accessible peaks between progenitors and neurons. All peaks            

can be found in Table S1.  

(E) ATAC-seq coverage plot (average normalized read counts) for promoter of neuron           

expressed gene SYT13, showing higher accessibility in neurons than progenitors          

(LFC=-1.29, FDR=3.87e-33). ATAC-seq coverage plot (average normalized read counts)         

for promoter of progenitor expressed gene EMX2, showing higher accessibility in           

progenitors than neurons (LFC=1.53, FDR=4.37e-24). 

(F) Enrichment of differentially accessible peaks identified here with differentially accessible          

peaks from fetal brain tissue (de la Torre-Ubieta et al., 2018). GZ: neural             

progenitor-enriched region encompassing the ventricular zone (VZ), subventricular zone         

(SVZ), and intermediate zone (IZ); CP: the neuron-enriched region containing the           

subplate (SP), cortical plate (CP), and marginal zone (MZ).  

 

 

Figure 2: Chromatin accessibility quantitative trait loci (caQTL) in progenitors and neurons. 

(A) caQTL schematic. 

(B) Density of index caSNPs relative to the distance from the center of the caPeaks (left:               

neuron caQTLs; right: progenitor caQTLs). All clumped caQTLs can be found in Table             

S3. 

(C) Numbers of clumped caQTLs in different functional categories. 

(D) Numbers of independent caSNPs affecting chromatin accessibility of a caPeak. 
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(E) Schematic cartoon of fetal cortical eQTLs (Walker et al., 2019) (Left). Numbers and             

percentage of clumped overlapped neuron/progenitor caQTLs with fetal cortical eQTLs.          

All overlapped ca/eQTLs can be found in Table S4. 

(F) Correlation of effect sizes between overlapped fetal cortical eQTLs and neuron (left) and             

progenitor (right) caQTLs.  

(G) Comparison of percent variance explained (r2) for caQTLs and eQTLs (subset to the             

same sample size) in neurons and progenitors. We observed higher percent variance            

explained for caQTLs than eQTLs in both neurons and progenitors. 

 

Figure 3: Fine-mapping and regulatory mechanism underlying eQTLs. 

(A) Co-localization of a progenitor-specific caQTL and the fetal cortical eQTL for ETFDH.  

(B) The association between rs11544037 and chromatin accessibility of the labeled peak. 

(C) The association between rs11544037 and expression of ETFDH in fetal cortex. 

(D) The expression of TFs in which motifs are disrupted by rs11544037. vRG: ventricular             

Radial Glia; oRG: outer Radial Glia; PgS: Cycling progenitors (S phase); PgG2M:            

Cycling progenitors (G2/M phase); IP: Intermediate progenitors; ExN: Migrating         

excitatory; ExM: Maturing excitatory; ExM-U: Maturing excitatory upper enriched; ExDp1:          

Excitatory deep layer 1; ExDp2: Excitatory deep layer 2. 

(E) The motif Logo of RAD21, where the red box shows the position disrupted by              

rs11544037. Schematic cartoon of mechanisms for rs11544037 regulating chromatin         

accessibility and gene expression. 

(F) Co-localization of a caQTL in progenitors and neurons and the fetal cortical eQTL for              

SETD9.  

(G) The association between rs185220 and chromatin accessibility of the labeled peak in            

progenitors (top) and neurons (bottom). 

(H) The association between rs185220 and expression of SETD9 in fetal cortex. 

(I) The expression of TFs in which motifs are disrupted by rs185220.  

(J) The motif Logo of REST, where the red box shows the position disrupted by rs185220.               

Schematic cartoon of mechanisms for rs185220 regulating chromatin accessibility and          

gene expression. 

 

Figure 4: Allele Specific Chromatin Accessibility (ASCA). 
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(A) Numbers of shared/non-shared significant caQTLs and significant ASCA in neurons (left)           

and progenitors (right). All significant ASCA in neurons and progenitors can be found in              

Table S5. 

(B) Correlation of effect sizes for caQTL and ASCA from (A) in neurons (top) and              

progenitors (bottom).  

(C) Co-localization of caQTL and ASCA in progenitors and neurons as well as fetal cortical              

eQTL for FABP7. 

(D) Association between rs149644985 and expression of FABP7 in fetal cortex (left),           

chromatin accessibility of the labeled peak in progenitors (middle) and neurons (right). 

(E) ASCA detected at rs149644985 in progenitors (left) and neurons (right). 

(F) The expression of TFs where motifs are disrupted by rs149644985 (top). The expression             

of TFs where motifs are disrupted by rs144376334 (bottom). 

(G) The motif logo of SMARCC1 disrupted by rs149644985 (top); the motif logo of FOS::JUN              

disrupted by rs144376334 (bottom). 

 

Figure 5: Cell-type specificity of caQTLs. 

(A) Numbers and percentage of overlapped caQTLs between neurons and progenitors.  

(B) Numbers of overlapped/non-overlapped caPeaks (left) and ASCA (right) between         

neurons and progenitors.  

(C) Differential accessibility of progenitor caPeaks (left) and neuron caPeaks (right). 

(D) Numbers and percentage of caPeaks distal to promoters or proximal to promoters for             

neuron-specific significant caQTLs, progenitor-specific significant caQTLs and shared        

caQTLs between neurons and progenitors. 

(E) Correlations of effect sizes of caQTLs between neurons and progenitors (left: selected            

the most significant neuron caQTLs for every caPeak vs. progenitor caQTLs; right:            

selected the most significant progenitor caQTLs for every caPeak vs. neuron caQTLs). 

(F) Correlations of effect sizes of eQTLs between brain cortex and liver. (left: selected the              

most significant liver eQTLs for every eGene vs. brain cortex eQTLs; right: selected the              

most significant brain cortex eQTLs for every eGene vs. liver eQTLs). 

(G) Density plot for correlations of eQTL effect sizes between different tissues and brain             

cortex. The mean of these correlations is 0.616 which is much larger than correlations of               

caQTLs effect sizes between progenitors and neurons.  
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Figure 6: Prediction of disrupted transcription factor (TF) binding due to genetic variation. 

(A) Numbers of TFs where motifs were disrupted by progenitor-specific caSNPs (top) and            

neuron-specific caSNPs (bottom). 

(B) Percentage of motif disrupting alleles in accessible peaks that are also associated with             

chromatin accessibility in progenitors (top) or in neurons (bottom). 

(C) Schematic of TF motifs disrupted by caSNPs associated with decreased/increased          

chromatin accessibility. 

(D) Examples of TF motifs broken by caSNPs associated with decreased chromatin           

accessibility in progenitors (SMARCC1; left) and neurons (DLX3; right). 

(E) Numbers and percentage of TFs where the motif-disrupting allele was associated with            

increased/decreased chromatin accessibility in progenitors (left) and neurons (right). For          

most TFs, the motif-disrupting allele was associated with decreased chromatin          

accessibility in progenitors and neurons. 

(F) Disrupting ZEB1 (a transcriptional repressor) binding motifs in progenitors was          

associated with increased chromatin accessibility in progenitors and neurons. 

 

Figure 7: Cell-type specific caQTLs lead to regulatory mechanisms underlying GWAS loci. 

(A) Partitioned heritability enrichment demonstrated a significant (FDR < 0.05) enrichment of           

heritability for ASD, Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia,         

Major Depressive Disorder (MDD), neuroticism, depressive symptoms and insomnia         

within progenitor > neuron peaks. There was a significant enrichment of heritability for IQ              

and educational attainment, but not for inflammatory bowel disease (IBD) within           

progenitor > neuron peaks and neuron > progenitor peaks. 

(B) Numbers of colocalizations between caQTLs and GWAS loci. 

(C) Numbers of colocalizations between ASCA and GWAS loci. 

(D) A colocalized locus between progenitor-specific caQTL and MDD GWAS.  

