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Abstract: Gas chromatography-mass spectrometry (GC-MS) represents an analytical 128 

technique with significant practical societal impact. Spectral deconvolution is an essential 129 

step for interpreting GC-MS data. No public GC-MS repositories that also enable repository-130 

scale analysis exist, in part because deconvolution requires significant user input. We 131 
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therefore engineered a scalable machine learning workflow for the Global Natural Product 132 

Social Molecular Networking (GNPS) analysis platform to enable the mass spectrometry 133 

community to store, process, share, annotate, compare, and perform molecular networking of 134 

GC-MS data. The workflow performs auto-deconvolution of compound fragmentation patterns 135 

via unsupervised non-negative matrix factorization, using a Fast Fourier Transform-based 136 

strategy to overcome scalability limitations. We introduce a “balance score” that quantifies the 137 

reproducibility of fragmentation patterns across all samples. We demonstrate the utility of the 138 

platform with breathomics analysis applied to the early detection of oesophago-gastric 139 

cancer, and by creating the first molecular spatial map of the human volatilome. 140 

 141 
 142 
Introduction: 143 

Electron ionization gas chromatography-mass spectrometry (GC-MS) is widely used 144 

in numerous analytical applications with profound societal impact, including screening for 145 

inborn errors of metabolism, toxicological profiling in humans and animals, basic science 146 

investigations into biochemical pathways and metabolic flux, understanding of 147 

chemoattraction, doping investigations, forensics, food science, chemical ecology, ocean and 148 

air quality monitoring, and many routine laboratory tests including cholesterol1, vitamin D2 149 

and lipid levels3. GC-MS is widely adopted because of its key advantages, including low 150 

operational cost, excellent chromatographic resolution, reproducibility and ease of use.  151 

In GC-MS, the predominant ionization technique is electron ionization (EI), in which all 152 

compounds that elute from the chromatography column are ionized by high energy (70eV) 153 

electrons in a highly reproducible fashion to yield a combination of fragment ions. Because 154 

fragmentation occurs simultaneously with ionization, an essential computational step in the 155 

analysis of all GC-MS data is the “spectral deconvolution” - the process of separating 156 

fragmentation ion patterns for each eluting molecule into a composite mass spectrum4. The 157 

deconvolution is particularly computationally challenging for complex biological systems 158 

where co-elution of compounds is inevitable as raw GC-MS data consist of mass spectra 159 

originating from hundreds-to-thousands of molecules. 160 

Annotation of GC-MS data is achieved by matching the deconvoluted fragmentation 161 

spectra against reference spectral libraries of known molecules. The 70eV energy for ionizing 162 

electrons in GC-MS was set as the standard early, making it possible to use decades-old EI 163 

reference spectra for annotation 5,6 and compare EI data across instruments. There are now  164 

~1.2 million reference spectra, accumulated and curated over a period of >50 years, that are 165 

commercially or publicly available for the annotation of GC-MS data 6,7. To date, many 166 

analytical tools and several repositories for GC-MS data have been introduced 5,8–16. Despite 167 

these developments, much GC-MS data processing is restricted to vendor-specific formats 168 

and software (e.g. VocBinBase15 uses Leco ChromaTOF data). Moreover, the deconvolution 169 

requires multiple parameters to be set by the user or manual peak integration. Further, none 170 

of the tools are integrated into a mass spectrometry/metabolomics public data repository that 171 

retains every setting and result of an analysis job, features that are vital for reproducibility of 172 

data processing. A public informatics resource that can not only be integrated with a public 173 

repository, but also perform GC-MS deconvolution, alignment, and mass spectral library 174 

matching for large numbers (>100) of data files is needed. Technical reasons, such as the 175 

lack of a shared and uniform data format, often preclude GC-MS data comparison between 176 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905091doi: bioRxiv preprint 

https://paperpile.com/c/WYs5mC/VRryx
https://paperpile.com/c/WYs5mC/0gFxG
https://paperpile.com/c/WYs5mC/MXHh2
https://paperpile.com/c/WYs5mC/t8Z8
https://paperpile.com/c/WYs5mC/lV1O+Od3lh
https://paperpile.com/c/WYs5mC/Od3lh+MnZnv
https://paperpile.com/c/WYs5mC/lV1O+HSul+sNW7+9JxGB+uVa4P+7zJqW+5P3vb+mmvhc+7ggT+hlwAM
https://paperpile.com/c/WYs5mC/7ggT
https://doi.org/10.1101/2020.01.13.905091
http://creativecommons.org/licenses/by-nc-nd/4.0/


