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Abstract  46 

Objectives: To investigate the degree by which the inherited susceptibility to obesity is modified 47 

by environmental factors during childhood and adolescence. 48 

Design: Cohort study with repeated measurements of diet, lifestyle factors and anthropometry. 49 

Setting: The pan-European IDEFICS/I.Family cohort 50 

Participants: 8,609 repeated observations from 3,098 children aged 2 to 16 years, examined 51 

between 2007 and 2014. 52 

Main outcome measures: Body mass index (BMI) and waist circumference. Genome-wide 53 

polygenic risk scores (PRS) to capture the inherited susceptibility of obesity were calculated 54 

using summary statistics from independent genome-wide association studies of BMI. Gene-55 

environment interactions of the PRS with sociodemographic (European region, socioeconomic 56 

status) and lifestyle factors (diet, screen time, physical activity) were estimated. 57 

Results: The PRS was strongly associated with BMI (r2 = 0.11, p-value = 7.9 x 10-81) and waist 58 

circumference (r2 = 0.09, p-value = 1.8 x 10-71) in our cohort. The associations with BMI 59 

increased from r2=0.03 in 3-year olds to r2=0.18 in 14-year olds and associations with waist 60 

circumference from r2=0.03 to r2=0.14. Being in the top decile of the PRS distribution was 61 

associated with 3.63 times higher odds for obesity (95% confidence interval (CI): [2.57, 5.14]). 62 

We observed significant interactions with demographic and lifestyle factors for BMI as well as 63 

waist circumference. The risk of becoming obese among those with higher genetic 64 

susceptibility was ~38% higher in children from Southern Europe (BMI: p-interaction = 0.0066, 65 

Central vs. Southern Europe) and ~61% higher in children with a low parental education (BMI: 66 

p-interaction = 0.0012, low vs. high). Furthermore, the risk was attenuated by a higher intake 67 

of dietary fiber (BMI: p-interaction=0.0082) and shorter screen times (BMI: p-68 

interaction=0.018). 69 

Conclusions: Our results highlight that a healthy childhood environment might partly offset a 70 

genetic predisposition to obesity during childhood and adolescence. 71 

 72 
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Introduction  76 

Obesity is a complex multifaceted condition and its prevalence has been increasing 77 

continuously over previous decades and has reached a high plateau in Western countries [1]. 78 

In 2015, a total of 107.7 million children and 603.7 million adults were obese. Although the 79 

prevalence of obesity among children has been lower than that among adults, the rate of 80 

increase in childhood obesity has been greater than the rate of increase in adult obesity, which 81 

is most likely due to adverse changes of environmental and demographic factors with a direct 82 

impact on children’s health [2].  83 

With the advent of genome-wide association studies (GWAS), it was shown that multiple 84 

genetic loci increase the susceptibility to obesity [3,4]. However, genome-wide significant 85 

variants identified in the first large-scale GWAS on body mass index (BMI) only account for a 86 

small portion of BMI variation (~2.7%) [3]. A more recent genome-wide meta-analysis extended 87 

the number of individuals from ~300,000 [3] to ∼700,000 [4], which consequently increased 88 

the number of genome-wide significant SNPs from 97 to 751. Even these 751 genome-wide 89 

significant SNPs account for only ∼6.0% of the variance of BMI [4]. However, genome-wide 90 

estimates suggest that common variation accounts for >20% of BMI variation [3], which 91 

highlights the polygenic architecture of BMI. More recently, whole genome data even increased 92 

the fraction of variance of BMI accounted for by genetic variants, both common and rare, to 93 

40% [5]. From twin studies we know that the heritability of BMI also depends on socioeconomic 94 

status [6] and physical activity [7], suggesting that when socioeconomic status or physical 95 

activity is high, genetic factors become less influential. Using candidate SNPs - either single 96 

genotypes or <100 SNPs combined in a polygenic risk score (PRS), which is defined as a 97 

weighted sum of BMI-related risk alleles - it was further shown that the genetic predisposition 98 

to obesity is attenuated by a healthy lifestyle including physical activity [8,9] and adherence to 99 

healthy dietary patterns [9–15]. However, most previous gene-environment (GxE) interaction 100 

studies primarily involved adults [8–15] or used only a candidate SNP [16], so that it is unknown 101 

whether the inherited susceptibility to obesity is modified by environmental factors already 102 
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during childhood and adolescence. Another limitation of previous gene-environment 103 

interaction analyses is that they were based on <100 SNPs that reached genome-wide 104 

significance in previous GWAS on BMI [3], which do not capture the whole polygenic risk profile 105 

of obesity due to their low heritability. Khera et al. suggested that the power to predict BMI by 106 

