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Abstract
Spike sorting is a crucial but time-intensive step in electrophysiological studies of neuronal activity. While there are many

popular software packages for spike sorting, there is little consensus about which are the most accurate under different

experimental conditions. SpikeForest is an open-source and reproducible software suite that benchmarks the

performance of automated spike sorting algorithms across an extensive, curated database of electrophysiological

recordings with ground truth, displaying results interactively on a continuously-updating website. With contributions from

over a dozen participating laboratories, our database currently comprises 650 recordings (1.3 TB total size) with around

35,000 ground-truth units. These data include extracellular recordings paired with intracellular voltages, state-of-the-art

simulated recordings, and hybrid synthetic datasets. Ten of the most frequently used modern spike sorting codes are

wrapped under a common Python framework and evaluated on a compute cluster using an automated pipeline.

SpikeForest validates and documents community progress in automated spike sorting, and guides neuroscientists to an

optimal choice of sorter and parameters for a wide range of probes and brain regions.

Introduction
Direct electrical recording of extracellular potentials (Buzsáki, 2004; Seymour et al., 2017) is one of the most popular modali-
ties for studying neural activity since it is possible to determine, with sub-millisecond time resolution, individual firing events

from hundreds (potentially thousands) of cells, and to track the activity of individual neurons over hours or days. Record-

ings are acquired either from within the living animal (in vivo) or from extracted tissue (ex vivo), at electrodes separated by
typically 5-25 µm, with sensitivities of order 10 µV, and 10–30 kHz sampling rate. Probes for in vivo use—which are usually
needle-like to minimize tissue damage during insertion—include microwire monotrodes (Hubel, 1957; Nicolelis et al., 1997),
tetrodes (Gray et al., 1995; Harris et al., 2000; Dhawale et al., 2017), and multi-shank probes (with typically 1–4 columns of
electrodes per shank) on silicon (Csicsvari et al., 2003; Buzsáki, 2004; Jun et al., 2017a) or polymer (Kuo et al., 2013; Chung
et al., 2019) substrates. Multiple such probes are often combined into arrays to cover a larger volume in tandem. For ex
vivo use (e.g., retinal sections), planar, two-dimensional multi-electrode arrays (MEAs) are common, allowing channel counts
of up to tens of thousands (Eversmann et al., 2003; Litke et al., 2004; Berdondini et al., 2005; Yuan et al., 2016; Tsai et al.,
2017).
Spike sorting is an essential computational step needed to isolate the activity of individual neurons, or units, within

extracellular recordings which combine noisy signals from many neurons. Historically, this procedure has relied on manual

steps (Hazan et al., 2006; Prentice et al., 2011; Rossant et al., 2016): putative waveforms crossing an amplitude threshold are
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visualized in a low-dimensional space (either using peak amplitudes or dimensionality reduction techniques), then clusters

are separated by eye. Whilemanual spike sorting is manageable with small numbers of recording channels, the rapid growth

in channel counts and data volume in recent years as well as the requirement for reproducibility and objectivity demand

automated approaches.

Most automated algorithms apply a sequence of steps that include filtering, detection, dimension reduction, and clus-

tering, although these may be combined with (or replaced by) many other approaches such as template matching (Prentice
et al., 2011; Pillow et al., 2013; Pachitariu et al., 2016), dictionary learning or basis pursuit (Carlson et al., 2013; Ekanad-
ham et al., 2013), and independent component analysis (Takahashi et al., 2002; Buccino et al., 2018). The past 20 years
have seen major efforts to improve these algorithms, with recent work focusing on the challenges arising from probe drift

(changing spike waveform shapes), spatiotemporally overlapping spikes, and massive data volumes. We will not attempt a

full review here, but instead refer the reader to, e.g., Fee et al. (1996); Lewicki (1998); Quiroga (2012); Einevoll et al. (2012);
Rey et al. (2015); Lefebvre et al. (2016); Hennig et al. (2019); Carlson and Carin (2019).

In the last few years, many automated spike sorters have been released and are in wide use. Yet, there is little consensus

about which is the best choice for a given probe, brain region and experiment type. Often, decisions are based not on

evidence of accuracy or performance but rather on the ease of installation or usage, or historical precedent. Thus, the goals

of extracting the highest quality results from experiments and of improving reproducibility across laboratories (Denker et al.,
2018; Harris et al., 2016) make objective comparison of the available automated spike sorters a pressing concern.
One approach to assessing spike sorter accuracy is to devise intrinsic quality metrics that are applied to each sorted

unit, quantifying, for instance, the feature-space isolation of a cluster of firing events (Pouzat et al., 2002; Schmitzer-Torbert
et al., 2005; Hill et al., 2011; Neymotin et al., 2011; Barnett et al., 2016; Chung et al., 2017). Another approach is to use
biophysical validation methods such as examining cross-correlograms or discovered place fields (Li et al., 2015; Chung
et al., 2017). However, the gold standard, when possible, is to evaluate the sorter by comparing with ground-truth data, i.e.,
using recordings where the spike train for one or more units is known a priori. Laboratory acquisition of such recordings
is difficult and time-consuming, demanding simultaneous paired extracellular and intra-/juxta-cellular probes (Harris et al.,
2000; Franke et al., 2015; Neto et al., 2016; Yger et al., 2018; Allen et al., 2018; Marques-Smith et al., 2018a). Since the
number of ground-truth units collected in this way is currently small (one per recording), hybrid recordings (where known
synthetic firing events are added to experimental data) (Marre et al., 2012; Steinmetz, 2015–2018; Rossant et al., 2016;
Pachitariu et al., 2016; Wouters et al., 2019), and biophysically detailed simulated recordings (Camuñas-Mesa and Quiroga,
2013; Hagen et al., 2015; Gratiy et al., 2018; Buccino and Einevoll, 2019), which can contain 1–2 orders of magnitude more
ground-truth units, have also been made available for the purpose of method validation.