different laboratories and prevents taking advantage of repository-scale information and 177 

community knowledge about the data. This, coupled to a lack of incentive to deposit data into 178 

public domain, leads to GC-MS datasets being infrequently shared and rarely reused across 179 

studies and/or biological systems 15,17–21.  180 

One of the developments that enabled finding additional structural relationships within 181 

mass spectrometry data is spectral alignment, which forms the basis for molecular 182 

networking 22–26. Here, we develop a repository-scale analysis infrastructure for GC-MS data 183 

enable to create networks within the Global Natural Products Social (GNPS) Networking 184 

platform. GNPS promotes Findable, Accessible, Interoperable, and Reusable (FAIR) use 185 

practices for mass spectrometry data 27. The community infrastructure can be accessed at 186 

https://gnps.ucsd.edu under the header “GC-MS EI Data Analysis”.  187 

 188 

Results: Creating a web-based scalable strategy for spectral deconvolution. Current EI 189 

spectral deconvolution strategies can save settings and apply them to the next analysis, but 190 

require initial manual parameter setting (e.g. AMDIS 5, MZmine/ADAP 8, MS-DIAL 9, 191 

PARAFAC2 12); some require extensive computational skills to run (e.g. XCMS 28, eRah 14). 192 

Although batch modes exist, they do not enhance deconvolution quality by utilizing 193 

information from other files of the dataset. To use this across-file information, improve 194 

scalability of spectral deconvolution, and eliminate manual parameter setting, we developed 195 

an algorithmic learning strategy for deconvolution of entire datasets (Figure 1a-f). We 196 

deployed this functionality within GNPS/MassIVE29 (Figure 1f-i). To promote analysis 197 

reproducibility, all GNPS jobs performed are retained in the “My User” space and can be 198 

shared as hyperlinks in collaborations or publications.  199 

Classically, when performing spectral deconvolution of GC-MS data, the user defines 200 

parameters specific to their data to the best of their abilities. The user must therefore have a 201 

thorough understanding of the characteristics (i.e., peak shape, peak width, resolution etc.) of 202 

the particular GC-MS data set before spectral deconvolution. In our approach, the 203 

parameters for spectral deconvolution (m/z drift of the ions, peak shape - slopes of raising 204 

and trailing edges, peak shifts, and noise/intensity threshold) are auto-estimated. This user-205 

independent ‘automatic’ parameter optimization is accomplished via fast Fourier 206 

transformation, multiplication, and inverse Fourier transformation for each ion across entire 207 

data sets, followed by an unsupervised matrix factorization (one layer neural network): 208 

Figure 1a-e. Then, the compositional consistency of spectral patterns, for each spectral 209 

feature deconvoluted across the entire data set, can be summarized as a parameter that we 210 

termed “balance score”. The balance score (definition is described in the Methods) gives 211 

insight into how well the spectral feature is explained across the entire data set: when high, 212 

the spectrum is consistent across different samples. Even when a compound is present in 213 

only a few samples in the dataset, as long as the spectral patterns are highly conserved 214 

across samples (e.g. not contaminated by spurious noise peaks), it would result in a high 215 

balance score. Balance score thus allows discarding low-quality spectra that are more likely 216 

to be noise, and provides an orthogonal metric to matching scores when searching spectral 217 

libraries. We refer to the dataset-based spectral deconvolution tool within the GNPS 218 

environment as “MSHub”. MSHub converts raw GC-MS data of any kind (e.g. Table S1) into 219 

spectral patterns, enabling molecular networking within GNPS. 220 
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 221 
 222 

Figure 1. Schematic representation of the MSHub processing pipeline within GNPS. MSHub 223 

accepts netCDF, mzML formats of any EI GC-MS data for input. a) Spectra are aligned and binned in 224 

m/z dimension noise is filtered and b) baseline is corrected in each spectrum in RT dimension to address 225 
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issues such as baseline rise with thermal gradient due to bleeds. c) Common profile established across 226 

entire dataset and peaks in RT dimension are aligned to it using FFT-accelerated correlation in full 227 

resolution via iterative approach. d) Fast peak detection picks and integrates peaks to generate both 228 

peak integrals for all samples and their common fragmentation patterns. For datasets with more than 5 229 

samples peak deconvolution step e) is employed to separate overlapping peaks with different patterns 230 

across samples using NMF approach. f) MSHub produces peak integrals for all samples and canonical 231 

fragmentation patterns. g) GNPS employs either public or user-provided reference libraries to annotate 232 

peaks. h) Molecular networks are built for further metabolite analysis. i) Data and results are shared 233 

between users via GNPS’s cloud architecture. NMF - Non-negative matrix factorization, FFT - Fast 234 