PRS can be improved by using lower p-value thresholds or even genome-wide approaches 107 

[17]. Using a genome-wide polygenic risk score based on effect estimates from [3], Khera et 108 

al. reported that the PRS-effect on weight and BMI z-scores emerges early in life and increases 109 

until adulthood and that a high PRS is a strong risk factor for severe obesity and associated 110 

diseases [17]. The authors suggested that given that the weight trajectories of individuals in 111 

different PRS deciles start to diverge early in childhood, targeted strategies for obesity 112 

prevention may have maximal effect when employed early in life. However, because lifestyle 113 

factors were not considered in their study, it is not known to which degree the genetic 114 

predisposition to obesity is modifiable by a healthy lifestyle early in life. Another limitation of 115 

[17] is the use of weight and BMI as only proxies for obesity. Since several studies have shown 116 

that classifying obesity using BMI alone misses an increasing proportion of individuals 117 

categorized as obese [18,19], it is important to test the performance of BMI-PRS for the 118 

prediction of waist circumference, which is proposed to be a better proxy for obesity-associated 119 

metabolic abnormalities [20]. 120 

In this study, 1) we show the prediction capacity of the PRS proposed in [17] for BMI as well 121 

as for waist circumference of European children and adolescents and 2) analyze its interaction 122 

with parental education, region of residence, selected dietary variables and physical activity to 123 

investigate to which degree the inherited susceptibility to obesity in children is modified by 124 

these sociodemographic and lifestyle factors. The analyses are based on 8,609 repeated 125 

observations from 3,098 children and adolescents aged 2 to 16 years from the pan-European 126 

IDEFICS/I.Family cohort. 127 

 128 
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Methods 129 

Study Population 130 

The pan-European IDEFICS/I.Family cohort [21,22] is a multi-center, prospective study on the 131 

association of social, environmental and behavioral factors with children’s health status. 132 

Children were recruited through kindergarten or school settings in Belgium, Cyprus, Estonia, 133 

Germany, Hungary, Italy, Spain and Sweden. In 2007/2008, 16,229 children aged between 2 134 

and 9.9 years participated in the baseline survey. Follow-up surveys were conducted after two 135 

(FU1, N = 11,043 plus 2,543 newcomers) and six years (FU2, N = 7,117 plus 2,512 newly 136 

recruited siblings). Physical examinations covered a broad spectrum of parameters according 137 

to a detailed and standardized study protocol. Questionnaires were completed by parents for 138 

children younger than 12 years. In the second follow-up (FU2), adolescents of 12 years of age 139 

or older reported for themselves. All questionnaires were developed in English and translated 140 

into local languages. The quality of translations was checked by back translation into English. 141 

The study was conducted in agreement with the Declaration of Helsinki; all procedures were 142 

approved by the local ethics committees and written and oral informed consents were obtained 143 

from the parents, their children and adolescents, respectively, as applicable. Children were 144 

selected for a whole-genome scan based on their participation in the individual study modules. 145 

Children from Cyprus were not included in this initial genotyping to minimize population 146 

stratification.  147 

 148 

Assessment of BMI and Waist Circumference  149 

BMI was calculated as weight divided by height squared [kg/m²]. Height was measured to the 150 

nearest 0.1 cm by a SECA 225 Stadiometer (Seca GmbH & Co. KG., Hamburg, Germany) and 151 

body weight was measured in fasting state in light underwear on a calibrated scale accurate 152 

to 0.1 kg by a Tanita BC 420 SMA scale (TANITA, Tokyo, Japan). Waist circumference was 153 
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measured in upright position with relaxed abdomen and feet together using an inelastic tape 154 

(Seca 200, Birmingham, UK), precision 0.1 cm, midway between the iliac crest and the lowest 155 

rib margin to the nearest 0.1 cm [23]. Age- and sex-specific BMI and waist circumference z-156 

scores for children and adolescents were calculated using reference data from the 157 

International Obesity Task Force [24] and from British children [25], respectively. 158 