Recently, such ground-truth data have been used to compare new spike sorting algorithms against preexisting ones

(Einevoll et al., 2012; Pachitariu et al., 2016; Chung et al., 2017; Jun et al., 2017b; Lee et al., 2017; Yger et al., 2018). However,
the choice of accuracy metrics, sorters, data sets, parameters, and code versions varies among studies, making few of the

results reproducible, transparent, or comprehensive enough to be of long-term use for the community. To alleviate these

issues, a small number of groups initiated web-facing projects to benchmark spike sorter accuracy, notably G-Node (Franke
et al., 2012), a phy hybrid study (Steinmetz, 2015–2018) and spikesortingtest (Mitelut, 2016–2019). To our knowledge,
these unmaintained projects are either small-scale snapshots or are only partially realized. Yet, in the related area of calcium

imaging, leaderboard-style comparison efforts have been more useful for establishing community benchmarks (Freeman,
2015–2018; Berens et al., 2018).
We have addressed the above needs by creating and deploying the SpikeForest software suite. SpikeForest comprises

a large database of electrophysiological recordings with ground truth (collected from the community), a parallel processing

pipeline that benchmarks the performance of many automated spike sorters, and an interactive website that allows for

in-depth exploration of the results. At present, the database includes hundreds of recordings, of all three types discussed

above (paired, hybrid, and state-of-the-art biophysical simulation), contributed by more than a dozen laboratories and

containing more than 30,000 ground-truth units. Our pipeline (see Fig. 1) runs the various sorters on the recordings, then

finds, for each ground-truth unit, the sorted unit whose firing train is the best match, and finally computes metrics involving

the numbers of correct, missing, and false positive spikes. A set of accuracy evaluation metrics are then derived per ground-

truth unit for each sorter. By averaging results from many units of a similar recording type, we provide high-level accuracy

summaries for each sorter in various experimental settings (Fig. 2). In order to understand the failure modes of each sorter,

SpikeForest further provides various interactive plots, e.g., accuracy vs. signal-to-noise ratio (SNR) (Fig. 3, left panel), and

multi-channel waveforms of random samples of individual firing events (Fig. 3, right panel).
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Figure 1. Simplified flow diagram of the SpikeForest analysis pipeline. Each in a collection of spike sorting codes (top) are run on each
recording with ground truth (left side) to yield a large matrix of sorting results and accuracy metrics (right). See the section on comparison

with ground truth for mathematical notations. Recordings are grouped into “studies”, and those into “study sets”; these share features

such as probe type and laboratory of origin. The web interface summarizes the results table by grouping them into study sets (as in Fig. 2),

but also allows drilling down to the single study and recording level. Aspects such as extraction of mean waveforms, representative firing

events, and computation of per-unit SNR are not shown, for simplicity.

Implemention on this scale (close to 400 core-hours are required just to run the sorters) necessitates standardization and

fault-tolerance. At the core of our software is a Python package which, in conjunction with the SpikeInterface project (Buc-
cino et al., 2019), provides standardized wrappers for most popular spike sorters. These include: HerdingSpikes2 (Hilgen
et al., 2017), IronClust (Jun et al., 2020), JRCLUST (Jun et al., 2017b), KiloSort (Pachitariu et al., 2016), KiloSort2 (Pachitariu
et al., 2018–2019), Klusta (Rossant et al., 2016), MountainSort4 (Chung et al., 2017), SpyKING CIRCUS (Yger et al., 2018),
Tridesclous (Garcia and Pouzat, 2018–2019), and WaveClus (Chaure et al., 2018; Quiroga et al., 2004). Since each of these
spike sorters operates within a unique computing environment, we utilize Docker (Merkel, 2014) and Singularity (Kurtzer
et al., 2017) containers to rigorously encapsulate the versions and prerequisites for each algorithm, ensuring independent
verifiability of results, and circumventing software library conflicts.

Our framework includes a system for job management, batching, and auto-caching that automatically reruns portions

of the analysis whenever it detects a modification to the GitHub repositories associated with algorithms, the sorting param-

eters, or the set of registered ground-truth recordings. It also handles the parallel execution of hundreds of simultaneous

spike sorter runs on a compute cluster, and is able to report failures if a job crashes or does not complete within a reason-

able time.

A central aim of this project is to maximize the transparency and reproducibility of the analyses. To this end, all data—

the set of recordings, their ground-truth firings, and firing outputs from all sorters—are available for public download via

our Python API. SpikeForest itself is open-source, as are the wrappers to all sorters, the Docker containers, and all of the

parameter settings used in the current study results. In fact, code to rerun any sorting task may be requested via the web

interface, and is auto-generated on the fly. Both the code and the formulae (for accuracy, SNR, and other metrics) are

documented on the site, with links to the source code repositories.