Fourier Transform, RT - retention time, m/z - mass-to-charge ratio. 235 

  236 

All MSHub algorithms operate iteratively for enhanced scalability, using high-237 

performance HDF5 technologies saving settings for each analysis step. The Fourier 238 

transform step with multiplication dramatically improves MSHub’s efficiency, resulting in 239 

deconvolution times that scale linearly rather than exponentially with the number of files 240 

(Figure 2a, S2). The GNPS GC-MS workflow can process thousands of files in hours (Figure 241 

2a), which is faster than data acquisition, making data processing no longer a bottleneck. We 242 

achieved this performance using out-of-core processing, a technique used to process data 243 

that are too large to fit in a computer’s main memory (RAM): MSHub uploads files one at a 244 

time into the specific RAM module, data are then processed and deleted from memory, 245 

iteratively. Figure 2a illustrates the linear dependency between the number of samples 246 

processed and the processing time. Because only one sample is stored in memory at any 247 

given time, the workflow memory load is constant. Spectral deconvolution scales linearly 248 

because each step in the processing pipeline is linear with respect to time (Figure S2a-f), 249 

taking ~1 min per file (Figure S1). The machine learning approaches gain improved 250 

performance with increasing amounts of data, which means that increasing dataset size 251 

would boost learning each spectral pattern. Indeed, larger volume of analyzed data leads to 252 

better scores of spectral matches for the known compounds in derivatized blood serum 253 

samples that were spiked with 37 fatty acid methyl esters (FAMEs) and 17 long-chain 254 

hydrocarbons (Figure 2b, c). Cosine and balance score can be jointly used as filters for 255 

processing the final results (Figure 2d-f). In the analysis of biological samples, similar trends 256 

are found as for the reference dataset: the spectral matching scores against the library 257 

increase with increasing number of processed files while their distributions become narrower, 258 

a reflection that more data leads to better quality of results (Figure 2g, h). When there are 259 

more files deconvoluted, MSHub is leveraged to reduce chimeric spectra and discover more 260 

real spectral features, which leads to higher quality spectra and a rise in the number of 261 

unique annotations with greater match scores (Figure 2i, j). If the user only has a few files 262 

(fewer than 10), spectral deconvolution and alignment should be performed using alternative 263 

methods (e.g.  MZmine30, OpenChrom  28,31, AMDIS5, MZmine/ADAP 8, MS-DIA 9, BinBase15, 264 

XCMS 32/XCMS Online28, MetAlign10, SpecAlign33, SpectConnect11, PARAFAC212, MeltDB13, 265 

eRah14). Using those tools, molecular networking can be performed in the same fashion as 266 

for MSHub, as the library search GNPS workflow accepts input from other tools into the 267 

GNPS/MassIVE environment. We have further benchmarked the MSHub against XCMS28 268 

(MassIVE dataset MSV000084622) and the quantitative results were nearly identical (the 269 

calibration curve was within 99.17% correlation with 0.72% STD, Figure 2k,l).  270 
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Spectral deconvolution using MSHub in GNPS generates an .mgf file that contains  271 

deconvoluted spectra with aligned retention times and a feature table of peak areas of 272 

features across all files. This generated .mgf spectral deconvolution summary file is used for 273 

searching against spectral libraries and for molecular networking. GNPS saves this 274 

information, so the deconvolution step does not need to be re-performed for any future 275 

analyses. The output results can be downloaded and explored using many external tools, 276 

e.g. MetExpert34.  277 

 278 

 279 
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Figure 2: Performance evaluation of dataset-wide deconvolution. a) Linear dependence between 280 

the number of samples and the processing time on a single compute node. b) Distributions of library 281 

matching scores for the test dataset of reference compounds spiked in a complex blood serum matrix 282 

with an increased volume of input data (datasets Test1-Test11, Table S1) for all matches and c) for 283 

the reference compounds only. d) False discovery rate (FDR) for the sub-class35 annotations (dataset 284 