 159 

Genotyping and Quality Control 160 

DNA was extracted from saliva or blood samples using established procedures. Genotyping 161 

of 3,515 children was performed on the UK Biobank Axiom array (Santa Clara, USA) in two 162 

batches (2015 and 2017). Following the recommendations of [26], sample and genotype 163 

quality control measures were applied (see supplementary materials for details), resulting in 164 

3,099 children and 3,424,677 genotypes after imputation. A genetic relatedness matrix was 165 

calculated to account for the degree of relatedness within the study sample and to adjust for 166 

population stratification [27,28] by using the program EMMAX 167 

(https://genome.sph.umich.edu/wiki/EMMAX). 168 

 169 

Polygenic Risk Score Calculation 170 

We calculated PRS based on genome-wide summary statistics for BMI from European 171 

ancestry populations. The PRS (called PRS-Khera) was proposed in [17]. It consists of 172 

2,100,302 SNPs and is based on summary statistics from the first large-scale GWAS of BMI 173 

(~300,000 samples) [3]. PRS-Khera was calculated in [17] using a computational algorithm 174 

called LDPred, which is a Bayesian approach to calculate a posterior mean effect for all 175 

variants using external weights with subsequent shrinkage based on linkage disequilibrium 176 

[29]. Using LDPred, each variant was reweighted according to the prior GWAS [3], the degree 177 
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of correlation between a variant and others nearby, and a tuning parameter that denotes the 178 

proportion of variants with non-zero effect.  179 

In sensitivity analyses, the performance of PRS-Khera was compared to the PRS calculated 180 

with PRSice [30] and the PRS based on only genome-wide significant SNPs from two 181 

reference populations (same reference population as for PRS-Khera (~300,000 samples) [3] 182 

and the largest published GWAS study of BMI to date (~700,000 samples) [4]). More details 183 

on the different PRS are given in the supplementary methods and Figures S1 to S3. 184 

 185 

Assessment of Dietary Intake 186 

We used long-term and short-term dietary measurements assessed by food frequency 187 

questionnaires (FFQs) and repeated 24 hour dietary recalls, respectively [31]. A fruit and 188 

vegetable score was calculated from FFQs (for more details on the FFQs and calculation of 189 

the fruit and vegetable score, see supplemental material). We expressed the fruit and 190 

vegetable consumption as the relative frequency in relation to all foods reported in the FFQs 191 

[32]. The FFQs were self-reported by adolescents 12 years and older and proxy-reported by a 192 

parent or other caregiver for children below the age of 12 years.  193 

Energy and dietary fiber intake were assessed by repeated 24 hour dietary recalls [33,34]. 194 

Usual intakes for fiber were estimated based on the validated National Cancer Institute (NCI) 195 

method, which is one of the most widely accepted methods for this purpose [35,36]. This 196 

method allows for the inclusion of covariates such as age and accounts for different intakes on 197 

weekend days vs. weekdays, and further corrects for the day-to-day variation in energy and 198 

fiber intakes. Usual intakes were estimated for each child stratified by sex and considering age 199 

as a covariate. Fiber intake was here expressed in relation to total energy intake in mg/kcal. 200 

See supplemental material for more details. 201 

 202 
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Assessment of Physical Activity 203 

Physical activity was objectively measured by using Actigraph's uniaxial or three-axial 204 

accelerometers [37,38]. At baseline and FU1, children were asked to wear the accelerometer 205 

for three days (including one weekend day) and at FU2 for a full week during waking hours 206 

(except when swimming or showering). The accelerometers were attached to the right hip with 207 

an elastic belt. Participants (either the parents or the adolescents themselves) were given 208 

written instructions on how to use the accelerometer and were asked to complete diaries to 209 

record non-wear times of the device. The daily average cumulative duration of time spent in 210 

moderate-to-vigorous physical activity (MVPA) was expressed as minutes per day according 211 

to previously defined cut-off values [39]. Especially for children, accelerometer measurements 212 

are far less prone to measurement errors than self-reported activities through questionnaires 213 

[40,41]. See supplementary material for more details. 214 

 215 

Assessment of Screen Time 216 

Screen time was assessed by asking how many hours per day the child/adolescent usually 217 

spends watching television (including videos or DVDs) and by another question on the time 218 

sitting in front of a computer and game console [42,43]. Responses were weighted and 219 

summed across weekdays and weekend days and the quantified frequencies from both 220 

questions were added to create a continuous variable of total screen time in hours per day. 221 