Although human curation is still part of the spike sorting analysis pipeline in most labs, the increase in the potential

yield from recently developed high-density recording devices will soon make this step infeasible. We therefore adopt the

philosophy that spike sorting algorithms should be evaluated in an automated, reproducible fashion and that, when used for

benchmarking purposes, the algorithms should be wrapped and run server-side without the possibility of human curation

of their output. This follows evaluation efforts for automated clustering algorithms such as ClustEval (Wiwie et al., 2015).
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PAIRED_BOYDEN 0.56 0.53* 0.34 0.61* 0.33* 0.53 0.5 0.26* 3 3* 6 6* 0* 0 2 1*

PAIRED_CRCNS_HC1 0.81 0.66* 0.51* 0.75* 0.67* 0.76 0.87* 0.7* 19 7* 9* 10* 9* 11 10* 11*

PAIRED_KAMPFF 0.73 0.78 0.85* 0.76 0.92 0.77 0.85 0.52 4 4 4* 6 8 4 7 3

PAIRED_MEA64C_YGER 0.83 0.85 0.85* 0.82 0.8* 0.65* 0.82 0.85 0.86 11 11 8* 11 8* 3* 11 11 11

PAIRED_MONOTRODE 0.41 0.53 0.56* 0.38* 0.44* 0.54 11 13 21* 11* 8* 14

SYNTH_BIONET 0.86 0.74 0.81 0.78* 0.73 0.79 0.21 3294 2037 3055 2044* 2198 2791 383

SYNTH_MAGLAND 0.96 0.88 0.83 0.89* 0.85 0.94 0.91 0.68 929 667 763 680* 457 870 686 441

SYNTH_MEAREC_NEURONEXUS 0.97 0.91 0.97* 0.88 0.92 0.95 0.98 434 801 439* 132 396 229 351

SYNTH_MEAREC_TETRODE 0.92 0.65 0.82 0.46* 0.85 0.93 0.85 0.92 123 31 132 9* 40 101 59 79

SYNTH_MONOTRODE 0.69 0.06* 0.84 0.33 0.34 0.74 61 0* 90 22 30 64

SYNTH_VISAPY 0.85 0.93 0.83 0.97 0.9 59 71 52 77 62

HYBRID_JANELIA 0.64 0.92 0.71 0.84 0.87 0.68 0.84* 0.43 527 1313 701 1163 1202 590 961* 456

MANUAL_FRANKLAB 0.47 0.32 0.44 0.49 0.58 0.64 0.6 0.04* 33 0 20 17 48 44 29 0*

Figure 2. Main results table from the SpikeForest website showing aggregated results for 10 algorithms applied to 13 registered study
sets. The left columns of the table show the average accuracy (see (5)) obtained from averaging over all ground-truth units with SNR above

an adjustable threshold, here set to 8. The right columns show the number of ground-truth units with accuracy above an adjustable

threshold, here set to 0.8. The first five study sets contain paired recordings with simultaneous extracellular and juxta- or intra-cellular

ground truth acquisitions. The next six contain simulations from various software packages. The HYBRID_JANELIA, obtained from

Pachitariu et al. (2018–2019), is real data with synthetic spike waveforms superimposed at known times. The last study set is a collection
of human-curated tetrode data. An asterisk indicates an incomplete (timed out) or failed sorting on a subset of results; in these cases,

missing accuracies are imputed using linear regression as described in the Methods. These results reflect the analysis run of January 9th,

2020.

We constrast this to competition-style efforts (Franke et al., 2012; Freeman, 2015–2018; Berens et al., 2018) which allow
contributions of (potentially non-reproducible) sorting results, and which report accuracy on held-out data whose ground

truth are necessarily private, and thus cannot be interrogated by the community.

Our work has three main objectives. The primary goal is to aid neuroscientists in selecting the optimal spike sorting

software (and algorithm parameters) for their particular probe, brain region, or application. A second goal is to spur im-

provements in current and future spike sorting software by providing standardized evaluation criteria. This has already

begun to happen as developers of some spike sorting algorithms have already made improvements in direct response to

this project. As a byproduct, and in collaboration with the SpikeInterface project (Buccino et al., 2019), we achieve a third ob-
jective of providing a software package which enables laboratories to run a suite of many popular, open-source, automatic

spike sorters, on their own recordings via a unified Python interface.

Results
Electrophysiology recordings (together with ground-truth information) registered in SpikeForest are organized into studies,
and studies are then grouped into study sets. Table 1 details all study sets presently in the system. Recordings within a
study set share a common origin (e.g., laboratory) and type (e.g., paired), whereas recordings within the same study are

associated with very similar simulation parameters or experimental conditions.

