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Abstract 
 
In Parkinson’s disease (PD), gastrointestinal features are common and often precede the motor 

signs.  Braak and colleagues proposed that PD may start in the gut, triggered by a pathogen, 

and spread to the brain.  Numerous studies have examined the gut microbiome in PD, all found 

it to be altered, but found inconsistent results on associated microorganisms. Studies to date 

have been small (N=20 to 306) and are difficult to compare or combine due to varied 

methodology. We conducted a microbiome-wide association study (MWAS) with two large 

datasets for internal replication (N=333 and 507). We used uniform methodology when possible, 

interrogated confounders, and applied two statistical tests for concordance, followed by 

correlation network analysis to infer interactions. Fifteen genera were associated with PD at a 

microbiome-wide significance level, in both datasets, with both methods, with or without 

covariate adjustment.  The associations were not independent, rather represented 3 clusters of 

co-occurring microorganisms. Cluster 1 was composed of opportunistic pathogens; all were 

elevated in PD. Cluster 2 were short-chain-fatty-acid producing bacteria; all were reduced in PD. 

Cluster 3 were carbohydrate-metabolizing probiotics; elevated in PD.  Depletion of anti-

inflammatory short-chain-fatty-acid producing bacteria and elevated levels of probiotics are 

confirmatory.  Overabundance of opportunistic pathogens is a novel finding and their identity 

provides a lead to experimentally test their role in PD.   

 

Introduction 
 

PD is a common, progressive and debilitating disease which currently cannot be prevented or 

cured. With the exception of rare genetic forms, the cause of PD is unknown.  Many susceptibility 

loci1 and environmental risk factors2 have been identified, but each has a modest effect on risk, 

and none is sufficient to cause disease. Gene-environment interaction studies have not been able 

to identify a causative combination.3-6 The triggers that cause PD are unknown.  

 

The emerging information about the importance of the gut microbiome in human health and 

disease,7 together with the well-established connection between PD and the gut including 

common and early occurrence of constipation,8 inflammation,9 and increased gut membrane 

permeability,10 have raised the possibility that microorganisms in the gut may play a role in PD 

pathogenesis and prompted a fast growing literature on studies conducted in humans and 
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animal models.11-30  Every study that has compared the global composition of the gut 

microbiome in PD vs. controls found it to be significantly altered; in contrast, attempts to identify 

PD-associated microorganisms have produced inconsistent results.31,32 Low reproducibility has 

been attributed to small sample sizes (missing true associations due to low power), relaxed 

statistical thresholds (inflating false positive results), and publishing without a replication dataset 

(required for genomic studies). Differences in methods of DNA extraction, sequencing, 

bioinformatics and statistics can all contribute to inter-study variations. The choice of taxonomic 

resolution for analysis (PD has been tested at all levels from phylum to species) and the 

inconsistent taxonomic assignments and nomenclature used in various reference databases 

add to the confusion when comparing results.  Last but not least, is confounding by 

heterogeneity in the populations that were studied:  PD is heterogenous and so is the 

microbiome. PD subtypes cannot be readily identified thus patient populations are inevitably 

varied. A myriad of factors can affect the microbiome ranging from diet, health and medication 

to cultural habits, life-styles, race and geography.33,34  

 

Identifying microorganisms involved in the dysbiosis of the microbiome is essential for 

understanding their role in disease. We conducted a hypothesis-free microbiome-wide 

association study (MWAS) modeled after and using the standards of rigors that are used in 

genome-wide association studies (GWAS), but with analytic methods that are appropriate for 

the high-dimensionality and compositionality of the microbiome data. We used two datasets to 

allow internal replication.  The sample sizes in prior PD-microbiome studies have ranged from 

10 to 197 PD cases and 10 to 130 controls.32 The largest published study (197 cases and 130 

controls) is the dataset 1 in the present study, re-analyzed here with a more advanced 

bioinformatics pipeline than we previously published.16  In addition, we present an unpublished 

independent dataset with 323 cases of PD and 184 controls, analyzed in parallel to dataset 1.  

Two large data sets allowed for internal replication, and power to detect both rare and common 

signals. We standardized data collection and processing as much as possible across the two 

datasets, and for variations that could not be handled in study design, we used statistical 

techniques to make appropriate adjustments. We used two different statistical tests for MWAS 

and focused only on results that were reproducibly significant across methods and across 

datasets. We employed correlation network analysis to infer interactions among PD-associated 

microorganisms.  We were able to confirm some of the previously reported associations with 

common taxa, and identified novel associations with rare microorganisms that are commensal, 

but can become opportunistic pathogens in immune-compromised hosts.  
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Results 

 
Dramatic difference between datasets 
 

We discovered a remarkable difference between the two datasets, despite efforts to standardize 

data collection and analysis (Figure 1). All subjects lived in the United States. Diagnosis, subject 

selection and data collection were performed by the NeuroGenetics Research Consortium 

(NGRC) investigators at the four NGRC-affiliated movement disorder clinics, using standardized 

methods.  Dataset 1 (212 PD and 136 controls) was collected in Seattle, WA, Albany, NY, and 

Atlanta, GA in 2014. Dataset 2 (323 PD and 184 controls) was collected in Birmingham, AL 

during 2015-2018.  Stool was collected using the same kit, DNA was extracted using the same 

chemistry, and the 16S rRNA gene V4 region was sequenced using the same primers, but in 

different laboratories, resulting in 10x greater sequence depth in dataset 2 than dataset 1.  The 

same pipeline was used on the two datasets to process the sequences and assign taxonomic 

classification. Yet, principal component analysis (PCA)35 revealed the composition of the 

microbiome of the samples to be strikingly different in the two datasets (Figure 1), and the 

difference was statistically significant (P<1E-5, tested using permutational multivariate analysis 

of variance (PERMANOVA)).  The separation of datasets was evident in cases, and in controls, 

in the same pattern. Greater sequence depth in dataset 2 was a significant contributor to this 

disparity, but not the sole explanation because the difference between datasets was still 

significant once sequence depth was adjusted for (PERMANOVA P<1E-5).  For all statistical 

tests (global composition, MWAS, correlations and network analysis), the two datasets were 

analyzed separately, one, for independent validation, and two, to avoid confounding by mixing 

two clearly different datasets.   