Parents reported for children younger than 12 years, while older children (≥ 12 years) reported 222 

for themselves. See supplemental material for more details. 223 

 224 

Assessment of Sociodemographic Variables 225 

Parental education was retrieved from questionnaires and coded according to the International 226 

Standard Classification of Education (ISCED) [44]. For the analyses, the highest parental 227 

education of both parents was coded as low (ISCED levels 1 and 2; ≤9 years of education), 228 
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medium (ISCED levels 3 and 4) and high (ISCED levels 5 and 6; ≥2 years of education after 229 

high school). The region of residence was coded as Northern Europe (Estonia, Sweden), 230 

Central Europe (Belgium, Germany, and Hungary) and Southern Europe (Italy, Spain). 231 

 232 

Statistical Analyses 233 

Our data consist of up to three repeated measurements of individuals, some of which were 234 

siblings. We used generalized linear mixed models where the covariance matrix of the random 235 

intercept is proportional to a genetic relatedness matrix. We applied the generalized linear 236 

mixed model approach of Chen et al. [27] that jointly controls for relatedness and population 237 

stratification. All models were adjusted for sex, age, region of residence and parental 238 

education. All models that did not include fiber intake were additionally adjusted for the 239 

vegetable score. When testing associations with categorical variables (sex, region of residence 240 

and parental education), we used the category with the largest sample size as reference 241 

category. 242 

All p-values from the gene-environment interaction analyses were adjusted according to the 243 

number of tested environmental factors using the false-discovery rate (FDR). We reported 95% 244 

confidence intervals (95% CI) and two-sided p-values, and considered p-values less than 0.05 245 

statistically significant. We used R 3.5.1 [45] for all statistical analyses.  246 

 247 

Results 248 

The study sample included 8,609 repeated BMI measurements from at maximum three time 249 

points (baseline, FU1, FU2) of 3,098 children aged 2 to 16 years (Table 1). The number of 250 

participants decreased only slightly between the follow-up investigations from n = 3,016 at 251 

baseline (mean age 6 years) to n = 2,656 at FU2 (mean age 12 years). Half of the children 252 
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were girls, most children came from families with a medium or high level of education and the 253 

majority lived in Central European countries. The distributions of the dietary variables 254 

(vegetable score and fiber intake) and time spent in MVPA were similar between baseline and 255 

the two follow-up samples, whereas children and adolescents spent more time in front of 256 

screens at FU1 and FU2 as compared to baseline. On average, BMI and waist circumference 257 

of our analysis group were higher than in the reference populations [24,25] (mean z-scores > 258 

0). 259 

We found that the PRS-Khera provided the best prediction of BMI (see Table S1 for details on 260 

the characteristics of the other PRS). PRS-Khera was strongly associated with BMI (r2 = 0.11, 261 

p-value = 7.9 x 10-81) and waist circumference (r2 = 0.09, 1.8 x 10-71) in our study population 262 

(Table 2). Being in the top decile of the distribution of PRS-Khera was associated with 3.63 263 

times higher odds for obesity (95% CI: [2.57, 5.14]) and with 3.09 (95% CI: [2.37, 4.03]) higher 264 

odds for being in the top quartile of waist circumference.  265 

The correlation between PRS-Khera and BMI increased along the age range, from a squared 266 

correlation with BMI of r2 = 0.02 [0.01, 0.12] in the 2-year olds to r2 = 0.18 [0.11, 0.27] in the 267 

14-year olds (Figure 1 and Table S2). Similar trends were found for waist circumference, for 268 

which the squared correlation with PRS-Khera was r2 = 0.03 [0.01, 0.07] in 3-year olds and r2 269 

= 0.14 [0.08, 0.22] in 14-year olds (Figure 1 and Table S2). This increase of correlation by age 270 

group was confirmed in our sensitivity analyses using other genome-wide PRS (Figure S4 and 271 

Table S3). 272 

We found a significant gene-environment interaction of PRS-Khera with parental education 273 

(low vs. high) as well as with the European region of residence (Central vs. Southern) for BMI 274 

as well as for waist circumference (Figure 2, Tables S4). Children and adolescents from 275 

families with a low level of education were at a higher risk of becoming obese among those 276 

with higher genetic susceptibility than children from families with a high level of education (low: 277 

beta estimate from education-stratified analysis for association between PRS-Khera and BMI 278 
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= 0.48; 95% CI: [0.38, 0.59], high: beta estimate = 0.30; 95% CI: [0.26, 0.34], adjusted p-value 279 

interaction = 0.0106, Figure 2 and Table S4). Furthermore, children and adolescents from 280 