Test11 in Table S1) of the top match and (e) top ten matches.  More restrictive thresholds minimize 285 

misannotations. f) Heat map of the number of library matches for spiked compounds. g) Distributions 286 

of library matching scores for the top match in a study of oesophageal and gastric cancer detection 287 

using breath analysis (non-derivatized, datasets ICL1-ICL11 in Table S1) and h) studies of human 288 

and mouse blood serum, adipose tissue and cerebrospinal fluid (silalated, datasets UCD1-UCD16 in 289 

Table S1). i) Heat map of the number of unique annotations (top hit only) for the data across datasets 290 

ICL1-ICL11 in Table S1 and j) datasets UCD1-UCD16 in Table S1; no balance score filtering 291 

applied. Spurious features corresponding to the low cosine tail of the distribution on panels (g) and (h) 292 

are improved as higher volume of the data enhances the frequency domain for deconvolution quality. 293 

k, l) Quantitative integrals of abundances quantitation for the mixture of standards (MassIVE dataset 294 

MSV000084622) evaluated using XCMS (l) and MSHub (k).  295 

 296 

GNPS enables searches against public spectral reference libraries and molecular 297 

networking at repository scale. Once the .mgf file is generated by GNPS-MSHub or 298 

imported from another deconvolution tool, the spectral features can be searched against 299 

public libraries36 (currently GNPS has Fiehn37, HMDB38, MoNA17, VocBinBase15) or the user’s 300 

own private or commercial libraries (such as NIST 201739 and Wiley). Matches are narrowed 301 

down based on user-defined filtering criteria such as number of matched ions, Kovats 302 

retention index (RI, calculated if hydrocarbon reference values are provided), balance score, 303 

cosine score, and abundance. With this release, we also provide additional freely available 304 

reference data compiled by co-authors of this manuscript of 19,808 spectra for 19,708 305 

standards. Although the possible candidate annotations can be further narrowed by retention 306 

index (RI), they should still be considered level 3, a molecular family, annotation according to 307 

the 2007 metabolomics standards initiative (MSI)40. Calculation of RIs is enabled and 308 

encouraged but not enforced. When multiple annotations can be assigned, GNPS provides 309 

all candidate matches within user’s filtering criteria. 310 

No matter how the spectral library is searched in GC-MS, due to the absence of a 311 

parent mass, a list of spectral matches is more likely contain mis-annotations, both related 312 

(isomers, isobars) or less frequent, entirely unrelated compounds5. However to spot 313 

misassignments at the molecular family level, we propose to explore deconvoluted GC-MS 314 

data via molecular networking, a strategy that has been effective for LC-MS/MS data. In the 315 

case of EI, unlike in LC-MS/MS where the precursor ion mass is known, the molecular ion is 316 

often absent. For this reason, the molecular networks are created through spectral similarity 317 

of the deconvoluted fragmentation spectrum without considering the molecular ion. For GC-318 

MS data that do have a molecular ion or precursor ion mass, e.g. from chemical ionization 319 

(CI) or with MS/MS spectra, the feature-based molecular networking workflows should be 320 

used29,41. We explored clustering patterns for the EI data (Figure S4) and observed that the 321 

EI-based cosine similarity networks are predominantly driven by structural similarity (Figure 322 

S4a) 35. These EI networks can be used to visualize chemical distributions and guide 323 

annotations (Figure S5). Networking enables data co- and re-analysis, as it is agnostic to the 324 

data origin once the features are deconvoluted. To demonstrate this, we have built a global 325 
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network of various public GC-MS datasets deposited on GNPS (38 datasets comprising 326 

~8,500 GC-MS files, Figure 3c). These data encompass various types of samples, modes of 327 

sample introduction etc. and thus the global network is a snapshot of all chemistries 328 

detectable by GC-MS (Figure 3c-e, S6). Prior to networking, we applied a balance score of 329 

65%, which allowed us to remove a bulk of spurious low quality matches (Figure 3 a,b). The 330 

balance score filter ensures that the best-explained deconvoluted features are matched 331 

against the reference library. The annotation is usually done by ranking potential matches 332 

according to a similarity measure (forward match, reverse match, and probability42,43) and 333 

when possible, filtering by retention index then reporting the top match. Molecular networking 334 

can further guide the annotation at the family level by utilizing information from connected 335 

nodes (Figure S5) rather than focusing on individual annotations44. The global network can 336 

be colored by metadata such as sample type (Figure 3c), derivatized vs. non-derivatized, 337 

instrument type or other metadata (Figure S6) to reveal interpretable patterns. When coloring 338 

the data by sample type, for example, a cluster of nitrogen-containing heterocyclic 339 

compounds was observed to be unique to dart frogs from Dendrobatoidea superfamily 340 