 

Metadata and Confounders 
 

Metadata were collected using two self-administered questionnaires and medical records 

(Supplementary Table 1).  An Environmental and Family History Questionnaire4,36 was used to 

collect data relevant to PD.  A Gut Microbiome Questionnaire16 was completed immediately 

after stool collection and gathered data relevant to the microbiome including diet, 

gastrointestinal problems, medical conditions, and use of medications. PD medications that 

subjects were taking at the time of stool collection were extracted from medical records by 

clinical investigators.  The aim of this study was to identify reproducible signals of association 
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between PD and microbiota, and to that end, metadata were used as potential confounders, not 

as research questions.  For example, we did not set out to test the effects of constipation, 

levodopa or any of the 47 variables listed in Supplementary Table 1 on the microbiome, 

because, while of interest, that was not the primary aim of the study, and doing so would have 

reduced the power for the primary aim.   

 

To identify which of the variables might confound the study, we tested the distribution of each 

variable in cases vs. controls, and those that differed at a conservative uncorrected P<0.05 in at 

least one dataset were tagged as potential confounders (Supplementary Table 1).  These 

included, most notably, constipation in the past 3 months (more common in PD, P=6E-16 

dataset 1, P=6E-10 dataset 2) and gastrointestinal discomfort on the day of stool collection 

(more common in PD, P=2E-9 dataset 1, P=4E-6 dataset 2) as well as sex and age, body mass 

index (BMI), weight loss, fruits or vegetable intake, alcohol use, and stool sample travel time. 

These variables, and geographic site, were tested along with case-control status in 

PERMANOVA (global composition test), and those that were significant were used as 

covariates in ANCOM (differential abundance test for MWAS).  Thus, the results on both the 

global composition test and PD-associated taxa in MWAS have been adjusted for known 

potential confounders, except PD medications which had to be handled differently because of 

collinearity with PD (see section on “Cause of disease or consequence of medication”). 

 
Global composition of microbiome 

 

First we tested the difference between PD and controls in the global composition of the gut 

microbiome (b diversity, Table 1).  Case vs. control status was tested once by itself, once with 

all potential confounders in the model in a marginal test where each variable was tested while 

being adjusted for all others in the model, and once stratified by PD medication (Table 1).  To 

gauge the effect of distance metric on the results, all tests were repeated with Aitchison,35 

generalized UniFrac (GUniFrac),37 and Canberra38 distances. Tests were conducted using 

PERMANOVA39 with 99,999 permutations limiting maximum achievable significance to P=1E-5.   

 

PD microbiomes differed significantly from control microbiomes, in both datasets, with every 

distance metric measured (P<1E-5, Table 1).  The PD effect was significant and independent of 

all analyzed confounders, including geography, constipation, gastrointestinal discomfort, sex, 

age, BMI, fruit or vegetable intake, alcohol use, and stool sample travel time.   
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Results were in agreement with population studies in detecting significant effects of sex, age, 

BMI, gastrointestinal issues and diet on the microbiome,33,34 and with other PD studies in 

detecting evidence for dysbiosis in PD.11-30   

 

Identification of PD-associated microorganisms 
 
To identify PD-associated microorganisms, we conducted MWAS, testing differences between 

cases and controls in the relative abundances of genera.  We conducted MWAS on each 

dataset separately to test if results replicate, and also to avoid confounding by the heterogeneity 

between datasets.  Each data set was tested with two methods to test analytic concordance: 

once using analysis of composition of microbiomes (ANCOM)40 and again using Kruskal-Wallis 

rank sum test (KW).41  We chose ANCOM because among the numerous methods that have 

been proposed, ANCOM singularly met three key criteria: incorporates compositionality of the 

eco-system, allows covariate adjustment, and keeps false positive rate low while maintaining 

power.40,42  Differential abundance was tested hypothesis-free microbiome-wide: ANCOM 

included all 445 genera detected in dataset 1 and 561 genera in dataset 2; KW included 109 

genera in dataset 1 and 163 in dataset 2 (excluding unassigned genera and genera present in 

<10% of samples).  In ANCOM, dataset-specific covariates were included and adjusted for (see 

MWAS section in Methods). All tests were corrected for multiple testing.   

 

We detected association signals for 15 genera that were microbiome-wide significant by both 

methods and reproduced robustly in the two datasets, with or without covariate adjustment 

(Table 2, Figure 2).  Five genera had higher abundances in PD than controls: Porphyromonas, 

Prevotella, Corynebacterium_1, Bifidobacterium and Lactobacillus. Ten genera had lower 

abundances in PD than controls: Faecalibacterium, Agathobacter, Blautia, Roseburia, 

Fusicatenibacter, Lachnospira, Butyricicoccus, Lachnospiraceae_ND3007_group, 

Lachnospiraceae_UCG-004, and Oscillospira.  Complete MWAS results are in Supplementary 

Tables 2-5.   

 

Correlation network analysis  
 

We questioned if the 15 association signals were independent. We used hypothesis-free 

correlation network analysis43 to infer ecological networks of interacting organisms microbiome-
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wide (Figure 3, Supplementary Figure 1).  The PD-associated genera mapped to three 

polymicrobial clusters.  Porphyromonas, Prevotella, and Corynebacterium_1, which were 

elevated in PD, mapped to a community of highly correlated organisms, which we denoted as 

cluster 1.  Cluster 1 was the most distinct cluster in the microbiome with correlations reaching 

r=0.82 (P<3E-4), the highest in the microbiome in our data.  The 10 genera that were depleted 

in PD formed cluster 2, where eight of them clustered at r≥0.4 (P<3E-4), and remaining two 

(Oscillospira and Lachnospiraceae_UCG-004), clustered with the others at r=0.25 (P<3E-4) and 

r=0.35 (P<3E-4). Lactobacillus and Bifidobacterium, both elevated in PD, were correlated with 

each other at r=0.33 (P<3E-4), which we denoted as cluster 3.  Correlations within each cluster 

were all in the positive direction; i.e., members of clusters 1 tended to increase in abundance 

together, cluster 2 decreased together, and cluster 3 increased together.   