Southern European countries showed an increased genetic susceptibility to a high BMI in 281 

comparison to children and adolescents from Central Europe (Central Europeans: beta 282 

estimate from region-stratified analysis for association between PRS-Khera and BMI = 0.29; 283 

95% CI: [0.23, 0.34], Southern Europeans: beta estimate = 0.40; 95% CI: [0.34, 0.45], adjusted 284 

p-value interaction = 0.0246, Figure 2 and Table S4). Interactions were confirmed in our 285 

sensitivity analyses using other genome-wide PRS (Figure S5). We did not find significant 286 

interactions between PRS-Khera and sex, the comparison of low vs. medium parental 287 

education, nor the comparison of Central vs. Northern European region of residence (Figure 288 

2, Table S4). 289 

The genetic susceptibility to a high BMI was further modified by intake of dietary fiber and 290 

screen time (Figure 3, Tables S4). Children and adolescents with a higher fiber intake showed 291 

an attenuated risk of becoming obese despite their genetic susceptibility (adjusted p-values 292 

for interaction: 0.025 for BMI and 0.023 for waist circumference). Furthermore, the more time 293 

the children and adolescents spent in front of screens, the higher was their risk of becoming 294 

obese among those with higher genetic susceptibility (adjusted p-value interaction = 0.042). 295 

Interactions between PRS-Khera and the fruit and vegetable score or MVPA were not 296 

significant. 297 

 298 

Discussion 299 

In our pan-European cohort of children aged 2 to 16 years, we found a strong association of a 300 

polygenic risk score of obesity with BMI as well as with waist circumference and this 301 

association increased by age. We observed a prediction r2 of 18% in 14-year olds, which is 302 

even higher than in the original study containing mainly adults [4]. We further found significant 303 

interactions with socioeconomic and behavioral factors for BMI as well as waist circumference: 304 
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we observed gene-environment interactions with (1) the European region of residence, which 305 

most likely reflect cultural lifestyle differences, (2) education, (3) dietary fiber intake and (4) the 306 

time children spent in front of screens. Of note, all of these interactions would have remained 307 

undetected in this sample of children when only focusing on genome-wide significant variants 308 

as was done in previous studies (compare Figures S5 and S6) [8–15]. 309 

 310 

Comparison with Previous Studies  311 

Although obesity is known to be highly polygenic, most previous gene-environment interaction 312 

analyses focused on <100 genome-wide significant variants that account for <3% of BMI 313 

variation. In this study we used a genome-wide PRS proposed in [17], which provides a more 314 

comprehensive measurement of the inherited susceptibility to obesity. Using this PRS (called 315 

PRS-Khera), we observed a prediction r2 of 10.8% for BMI, which is almost 5 times higher than 316 

the prediction accuracy obtained using the <100 genome-wide significant SNPs from the 317 

~300,000 samples in [3] and twice the prediction accuracy obtained using the <1,000 genome-318 

wide significant SNPs from the ~700,000 samples in [4] (Table S1). PRS-Khera reached a 319 

similar prediction accuracy for BMI than it has been reported from large-scale PRS in previous 320 

studies (~10.2% using the summary statistics from the ~700,000 samples and a p-value 321 

threshold of 10-3 (6,781 SNPs) [4] and ~8.5% [17] using a genome-wide PRS from the 322 

~300,000 samples in [3]).  323 

Of note, in our study, the prediction accuracy of the PRS strongly depended on age, reaching 324 

a prediction r2 of 18% in 14-year olds, which is in accordance with Khera et al. who showed 325 

that the association between the PRS and weight emerges early in life and increases into 326 

adulthood [17]. This surprisingly high prediction accuracy in adolescents from our study might 327 

be explained by the age difference between our study and the GIANT Consortium / UK 328 

Biobank, which was used in [4]. The GIANT Consortium / UK Biobank included mainly adults, 329 

whereas we analyzed data from children aged 2 to 16 years. In contrast to the positive 330 

correlation between age and prediction accuracy during childhood shown in this manuscript as 331 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125


  

15 

 

well as in previous studies [17,46], a weak negative correlation could be observed in adults 332 

>45 years of age from the UK Biobank, an age group in which aging-related diseases become 333 

more prevalent (Table S3 in [17]). Therefore, we hypothesize that the highest prediction 334 

accuracy of the PRS for BMI might be reached in adolescents and young adults.  335 