(E) Association between rs1950834 and chromatin accessibility of the labeled peak in           

progenitors. 

(F) ASCA of rs1950834 in progenitors. 

(G) Association between rs1950834 and expression of lncRNA AL12182.1. 

(H) Zoomed in plot of caPeaks colored by genotype at rs1950834. 

(I) The expression of TFs in which motifs are disrupted by rs1950834 (left). The motif logo               

of ETV1 disrupted by rs1950834 (right). 
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Supplemental information: 
Supplemental Figure 1: Related to Methods. Flowchart for cell culture and pre-processing of             

ATAC-seq data.  

(A) Flowchart of cell culture for 17 rounds. 

(B) Box plot for total sequence depth, unique read number, duplicate percentage, and            

mitochondria (chrMT) reads percentages in neurons and progenitors. 

(C) Peak calling versus library sequencing depth. We observed a slower rise in the number              

of new peaks called after 15 millions filtered read pairs in both neurons and progenitors.               

This indicates a reasonable balance between read depth and number of new peaks             

called using an average of 14 filtered million read pairs acquired in our samples. 

(D) Insert size histograms from 3 randomly selected neuron samples and progenitor           

samples, showing the expected phasing pattern of transposase insertion between          

nucleosomes. 

 

Supplemental Figure 2: Related to Figure 1 and Methods. Correlations between PCs from             

ATAC-seq data and known technical factors. 

(A) PCA plot for ATAC-seq data before batch correction (left) and after batch correction             

(right), colored by sorter. We corrected normalized reads within ATAC-seq peaks in            

neurons by sorter locations. Then, we corrected normalized reads within ATAC-seq           

peaks in neurons and progenitors by cell culture round.  

(B) Correlations of batch corrected normalized reads across donors and within donors in            

neurons and progenitors. Correlations within donors was significantly higher than          

correlations across donors in progenitor (p-value=2.4e-06). Correlations within donors         

was higher than correlations across donors in neurons, but not significant           

(p-value=0.24), likely due to the fewer number of replicates. 

(C) Correlations between PC1, PC2 and PC3 from batch corrected normalized reads in            

neurons and progenitors with known technical and biological factors. 

(D) PCA plot for batch corrected normalized reads in neurons and progenitors, colored by             

AAV score. We calculated the AAV score for each sample as the (rate of reads mapped                

to GFP gene)*1e+08. AAV was not added to progenitor cultures so as expected there              
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are virtually no reads mapping to progenitors. Differences in AAV score among neuron             

cultures may be indicative of cell health as more infections per cell will occur when there                

are fewer cells surviving differentiation. 

 

Supplemental Figure 3: Related to Figure 1 and Methods. Annotating differentially           

accessible peaks during neuronal differentiation. 

(A) Gene ontology (GO) enrichment of differentially accessible peaks at TSS. progenitor >            

neuron peaks (left) and neuron > progenitor peaks (right) showed enrichment for GO             

terms related to proliferation and differentiation, as expected. 

(B) TFs with significantl differentially enriched conserved binding sites in differentially          

accessible peaks. The statistical test identifies TFs likely involved in neural progenitor            

proliferation and maintenance (progenitorTFs; left) or neurogenesis and maturation         

(neuronTFs; right). The top 30 significantly enriched TFs were shown in this figure, and              

the full list can be found in Table S2. 

(C) Schematic of the functions for selected progenitorTFs and neuronTFs.  

 

Supplemental Figure 4:  Related to Figure 2. Features of caQTLs. 

(A) Flowchart for caQTL data analysis. 

(B) PCA plot for ATAC-seq data on sex chromosomes, colored by sex from genotype data,              

showing sex could be called using ATAC-seq data. 

(C) MDS plot for genotype data of HapMap3 and donors in this study, colored by              

populations from HapMap3 data. ASW: African ancestry in Southwest USA; CEU: Utah            

residents with Northern and Western European ancestry from the CEPH collection; CHB:            

Han Chinese in Beijing, China; CHD: Chinese in Metropolitan Denver, Colorado; GIH:            

Gujarati Indians in Houston, Texas; JPT: Japanese in Tokyo, Japan; LWK: Luhya in             

Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, California; MKK: Maasai in            

Kinyawa, Kenya; TSI: Toscans in Italy; YRI: Yoruba in Ibadan, Nigeria. 

(D) Neuron and progenitor caPeaks enrichment at epigenetically annotated regulatory         

elements from fetal brain (Epigenetics Roadmap ID = E081). 

 

Supplemental Figure 5:  Related to Figure 4. Features of ASCA. 

(A) Density plot for caPeak length from shared caQTLs and ASCA and from peaks only              

significant in ASCA in neurons (top) and progenitors (bottom). caPeak length from only             
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significant in ASCA was significantly larger than caPeak length from shared significant            

caQTLs and ASCA. 

(B) The neuron ASCA (caSNP: rs2547972; caPeak: chr5:98,767,561-98,776,700) is not a          

significant caQTL in neurons because the caPeak was very wide (9,139bp) and only the              

region near the ASCA SNP shows an association with genotype.  

(C) The progenitor ASCA (caSNP:rs553668325; caPeak:chr1:66,923,991-66,926,260) is not       

a significant caQTL in progenitors due to low minor allele frequency leading to less              

power to detect a caQTL. 

(D) ASCA between rs185220 (see Figure 3) and chromatin accessibility in progenitors (left)            

and neurons (right).  

 

Supplemental Figure 6: Related to Figure 5. Comparison to adult dorsolateral prefrontal            

cortex (DLPFC) caQTLs. 

(A) Accessible peaks (left: neurons and progenitors; right: DLPFC) overlap at epigenetically           

annotated regulatory elements from different tissues/cell types. Accessible peak bp          

percentage overlapped with epigenetically annotated regulatory elements. From left to          

right, tissues ordered by bp percentage overlap with enhancers and promoters. The            

most enriched tissue for neurons and progenitors accessible peaks are Brain Germinal            

Matrix and Fetal Brain Female, and the most enriched tissue for DLPFC accessible             

peaks are Brain Cingulate Gyrus and Brain Dorsolateral Prefrontal Cortex, indicating the            

accessible peaks are enriched in tissue-specific active regulatory elements. 

(B) Numbers and percentage of overlapping accessible peaks between cultured cells          

(neurons and progenitors) and DLPFC. 

(C) Numbers of overlapped caQTLs between cultured cells (neurons and progenitors) and           

DLPFC. Here we used clumped caQTLs in 5kb up/down stream from centers of caPeaks              

(only keeping bi-allelic SNPs). We observed only a very small proportion of overlap,             

indicating temporal specificity of caQTLs. 

(D) Numbers and percentage of overlapping caPeaks between neurons/progenitors and         

DLPFC. caPeaks were temporally and cell-type specific. 

(E) Correlations of effect sizes for overlapped caQTLs between neurons (left) and           

progenitors (right) with DLPFC. 
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Supplemental Figure 7: Related to Figure 7. Two examples of cell-type specific caQTLs             

leading to regulatory mechanisms underlying GWAS loci. 

(A) The neuron-specific significant caQTL (caSNP: rs9930307; caPeak: chr16:        

9,805,171-9,805,430) co-localized with schizophrenia GWAS locus (Index SNP:        

rs7191183). 

(B) Box plot for the caQTL (left) and ASCA (right) (caSNP: rs9930307; caPeak: chr16:             

9,805,171-9,805,430). 

(C) Coverage plot for average ATAC-seq reads for the caPeak (chr16:          

9,805,171-9,805,430). 

(D) Expression of TF motifs, IRX2 and TP53, were disrupted by rs9930307 (left). The motif              

logo of TP53 and the position  disrupted by rs9930307. 