(Figure 3e), while the long-chain ketones occur in cheese and beer (Figure S7). To highlight 341 

the broader utility of GNPS GC-MS and GC-MS based molecular networking, 6 supplemental 342 

videos were created that carry the user through how to navigate and perform analysis with 343 

the tools (Supporting Videos 1-6).  344 
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 345 
Figure 3: Molecular networking of GC-MS data in GNPS. Features that are annotated (pass library 346 

match threshold of 0.5) are included a) without filtering and b) with a 65% balance score filtering. c) 347 

Global network containing 35,544 nodes from 8,489 files in 38 GNPS datasets for different types of 348 

samples, including human, derived from various animal, plant, microbial and environmental samples. 349 

Nodes are connected if cosine > 0.5. The size of the node is proportional to the number of nodes that 350 

connect to it 45, the edge thickness is proportional to the cosine score (Figure S3), the annotation is 351 

the top match with cosine above 0.65. d) The inset shows the zoomed-in portion of the network. e) 352 

Close up of a cluster of compounds found in the dart frog skin samples with the top spectral library 353 

match shown - all nodes are nitrogen heterocyclic alkaloids such as gephyrotoxin 46 that are unique to 354 

these frogs. 355 

 356 

The output from GNPS deconvolution, annotations, and molecular network analysis 357 

can be exported for use in a statistical analysis environment such as Qiime 4748, Qiita 49, or 358 

MetaboAnalyst 50,51, or for data visualization in tools such as Cytoscape 52 or Gephi 53 (e.g. 359 
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Supplementary Figures S4-S7, Figure 3, 4e-g), or for molecular cartography  in ‘ili 54 360 

(Figure 4 a-d). To demonstrate how to use GNPS GC-MS for the latter, we collected 361 

samples from 52 body locations from one person using a sampling patch that absorbs 362 

volatiles (Figure 4 a-d). These samples were subjected to headspace desorption followed by 363 

GC-MS, deconvoluted and annotated using the GNPS GC-MS pipeline. The abundances 364 

from the deconvoluted spectra are superimposed onto a 3D model of a human (Figure 4 a-365 

d). Using balance filters at 50% and >0.9 cosine, we arrived at annotations that, once 366 

visualized, revealed the distributions of skin volatiles. For example, squalene was found on 367 

all locations, but less on the feet. Hexanoic acid was most abundant on the chest and 368 

armpits. Globulol, an ingredient of the personal care product this individual used on the chest, 369 

was most intense on the chest, while phenylenedibenzoate, a skincare ingredient, was found 370 

on the face and hands. 371 

We also conducted two studies (Study 1: n=631 samples and Study 2: n=219 372 

samples, respectively) on breath analysis associated with oesophageal and gastric cancers 373 

(OGC, Figure 4 e-g). In breath, biological signatures are usually obscured by intra- and inter-374 

subject variability, experimental conditions, e.g. ambient air quality, different diets etc. 375 

Biologically relevant compounds are often present at low abundances. Both studies predicted 376 

OGC (inset in Figure 4e). The next important step is to consider features that are the most 377 

discriminant between categories of interest (OGC vs. control) to investigate whether their 378 

chemical identity can be linked to a plausible biological rationale. However, even though 379 

OGC prediction was achieved in each study, the “OGC signatures” do not appear to overlap 380 

between the two studies, which is very typical for breath analysis field in general55–58. As 381 

molecular networking organizes chemically similar compounds into clusters, it facilitates 382 

recognition of patterns at a chemical family level. Exploring the two studies as a single 383 

network revealed an increase of related but not identical medium/long chain alcohols, 384 

aldehydes and hydrocarbons (Figure 4 e-g). Only a handful of these compounds appeared 385 

as top discriminating features in either study. Aldehydes are known to be found 386 

endogenously, mostly due to lipid peroxidation, and have been proposed as potential 387 

biomarkers in exhaled breath in several different types of cancer including lung 59–62, breast63, 388 

ovarian64, colorectal65, and, most notably, OGC 66–68. The alkanes and methyl branched 389 

alkanes have not been previously associated with oesophageal or gastric cancer, but have 390 

been associated with lung and breast cancer in exhaled breath 60,61,63,69,70. Lipid peroxidation 391 

of polyunsaturated fatty acids in cell membranes generates alkanes that can then be 392 

excreted in the breath71, which makes their observation in relation to OGC biologically 393 

plausible. Although few individual alkanes were found significantly increased in OGC cohort 394 

in both studies, none of them overlapped, and without considering these data as a single 395 

network, association of long-chain alkanes with OGC would be far more difficult to recognize.  396 