In our study, we found significant interactions between PRS-Khera and sociodemographic as 336 

well as lifestyle factors for BMI and waist circumference. Interactions with socioeconomic 337 

status [9], physical activity [8,9], and dietary factors [9–15] have been reported previously. 338 

However, all of these studies included only <100 genome-wide significant SNPs (e.g. from [3]). 339 

By using a genome-wide PRS we were able to detect interactions with sociodemographic and 340 

with lifestyle factors which would have remained undetected when using only genome-wide 341 

significant SNPs (Figures S5 and S6).  342 

Furthermore, previous GxE interaction studies [8–15] were mainly based on adults whereas in 343 

our study we analyzed data from children aged 2 to 16 years. Therefore, our results provide 344 

new insights about how a healthy childhood environment might partly offset a genetic 345 

predisposition to obesity during childhood and adolescence. In our study, we identified children 346 

from families with low levels of education as being about 61% more susceptible to the 347 

polygenic burden of obesity than children from families with a high level of education. In 348 

addition, we found that children from Southern Europe had a higher genetic susceptibility to 349 

obesity in comparison to children from Central Europe. Parental education and region of 350 

residence reflect a variety of social and cultural differences and many of them are difficult to 351 

capture by questionnaires. Since a previous analysis of the same cohort showed that low 352 

parental education was associated with higher intakes of unhealthy food among children, e.g. 353 

sugar-rich and fatty foods [47,48], part of the effect modification might be due to dietary habits. 354 

The differences in the risk of becoming obese among children with a higher genetic 355 

susceptibility across different European regions might be explained by differences in dietary or 356 

cultural habits [49,50]. 357 
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Furthermore, we found an interaction between PRS-Khera and intake of fiber, with children 358 

with a higher intake of fiber having a reduced risk for obesity despite their genetic susceptibility. 359 

This finding is in line with many other studies that have shown that a healthy diet can attenuate 360 

the genetic burden of obesity [9–15]. Interactions between PRS-Khera and physical activity 361 

(MVPA) were not significant, but the direction of interaction effect was in line with previous 362 

studies [8,9]. An explanation for this might be that MVPA was only assessed in ~40% of our 363 

analysis group (Table 1), which reduced the statistical power to detect interactions between 364 

MVPA and PRS. 365 

 366 

Strengths and Limitations of this Study 367 

Important strengths of this study include: detailed and repeated phenotyping of participants in 368 

this cohort with partly objective measures (MVPA), inclusion of thousands of children from 369 

diverse regions in Europe and the longitudinal approach across key developmental periods 370 

[22]. Dietary assessment in children is a challenging task [51], and different dietary assessment 371 

have different strengths and limitations. We used two different dietary assessment methods – 372 

a fruit and vegetable score derived from FFQs and fiber intake calculated from the more 373 

detailed 24-hour dietary recalls. The harmonized protocol in all countries that was enforced by 374 

a central quality control and a central data management ensures comparability of 375 

measurements across study centers. Another major strength of our study is the application of 376 

genome-wide PRS for obesity, which has an almost 5 times higher prediction accuracy than 377 

previously used PRS [9–15] and with which we identified interactions that would have 378 

remained undetected when only focusing on genome-wide significant variants (compare 379 

Figures S5 and S6).  380 

Our study also has several limitations. First, measurement errors of self-reported lifestyle 381 

behaviors are inevitable. However, measurement error in environmental exposure typically 382 

biases the interaction effect toward the null [52], which does not increase the risk for false 383 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125


  

17 

 

positive findings but reduces the statistical power to detect subtle interactions. Second, the 384 

use of PRS derived from associations with BMI in the analyses of waist circumference led to 385 

slightly lower prediction accuracy for waist circumference than for BMI. However, since PRS-386 

Khera is known to be a strong risk factor for severe obesity and associated health outcomes 387 

[17], we decided to use this PRS for both obesity measurements.  388 

 389 

Conclusions 390 

Our study showed significant interactions between the polygenic risk for an increased BMI and 391 

sociodemographic and behavioral factors that affect BMI as well as waist circumference. 392 

Among children with a high genetic risk, we identified children from Southern Europe, children 393 

from families with a low level of education, children with a low intake of fiber and children who 394 

spend more time in front of screens as being particularly susceptible to obesity. These results 395 

provide evidence that the risk for obesity among children with a high genetic susceptibility 396 

varies by environmental and sociodemographic factors during childhood. This has important 397 

implications for future public health prevention efforts, because it suggests that children at a 398 

high genetic risk may benefit even more from prevention measures than children with a low 399 

genetic risk. 400 
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Tables 
 
Table 1. Study characteristics of the 8,609 repeated observations from 3,098 children. 