(E) The progenitor-specific significant caQTL (caSNP: rs56980069; caPeak: chr7:        

38,880,481-38,881,330) colocalized with neuroticism GWAS locus (Index SNP:        

rs10244302). 

(F) Box plot for the caQTL (caSNP: rs56980069; caPeak: chr7: 38,880,481-38,881,330). 

(G) The motif logo of ZNF713 and the position disrupted by rs1950834. 

 

Supplementary Tables: 
 

Table S1. Related to Figure 1. Statistics for differential accessibility at each peak. Seqnames, 

start, end are the genomic locations of the peaks on hg38; logFC is a measure of effect size 

between progenitors and neurons with progenitor > neuron corresponding to LFC>0; AveExpr is             

the value of average reads within peaks; t is the t-statistic, P.Value is the nominal p-value of                 

differential accessibility; adj.P.Val is the Benjamini-Hochberg FDR adjusted p-value; B is           

B-statistic from limma  (Ritchie et al., 2015). 

 
Table S2 Related to Figures 1. Significantly enriched TF motifs in differential accessible             

peaks. TFname and TFID are names of TFs acquired from JASPAR2016. Version is the version               

for the TF motifs in JASPAR2016 . pval, estimate, and Padj are outputs from the differential                

motif enrichment analysis logistic regression evaluating whether motifs are present more often            

in progenitor > neuron as compared to neuron > progenitor peaks (estimate > 0; progenitorTF)               

or present more often in neuron > progenitor as compared to progenitor > neuron peaks               

(estimate < 0; neuronTF). P-value adjustments for multiple comparisons are via FDR.  
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Table S3. Related to Figure 2. Clumped neuron and progenitor caQTLs. SNP is the caSNP               

name. Seqnames, peakstart, peakend and PeakID are the genomic locations of the caPeaks            

on hg38. Distance is the distance (how many base pairs) between the index caSNP and the                

caPeak center. Beta and Pval are outputs from caQTL analysis, representing effect size and              

nominal p value. InPeak presents if the caSNP is located in the caPeak. A1 is the non-effect                 

allele and A2 is the effect allele. Rsid is the id for the SNPs. 

 

Table S4. Related to Figure 2. Overlapped QTLs between neuron/progenitor caQTLs and fetal             

cortical eQTLs. SNP is the caSNP name. Chr, peakstart and peakend are the genomic locations               

of the caPeaks on hg38. caBeta and caP are outputs from caQTL analysis, representing effect               

size and nominal p value. eGene and hgnc_symbol are names of the eGene. eBeta and eP are                 

outputs from eQTL analysis, representing effect size and nominal p value. eQTL_EffectAllele is             

the effect allele of eQTL. caQTL_EffectAllele is the effect allele of caQTL. Rsid is the id for index                  

caSNPs. 

 

Table S5. Related to Figure 4. Allele Specific Chromatin Accessibility in Neurons and             

Progenitors. VariantID and SNP are the names of the caSNP. RefAllele and altAllele are              

reference allele and alternative allele of the caSNP. baseMean is the mean of normalized counts       

of this SNP for all samples in the analysis; LFC is a measure of effect size between reference                  

allele and alternative allele with altAllele>refAllele corresponding to LFC>0; lfcse is the standard             

error of LFC for ASCA; stat is the Wald statistic for ASCA; pvalue is the nominal p-value of                  

differential accessibility for ASCA; padj is the Benjamini-Hochberg FDR adjusted p-value for            

ASCA; C_Het_donors is the number of heterozygous donors, seqnames, start and end are the              

genomic locations of the caPeaks in hg38. logFC, AveExpr t, P.Value, adj.P.Val and B are from       

differential accessibility results in Table S1. CaQTL_Beta and caQTL_P are outputs caQTL            

analysis, representing effect size and nominal p value. caQTL_A1 and caQTL_A2 are non-effect             

allele and effect allele for the caQTL. Rsid is the rs id for the caSNP. 

 
Table S6. Related to Figure 6. TF motifs affected by caSNPs. Rsid is the ID of the caSNP.                  

Strand is the strand of the caSNP and motif. MotifSeq, MotifStart and MotifEnd are the genomic                

locations of the motif on hg38. REF and ALT are reference allele and alternative allele of the                 

caSNP. snpPos is the genomic locations of the SNPon hg38. motifPos is the position of the                
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caSNP in the motif. geneSymbol and providerId are the name of this motif. dataSource and               

providerName are the sources of the motif, which come from MotifDb. seqMatch is the match               

sequence of the motif. pctRef and pctAlt are normalized relative entropy when reference allele              

and alternative allele in the motif. scoreRef and scoreAlt are relative entropy when reference              

allele and alternative allele in the motif. Refpvalue and Altpvalue are p values for motif matching                

when reference allele and alternative allele in the motif. alleleRef and alleleAlt are MAF for the                

reference allele and alternative allele. Effect is an output from motifBreakR, representing if the              

motif is strongly affected by the SNP. caQTLCellType represents if the caSNP is             

progenitor-specific, neuron-specific or shared between neurons and progenitors. 

 

Table S7. Related to Figure 7. Co-localized loci for caQTLs and GWAS.rsid is the rs ID od the                  

caSNP. caSNP is the name of the caSNP. CellType represents if the caQTL is              

progenitor-specific, neuron-specific or shared between neurons and progenitors. GWAS Trait is           

the trait for tested GWAS. caPeak(hg38) is the genomic locations of the caPeak on hg38.               

Closest Gene locus is the gene locus which is closest to the caPeak. Effect Allele is the effect                  

allele for the caQTL. Non Effect Allele is the non-effect allele for the caQTL. GWAS Index SNP                 

is the index SNP of GWAS within 100kb upstream and downstream from the center of the                

caPeak. caQTL InitialBeta is the effect size of the caQTL. caQTL InitialP is the p value of the                  

caQTL. caQTL condBeta is the effect size of the caQTL condition on GWAS index SNP. caQTL                

condP is the p value of the caQTL condition on GWAS index SNP. AffectedTFs are the TF                 

motifs affected by the caSNP. 
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Methods 

Tissue acquisition and cell culture of phNPCs: 

Human fetal brain tissue was obtained from the UCLA Gene and Cell Therapy Core following               

IRB regulations. The tissue is often fragmented during acquisition from the surgical procedure.             

In the lab of Daniel Geschwind, flat, thin pieces of tissue that have the morphology of                

developing cortex were selected, and in some cases the tissue was sufficiently intact to be               

certain of cortical identity. Presumed cortical tissue from 14-21 gestation weeks was dissociated             

into a single cell suspension, cultured as neurospheres, plated for a low number of passages               

(2.5 ± 1.8 s.d.) on laminin/fibronectin and polyornithine coated plates, and then cryopreserved             

as human neural progenitors (HNPs) following our previous work (Stein et al., 2014). 

Cryopreserved HNPs were shipped to UNC Chapel Hill after signed material transfer agreement             

by both institutions. All proliferation, differentiation, sorting, library preparation, and analysis           

were performed at UNC Chapel Hill. In total, HNPs from 92 donors were cultured.  

Donors were thawed in “rounds” of approximately 10 donors, so as to create a manageable               

workload of cell-culture (Supplemental Figure 1A). Donors were randomly assigned into groups            

and thawed 3 weeks apart. We performed specific experimental events on the same day of the                

week and had the same interval of time between events for each round. Experimental events               

included thawing cells, feeding cells, splitting cells, counting and plating cells, washing cells             

prior to differentiation, coating plates with attachment factors, adding virus, lifting cells for             

sorting, sorting, and ATAC-seq library preparation. As much as possible, the same researcher             

performed the same experimental events. We documented if a different researcher performed            

an experimental event in the database described below. To determine the impact of different              

rounds, we cultured cells from the same donors in different rounds as technical replicates, for               

progenitors (N_donor=11, N_replicate=24, in round 1-7,12 and 13) and neurons (N_donor=4,           

N_replicate=8, in round 2,6,12 and 13). 