 397 

 398 

 399 

 400 
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 401 
Figure 4. Examples of results with GNPS processed GC-MS data.  3D visualization of human 402 

surface volatilome visualized with ‘ili 54 as described in the tutorial (https://ccms-403 

ucsd.github.io/GNPSDocumentation/gcanalysis/). Molecular distributions on skin of a volunteer shown 404 

for: a) squalene, a key component of natural skin grease. Low abundance of squalene is aligned with 405 
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areas of dry skin 72 b) hexanoic acid, one of the malodour molecules responsible for the unpleasant 406 

sour body odor 73 c) globulol, naturally occurring in plant essential oils, likely introduced via use of skin 407 

cosmetics d) phenylenedibenzoate, also introduced via use of a skin product. e) Chemical distributions 408 

that relate to cancer status are visualized via molecular network that combines two studies. Each node 409 

represents a unique mass spectrometry feature obtained from deconvolution. The top annotation is 410 

given for matches with cos>0.65. The size of the node represents the importance of the feature for 411 

discrimination by the maximum margin criterion 74 with leave patient out cross validation of the OGC 412 

group vs control volunteers; the color of the node represents average fold-change in abundance 413 

between OGC vs. control groups (red - higher in OGC, teal - higher in control, gray - neither), the size 414 

represents -log(p value), larger circle corresponds to greater values. The inset shows ROC for both 415 

studies (Study 1 - blue, Study 2- red). f) Example of cluster of hydrocarbons and g) long-chain 416 

alcohols. Both human studies are approved by the institutional review boards as described in the 417 

Methods. 418 

 419 

Discussion:   420 

GNPS provides a platform for data sharing and accumulation of public knowledge. 421 

Community adoption of GNPS has sharply increased the volume of MS data in the public 422 

domain7. It has also spurred new tools development (MASST75, FBMN41, ReDU76) and 423 

enabled many biological discoveries. Due to the fundamental differences between CID and 424 

EI fragmentation, the GNPS infrastructure could not previously support the analysis of EI 425 

data. Adopting existing solutions for deconvolution was not possible as all of them required 426 

too much manual input from the user and could not operate at repository scale. Here we 427 

used an unsupervised non-negative matrix factorization and a Fast Fourier Transform-based 428 

approach to scale the deconvolution step. Such strategies are most effective when large-429 

scale datasets become available, as features can be extracted with increasing quality of 430 

fragmentation patterns, as defined by the balance score. Currently, all 1D EI GC-MS data are 431 

amenable and we will extend the same approach to 2D GC-MS data.  432 

These features can then be subjected to EI-based molecular networking. The 433 

algorithm for molecular networking within GNPS had to be modified to accommodate EI data 434 

to function without molecular ion information and can reinforce candidate annotations to level 435 

3 by assessing if the annotations are similar at the family level and if annotations share 436 

chemical class terms. Such analysis can now be achieved with the data at repository scale, 437 

enabling co- and re-analysis of GC-MS data. Here we show how the co-analysis could be 438 

beneficial for two cancer breathomics data sets, but in the same fashion other breathomics 439 

(or other volatilome) data can now be co-analyzed with these datasets as long as they are 440 

publicly available in an open file format. Co-analyzing multiple disparate GC-MS studies 441 

would be challenging otherwise. Further, when considering GC-MS data as networks, in 442 

addition to conventional statistical approaches, strategies such as networks on graphs77 443 

could be deployed to investigate global biochemical patterns rather than differences in 444 

individual compounds. The networks, in principle, are not limited to any one kind of data and 445 

can be extended to any number or type of datasets as shown in Figure 3c.  446 

Surprisingly, although GC-MS is the oldest and most established of MS-based 447 

methods, and the sheer volume of existing EI reference data accumulated over decades (far 448 

exceeding that for any other kind of MS), researchers still use decades-old data analysis 449 

strategies. We anticipate that the new GNPS community infrastructure will incentivize moving 450 
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raw EI data into the public domain for data reuse, comparable to the trajectory for tandem 451 