 Baseline First follow-up 
(FU1) 

Second follow-up 
(FU2) 

n 3016 2937 2656 
Age (years)    

Mean (SD) 6.19 (1.77) 8.12 (1.80) 11.75 (1.83) 
Median (IQR) 6.60 (3.10) 8.50 (3.20) 11.90 (3.20) 

Range 2.0-9.7 3.4-11.9 6.6-16.2 
Sex    

Female (%) 1510 (50.07) 1472 (50.12) 1331 (50.11) 
Male (%) 1506 (49.93) 1465 (49.88) 1325 (49.89) 

Parental education    
Low (%) 180 (5.97) 166 (5.65) 156 (5.87) 

Medium (%) 1337 (44.33) 1204 (40.99) 1172 (44.13) 
High (%) 1463 (48.51) 1476 (50.26) 1310 (49.32) 

European region of residence    
Central (%) 1250 (41.45) 1218 (41.47) 1114 (41.94) 

North (%) 743 (24.64) 721 (24.55) 682 (25.68) 
South (%) 1023 (33.92) 998 (33.98) 860 (32.38) 

Fruit and vegetable score (%)    
Mean (SD) 1.47 (0.75) 1.54 (0.80) 1.47 (0.78) 

Median (IQR) 1.38 (0.96) 1.47 (1.02) 1.37 (0.97) 
Range 0.00-5.71 0.00-5.83 0.00-6.07 

Missing 58 154 106 
Fiber intake (mg/kcal)    

Mean (SD) 8.17 (1.31) 8.23 (0.90) 8.22 (1.27) 
Median (IQR) 8.13 (1.79) 8.13 (1.48) 8.07 (1.61) 

Range 3.87-15.76 5.76-11.56 4.74-13.89 
Missing 826 1100 660 

MVPA (hours/day)    
Mean (SD) 0.67 (0.36) 0.67 (0.36) 0.64 (0.37) 

Median (IQR) 0.61 (0.46) 0.62 (0.47) 0.57 (0.47) 
Range 0.02-2.29 0.03-2.74 0.00-2.42 

Missing 1240 1297 871 
Screen time (hours/day)    

Mean (SD) 1.60 (1.00) 1.89 (1.08) 2.34 (1.50) 
Median (IQR) 1.50 (1.07) 1.75 (1.43) 2.02 (1.79) 

Range 0.00-8.00 0.00-8.00 0.00-8.00 
Missing 93 132 150 

BMI z-scores    
Mean (SD) 0.34 (1.16) 0.41 (1.18) 0.51 (1.12) 

Median (IQR) 0.23 (1.48) 0.32 (1.67) 0.45 (1.62) 
Range -5.42-5.80 -5.76-4.65 -2.96-3.83 
Obese 204 214 179 

Waist circumference z-scores    
Mean (SD) 0.24 (1.45) 0.59 (1.29) 0.78 (1.25) 

Median (IQR) 0.16 (1.61) 0.46 (1.72) 0.71 (1.77) 
Range -27.98-5.65 -6.79-5.33 -7.75-4.38 

Top quartile 461 443 316 
Missing 76 22 55 

Z-scores for BMI and waist circumference were calculated according to [24,25]. Boys with a BMI z-
score > 2.29 and girls with a BMI z-score > 2.19 were defined as obese [24,25]. 
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Table 2. Associations of PRS-Khera with BMI, obesity and waist circumference in IDEFICS/I.Family. 