We thawed cells on a Monday (Supplemental Figure 1A). HNPs were cultured for 8 days using                

full feeds of proliferation media (1x proliferation media; see stock preparation and media tables              

below). On day 9, HNPs were split 1:2 and proliferated with half feeds of proliferation media with                 

twice the concentration of growth factors (2x proliferation media) from day 10 to day 14. On day                 

15, HNPs were split 1:3 and proliferated with half feeds of 2x proliferation media from day 16 to                  
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day 21. On day 22, cells were plated for differentiation onto 8 x 6-well plate wells per donor at a                    

concentration of 42,000 cells/cm2 (differentiation library preparation wells). Two x 6-well plate            

wells were also plated for ATAC-seq preparation of progenitor cells (progenitor library            

preparation wells) in 1x proliferation media. On day 23, all differentiation wells were washed              

three times with Neurobasal A and then fed with 1x differentiation media (see media tables               

below). On day 24, the progenitor cells in proliferation media were lifted with trypsin and               

ATAC-seq libraries were prepared for progenitors. From day 24 through day 84 cells were half               

fed every Monday, Wednesday and Friday with 2x differentiation media. Virus for labeling             

neurons (AAV2-hsyn1-eGFP; https://www.addgene.org/50465/; acquired from the UNC Vector        

Core; (Thiel et al., 1991)) was added at 20,000 MOI for library preparation wells on day 64. On                  

day 84, cells were lifted using Papain (Worthington) with DNase (Worthington) and sent to cell               

sorter (BD FACS Aria II or Sony SH800S) to sort for live neurons labeled with GFP. Labeled                 

GFP neurons were collected and aliquoted for immediate ATAC-seq library preparation of the             

neuron cell-type. 

All cultures were visually evaluated and ranked with a subjective measure of cell health before               

ATAC-seq library preparation. Cell health was based on morphology and growth with the             

highest rank of 2 (mostly healthy cells by brightfield microscopy) and the lowest ranking (many               

dead cells) of 0.  

Proliferation media table 

Proliferation base Proliferation 1x Proliferation 2x 

Item  Volume Item  Volume Item  Volume 

Neurobasal A (Life   

Technologies; 

10888-022) 

500ml Proliferation 

base 

 

100ml Proliferation 

base 

100ml 

Primocin (Invivogen;  

ant-pm-2) 

100 

μg/ml 

EGF/FGF (Life  

Technologies; 

PHG0313/PHG0

023) 

20 

ng/mL 

EGF/FGF 

(Life 

Technologies; 

PHG0313/PH

40ng/mL 
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G0023) 

 

BIT 9500 (Stemcell   

Technologies; 09500) 

10% LIF (Life  

Technologies; 

PHC9481) 

2 ng/mL LIF (Life  

Technologies;

PHC9481) 

4ng/mL 

Glutamax (100x) 

(Life Technologies;  

35050061) 

1% PDGF (Life  

Technologies; 

PHG1034) 

20 

ng/mL 

PDGF (Life  

Technologies; 

PHG1034) 

 

40ng/mL 

Heparin 

(Sigma-Aldrich; 

H3393-10KU) 

1 μg/mL     

 

Differentiation media table 

Differentiation  base Differentiation  1x Differentiation  2x 

Item  Volume Item  Volume Item  Volume 

Neurobasal A (Life   

Technologies; 

10888-022) 

500ml Differentiation 

base 

100ml Differentiation 

base 

100ml 

Primocin (Invivogen;  

ant-pm-2) 

100 

μg/ml 

NT-3 (Life  

Technologies; 

PHC7036) 

10 ng/mL NT-3 (Life  

Technologies; 

PHC7036) 

20 

ng/mL 
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B27 (Life Technologies;   

17504-044) 

2% BDNF (Life  

Technologies; 

PHC7074) 

10 ng/mL BDNF (Life  

Technologies; 

PHC7074) 

20 

ng/mL 

Glutamax (100x) 

(Life Technologies;  

35050061) 

1%     

 

Plate coating stock table 

Proliferation 1x Differentiation  1x 

Item  Concentration Item  Concentration 

Fibronectin (Sigma-Aldrich;  

SLBN9832V) 

5μg/ml Laminin (Life  

Technologies; 23017015) 

5μg/ml 

Poly-L-Ornithine 

(Sigma-Aldrich;P3655-500MG) 

10μg/ml Poly-L-Ornithine 

(Sigma-Aldrich; 

P3655-500MG) 

10μg/ml 

 

Library Preparation for human neural progenitors and neurons 

Library preparation was conducted using the published ATAC-seq protocol (Buenrostro et al.,            

2015). ATAC-seq libraries were prepared immediately following cellular dissociation. Progenitor          

nuclei were counted using a hemocytometer while neuron nuclei were counted during sorting.             

50,000 nuclei were aliquoted into the first step of the ATAC-seq published protocol. Libraries              

were prepared following the published instructions except that the last clean up step was              

modified to use KAPA pure beads (AmpureXP beads at a 1:1 ratio to remove dNTPs, salts,                
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primers or primer dimers) instead of Qiagen Minelute clean-up kit. All libraries were sequenced              

to a minimum depth of 13.6M and an average depth of 25.5M using 50 bp PE sequencing on an                   

Illumina HiSeq2500 machine (Supplemental Figure 1B). In total, we acquired 98 ATAC-seq            

libraries from progenitors (Ndonor=86, Nlibraries replicated=12) and 70 ATAC-seq libraries from neurons            

(Ndonor=67, Nlibarary replicated=4). All libraries were sequenced to an average depth of 25.5 (± 7.21               

s.d.) million read pairs (Supplemental Figure 1B), which resulted in an average depth of 14 (±                

4.8 s.d.) million reads pairs per sample after filtering for mitochondrial contamination and             

duplicates. We performed a sensitivity analysis for read depth vs peak calling that showed              

greater than 15 million filtered read pairs per library led to a fewer number of new peaks called,                  

indicating a reasonable balance between read depth and peaks called on the libraries             

generated here (Supplemental Figure 1C). 

Recording technical variables and randomization 

To reduce the impact of batch effects on interpretation of our results, we attempted to either                

have no batches when possible (e.g., perform all experiments using the same lot of a reagent)                

or when this was not possible, randomize technical variables (round a donor was thawed in,               

sequencing pool) such that they had minimal correlation with variables of interest. In order to               

extensively document the impact of technical variables on outcome measures, we maintained a             

relational MySQL database which allowed us to keep track of many technical and biological              

variables throughout each experimental event. Each downstream ATAC-seq library preparation          

therefore is able to be tracked back to all technical and biological variables associated with its                

cell culture. The variables recorded were: 

Media: Basal media lots, growth factor lots, supplement lots, antibiotic lots; Virus: Lot number;              

Donor: sex inferred from genotype; gestation week; Culture: passage, round, thaw date, each             

split date, split ratio, trypsin lot, PBS lot, polyornithine lot, fibronectin lot, plate, and well position,                

cells per well, date of virus addition, differentiation time, date of differentiation media addition,              

person plating for differentiation, virus used, person performing splits, person performing virus            

addition, virus lot, virus multiplicity of infection (MOI), laminin lot, dissociation lot, person             

performing dissociation of neuronal cultures; Cell sorting: Sort date and time, number of live              

cells, number of GFP+ cells, total number of cells, FACS machine; ATAC-seq library             

preparation: number of cells input to the library preparation, person performing the cell lifting,              

lysis date, PBS lot, lysis buffer batch, Illumina Kit lot, PCR master mix lot, PCR clean up kit lot,                   
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number of time pipetting up and down during lysis, number of times pipetting up and down                

during transposase reaction, transposase reaction volume, barcode indices used for          

multiplexing of each sample, number of PCR cycles added in the ATAC-seq protocol, final DNA               

concentration after library preparation complete; Sequencing: sequencing date, sequencing         

company, type of sequencer, read length.  