The results of the latest SpikeForest analysis may be found at https://spikeforest.flatironinstitute.org and are updated on a
regular basis as the ground-truth recordings, sorting algorithms, and sorting parameters are adjusted based on community

input. The central element of this web page is the main results matrix (Fig. 2) which summarizes results for each sorter

listed in Table 2 (using formulae defined later by (5)). The average accuracies are mapped to a color scale (heat map), with

darker blue indicating higher accuracy, using a nonlinear mapping designed to highlight differences at the upper end. For

the average accuracy table on the left, only ground-truth units with SNR above a user-adjustable threshold are included

in the average accuracy calculations; the user may then explore interactively the effect of unit amplitude on the sorting
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Figure 3. Screenshots from the SpikeForest website. (left) Scatter plot of accuracy vs. SNR for each ground-truth unit, for a particular
sorter (KiloSort2) and study (a hybrid drift dataset from the HYBRID_JANELIA study set). The SNR threshold for the main table calculation is

shown as a dashed line, and the user-selected unit is highlighted. Marker area is proportional to the number of events, and the color

indicates the particular recording within the study. (right) A subset of spike waveforms (overlaid) corresponding to the selected ground

truth unit, in four categories: ground truth, sorted, false negative, and false positive.

accuracies of all sorters. If a sorter either crashes or times out (>1 hour run time) on any recording in a study set, an asterisk

is appended to that accuracy result, and the missing values are imputed using linear regression as described in the Methods

section (there is also an option to simply exclude the missing data from the calculation).

The right table displays the number of ground truth units with accuracy above a user-adjustable threshold (0.8 by de-

fault), regardless of SNR. This latter table may be useful for determining which sorters should be used for applications that

benefit from a high yield of accurately sorted units and where the acceptable accuracy threshold is known. The website

also allows easy switching between three quality metrics (accuracy, precision, and recall) as described in the section on

comparison with ground truth.

Clicking on any result expands the row into its breakdown across studies. Further breakdowns are possible by clicking on

the study names to reveal individual recordings. Clicking on any result brings up a scatter plot of accuracy vs. SNR for each

ground-truth unit for that study/sorter pair (e.g., Fig. 3, left side). Additional information can then be obtained by clicking

on the markers for individual units, revealing individual spike waveforms (e.g., Fig. 3, right side).

Since neuroscientist users also need to compare the efficiencies (speeds) of algorithms, we measure total computation

time for each algorithm on each study, and provide this as an option for display on the website via a heat map. Run times

are measured using our cluster pipeline, which allocates a single core to each sorting job on shared-memory multi-core

machines (with GPU resources as needed). Since many jobs share I/O and RAM bandwidth, these cannot be taken as

accurate indicators of speeds in ideal settings. We will not discuss speed results in detail, but only note that older sorters

such as Klusta can be over 30 times slower than more recent GPU sorters such as KiloSort and IronClust.
At present, the total compute time for the 650 recordings and 10 sorters is 380 core hours, yet it takes only 3–4 hours

(excluding failing jobs) to complete this analysis when run in parallel on our compute cluster with up to 100–200 jobs

running simultaneously (typically 14 jobs per node). Since the system automatically detects which results require updating,

the pipeline may be run on a daily basis utilizing minimal compute resources for the usual situation where few (if any)

updates are needed.

We now draw some initial conclusions about the relative performances of the spike sorters based on the threshold

choices in Fig. 2. No single spike sorter emerged as the top performer in all study sets, with IronClust, KiloSort2, Mountain-

Sort4, and SpyKING CIRCUS each appearing among the most accurate in at least six of the study sets.

The higher average accuracy of KiloSort2 over its predecessor KiloSort is evident, especially for paired recordings. How-

ever, in synthetic studies, particularly tetrodes, KiloSort finds more units above accuracy 0.8 than KiloSort2. Scatter plots

(e.g., Fig. 3, left side) show that KiloSort2 can retain high accuracy down to lower SNR than other sorters, but for not for all
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such low-SNR units. While KiloSort2 was among the best performers for six of the study sets, KiloSort and KiloSort2 had

higher numbers of crashes than any of the other sorters, including crashing on every one of the SYNTH_VISAPY recordings.

It is likely that modifications to sorting parameters could reduce the number of crashes, but attempts so far, including

contacting the author, have not yet fixed this problem. In the synthetic datasets, KiloSort2 had the largest number of false
positive units (distinct from the false positive rate of a single unit), but this is not currently reported by SpikeForest (see
Discussion).

IronClust appears among the top average accuracies for eight of the study sets, and is especially strong for the simulated

and drifting recordings. For most study sets, IronClust has improved accuracy over its predecessor JRCLUST, and is also

improved in terms of speed and reliability (no crashes observed). Although a substantial portion of the development of the

IronClust software took place while it had access to the SpikeForest ground truth datasets, the same sorting parameters are

used across all studies, limiting the potential for overfitting (see Discussion).

MountainSort4 is among the top performers for six of the study sets (based on the average accuracy table) and does

particularly well for the low-channel-count datasets (monotrodes and tetrodes). It is not surprising that MountainSort4 is

the top performer for MANUAL_FRANKLAB because that data source was used in development of the algorithm (Chung
et al., 2017).
When considering the left table (average accuracy), SpyKING CIRCUS is among the best sorters for ten study sets. How-

ever, it ranks a lot lower in the unit count table on the right of Fig. 2. This was an example of a sorter that improved over a

period of months as a result of using SpikeForest for benchmarking.

HerdingSpikes2 was developed for high-density MEA probes and uses a 2D estimate of the spike location, hence was

applied only for recordings with a sufficiently planar electrode array structure (this excluded tetrodes and linear probes).

For PAIRED_MEA64C_YGER its performance was similar to other top sorters, but in the other study sets, it was somewhat

less accurate. One advantage of HerdingSpikes2 not highlighted in the results table is that it is computationally efficient for

large arrays, even without using a GPU.