 

Functional characteristics  
 

Analyses so far were all hypothesis-free, data-driven, and blind to the functional relevance of 

the microorganisms. Having identified the associations and their corresponding clusters, we 

broke the blind by searching PubMed.  PubMed results on functional characteristics converged 

on clusters defined by agnostic network analysis. 

 

Genera in cluster 1:  Porphyromonas and Prevotella are anaerobic, gram negative bacteria 

with lipopolysaccharides (endotoxins) in their outer membrane. They are commensal to the 

human gastrointestinal and urogenital tracts. Corynebacterium are aerobic, gram positive, and 

have a higher abundance in the skin microbiota than the gut.  While commensal and often 

harmless, Porphyromonas, Prevotella and Corynebacterium are opportunistic pathogens 

capable of causing infections in immune-compromised individuals or if they gain access to 

sterile sites via compromised membranes, post-surgery, bites, or wounds.44-46   

 

Many, but not all species of Porphyromonas, Prevotella, and Corynebacterium are pathogens.  

Corynebacterium diphtheriae is the leading cause of diphtheria. Porphyromonas gingivalis 

causes periodontal disease. We did not detect C. diphtheriae, and P. gingivalis was extremely 

rare in our samples.  We were interested in knowing the species that made-up these three 

genera in our PD samples.  The bioinformatic pipeline used in our study (DADA2 with SILVA as 

reference database) assigned the detected sequences (amplicon sequence variants, ASVs) to 

species if the sequences were 100% identical, otherwise, the ASV was unassigned to species.  
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To confirm and expand on DADA2-SILVA assignments, we blasted all the ASVs that made up 

each of the three genera against the NCBI 16S rRNA database, focusing only on matches that 

were >99%-100% identical to a species with high statistical confidence.  In PD patients, we 

found that 80% of Corynebacterium_1 was composed of one unique ASV with 100% identity to 

C. amycolatum and C. lactis;  96% of Porphyromonas was composed of ASVs that  matched 

P. asaccharolytica, P. bennonis, P. somerae or P. uenonis with >99%-100% identity; and 98% 

of Prevotella was composed of ASVs that matched P. bivia, P. buccalis, P. disiens, or 

P. timonensis with >99%-100% identity (83% of Prevotella matched P. bivia, P. buccalis, 

P. disiens, or P. timonensis at 100% identity).  We conducted a PubMed search for each of 

these 10 species, using genus and species name as key word (ex. Corynebacterium 

amycolatum), with search filters: Humans, English, Title/Abstract. Excluding method papers, 

PubMed returned 104 articles that addressed function, characteristics or relevance to human 

health, and every article was about the microorganism (search term) as a pathogen in clinical 

specimens from various infections (Supplementary Table 6). 

 

Clinical specimen from chronic wounds, infections and inflammations are often polymicrobial.44-

46    Porphyromonas, Prevotella, Corynebacterium and other members of cluster 1 are often 

observed together in these polymicrobial infections.44-46   With the newly acquired knowledge on 

the potential biological significance of cluster 1, we questioned if this polymicrobial group as a 

whole may be relevant to PD. The co-occurring organisms in cluster 1 (defined by correlation 

r³0.4) were Anaerococcus, Campylobacter, Ezakiella, Finegoldia, Murdochiella, Peptoniphilus, 

Porphyromonas, Prevotella and Varibaculum in dataset 1, and Anaerococcus, Campylobacter, 

Corynebacterium_1, Ezakiella, Fastidiosipila, Finegoldia, Lawsonella, Mobiluncus, 

Mogibacterium, Murdochiella, Negativicoccus, Peptoniphilus, Porphyromonas, Prevotella, 

Prevotella_6, S5-A14a, Varibaculum, and unclassified Corynebacteriaceae in dataset 2.  Most 

of these organisms are rare and may have been missed in MWAS.   We conducted another 

MWAS where we collapsed the non-significant members of cluster 1 into one group (partial 

cluster 1), leaving Porphyromonas, Prevotella and Corynebacterium_1 as individual genera 

along with the rest of the genera in MWAS. As expected, we recaptured all 15 PD-associated 

genera, and in addition, we gained a new significant signal for the partial cluster 1 that was 

ANCOM and KW significant in both datasets (dataset 1: 2.9-fold increased abundance in PD, 

ANCOM W=392, KW FDR=0.03; dataset 2: 2.5-fold increased abundance in PD, ANCOM 

W=480, KW FDR=0.002).  
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Genera in cluster 2:  Of the ten PD-associated genera in cluster 2, three (Oscillospira, 

Lachnospiraceae_UCG-004 and Lachnospiraceae_ND3007_group) have been detected only by 

sequencing and not yet been cultured.  The rest (Agathobacter, Blautia, Butyricicoccus, 

Faecalibacterium, Fusicatenibacter, Lachnospira and Roseburia) are all anaerobic, gram 

positive bacteria in the Ruminococcaceae, and Lachnospiraceae families. They are best known 

for producing short chain fatty acids (SCFA), mainly butyrate, which help maintain integrity of 

the gut membrane, and have anti-inflammatory properties.47,48  

 

Genera in cluster 3:  Lactobacillus49 and Bifidobacteria50 are anaerobic gram positive bacteria. 

They are among ubiquitous inhabitants of the human gastrointestinal microbiome. They 

metabolize carbohydrates in plants and dairy, and are considered probiotic for their health 

benefits,51,52 although they have also been implicated as cause of infection and excessive 

immune stimulation in susceptible individuals.52,53 

 

Cause of disease or consequence of medication  

 

Human association studies are powerful tools for identifying disease-relevant leads and to 

generate hypotheses that can then be tested experimentally. Even if we find a strong candidate 

that blurs the line between association and causality, we cannot prove that it preceded PD 

because there are decades of preclinical and prodromal disease, and we do not know when it 

all begins. While cause cannot be proven in these studies, we can sometimes tease out 

consequence.   