Randomization was performed multiple times. First, randomization was performed to assign           

each donor to a thawing “round”. Randomization was performed at this stage by randomly              

ordering all donors and selecting those to go in each round (generally about 10 donors per                

round). After culture and library preparation were complete, randomization was performed to            

assign each library preparation to a pool for sequencing. Randomization was performed using             

custom R code to minimize the correlation of sequencing pool with concentration of the library,               

barcode index (assuring that no barcodes were represented in more than one pool), cell type               

(either neuron or progenitor), round cells were cultured in, and donor. 

ATAC-seq data pre-processing 

Sequencing reads were first quality controlled via fastqc (v0.11.7) to check for sequence quality              

in each library. We observed high quality sequencing for all libraries (PHRED > 20, average               

duplication rate = 43.07% which is almost entirely mtDNA contamination (Supplemental Figure            

1B) which is in agreement with previous studies using the same ATAC-seq method (de la               

Torre-Ubieta et al., 2018), and average GC content = 45%)          

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing adapters were    

removed using BBMAP/BBDUK   

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/).  

Then, sequencing reads were mapped to the human genome including decoy sequences            

(GRCh38/hg38) using bwa mem (Li, 2013) (v0.7.17). Optical and PCR duplicates were then             

removed using Picard tools (http://broadinstitute.github.io/picard/faq.html ) (v2.18.22). Only       

uniquely mapped reads mapping to chr 1-22 and X were kept (mitochondrial genome, Y              

chromosome, and unmapped contigs were removed) using samtools (Li et al., 2009) (v1.9).             

Sequencing reads mapped to ENCODE blacklist regions       

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncode
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DacMapabilityConsensusExcludable.bed.gz, converted to hg38 using UCSCtools/liftOver      

(v320)), were then removed by bedtools (Quinlan and Hall, 2010) (v2.26).  

We did a sensitivity analysis for peak calling using pre-processed bam files. It showed acquiring               

9x higher read depth resulted in only 70,000 additional peaks by MACS2 (Feng et al.,               

2011)https://github.com/taoliu/MACS (Supplemental Figure 1C). So we reasoned that our         

acquired sequence depth obtained a reasonable balance between additional read depth and            

number of peaks called. We calculated the insert size of pre-processed bam files using Picard               

tools (v2.18.22). The insert size histogram shows clear periodicity representative of preferential            

Tn5 binding around nucleosomes (Supplemental Figure 1D). 

Peaks were called for all samples using CSAW (Lun and Smyth, 2016) (v1.16.1), which              

identifies peaks with smaller peak length than previous methods (MACS2 and DiffBind) and             

showed higher enrichment at active regulatory elements such as enhancer and promoters (data             

not shown). For CSAW, peaks were identified in 10 bp bins with average read number greater                

than 5 across all samples (both neurons and progenitors). Bins directly next to each other (1 bp                 

minimum distance) were merged to call a peak. For all samples (N_Neuron=67,            

N_Progenitor=86), CSAW identified 136,714 peaks. 

R v3.4.1 was used for all subsequent analyses. The number of reads within each CSAW-called               

peak were counted and then normalization factors for each peak across samples were             

calculated accounting for GC content, peak width, and total number of unique non-mitochondrial             

fragments sequenced using conditional quantile normalization (Hansen et al., 2012) from the            

cqn package (v1.28.1). Variance stabilizing transformed (VST) counts were calculated using           

DESeq2 (Love et al., 2014) (v1.22.2) for batch effect correction and differential accessibility             

analysis by limma (Ritchie et al., 2015) (v3.38.3).  

As two different sorters were used to sort GFP+ neurons (63 neuron cell lines (Ndonor=61) for one                 

sorter and 7 cell lines (Ndonor=5) for another sorters), and we detected that sort location had a                 

strong effect on PCA from neuron samples, sorter locations in neuron VST counts were first               

corrected (limma batcheffectremove()) (Supplemental Figure 2A). Corrected neuron VST counts          

and progenitor VST counts were combined so that the potential batch effect from cell culture               

rounds were corrected (limma removeBatchEffect).  
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Mycoplasma contamination checks 

To check if there was any contamination from mycoplasma while in culture, we downloaded 98               

mycoplasma genomes (from NCBI) and then mapped all ATAC-seq data to every mycoplasma             

genome. Less than 0.01% of each ATAC-seq sample mapped to any mycoplasma genome,             

which demonstrated that our cultures were not contaminated with mycoplasma. 

Replicate correlations, principal component analysis, and correlation with technical         
factors 

To determine the reliability of our experiment, we cultured the same donor multiple times. We               

then correlated the batch corrected VST counts in CSAW peaks for neuron and progenitor              

replicates either within donors or calculated correlations across donors (Supplemental Figure           

2B). The correlations of replicates within donors are higher than that of samples across donors               

in both neuron and progenitor samples.  

The principal component analysis for batch corrected VST counts for all samples was done              

using the prcomp() R function. Then the correlations for the first 3 PCs and all technical                

variables that we recorded were calculated using R. The technical variables include sex,             

gestation week, cell line thaw passage, duplication rates, total sequence number, percentage of             

reads in chrMT, number of unique reads, sequencing barcode index number, pool for both              

sequencing and library preparation, healthy rank of differentiated cells, round of cell culture,             

proliferation media batch, health rank of progenitor cells, PBS lot number, fibronectin lot             

number, Illumina Kit (Tn5 transposase) lot number, number of unique non-chrMT sequences,            

papain lot number, individual who added papain, individual who added virus, sequencing lane,             

sorter locations, individual who plated cells, individual who differentiated cells from progenitors            

to neurons, the number of differentiated cells prior to sorting, SYN1 promoter coverage (inferred              

from the number of unique reads mapping to the viral plasmid), and number of reads mapped to                 

GFP gene. We found significant correlation of PC2 with duplication rates (r= 0.33, p<0.001),              

percentage of reads in chrMT (r=0.28, p < 0.001), sex (r=-0.52, p< 0.001), gestation week               

(r=-0.23, p< 0.01), cell line thaw passage (r=0.28, p<0.001); PC3 with number of unique reads               

(r=0.22, p< 0.05), total sequence number (r=0.17, p< 0.05), gestation week (r=0.22, p< 0.01),              

sex (r=0.3, p< 0.001), and cell line thaw passage (r=0.16, p<0.001) (Supplemental Figure 2C).              

We calculated the aav_score for each sample using the (rate of reads mapped to GFP               
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gene)*1e+08, and we found neuron samples have much higher aav_score than progenitor            

samples (Supplemental Figure 2D). 

ATAC-seq differential accessibility analysis 

To ensure independence, we randomly selected one library from each donor for each cell-type              

(technical replicates where one donor was cultured multiple times for a given cell-type) were              

excluded. In order to find differentially accessible peaks across cell type controlling for technical              

factors, the dependent variable was the batch corrected number of reads within CSAW peaks              

and the linear regression model independent variables included a regressor for cell type (neuron              

or progenitor) and a factor regressor for donor IDs included in the analysis. 

Enrichment of peaks within annotated regions of the genome 
 

Enrichment of differentially accessible peaks within annotated genetic regions of the genome or             

epigenetically annotated regions of the genome was calculated using the ratio between the             

(#bases in state AND overlap feature)/(#bases in genome) and the [(#bases overlap            

feature)/(#bases in genome) X (#bases in state)/(#bases in genome)] as described previously            

by the Roadmap Epigenomics Consortium (Roadmap Epigenomics Consortium et al., 2015).           

The significance of this enrichment was calculated using a binomial test as in the GREAT               

algorithm (McLean et al., 2010).  