MS7,75,76. GC-MS analysis within GNPS/MassIVE will lower the expertise threshold required 452 

for analysis, encourage FAIR practices27 through reusable deposition of the data in the public 453 

domain, and promote data analysis reproducibility and “recycling” of GC-MS data. Finally, 454 

this work is a piece of the puzzle to democratize scientific analysis from all over the world. 455 

GC-MS the most widely used MS method, in part due to its competitive operational cost. It is 456 

often the only mass spectrometry method available at smaller, e.g. undergraduate 457 

institutions, non-metabolomics laboratories, or local testing facilities. The proposed 458 

infrastructure will enable labs with fewer resources, including those from developing 459 

countries, to have free access to data and reference data in a uniform format, and to free, 460 

powerful computing infrastructures.  461 

 462 

Data and code availability 463 

All of the data used in preparation of this manuscript are publicly available at the MassIVE 464 

repository at the UCSD Center for Computational Mass Spectrometry website 465 

(https://massive.ucsd.edu). The dataset accession numbers are: #1 (MSV000084033), #2 466 

(MSV000084033), #3 (MSV000084034), #4 (MSV000084036), #5 (MSV000084032), #6 467 

(MSV000084038), #7 (MSV000084042), #8 (MSV000084039), #9 (MSV000084040), #10 468 

(MSV000084037), #11 (MSV000084211), #12 (MSV000083598), #13 (MSV000080892), #14 469 

(MSV000080892), #15 (MSV000080892), #16 (MSV000084337), #17 (MSV000083658), #18 470 

(MSV000083743), #19 (MSV000084226), #20 (MSV000083859), #21 (MSV000083294), #22 471 

(MSV000084349), #23 (MSV000081340), #24 (MSV000084348), #25 (MSV000084378), #26 472 

(MSV000084338), #27 (MSV000084339), #28 (MSV000081161), #29 (MSV000084350), #30 473 

(MSV000084377), #31 (MSV000084145), #32 (MSV000084144), #33 (MSV000084146), #34 474 

(MSV000084379), #35 (MSV000084380), #36 (MSV000084276), #37 (MSV000084277), #38 475 

(MSV000084212). 476 

All of the GNPS analysis jobs for all of the studies are summarized in Table S1. 477 

The source code of the MSHub software is available online at Github (version used in GNPS) 478 

(https://github.com/CCMS-UCSD/GNPS_Workflows/tree/master/mshub-gc/tools/mshub-479 

gc/proc) and at BitBucket (standalone version in MSHub developers’ repository: 480 

https://bitbucket.org/iAnalytica/mshub_process/src/master/ ). Scripts used to parse, filter, 481 

organize data and generate the plots in the manuscript are available online at Github 482 

(https://github.com/bittremieux/GNPS_GC_fig). Script for merging individual .mgf files into a 483 

single file for creating global network is available at Github: 484 

https://github.com/bittremieux/GNPS_GC/blob/master/src/merge_mgf.py ) 485 

The 3D model, feature table with coordinates used for the mapping and snapshots shown on 486 

the Figure 4a-d are available at: https://github.com/aaksenov1/Human-volatilome-3D-487 

mapping- 488 

 489 

Methods: These are provided as supporting information. The tools are accessible through 490 

gnps.ucsd.edu and the documentation on how to use the GNPS GC-MS Deconvolution 491 

workflow and molecular networking workflows can be found here https://ccms-492 

ucsd.github.io/GNPSDocumentation/gcanalysis/. Representative examples and short “how 493 

to” video can be found here: 494 
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https://www.youtube.com/watch?v=yrru-5nrsdk&feature=youtu.be 495 

https://www.youtube.com/watch?v=MblruOSglgI&feature=youtu.be 496 

https://www.youtube.com/watch?v=iX03r_mGi2Q&feature=youtu.be 497 

https://www.youtube.com/watch?v=mv-fw2zSgss&feature=youtu.be 498 

https://www.youtube.com/watch?v=nUhCZ9LwoM4&feature=youtu.be 499 

https://www.youtube.com/watch?v=_PehOiBqzzY&feature=youtu.be 500 
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