 

Medications have profound effects on the microbiome.33 Levodopa is the most commonly used 

PD medication (>85% of PD patients were on varying doses of levodopa). To gauge if the 

association of PD with any of the 15 genera was a consequence of levodopa treatment, we 

tested if the change in the differential abundance of the 15 genera correlated with increasing 

levodopa dose.  

 

We found no significant evidence to suggest that the increasing abundance of Porphyromonas, 

Prevotella, or Corynebacterium_1 (cluster 1) correlated with levodopa therapy.  We did find 

significant evidence in dataset 2 to suggest that increasing doses of levodopa were correlated 

with decreasing levels of SCFA producing organisms (Faecalibacterium P=0.01, Agathobacter 

P=0.02, Blautia P=5E-4, Roseburia P=0.02, Fusicatenibacter P=0.01, Lachnospira P=5E-3, 
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Lachnospiraceae_ND3007_group P=5E-3, Lachnospiraceae_UCG-004 P=0.03). A similar 

pattern was present in dataset 1, albeit most did not reach statistical significance possibly due to 

the smaller sample size of dataset 1.  We also detected significant correlation between 

increasing levodopa dose and increasing levels of Bifidobacterium (dataset 1 P=5E-3, dataset 2 

P=2E-6) and Lactobacillus (dataset 2 P=4E-3). These data suggest that the increase in 

abundance of cluster 1 (opportunistic pathogens) is independent of levodopa, but that the 

reduction in cluster 2 (SCFA) and increase in cluster 3 (probiotics), if not solely a consequence 

of medication, worsen with increasing doses of levodopa. 

 

Discussion 
 
Summary   We confirmed that the gut microbiome is altered in PD and showed that the PD 

effect on the global composition of the gut microbiome is independent of the effects of sex, age, 

BMI, constipation, gastrointestinal discomfort, geography, and diet. Using hypothesis-free 

microbiome-wide association studies we identified 15 PD-associated genera that achieved 

microbiome-wide significance in both datasets, with two methods, and with or without covariate 

adjustment. The 15 association signals were robust to the dramatic population-specific 

differences in the composition of microbiomes of the two datasets.  We used hypothesis-free 

correlation network analysis to infer interactions and to identify communities of co-occurring 

microorganisms. Using this agnostic approach, we learned that the 15 PD-associated genera 

represent three polymicrobial clusters. Review of the literature revealed that the clusters, as 

defined by agnostic network analysis, also share functional characteristics.  Our results suggest 

the gut microbiomes of persons with PD can present with (1) an overabundance of a 

polymicrobial cluster of opportunistic pathogens, (2) reduced levels of SCFA producing bacteria, 

and/or (3) elevated levels of carbohydrate metabolizers commonly known as probiotics. 

 

Alignment with PD literature   Reduced levels of SCFA producing bacteria12,14,16,18,19,21,26,27 and 

elevated levels of probiotic bacteria in PD14,16,18,21,25-27 have been reported before, and thus are 

confirmatory. Overabundance of opportunistic pathogens was a novel finding.  We suspect the 

reason we were able to detect these microorganisms is because they are rare (Figure 2) and we 

had a much larger sample size and power than prior studies.  The microorganisms identified in 

prior PD studies were among the more abundant microorganisms in the gut.  There have been 

two systematic reviews of PD-microbiome studies, which clearly show the vast disparity in the 

findings, but also reveal few findings that have emerged in more than one study.31,32  The most 
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recent review highlighted 6 associations that were significant in more than one study:  

Faecalibacterium, Roseburia, Bifidobacterium, Lactobacillus, Akkemansia and Prevotella.32  We 

confirmed the reduction in Faecalibacterium and Roseburia (cluster 2), and the increase in 

Bifidobacterium and Lactobacillus (cluster 3). We also confirmed increased Akkermansia in both 

datasets but it was only significant in dataset 1.  Prevotella results are interesting, with 

Scheperjans et al.11 and Petrov et al.18 reporting it decreased in PD while we find it elevated in 

both datasets.  The apparent inconsistency may be simply because what is being referred to as 

“Prevotella” is not the same in these studies. We all used different taxonomic classification: 

Scheperjans et al. reported at the family level (Prevotellaceae), we at genus level (Prevotella), 

and Petrov et al. at species level (Prevotella copri).  The SILVA database we used here, 

classified family Prevotellaceae into 11 genera. The more common genera in the Prevotellaceae 

family (Paraprevotella, Prevotella_9 and Prevotella_7) did in fact have lower frequencies in PD 

than in controls, as Scheperjans et al. observed, but the difference was not significant in our 

datasets (FDR>0.6 in both datasets).   Species P. copri, which Petrov et al. found reduced in 

PD, was the main species of the Prevotella_9 genus, which was reduced in our PD samples as 

well but not significantly (FDR>0.8 in both datasets).  We found instead elevated levels of the 

less common genus Prevotella (FDR=0.006 in dataset 1 and FDR=0.02 in dataset 2). These 

findings suggest family Prevotellaceae may be heterogenous in its association with PD. When 

comparing studies, another important consideration is the reference database: there are many 

and they have varied phylogenetic resolution and nomenclature. For example, genus 

Corynebacterium in NCBI is divided into 2 non-monophyletic genera in SILVA: 

Corynebacterium_1 and Corynebacterium.  Similarly, what is called genus Prevotella in NCBI, is 

divided into multiple non-monophyletic genera in SILVA (we detected Prevotella, Prevotella_2, 

Prevotella_6, Prevotella_7, and Prevotella_9).  The varying resolution at which the tests are 

conducted, and the reference databases used, cause confusion in the literature. 