 

Chromatin state definitions from an imputed 25-state model were derived from fetal brain tissue              

(E081) and other in vivo tissues/cell types by the Roadmap Epigenomics project (Ernst and              

Kellis, 2015; Roadmap Epigenomics Consortium et al., 2015) and acquired from           

(http://www.broadinstitute.org/~jernst/MODEL_IMPUTED12MARKS/) after liftOver to hg38     

(0.001% of peaks could not be lifted over). We generated the following 

combined states by merging states of similar genomic context:  

Promoter(2_PromU, 3_PromD1, 4_PromD2, 22_PromP, 23_PromBiv), Enhancer (13_EnhA1,       

14_EnhA2, 15_EnhAF, 16_EnhW1, 17_EnhW2, 18_EnhAc), Heterochromatin (21_Het),       

Quiescent (25_Quies), Transcribed (1_TssA, 5_Tx5’, 6_Tx, 7_Tx3', 8_TxWk, 9_TxReg,         

10_TxEnh5', 11_TxEnh3', 12_TxEnhW), Polycomb (24_ReprPC) and ZNF_Rpts       

(20_ZNF/Rpts). 
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Locations of ATAC-seq peaks in fetal brain were acquired from previously published work (de la               

Torre-Ubieta et al., 2018). After liftOver to hg38, 0.001% of peaks could not be lifted over.  

 

Gene ontology analysis at the TSS for differentially accessible peaks (Supplementary Figure 3)             

was completed by first overlapping differentially accessible peaks with a region 2kb upstream             

and 1kb downstream of the TSS of genes defined by homo sapiens gene ensembl version 78                

GRCh38.p12. Protein-coding genes with promoter overlapped with selected differentially         

accessible peaks ( |LFC|>0.5 ) were input into the TopGO (Alexa and Rahnenfuhrer, 2010)              

package (v2.34.0), with all protein-coding genes as background. 

 

Gene based annotations of the genome were derived from Homo sapiens gene ensembl             

version 78 (GRCh38.p12) for plotting loci.  

 

Differential transcription factor binding analysis 
 

We performed an analysis to identify motifs with differential prevalence in differentially            

accessible peaks (Table S2, Figure S3B). To avoid the bias caused by different number of               

progenitor > neuron and neuron > progenitor differentially accessible peaks, here we only used              

top 2000 progenitor > neuron peaks with highest LFC, and top 2000 neuron > progenitor peaks                

with lowest  LFC. 

 

Potential transcription factor binding sites were called in the human genome using TFBSTools             

(v1.4.0) with a minimum score threshold of 80% based on position weight matrices from the               

JASPAR2016 (Mathelier et al., 2016) core database, selecting vertebrates as the taxonomic            

group. Only the most recent version of the PWM for a given TF was used. To select regions of                   

the genome that are highly conserved among vertebrates, and likely functional, 100-way            

phastCons (Pollard et al., 2010) scores > 0.4 in regions ≥ 20 bp were saved (downloaded from                 

UCSC genome browser). Only called TFBS sites within conserved regions were retained for             

further analyses. Differential motif enrichment analysis was performed using a logistic           

regression model to identify motifs present more often in progenitor > neuron peaks as              

compared to neuron > progenitor peaks, or vice versa. Logistic regression explicitly controlled             

for differences in peak width and peak conservation between progenitor > neuron and neuron >               

progenitor differentially accessible peaks. The analysis was implemented in R as: glm(TFBS ~             
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ProgenitorNeuron + peakwidth + conservedbppercent, family = "binomial"). The dependent          

variable (TFBS) was a binary representation of whether each differentially accessible peak            

contained a motif of a TF or not. The independent variable of interest marked whether a peak                 

was progenitor > neuron (ProgenitorNeuron=1) or neuron > progenitor (ProgenitorNeuron=0).          

Other covariates included peak width (peakwidth) and the percentage of the peak with             

conservation (conservedbppercent) as defined above. Significant differential motif enrichment         

was determined by FDR adjusted P-value < 0.05 threshold of the ProgenitorNeuron covariate.             

progenitorTFs were defined as significant differentially enriched motifs present more often in            

progenitor > neuron as compared to neuron > progenitor peaks, whereas neuronTFs were             

defined as significant differentially enriched motifs present more often in neuron > progenitor as              

compared to progenitor > neuron peaks. 

 

Genotype pre-processing 

Genotyping was performed using Illumina HumanOmni2.5 or HumanOmni2.5Exome platform.         

SNP genotypes were exported into PLINK format. SNP marker names were converted from             

Illumina KGP IDs to rsIDs using the conversion file provided by Illumina. Quality control was               

performed in PLINK v1.90b3 (Chang et al., 2015) (Supplemental Figure 4A). SNPs were filtered              

based on Hardy-Weinberg equilibrium (--hwe 1e6), minor allele frequency (--maf 0.01),           

individual missing genotype rate (--mind 0.10), variant missing genotype rate (--geno 0.05)            

resulting in 1,760,704 directly genotyped variants. Multidimensional scaling (MDS) analysis of           

genotypes from all individuals used in the study was completed in PLINK v1.90b3. We did not                

see a strong effect of genotyping batch on genotype data based on MDS1 and MDS2 from                

different genotyping batches. We used PLINK v1.90b3 to call sex from genotype data. For the               

sampels with unkown sex from genotype data, we ploted PCA results (PC1 vs PC2) of               

ATAC-seq reads on sex chromosomes (chromsome X and Y) to identify sex (Supplemental             

Figure 4B). 

 

Sample Swap and contamination Identification 

Quality controlled genotype data and BAM files were used to identify any sample swaps              

between the ATAC-seq and genotyping data using VerifyBamID v1.1.3 (Jun et al., 2012). We              
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removed any BAM file with [FREEMIX] > 0.02 (N_donor=4), and corrected sample swaps             

(N_donor=7). After this filtering step, our sample size was comprised of 73 unique donors for               

progenitor samples and 61 unique donors for neuron samples for the caQTL studies.  

 

Imputation  

Filtered genotype data were pre-phased by SHAPEIT (Delaneau et al., 2011) v2.837. Minimac4             

(Das et al., 2016) (v1.0.0) was used to impute the filtered genotyped markers using reference               

haplotype panels from the 1000 Genomes Project (The 1000 Genomes Project Consortium            

Phase 3) that contain a total of 37.9 million SNPs in 2,504 individuals from any ancestry,               

including those from West Africa, East Asia and Europe. For the variants on chrX, we separated                

chrX into pseudoautosomal regions and non-pseudoautosomal regions, then pre-phased and          

imputed them separately. 

After genotype imputation, we extracted the genotypes for all individuals assayed for chromatin             

accessibility. Imputed genotype data were filtered for variant missing genotype rate < 0.05,             

Hardy-Weinberg equilibrium p-value < 1 x 10 -6 and minor allele frequency (MAF) 1%. Imputation              

quality was assessed filtering variants where allele dosage Rsquared > 0.3 by Minimac4,             

resulting in ~13.6 million SNPs.  

caQTL mapping  

We calculated multidimensional scaling (MDS) for genotype data of our samples and genotype             

data from HapMap3 (https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html )    

following the protocol from ENIGMA consortium      

(http://enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf). We  

identified multiple ancestries of donors of our samples in the MDS plot (MDS1 vs. MDS2)               

(Supplemental Figure 4C). 

To control for population stratification and cryptic relatedness of our samples when mapping             

caQTLs, we ran caQTL analysis with EMMAX (Kang et al., 2010), which accounts for population               

structure using a genetic relatedness or kinship matrix. We used the emmax-kin function (-v -h               

-s -d 10) to create the IBS kinship matrix for each tested genetic variant from non-imputed                
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genotype data excluding all genetic variants on the same chromosome with the tested genetic              

variant (Price et al., 2010).  