Tridesclous is among the top performers for both MEAREC study sets and for PAIRED_MEA64C_YGER, but had a substan-

tially lower accuracy for most of the other datasets. This algorithm appears to struggle with lower-SNR units.

Klusta is substantially less accurate than other sorters in most of the study sets, apart from MANUAL_FRANKLAB where,

surprisingly, it found the most units above accuracy 0.8 of any sorter. It also has one of the highest crash/timeout rates.

The version of WaveClus used in SpikeForest is only suited for (and only run on) monotrodes; a new version of WaveClus

now supports polytrodes, but we have not yet integrated it. We included both paired and synthetic monotrode study sets

with studies taken from selected single electrodes of other recordings. Four sorters (HerdingSpikes2, JRCLUST, KiloSort, and

KiloSort2) were unable to sort this type of data. Of those that could, MountainSort4 was the most accurate, with accuracies

slightly higher than WaveClus.

An eleventh algorithm, Yet Another Spike Sorter (YASS) (Lee et al., 2017), was not included in the comparison because,
even after considerable effort and reaching out to the authors, its performance was too poor, leading us to suspect an

installation or configuration problem. We plan to include YASS in a future version of the analysis.

Methods
Ground-truth recordings
The thirteen study sets included in the SpikeForest analysis are detailed in Table 1. All but the last belong to one of the three

categories described in the introduction: paired, simulated, or hybrid.

We selected 145 paired recordings from raw extracellular recordings that were publicly released by four laboratories

(Henze et al., 2000; Harris et al., 2000; Henze et al., 2009; Neto et al., 2016; Allen et al., 2018;Marques-Smith et al., 2018a,b;
Yger et al., 2018; Spampinato et al., 2018). The intracellular spike times were taken from the author-reported values unless
they were not provided (Henze et al., 2009). We prepared 93 paired recordings from the Buzsaki laboratory (Henze et al.,
2000; Harris et al., 2000; Henze et al., 2009) with ground truth based on the intracellular traces after excluding time seg-
ments containing artifacts due to movement and current injection. The paired recordings were obtained from tetrodes or

conventional silicon probes in rat hippocampus (PAIRED_CRCNS_HC1) (Henze et al., 2000; Harris et al., 2000; Henze et al.,
2009), high-density silicon probes in mice cortex (PAIRED_KAMPFF and PAIRED_BOYDEN) (Neto et al., 2016; Allen et al., 2018;
Marques-Smith et al., 2018a,b), and high-density MEAs inmice retina (PAIRED_MEA64C_YGER) (Yger et al., 2018; Spampinato
et al., 2018). We generated a monotrode version of the paired recordings (PAIRED_MONOTRODE) by randomly sampling
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Figure 4. Interaction of software and hardware components of the SpikeForest system, showing the flow of data from the server-side
analysis (left) to the user’s web browser (right). The processing pipeline automatically detects which sorting jobs need to be updated and

runs these in parallel as needed on a compute cluster. Processing results are uploaded to two databases, one for relatively small JSON

files and the other for large binary content. A NodeJS application pulls data from these databases in order to show the most up-to-date

results on the front-end website.

one channel from each recording session to uniformly span the SNR range (25 units per study).

To overcome the limited number of units offered by the paired ground truth, we added simulated ground-truth study sets

that were independently generated by five laboratories (Camuñas-Mesa and Quiroga, 2013; Hagen et al., 2015; Chung et al.,
2017; Gratiy et al., 2018; Buccino and Einevoll, 2019). The simulators vary in their biophysical details, computational speeds,
and configurable parameters. Simulations based on phenomenological models tend to be fast and easily configurable

(e.g., SYNTH_MAGLAND, identical to the simulations in Chung et al. (2017) except with iid Gaussian noise), while biophysical
simulators such as SYNTH_VISAPY (Hagen et al., 2015) and SYNTH_BIONET (Gratiy et al., 2018) use synaptically connected,
morphologically detailed neurons to achieve high fidelity at the expense of computational speed. SYNTH_MONOTRODE

(Camuñas-Mesa and Quiroga, 2013) and SYNTH_MEAREC (Buccino and Einevoll, 2019) take an intermediate approach by
generating spike waveform templates based on single-neuron simulations and randomly placing the spike waveforms con-

forming to pre-specified ISI distributions.

SYNTH_BIONET was generated from the Allen Institute’s BioNet simulator (Gratiy et al., 2018; Jun et al., 2017b) running
on the computing resources provided by the Neuroscience Gateway (Sivagnanam et al., 2013). We simulated a column of
synaptically connected neurons (n = 708, 200×200×600µm3

) based on the rat cortical NEURONmodels (Hines and Carnevale,
1997; Ascoli et al., 2007; Mitelut, 2017; Jun et al., 2017b) by capturing the spike waveforms at four vertical columns of
densely-spaced electrodes (2 µm vertical, 16 µm horizontal pitch, 600 channels). Linear probe drift was simulated by sub-

sampling the electrodes to match the Neuropixels site layout (20-25 µm pitch) and vertically shifting the electrode positions

as a function of time. To achieve smooth linear motion, a 2D-interpolation based on a Gaussian kernel was applied (0.5

µm vertical spacing, 16 µm total displacement for 16 minutes). Based on the linear probe drift simulation, we generated

a ’shuffled’ version to mimic the fast probe displacements during animal movement by subdividing the recordings into 32

time segments and randomly shuffling (30 s per segment).