 

Opportunistic pathogens  Overabundance of opportunistic pathogens in PD gut microbiome 

was a novel and potentially the most exciting finding of this study.  Braak and colleagues 

originally hypothesized that non-inherited forms of PD are caused by a pathogen that can pass 

through the mucosal barrier of the gastrointestinal tract and spread to the brain through the 

enteric nervous system.54,55  While many aspects of Braak’s hypothesis have gained support in 

recent years, there is no direct evidence that a pathogen is involved.  Presence of a-synuclein in 

the gastrointestinal tract has been documented in persons with established Lewy body 

disease56 as well as those with rapid eye movement sleep behavior disorder which is 
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considered prodromal PD.57 Epidemiological studies suggest that truncal vagotomy if conducted 

decades before onset of PD reduces risk of developing PD.58,59 In a mouse model, a-synuclein 

fibrils injected into the gut induced a-synuclein pathology which spread to the brain resulting in 

Parkinsonian neurodegeneration and behavioral phenotype; whereas truncal vagotomy and a-

synuclein deficiency prevented the gut-to-brain spread and the associated neurodegeneration.60   

Human studies unrelated to PD have shown that infection in the gut or the olfactory system 

induce a-synuclein expression, and the increased abundance of a-synuclein mobilizes the 

immune system to fight the pathogen.61,62 It was also shown in a genetic model of PD (pink1 

knock-out mice) that intestinal infection by pathogens elicits activation of cytotoxic T cells in the 

periphery and the brain and leads to deterioration of dopaminergic cells and motor impairment, 

suggesting that intestinal infection acts as a triggering event in PD.63   Despite the increasing 

evidence linking the gut, a-synuclein, and inflammation to PD, there is no direct evidence that a 

pathogen is responsible for the pathology.  Here, we present the first evidence from human 

samples indicating an overabundance of opportunistic pathogens in the gut microbiome of 

persons with PD.  The three genera that rose to significance (Porphyromonas, Prevotella, or 

Corynebacterium_1) represented a larger polymicrobial cluster of opportunistic pathogens that 

co-occur in controls as well as in patients (although at much lower abundances in healthy gut). 

Per literature, these opportunist pathogens are often harmless, but can grow and cause 

infections if the immune system is compromised or if they penetrate sterile sites through, for 

example, compromised membanes.44-46   The exciting question is whether these are Braak’s 

pathogens capable of triggering PD, or they are irrelevant to PD but are able to penetrate the 

gut and grow because the gut lining is compromised in PD. We re-emphasize that no claims can 

be made on function based solely on association. The knowledge on the function of 

microorganisms in the gut is currently limited.  While there may be a large body of literature, 

each organism has been studied with a narrow lens. Organisms that are known to be 

opportunistic pathogens are being looked for in clinical specimen, whether they have other 

critical functions is not known. The identity of these microorganisms will enable experimental 

studies to determine if and how they play a role in PD. 

 

Anti-inflammatory SCFA producing bacteria  Our second main finding was a polymicrobial 

cluster of ten genera whose relative abundances were reduced in PD. All ten genera belong to 

the Lachnospiraceae and Ruminococcaceae families, well-known for producing SCFA.  Several 

studies had found reduced levels of different SCFA producing bacteria in PD 

patients.12,14,16,18,19,21,26,27 Our finding is therefore confirmatory, and expands on the list of PD-
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associated genera in these two taxonomic families. We and others noted that the decreasing 

levels of Lachnospiraceae correlate with increasing daily dose of levodopa, disease duration,12 

disease severity and motor impairment,26 which suggest SCFA producing microorganisms 

diminish as a consequence of medication and/or advancing disease. SCFA promote 

gastrointestinal motility, maintain integrity of the gut lining, and control inflammation in the gut 

and the brain,47,48,64-66 each of which are compromised in PD. It is important to note, however, 

that reduced levels of SCFA in the gut has been documented in many inflammatory disorders,67-

71 and is not specific to PD.  

 

Probiotics  We also found elevated levels of Bifidobacterium and Lactobacillus in PD, which 

have been noted in some of the prior PD studies, albeit not consistently.14,16,18,21,25-27  Both are 

ubiquitous inhabitants of human gut and metabolize carbohydrates derived from plants and 

dairy.49,50  We found a significant correlation between increasing levodopa dose and increasing 

Bifidobacterium and Lactobacillus levels. Lactobacillus produce a bacterial enzyme that 

metabolizes levodopa into dopamine before it can reach the brain, reducing efficacy of the drug 

and requiring higher doses, which in feedback causes further growth of the bacteria.72,73 

Ironically, Bifidobacterium and Lactobacillus are sold in stores as probiotics, and a clinical trial 

has reported fermented milk which contained Bifidobacterium, Lactobacillus, and fiber, among 

other active ingredients, improved constipation in PD.74  While generally believed to be safe, 

and possibly beneficial for the healthy population, they can act as opportunistic pathogens and 

cause infection and excessive immune stimulation in immune compromised individuals.52,53  It is 

important to understand why Bifidobacterium and Lactobacillus are elevated in PD and if they 

are beneficial (a compensatory mechanism to overcome the dysbiosis) or detrimental (feedback 

of levodopa).  

 

Conclusion  We uncovered robust and reproducible signals, which reaffirm (SCFA, probiotics) 

and generate new leads (opportunistic pathogens) for experimentation into cause and effect, 

disease progression, and therapeutic targets. This study was limited by its singular and precise 

focus and intentionally conservative analytic execution. There is more to be learned with larger 

sample sizes with greater power, longitudinal studies to track change from prodromal to 

advanced disease, and by next generation metagenome sequencing to broaden the scope from 

bacteria and archaea to include viruses and fungi, and improve the resolution to strain and gene 

level. 
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Methods 
 
Subjects and Data Collection 
 

Subjects (Supplementary Table 1)  The study was approved by institutional review boards for 

ethical conduct of human subject research at all participating institutions.  All subjects provided 

informed consent for their participation. Subjects were enrolled by NGRC investigators, using 

standardized methods, at four NGRC affiliated movement disorder clinics in United States. 

Dataset 1 was collected in Seattle, WA, Albany, NY, and Atlanta, GA in 2014 and included 212 

persons with PD and 136 controls.16 Dataset 2 was collected in Birmingham, AL during 2015-

2018, and included 323 PD and 184 controls (unpublished).  PD was diagnosed by a movement 

disorder specialist using UK Brain Bank criteria,75 and controls were self-reported free of 

neurological disease. 