A) BMI 

 BMI Obesity 

Scale of PRS Est., 95% CI p-value R² OR, 95% CI p-value AUC 

Continuous  0.33 [0.30, 0.37] 7.9e-81 0.108 2.33 [2.01, 2.70]  2.0e-29  0.736 

Top decile  0.61 [0.49, 0.73] 5.4e-24 0.036 3.63 [2.57, 5.14] 2.7e-13 0.598 

 

B) Waist circumference 

 Waist circumference Waist top quartile 

Scale of PRS Est., 95% CI p-value R² OR, 95% CI p-value AUC 

Continuous 0.36 [0.32, 0.40] 1.8e-71 0.088 1.97 [1.78,2.17] 1.5e-40 0.683 

Top decile 0.69 [0.55, 0.82] 8.8e-24 0.032 3.09 [2.37,4.03] 6.1e-17 0.569 

Associations adjusted for region of residence, sex, age, parental education, vegetable score. Z-scores for BMI and waist circumference were 
calculated according to [24,25]. Boys with a BMI z-score > 2.29 and girls with a BMI z-score > 2.19 were defined as obese [24,25].  
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Figure Legends 

Figure 1. Squared correlation (r2 with 95% confidence intervals) of PRS-Khera with BMI and 
waist circumference in dependence of age. Squared correlations could not be calculated for 
≥15-year old children due to the small sample size in these age groups (see Tables S1 & S2). 
Waist circumference was not measured in 2-year old children. 
 
Figure 2. Interactions between PRS-Khera and sociodemographic factors on BMI and waist 
circumference. Associations between PRS and BMI / waist circumference are shown in different 
strata (beta estimates and 95% CIs) as well as in the whole study population (red line). Raw p-
values (pr) and FDR-adjusted p-values (pa) are given for the test of deviations of the association 
between PRS and obesity in one subgroup in comparison to the reference category (interaction). 
The category without p-values is the reference category.  
 
Figure 3. Interactions between PRS-Khera and lifestyle factors on BMI and waist 
circumference. Associations between PRS and obesity are shown in dependence of the PRS 
(beta estimates and 95% CIs) as well as in the whole study population (red line). The distributions 
of the lifestyle factors are shown in histograms. Raw p-values (pr) and FDR-adjusted p-values (pa) 
are given for the interaction terms. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125


BMI Waist circumference

2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.1

0.2

Age

S
qu

ar
ed

 c
or

re
la

tio
n 

(r
2 )

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125


●
●

pr = 0.6748
pa = 0.7592

0.0

0.2

0.4

0.6

Male Female
Sex

E
st

. c
oe

f. 
P

R
S

 o
n 

B
M

I

●

●

●

●

pr = 0.0012
pa = 0.0106

pr = 0.0645
pa = 0.1160

0.0

0.2

0.4

0.6

L1 L2 L3
Parental education

●

●

●

●

pr = 0.4779
pa = 0.7169

pr = 0.0066
pa = 0.0246

0.0

0.2

0.4

0.6

Central North South
Region

A) BMI

●

●

pr = 0.3842
pa = 0.4940

0.0

0.2

0.4

0.6

Male Female
Sex

E
st

. c
oe

f. 
P

R
S

 o
n 

W
ai

st

●

●

●

●

pr = 0.0051
pa = 0.0232

pr = 0.2579
pa = 0.3869

0.0

0.2

0.4

0.6

L1 L2 L3
Parental education

●

●

●

●

pr = 0.0471
pa = 0.1059

pr = 0.0380
pa = 0.1059

0.0

0.2

0.4

0.6

Central North South
Region

B) Waist cir cumf erence

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125


pr = 0.9058
pa = 0.9058

0.0

0.2

0.4

0.6

0 2 4 6
Fruit and veg. score (%)

E
st

. c
oe

f. 
P

R
S

 o
n 

B
M

I

pr = 0.0082
pa = 0.0246

0.0

0.2

0.4

0.6

4 8 12 16
Fiber (mg/kcal)

pr = 0.6079
pa = 0.7592

0.0

0.2

0.4

0.6

0 1 2
MVPA (hours/day)

pr = 0.0185
pa = 0.0416

0.0

0.2

0.4

0.6

0 2 4 6 8
Screentime (hours/day)

A) BMI

pr = 0.7792
pa = 0.7792

0.0

0.2

0.4

0.6

0 2 4 6
Fruit and veg. score (%)

E
st

. c
oe

f. 
P

R
S

 o
n 

W
ai

st

pr = 0.0040
pa = 0.0232

0.0

0.2

0.4

0.6

4 8 12 16
Fiber (mg/kcal)

pr = 0.2014
pa = 0.3625

0.0

0.2

0.4

0.6

0 1 2
MVPA (hours/day)

pr = 0.6391
pa = 0.7190

0.0

0.2

0.4

0.6

0 2 4 6 8
Screentime (hours/day)

B) Waist circumference

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905125