Hybrid ground truth combines the advantages of both paired and simulated recordings by simulating a spike train based

on the spike waveforms obtained from experimental recordings. The simulation entitled HYBRID_JANELIA was developed

by J. Colonell (Pachitariu et al., 2018–2019) and uses average unit waveforms from a densely spaced electrode array (5 µm
pitch, 15×17 layout) collected by the Kampff laboratory (Kampff, 2018). The waveform templates were inserted at randomly
selected channels and time points after being multiplied by an amplitude-scaling factor drawn from a Gamma distribution.

The baseline noise was randomly generated to match the power spectrum observed from a Neuropixels recording, and

a spatiotemporal smoothing was applied to induce correlation between nearby channels and time samples. The original

simulation generated either static or sinusoidal drift (±10µm displacement, 600 s period) with 1200 s duration (30 KS/s)
on the Neuropixels layout (64 channels, 25 µm pitch, staggered four columns). We trimmed the original simulations to

generate shorter recording durations (600, 1200 s) and channel counts (4, 16, 32, 64 channels) to study the effects of these

parameters on sorting accuracy.
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Based on the requests of the electrophysiology community, we included a single study set of manually curated tetrode
sortings (MANUAL_FRANKLAB) (Chung et al., 2017); we emphasize that, for this study set only, there is no ground-truth data.
Accuracies are reported relative to three independent manual sortings of the same tetrode recording session in a chronically

implanted rat hippocampus. We subdivided the entire recording duration to generate three different durations (600, 1200,

2400 s) to study the effect of duration on sorting accuracy, but did not find a consistent relationship across all sorters.

A content-addressable storage database is used to store the file content of each recording, and all data is available

for public download via our Python API. Since these files are indexed according to their SHA-1 hashes, their content is

guaranteed not to have changed even when the mechanism for retrieving the data evolves over time, ensuring long-term

repeatability of the analysis.

Sorting algorithms and wrappers
Table 2 provides details on the ten algorithms included in the SpikeForest analysis. For each spike sorter, SpikeForest con-

tains a Python wrapper and a Docker (and Singularity) container defining the exact execution environment including all

necessary dependencies. For the sorters that are implemented in MATLAB, the MATLAB Compiler tool was used to gener-

ate standalone binary files inserted into the containers so that a MATLAB license is not required to run spike sorting. The

SpikeForest framework flexibly allows running of each sorter either within the native operating system or within the con-

tainer. The former method is useful during development or in an environment where the spike sorting software is already

installed. The latter is crucial for ensuring reproducibility and for avoiding conflicts between sorters due to incompatible

dependencies. The Python wrappers make use of the spikesorters package of the SpikeInterface project (Buccino et al.,
2019) for passing the parameters and executing the sorter. All sorters operate on the raw (unfiltered) recordings.
An eleventh algorithm, YASS, was incorporated into the Python package, but was not included in the comparison, as

discussed in the Results section.

Comparison with ground truth
Depending on the experimental context, false negatives (missed events) and false positives may have different relative

importance for the researcher. Thus the SpikeForest website allows switching between three evaluation metrics for the

comparison with ground truth: precision (which penalizes only false positives), recall (which penalizes only false negatives),

and an overall accuracy metric (which balances the two). For each sorter-recording pair these are computed by comparing

the output of spike sorting (spike times and labels) with the ground-truth timings associated with the recording, as follows.

We first consider a sorted unit k and a ground-truth unit l, and describe how the events in the spike train for k are

matched to ground-truth events of l. Let s
(k)
1 , . . . , s

(k)
Mk
be the spike train (timestamps) associated with sorted unit k, and let

t
(l)
1 , . . . , t

(l)
Nl
be the spike train for ground-truth unit l (see Fig. 1). Let ∆ be an acceptable firing time error, which we assume

is shorter than half the refractory period of any true neuron. We set ∆ at 1 millisecond; the results are rather insensitive to
its exact value. The number of matches of sorted unit k to the ground-truth unit l is

nmatchl,k := #{i : |t(l)
i − s

(k)
j | ≤ ∆ for some j}. (1)

Note that even if more than one sorted event falls within ±∆ of a true event, at most one is counted in this matching. The
reverse situation—more than one ground-truth event from the same neuronmatching to a given sorted event—cannot hap-

pen by our assumption about the refractory period. The number of missed events and false positives are then, respectively,

nmissl,k := Nl − nmatchl,k , n
fp

l,k := Mk − nmatchl,k , (2)

where Nl is the total number of firings of ground-truth unit l, andMk is the total number of found events of sorted unit k.