 

Metadata (Supplementary Table 1) Data were collected using two self-administered 

questionnaires: an Environmental and Family History Questionnaire (EFQ) and Gut Microbiome 

Questionnaire (GMQ).4,16,36 EFQ covered sex, age, ancestry, and lifetime exposure data on PD-

related risk factors. GMQ covered information pertinent to microbiome analysis and was filled 

out immediately after stool sample collection. PD medications that subjects were taking at the 

time of sample collection were extracted from medical records by clinical investigators.   

 
Stool samples  Subjects collected stool samples at home using DNA/RNA-free sterile swabs 

(BD BBL CultureSwab Sterile/Media-free Swabs, Fisher Scientific, Pittsburgh, PA). The sample 

was collected from excreted stool (the kit is not a rectal swab), thus minimizing contamination by 

skin microbiota. The stool samples were shipped immediately via standard U.S. postal service 

at ambient temperature and stored at −20°C upon arrival.  The collection kit chosen was the 

most reasonable option at the time (2014).  Collection kits with stabilizing solutions (e.g., 

OMNIgene GUT by DNA Genotek) were first introduced in 2015-2016.  Immediate freezing was 

not feasible because we could not collect stool from over 800 participants, most of whom suffer 

constipation, while in clinic, nor was it acceptable to the participants to place their stool in their 

home freezer before shipping.  We tested the effect of stool sample travel time on the results as 

follows. Subjects recorded the collection date and we recorded when it was placed in −20°C 

freezer, the difference was calculated as the stool sample travel time.  We tested the stool 

sample travel time in cases vs. controls (Supplementary Table 1). We adjusted the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.905166doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905166
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

PERMANOVA and MWAS for stool sample travel time.     

 

DNA extraction and sequencing  
 

DNA extraction and sequencing of datasets were done in different laboratories (the Knight Lab 

at University of California San Diego for dataset 1,16  and HudsonAlpha Institute for 

Biotechnology for dataset 2),  keeping methods uniform as possible.  Negative controls were 

included in both datasets. DNA was extracted using MoBio PowerMag Soil DNA Isolation Kit for 

dataset 1 and MoBio PowerSoil DNA Isolation Kit for dataset 2, both kits using equivalent 

chemistries (MoBio Industries, Carlsbad, CA).  

 

Hypervariable region 4 (V4) of the bacterial/archaeal 16S rRNA gene was PCR amplified using 

primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) and sequenced using Illumina MiSeq.  For dataset 1, 

paired-end 150 bp was used and all samples were sequenced in one run.  For dataset 2, 

paired-end 250 bp was used and samples were sequenced in 6 runs. Sequence files were de-

multiplexed using QIIME2 (core distribution 2018.6)76 for dataset 1 and Illumina's BCL2FASTQ 

software on BaseSpace for dataset 2. Fifteen samples in dataset 1 had low sequencing counts 

and were excluded for present analysis.  

 
Bioinformatics  

 

Sequence QC  Forward and reverse primers were trimmed from the 5’ end of sequences using 

cutadapt v 1.16.77  After primer trimming, only sequences with lengths of 147–151 bp in dataset 

1 and 230–233 bp in dataset 2 were retained. DADA2 R package v 1.878 was used for the 

remaining bioinformatics with default parameters unless when specified. Sequences were 

quality trimmed and filtered using the filterAndTrim function: trimming 3’ ends to 147 bp 

(forward) and 147 bp (reverse) in dataset 1, and 228 bp (forward) and 203 bp (reverse) in 

dataset 2, and removing sequences if they exceeded a maximum of two expected errors.  

 

Amplicon sequence variant (ASV) inference and ASV tables  For each sequencing run: (a) a 

model for sequencing error was constructed using the learnErrors function specifying that all 

bases in all sequences be used for constructing the model, (b) sequences were de-replicated to 

find unique sequences using the derepFastq function, (c) ASVs were inferred from de-replicated 
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sequences using the dada function, (d) forward and reverse sequences were merged using the 

mergePairs function, and (e) sequences with <250 bp or >256 bp were removed.  This resulted 

in 1 ASV table for dataset 1 and 6 ASV tables for dataset 2. The 6 ASV tables of dataset 2 were 

merged using the mergeSequenceTables function.  Chimeras were detected and removed 

using the removeBimeraDenovo function. 

 

Data transformation The following procedures were used to account for variable sequence 

depth. Sequence counts were normalized to relative abundances (calculated by dividing the 

number of sequences that were assigned to a unique ASV or to a genus by the total sequence 

count in the sample) for PERMANOVA when using Canberra or GUniFrac distance, for MWAS 

when using KW, and for testing correlation with levodopa drug dose. Centered-log ratio (clr) 

transformation (using the transform function of the microbiome v 1.4.2 R package 

(http://microbiome.github.com/microbiome)) was used for PCA, and for PERMANOVA when 

using Aitchison distance. Log ratios (implemented internally in ANCOM and SparCC) were used 

when using ANCOM for MWAS, and for correlation network analysis.  Earlier microbiome 

studies (including our first study conducted with dataset 1)16 often used rarefaction to normalize 

the sequence count. Although not as efficient as the other methods due to data loss,79 for added 

assurance, we rarefied the data, repeated the MWAS with ANCOM, and were able to recover all 

15 significant PD-associated genera.      

 

Taxonomic assignment  MWAS and correlation network analysis were conducted at genus 

level. To define genera, first each unique ASV was assigned to a genus using the 

assignTaxonomy function, which performs DADA2’s native implementation of the Ribosomal 

Database Project (RDP) naïve Bayesian classifier,80 using SILVA v 132 as reference and a 

bootstrap confidence of 80%. Then, each genus (including the unclassified genera) was formed 

by agglomerating all ASVs that were assigned to that genus using the tax_glom function in 

phyloseq.  