We performed proximal caQTL mapping using a window of 100 kb up- and down-stream of the                

center of 136,714 csaw peaks using batch corrected read counts of each peak for each donor                

(Supplemental Figure 4A). We performed caQTL analysis separately in neurons and progenitors            

using imputed genotype data. To prevent results driven by only one minor allele homozygous              

donor, we retained the variants with at least 2 minor allele homozygous donors or at least 2                 

heterozygous donors. In addition to the kinship matrix (Price et al., 2010) we used the following                

covariates in the association model: gestation week, sex, 10 genotype MDSs. In addition, for the               

progenitor caQTLs we corrected for 4 PCs across VST counts of the chromatin accessibility              

data. For neurons, we corrected for 7 PCs of VST counts of the chromatin accessibility data.                

These numbers were chosen to maximize the number of caQTLs for each cell-type. Nominal              

EMMAX p-values were corrected for multiple testing using the Benjamini–Hochberg FDR           

correction (Benjamini and Hochberg, 1995) within neuron caQTLs and within progenitor caQTLs            

separately (FDR < 0.05). The percent variance explained was calculated using the method from              

a previous study (Shim et al., 2015). 

Identify correlated caPeaks 

To identify correlated caPeaks, we defined primary caPeaks as the caPeaks harboring            

caSNP(s). We then defined secondary caPeaks as peaks which are associated with the caSNP              

of a primary peak. We calculated Perason’s correlation between the primary caPeak and all              

caPeaks within +/- 2Mbp from the center of its secondary caPeak (including the secondary              

caPeak), then corrected the Pearson’s correlation p-value using the Benjamini–Hochberg FDR           

correction (Benjamini and Hochberg, 1995). If the secondary caPeak was significantly (FDR <             

0.05) correlated with the primary caPeak, this caSNP-caPeak pair was classified as “caSNP in              

correlated caPeak”. 

Allele specific chromatin accessibility  

In order to decrease the impact of mapping bias, we used WASP (2018-07) (van de Geijn et al.,                  

2015) to remap the sequencing reads which intersect with any bi-allelic SNP to the human               

genome (GRCh38/hg38) using genotype data for each sample and removing the duplicate            

reads. We then removed reads mapping to the mitochondrial genome, Y chromosome using             
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samtools (Li et al., 2009) (v1.9). Sequencing reads mapped to ENCODE blacklist regions were              

removed via bedtools (Quinlan and Hall, 2010) (v2.26). We used GATK tools to extract allele               

specific read counts for every SNP. We first filtered for SNPs within each donor that had                

sufficient read depth by retaining SNPs with total counts greater than or equal to 10 for neuron                 

and progenitor samples, separately. Then to calculate allele specific chromatin accessibility, we            

retained those SNPs with average read counts for all heterozygous donors greater than or equal               

to 15. Finally, we retained only those SNPs that meet these previous thresholds for at least 5                 

heterozygous donors. DESeq2 was used to calculate the LFC (Alternative read           

counts/Reference read counts) for filtered SNPs across all heterozygous donors. The           

non-heterozygous donors were excluded from the differential analysis for each SNP using            

sample-specific weights, and maximum likelihood estimation was used for dispersion estimation           

followed by Wald tests of the estimated LFC. FDR < 0.05 was used as the threshold for                 

significance. 

 

Bulk Fetal brain eQTL mapping 

Bulk fetal cortical wall eQTL data described in a previous publication (Walker et al., 2019), was                

re-analyzed in this study with the following modifications: (1) here we used a linear mixed model                

implemented in EMMAX to more stringently control for population stratification, and (2) here we              

add 7 more donors to the analysis because these donors were genotyped after the publication               

of the previous manuscript. rRNA-depleted RNA-seq data from flash frozen human fetal brain             

cortical wall tissues derived from 235 donors at 14-21 gestation weeks were used for eQTL               

analysis. Gene based annotations of the genome were derived from Homo sapiens gene             

ensembl version 92 (GRCh38) for eQTLs. Only genes which are expressed in more than 5% of                

donors with at least 10 counts were included in the analysis. VST normalized expression values               

were used as phenotypes for eQTL analysis. Genomic DNA from human fetal brain cortical wall               

tissues derived from 235 donors at 14-21 PCW was extracted. Each donor tissue was              

genotyped on a dense array (Illumina Omni 2.5+Exome) and imputed to a common reference              

panel (1000 Genomes; described above). Variants were retained in the analysis if there were at               

least 2 heterozygous donors and no homozygous minor allele donors, or if there were at least 2                 

minor allele homozygous donors. For the effect size comparison analysis fetal brain eQTL vs              
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caQTLs (Figure 2G), we subsampled fetal brain eQTL donors to the same sample size as the                

caQTL while maintaining the population composition similar to the larger donor list.  

Cis-eQTL analysis was performed by evaluating association between each gene’s expression           

and variants within ±1 Mb window of transcription start site of each gene by implementing linear                

mixed model association software, EMMAX (Kang et al., 2008). All markers on the chromosome              

of this candidate marker were excluded from the IBS kinship matrix was generated with              

emmax-kin function (-v -h -s -d 10), and added as a random variable into linear mixed model for                  

association test. In addition to kinship matrix, 10 MDS components of genotype, sex, and first               

10 PCs of gene expression were included into the covariate matrix. After association, nominal              

p-values were corrected for multiple testing using the Benjamini Hochberg FDR correction, and             

associations with lower than 5% FDR threshold value were accepted as significant. In order to               

obtain LD-independent eQTLs, a clumping procedure was implemented with PLINK v1.90b3           

with the parameter --clump-kb 500 --clump-p1 0.0002957020645 (FDR threshold p-value)          

--clump-p2 0.01 --clump-r2 0.50.  

 

Identifying LD-independent caQTLs and overlaps between caQTLs and eQTLs  

To identify LD-independent caQTLs, we used PLINK v1.90b3 with parameters (--clump-kb 250            

--clump-r2 0.50 --clump-p2 0.01), for --clump-r1 we used p values with FDR =0.05 for neuron               

donor genotypes (p <= 1.49e-05) and progenitor donor genotypes (p <= 2.88e-05) separately.             

For multiple index SNPs in perfect LD (r2=1), we only kept the SNPs that are closest to the                  

ATAC-seq peak center.  

In order to determine if caQTLs overlap between progenitors and neurons, we accounted for              

LD. For caQTLs in progenitor samples and neuron samples, we listed the SNPs with pairwise               

LD r2 > 0.5 with index caSNPs for each shared caPeak using LD matrices from progenitor                

donors genotype data and neuron donors genotype data, separately. Then for each shared             

caPeak, if any listed SNP was found to be overlapped between neuron samples and progenitor               

samples, we identify the caSNP-caPeak as an overlapped caQTL between cell types. 

In a similar analysis for fetal brain eQTLs, we listed all SNPs with pairwise LD r2 > 0.5 with index                    

eSNPs using LD matrices from fetal brain samples genotype data. Then we listed all SNPs with                

pairwise LD r2 > 0.5 with index caSNPs using LD matrices from caQTL samples genotype data.                
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If any listed SNP is overlapped, we identify the eSNP-eGene and caSNP-caPeak as an              

overlapped QTL. 