Following Jun et al. (2017a) we define the accuracy for this pair as

al,k :=
nmatchl,k

nmatchl,k + nmissl,k + n
fp

l,k

. (3)

Note that this definition of accuracy is a balance between precision and recall, and is similar, but not identical, to the F1

metric (Zaki and Meira Jr, 2014, Eq. (17.1)) used to evaluate clustering methods.
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Study set # Rec. / # Elec. / Dur. Source lab. Description
Paired intra/extracellular
PAIRED_BOYDEN 19 / 32ch / 6-10min E. Boyden Subselected from 64, 128, or 256-

ch. probes, mouse cortex

PAIRED_CRCNS_HC1 93 / 4-6ch / 6-12min G. Buzsaki Tetrodes or silicon probe (1

shank) in rat hippocampus

PAIRED_KAMPFF 15 / 32ch / 9-20min A. Kampff Subselected from 374, 127, or 32-

ch. probes, mouse cortex

PAIRED_MEA64C_YGER 18 / 64ch / 5min O. Marre Subselected from 252-ch. MEA,

mouse retina

PAIRED_MONOTRODE 100 / 1ch / 5-20min Boyden,

Kampff,

Marre,

Buzsaki

Subselected from paired record-

ings from four labs

Simulation
SYNTH_BIONET 36 / 60ch / 15min AIBS BioNet simulation containing no

drift, monotonic drift, and ran-

dom jumps; used by JRCLUST,

IronClust

SYNTH_MAGLAND 80 / 8ch / 10min Flatiron

Inst.

Synthetic waveforms, Gaussian

noise, varying SNR, channel

count and unit count

SYNTH_MEAREC_NEURONEX 60 / 32ch / 10min A. Buccino Simulated using MEAREC, varying

SNR and unit count

SYNTH_MEAREC_TETRODE 40 / 4ch / 10min A. Buccino Simulated using MEAREC, varying

SNR and unit count

SYNTH_MONOTRODE 111 / 1ch / 10min Q. Quiroga Simulated by Quiroga lab by mix-

ing averaged real spike wave-

forms

SYNTH_VISAPY 6 / 30ch / 5min G. Einevoll Generated using VISAPy simula-

tor

Hybrid
HYBRID_JANELIA 60 / 4-64ch / 5-20min M. Pachitariu Distributed with KiloSort2, with

and without simulated drift

Human curated
MANUAL_FRANKLAB 21 / 4ch / 10-40min L. Frank Three manual curations of the

same recordings

Table 1. Table of study sets included in the SpikeForest analysis. Study sets fall into four categories: paired, synthetic, hybrid, and curated.
Each study set comprises one or more studies, which in turn comprise multiple recordings acquired or generated under the same

conditions.
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Sorting algorithm Language Notes

HerdingSpikes2 Python Designed for large-scale, high-density multi-

electrode arrays. See Hilgen et al. (2017).
IronClust MATLAB and CUDA Derived from JRCLUST. See Jun et al. (2020).
JRCLUST MATLAB and CUDA Designed for high-density silicon probes.

See Jun et al. (2017b).
KiloSort MATLAB and CUDA Template matching. See Pachitariu et al.

(2016).
KiloSort2 MATLAB and CUDA Derived from KiloSort. See Pachitariu et al.

(2018–2019).
Klusta Python Expectation-Maximization masked cluster-

ing. See Rossant et al. (2016).
MountainSort4 Python and C++ Density-based clustering via ISO-SPLIT. See

Chung et al. (2017).
SpyKING CIRCUS Python and MPI Density-based clustering and template

matching. See Yger et al. (2018).
Tridesclous Python and OpenCL See Garcia and Pouzat (2018–2019).
WaveClus MATLAB Superparamagnetic clustering. See Chaure

et al. (2018); Quiroga et al. (2004).
Table 2. Table of spike sorting algorithms included in the SpikeForest analysis. Each algorithm is registered into the system via a Python
wrapper. A Docker recipe defines the operating system and environment where the sorter is run.

Fixing the ground-truth unit l, we define its best matching sorted unit k̂l as the sorted unit k with highest accuracy,

k̂l := arg max
k

al,k . (4)

Now restricting to this best match, we define the accuracy for ground-truth unit l by

al := al,k̂l
, (5)

and the corresponding precision and recall for this unit by

pl :=
nmatch

l,k̂l

nmatch
l,k̂l

+ n
fp

l,k̂l

rl :=
nmatch

l,k̂l

nmatch
l,k̂l

+ nmiss
l,k̂l

. (6)

Averages of these metrics are then computed for all units l within each study, without weighting by their numbers of events

(i.e., treating all units equally). Note that, in the case of a recording with more than one ground-truth unit, it is possible that

more than one such unit could share a common best-matching sorted unit, but this could only happen if these ground-truth

units had extremely correlated events or if the sorted was highly inaccurate.

The spike sorted units that are considered in the computation of these metrics are only those that are matched to

ground-truth units. Therefore, the results shown in the main table do not account for false positive units, i.e., units found

by the spike sorters that are not present in the recording.

Compensating for missing data
As described above, when a sorting run fails (either crashes or times out), an asterisk is appended to the corresponding

table cell, and the average accuracy is calculated based on imputed data using linear regression. There is also an option to

simply exclude the missing values, but the problem with this method (which we have encountered) is that sometimes an

algorithm will happen to crash on recordings with relatively difficult units, resulting in artificially elevated scores. Imputing

by zero has the problem of yielding deceptively low values. We have thus opted to use linear regression to fill in the missing

data using values predicted based on the accuracies of other sorters. Specifically, for a given sorter with missing data and

a given study set (or study, depending on the level of aggregation), a linear model is estimated for fitting the non-missing

values based on the values of all sorters with no missing data. That model is then applied to estimate the missing data. To
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give some intuition, if a sorter typically has somewhat lower scores than the other sorters and crashes on one recording,

then for the purpose of computing average accuracy, the accuracy for that recording will be filled in with a value that is also

somewhat lower than the other sorters.