 

Post MWAS, we explored PD-associated genera at the species level. DADA2 pipeline assigns 

ASVs to species only if the sequences match 100%.  We used the addSpecies function in 

DADA2 with SILVA as reference and addMultiple=TRUE, first finding 100% matches, then 

filtering out those matches that did not correspond to the genus given by the assignTaxonomy 

function. To confirm and expand on DADA2-SILVA species assignments, we BLASTed ASVs 

against the NCBI 16S rRNA gene sequence database (downloaded on 12/3/2019), and 
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extracted taxonomic designations with the most significant E-value. Nucleotide BLAST search 

was performed using the BLAST+ executables v 2.9.0 with default parameters81 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/ ). 

 

Phylogenetic trees  A phylogenetic tree of ASVs was constructed for each dataset, as 

described by Callahan et al.82  Briefly, multiple sequence alignment of ASVs was performed 

using the AlignSeqs function from the DECIPHER R package v 2.8.1.83 Aligned ASVs were then 

used to build a phylogenetic tree using the phangorn R package v 2.5.3.84   

 

Phyloseq Object  For each dataset, a phyloseq object was created for use in conducting 

statistical analyses. For each dataset, the ASV table, taxonomic assignments, phylogenetic tree 

and metadata were merged into a single file, using phyloseq function in phyloseq R package v 

1.24.2.85 

 

Data Analysis and Statistics 
 
Principal component analysis  PCA was performed on the clr transformed ASV data35 using 

the ordinate function in phyloseq. PC1 and PC2 were plotted using the plot_ordination function 

in phyloseq (Figure 1).  

 

Confounders  We interrogated 47 variables (extracted from metadata) as potential confounders 

(Supplementary Table 1).  In each dataset, we first tested the distribution of each variable in 

cases vs controls, using Fisher’s exact test (fisher.test function in R) for categorical variables, 

and Mann-Whitney-U (wilcox.test function in R) for quantitative variables. Variables that differed 

between cases and control at uncorrected P<0.05 were tagged as potential confounders, and 

were then included in PERMANOVA, along with case-control status, and tested for their effects 

on microbiome composition (Table 1). Since PERMANOVA was conducted using marginal 

effects model without rank (see below), simultaneous inclusion of case-control and other 

variables allowed testing the association of each variable with microbiome composition while 

adjusting for all other variables in the model.  Thus PD effect on microbiome composition (ß 

diversity) was adjusted for variables that differed between cases and controls.  Next, variables 

that were associated with microbiome composition at PERMANOVA P<0.05 were included as 

covariates in MWAS.  Thus variables that could have led to spurious taxa-disease association 

because they differed between cases and controls and were also associated with microbiome, 
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were adjusted for in MWAS.    

 

PD medications were present only in PD cases and could not be included as covariates in 

PERMANOVA or MWAS. To gauge the effect of PD on ß diversity independent of each 

medication, we performed PERMANOVA using cases not on PD medication vs. controls (Table 

1).  The potential confounding effect of medication on differential abundance of genera was 

tested post-MWAS. For each genus whose relative abundance was associated with PD, we 

tested the correlation between relative abundance of the genus with daily dose of Levodopa 

(mg/day) using Spearman correlation implemented in the cor.test function in R. 

 

Global composition of microbiome (ß diversity) PERMANOVA was used to identify variables 

that had a significant effect on ß diversity (Table 1). Tests were conducted using adonis2 

function in vegan v 2.5.3 (https://CRAN.R-project.org/package=vegan). P-values were 

generated by 99,999 permutations which caps at P<1E-5 as highest significance.  

 

Three models were tested.  

(Model A)  PD vs. control: [Distance ~ case/control] 

(Model B)  PD vs. control and all variables tagged as potential confounders:   

Dataset 1:  [Distance ~ case/control + sex + age + geography + BMI + loss of 

10lbs in past year + gastrointestinal discomfort on day of stool 

collection + constipation in past three months + alcohol use + 

fruits or vegetables daily + stool sample travel time] 

Dataset 2:  [Distance ~ case/control + sex + age + BMI + loss of 10lbs in past 

year + gastrointestinal discomfort on day of stool collection + 

constipation in past three months + alcohol use+ stool sample 

travel time] 

where distance (a measure of (dis)similarity between pairs of samples), age (in 

years), BMI (kg/m2), and stool sample travel time (in days) were continuous 

variables and the remaining variables were categorical. We tested marginal 

effects, so that each variable was tested while being adjusted for all others in the 

model, without priority.   

(Model C)  Subset of PD cases not on a given PD medication vs controls: [Distance ~ 

case/control]  
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To gauge the effect of the distance measure on the results, all three models were tested using 

Aitchison,35 GUniFrac,37 and Canberra38 distances. Aitchison distances were calculated by first 

transforming the ASV data using clr, and then calculating the Euclidean distances using the 

vegdist function. To calculate GUniFrac distances, unrooted ASV phylogenetic trees were 

rooted using the root function in the ape v 5.3 R package86 specifying the unique ASV with the 

highest raw count as the root, then data were transformed to relative abundances and distances 

were calculated using the GUniFrac function in the R package GUniFrac v 1.1,37 specifying 

alpha to be 0.5.  To calculate Canberra distances, data were transformed to relative 

abundances and distances were calculated using the vegdist function in vegan.  

 

MWAS  We conducted MWAS to identify the genera whose abundances differed in cases vs. 

controls. We chose genus classification because it is the highest resolution attainable with high 

confidence from 16S sequencing.   

 

For statistical analysis of MWAS, we used ANCOM (Table 2, and Supplementary Tables 2-3). 