 

Comparison to adult dorsolateral prefrontal cortex caQTLs  

ATAC-seq peaks and caQTLs of adult dorsolateral prefrontal cortex (DLPFC) tissues were            

acquired from a previous study (Bryois et al., 2018). We used the same method from the section                 

“Enrichment of peaks within annotated regions of the genome” above to calculate the             

enrichment of ATAC-seq peaks from this adult dataset at regulatory elements from different             

tissues. In addition to in vivo tissues/cell types, we also include cultured cells from              

(http://www.broadinstitute.org/~jernst/MODEL_IMPUTED12MARKS/). We found ATAC-seq    

peaks from cultured neural cells (neurons and progenitors) and DLPFC are enriched in             

regulatory elements of brain at different development stages, as expected. We found ATAC-seq             

peaks from cultured neural cells are highly enriched in enhancers and promoters of fetal brain               

tissues, but ATAC-seq peaks from DLPFC are highly enriched in enhancers and promoters of              

brain dorsolateral prefrontal cortex (Supplemental Figure 6A), even though 52% of ATAC-seq            

peaks from adult prefrontal cortex are overlapped with 39% of peaks from cultured neural cells               

(Supplemental Figure 6B). To calculate the overlap of caQTLs between cultured neural cells             

and DLPFC, we only kept bi-allelic SNPs and clumped neuron and progenitor caQTLs 5kb              

up-stream and 5kb down-tream from ATAC-seq peak centers as was previously done for             

caQTLs from DLPFC (Bryois et al., 2018). We identified overlapped caQTLs with the following              

process: 1) we identified ATAC-seq peaks (caPeaks) overlapped (by at least 1 bp) between the               

two datasets; 2) we selected the SNPs significantly associated with the same overlapped             

caPeak in both datasets; 3) we retained only LD-independent SNPs by: a) finding             

neuron/progenitor index caSNP-peak pairs (clumped) in the significant DLPFC caSNP-peak          

pairs (not-clumped), b) finding DLPFC caSNP-peak index caSNP-peak pairs (clumped) in the            

significant neuron/progenitor caSNP-peak pairs (not-clumped), c) we called an overlapped          

caQTL if either of the above (a) or b)) are true. We found highly temporal specificity in caQTLs                  

(Supplemental Figure 6C).  

Determining the impact of caSNPs on motifs 
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In order to determine if genetic variation within peaks impacts transcription factor (TF) binding              

motifs, we used motifBreakR (v1.14.0) (Coetzee et al., 2015) to map known TF motifs to the                

sequence surrounding the neuron-specific/progenitor-specific significant caSNPs located in a         

ATAC-peak have significant association with the caPeak (parameter setting: threshold = 1e-4).            

All annotated motifs (in total 1304 TFs, 2943 motifs) are from MotifDb (1.26.0) (Shannon and               

Richards, 2014). We calculated the relative entropy (parameter setting: method=”ic”) for           

reference allele and alternative allele, then only keep the TFBSs which are strongly affected by               

the SNPs (motifbreakR parameter setting: effect=”strong”).  

We calculated the ratios for the number of motif-disrupting SNPs that were neuron-specific             

significant/progenitor-specific significant bi-allelic caSNPs relative to the number of         

motif-disrupting bi-allelic SNPs that were located in accessible peaks for each TF regardless of              

whether there was a caQTL (Figure 6B).  

To determine if the motif disrupting allele is associated with increased/decreased chromatin            

accessibility, we first identified the motif-disrupting allele. The motif-disrupting allele will           

decrease the relative entropy of the position possibility matrix of a TFBS. Then, we aligned the                

motif-disrupting allele with the effect allele for caQTLs. Finally, we used linear regression to              

determine the relationship between decreased relative entropy and effect size for all            

motif-disrupting alleles for this TFBS (lm(effect size ~ decreased relative entropy+0). We fit the              

line through zero because we assume that if a motif is not disrupted by an allele, it will also have                    

no effect on chromatin accessibility. The significance of the coefficient for effect size on              

decreased relative entropy was tested and the p-values adjusted to control FDR (Benjamini and              

Hochberg, 1995) (Figures 6C-F). 

Effect size correlation of eQTLs across different tissues 

To compare effect size correlation between caQTLs and eQTLs, we calculated effect size             

correlation of eQTLs between brain cortex and other different tissues. eQTLs from different             

tissues (N=48, including brain cortex) were downloaded from GTEx         

(https://gtexportal.org/home/datasets). Significant eQTLs for all tissues were from GTEx version          

7. We also downloaded tissue-specific “all SNP-Gene associations” for brain cortex and liver             

from GTEx version 7. To keep the most representative SNP-Gene pairs, we only retained the               

most significant SNP for each eGene in every tissue as the significant eQTLs. 
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We found the same SNP-Gene pairs from brain cortex with the significant eQTLs from liver, and                

calculated effect size (“Slope” in the files) correlation for these eQTLs, and vice versa for liver                

eQTLs (Figure 5F). Then, we calculated effect size correlation between the same SNP-Gene             

pairs from brain cortex with the significant eQTLs from other tissues (N=45), except             

Brain_Cortex, Brain_Frontal_Cortex_BA9 and Brain_Anterior_cingulate_cortex_BA24 (Figure     

5G).  

For caQTLs, we only retained the most significant caSNP for each caPeak in progenitors and               

neurons, then calculated effect size correlation between the same SNP-Peak pairs in neurons             

with the significant caQTLs in progenitors, and vice versa for significant caQTLs in neurons              

(Figure 5E). 

Partitioned Heritability  

Partitioned heritability was measured using LD Score Regression v1.0.0 (Finucane et al.,            

2015b) to identify enrichment of GWAS summary statistics among differentially accessible           

peaks. First, an annotation file was created which marked all HapMap3 SNPs that fell within               

Neuron>Progenitor or Progenitor>Neuron differentially accessible peaks. To avoid the bias          

caused by different numbers of progenitor > neuron and neuron > progenitor differentially             

accessible peaks, we randomly selected the same number of Progenitor>Neuron as were            

significant Neuron>Progenitor peaks. LD-scores were calculated for these SNPs within 1 cM            

windows using the 1000 Genomes data. These LD-scores were included simultaneously with            

the baseline distributed annotation file from (Finucane et al., 2015b). Subsequently, the            

heritability explained by these annotated regions of the genome was assessed from these             

genome-wide association studies: Attention-Deficit/hyperactivity disorder (Demontis et al.,        

2019), autism spectrum disorder (Grove et al., 2019), IQ (Savage et al., 2018), major depressive               

disorder (Wray et al., 2018), Bipolar disorder (Stahl et al., 2019), schizophrenia (Pardiñas et al.,               

2018), insomnia (Jansen et al., 2019b), educational attainment (Lee et al., 2018a), subjective             

well-being (Okbay et al., 2016), depressive symptoms (Okbay et al., 2016), neuroticism (Nagel             

et al., 2018), anorexia nervosa (Duncan et al., 2017), anxiety (Otowa et al., 2016), Alzheimer's               

disease (Jansen et al., 2019a), epilepsies (International League Against Epilepsy Consortium           

on Complex Epilepsies, 2018), Parkinson's disease (Nalls et al., 2018). 

The enrichment was calculated as the heritability explained for each phenotype within a given              
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annotation divided by the proportion of SNPs in the genome and Benjamini–Hochberg FDR             

correction  (Benjamini and Hochberg, 1995) was used to correct for multiple comparisons. 

Co-localization  with GWAS data 

We used conditional caQTLs to detect the co-localization of caQTLs and multiple GWAS data              

as previously listed above in Partitioned Heritability . First, to identify co-localized loci: 1) we              

listed SNPs with pairwise LD r2 > 0.8 with the caSNPs in the caPeak using genotype data from                  

neuron samples and progenitor samples, separately; 2) we listed SNPs with pairwise LD r2 > 0.8                

with index GWAS SNP (p<5e-8 and exhibited the strongest association in           

upstream/downstream 100kb from the center of this caPeak) using the LD matrix from European              

genotype data from 1000 Genome project phase 3 with population code EUR. Second, we              

labelled the caPeak as a potentially co-localized loci if any SNP from the above two categories                

is overlapped. Third, we performed conditional caQTL for significant (FDR < 0.05) caSNPs in              

the potential co-localized locus (caPeak) conditioned on the index GWAS SNP. If the caQTL is               

no longer significant (FDR > 0.05), then we identified the caPeak as a co-localized loci with this                 

GWAS trait.  
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