We chose ANCOM because it incorporates compositionality of the microbiome data, has low 

false positive rate, and allows covariate adjustment.40,42 ANCOM was run using ANCOM.main 

function from the ANCOMv2 R code 

(https://sites.google.com/site/siddharthamandal1985/research).  All genera that were detected in 

each dataset were included in ANCOM MWAS. Sequence counts were transformed to log 

ratios, as implemented in ANCOM.  Case/control status was specified as the main variable. For 

each dataset, the variables that were significant at P<0.05 in PERMANOVA were included as 

covariates to be adjusted, as follows: 

Dataset 1: [Genus ~ case/control + sex + age + geography + gastrointestinal 

discomfort on day of stool collection + fruits or vegetables daily + 

stool sample travel time] 

Dataset 2: [Genus ~ case/control + sex + age + BMI + constipation in past 

three months] 

where genus (ASV counts assigned to a genus, transformed to log ratios by ANCOM), age (in 

years), BMI (kg/m2), and stool sample travel time (in days) were continuous variables and the 

remaining variables were categorical.  We used the taxa-wise FDR option (multcorr=2) and set 

significance level to FDR<0.05 to generate W statistics, and threshold of 0.8 for declaring an 

association as significant. 
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For comparison, we repeated the MWAS using KW as statistical test (Table 2, and 

Supplementary Tables 4-5). For KW, genera counts were transformed to genera relative 

abundances. Unclassified genera, and genera present in <10% of samples were excluded from 

KW MWAS. KW does not allow covariate adjustment.  The kruskal.test function from the stats R 

package was used to test for significance. P-values were corrected for multiple testing using 

Benjamini-Hochberg FDR method implemented in the p.adjust function from stats package.   

 

To visualize the distribution of genera that were significant in MWAS (Figure 2), boxplots were 

created using ggplot2 v 3.1.0 (https://ggplot2.tidyverse.org) with a pseudo-count of 1 added to 

counts before transforming to relative abundances to avoid taking the log of zero during plotting. 

 

Correlation network analysis (Figure 3, Supplementary Figure 1) For each dataset, and for 

cases and controls separately, pairwise correlations were calculated between all genera, 

microbiome-wide, using log-ratio transformed relative abundances as implemented in the 

SparCC43 (https://bitbucket.org/yonatanf/sparcc).  Significance of each correlation was 

determined by pseudo P-values based on 3,000 permutations. Correlation networks were 

visualized by plotting all genera, microbiome-wide, and connecting correlated genera with an 

edge, using the program Gephi v 0.9.2.87 We chose a minimum correlation (r) of 0.4 to connect 

two genera with an edge to create the graphic.  All correlations r³0.4 were significant at P<3E-4, 

which is the maximum significance attainable with 3,000 permutations. To better visualize 

networks of connected genera, we first used the force-directed algorithm, Force Atlas 2,88 then a 

community detection algorithm89 as implemented in Gephi’s modularity function. 

 

Data availability  Data will be publicly available at NCBI Sequence Read Archive (SRA).  
 

Code availability   No custom codes were used. All software and packages, their versions, 

relevant specification and parameters are stated in the “Methods” section.  
 
Contributions  ZDW and HP were responsible for the design and execution of the study and 

wrote the first draft of the paper. All co-authors reviewed and critiqued the paper.  SAF, EM, 

CPZ, DGS and MND were responsible for the clinical aspects of the study.   ZDW and MA 

performed bioinformatics and statistical analysis. CLS assisted with blasting and literature 

searches.  
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Figure 1. The gut microbiome compositions of the two dataset differed significantly. 
 

 
 
Principal Component (PC) Analysis was used to generate the graphs for PD cases (left), 

controls (middle), and cases and controls combined (right) where each point represents the 

composition of the gut microbiome of one individual and distances indicate degree of similarity 

to other individuals. Percentages on the x-axis and y-axis correspond to the percent variation in 

gut microbiome compositions explained by PC1 and PC2. The difference between dataset 1 

and dataset 2 was formally tested using PERMANOVA and was significant (P<1E-5).  Dataset 

1: red (Albany, NY), purple (Seattle, WA) and green (Atlanta, GA).  Dataset 2: blue 

(Birmingham, AL).  
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Figure 2. Differential abundances of 15 PD-associated genera replicated in two datasets. 
 

 
 
Relative abundances in PD cases (blue) and controls (orange) were plotted as log10 scale on 

the y-axis. Each dot represents a sample, plotted according to the relative abundance of the 

genus in the sample.  The notch in each box indicates the confidence interval of the median. 

The bottom, middle, and top boundaries of each box represent the first, second (median), and 

third quartiles of the relative abundances. The whiskers (lines extending from the top and 

bottom of the box and ending in horizontal cap) extend to points within 1.5 times the interquartile 

range. The points extending above the whiskers are outliers.  
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Figure 3. Correlation network analysis mapped PD-associated genera to three 
polymicrobial clusters.   
 

 
 
Pairwise correlations in relative abundances were calculated for all genera microbiome-wide 

and used to detect clusters of co-occurring microorganisms.  To display, we used an arbitrary 
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correlation coefficient threshold at r≥ |0.4| to connect the genera that were correlated.  All 

correlations noted were significant at P<3E-4 (the limit for 3,000 permutations). Here we show 

the result for PD cases in dataset 2 because it had larger sample size and greater sequencing 

depth than dataset 1. (See Supplementary Figure 1 for cases and controls in dataset 1 and 

dataset 2).  (a) Algorithm-detected clusters shown in different colors. (b) The algorithm-detected 

clusters, as in panel a but shown in grey, and PD-associated genera highlighted in blue (if 

increased in PD) or red (if decreased in PD). (c) Zoomed in version of panel b. The 15 PD-

associated genera fell in 3 clusters.  Cluster 1 was a tightly correlated cluster of microorganisms 

(r approaching 0.8) which included Porphyromonas, Prevotella, and Corynebacterium_1 (all 

elevated in PD).  Cluster 2 included the 10 genera that were reduced in PD, eight of which are 

shown connected at r≥0.4, and two are unconnected but correlated significantly (P=3E-4) with 

the others in the cluster at r=0.25 and r=0.35.   Lactobacillus and Bifidobacterium (correlated at 

r=0.33 (P<3E-4)) were denoted cluster 3.  For unconnected genera (r<0.4), the proximity 

between nodules does not imply relatedness, for example, Oscillospira (M) falls closer to 

Lactobacillus (N) than to Roseburia (G) but it is correlated significantly with Roseburia (r=0.25, 

P<3E-4) and not with Lactobacillus (r=0.04, P=0.44). 
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