In constrast, when reporting total numbers of units found above an accuracy cut-off (e.g., Fig. 2, right side), we do not

impute, but simply sum the number of non-missing units.

Signal-to-noise ratio per unit
We define SNR as a property of a single neural unit, either a ground-truth unit or a unit as output by a sorter. It is reported

on the website and is used as a cut-off for selection of a subset of ground-truth units for computing average accuracy. SNR

is computed on the bandpass-filtered timeseries data.

We first describe our filter used to compute SNR (noting that this is distinct from various filters used internally by the

spike sorters). This filter is a bandpass from fmin = 300 to fmax = 6000, in Hz units. It is applied to each channel by taking the
FFT, multiplying by the real-valued frequency filter function

A(f) = 1
2

√
1 + erf((f − fmin)/100)

√
1− erf((f − fmax)/1000) , (7)

where erf is the error function, then taking the inverse FFT. Here, the parameters 100 and 1000 control the roll-off widths

in Hz at the low and high ends respectively. From this filtered timeseries and the set of firing times of a unit, the average

spike waveform is extracted. SNR is then defined as the ratio between the peak absolute amplitude of this average spike

waveform and the estimated noise on the channel where this peak amplitude occurs. The noise is estimated as the median

absolute deviation of the filtered timeseries data divided by 0.6745, which gives a robust estimate of the standard deviation
of the noise (Quiroga et al., 2004, Sec. 3.1).

Analysis pipeline
The analysis pipeline of SpikeForest depicted in Fig. 4 is built using Python utilities developed by the authors for creating

shareable and reproducible scientific workflows. This system provides a formal method for creating well-defined Python

procedures that operate on input parameters and files and produce output files. These are known as processors. SpikeForest
defines processors for running the spike sorters, computing properties of ground-truth units (e.g., SNR), comparing the spike

sorting outputs with ground truth, and computing summary data for the plots shown on the website. Once these processors

are set up, the framework provides several advantages including: (a) automatic execution of processing inside Singularity

or Docker containers; (b) automatic caching of processing results; and (c) job management and queueing mechanisms for

running batches of processing on a compute cluster. This allows the analysis pipeline to be defined as a standard Python

script, with a simple nested loop iterating through the sorters and ground-truth datasets (as in Fig. 1). The script may then

be configured to run in a variety of settings: on a standard workstation for development, testing, or reproducing of a subset

of results; a shared computer with large memory and many cores; or on a compute cluster.

A crucial and novel feature of our framework is that all files (both input and output) are represented by SHA-1 URIs, for

example of the form:

sha1://88b62db6fc467b83ba0693453c59c5f538e20d5c/firings_true.mda

The hexadecimal code embedded in the URI is the SHA-1 hash of the content of the file, and therefore this URI uniquely

identifies the desired file (in this case the ground-truth firing data for one of the SpikeForest recordings) without specifying

the actual location of the data. In contrast, explicit location references (e.g., a path on the local computer, an IP address,

or a web URL) can be problematic because over time data archives may stop being maintained, may change locations, or

files may be renamed or updated with new content. The SHA-1 URI system alleviates these difficulties by separating the

mechanism for storing archives of files from the representation of these files, via universal hash strings within scripts.

All SpikeForest input recordings, ground-truth data, sorting outputs, and other processing data are stored in a public

content-addressable storage (CAS) system called kachery. The API of a kachery database simply allows downloading of files
referenced only by their SHA-1 hashes (or URIs). Therefore, as long as the environment is configured to point to a kachery

database with the relevant files available, the SpikeForest pipeline may be executed (in whole or in part) on any computer

connected to the internet.

The automatic caching capability we developed is also crucial for the SpikeForest system. If updates are made to either

the database of ground-truth recordings or to the sorting algorithms and parameters, the system can automatically detect

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.14.900688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.900688
http://creativecommons.org/licenses/by-nc/4.0/


which processing needs to be rerun. In this way, the pipeline can simply be executed in full at regular intervals, and the

website will continuously update with the latest changes. This facilitates a conceptually simple method for adding new

datasets or sorting algorithms because changes are represented by modifications to pipeline configuration files.

A limitation of the reliance on caching is the implicit assumption that the sorting algorithms are deterministic, i.e., given

the same inputs, parameters, and code, the outputs should be exactly the same. However, this assumption can be violated

by unfixed random seeds or even differences between implementations of floating-point arithmetic on different hardware.

Controlling these factors is currently out of scope for SpikeForest, but we aim to measure the degree of stability (Barnett
et al., 2016) with respect to repeated runs of each sorting task in future versions.
To ensure that all results may be reproduced at a later date and/or independently verified by a third party, the Python

wrapper for each spike sorter includes a reference to a Docker image containing the entire operating system and environ-

ment where the sorter is installed. Our system handles the automatic download of these images (if not already on the local

computer) and the execution of the sorting inside Docker or singularity containers. For development and testing purposes,

it is also possible to configure the pipeline to run outside the container, provided that the sorter software is installed on the

operating system.

The output of processing is a single JSON file (only around 15 MB at this time) containing SHA-1 URI references to all

recording files, ground-truth data, containers, spike sorting parameters, sorting outputs, comparisons with ground truth,

and other information used by the website. It also contains meta-information about the sorting runs such as the execution

times and console outputs. This JSON file is itself uploaded to the kachery database and is represented by a SHA-1 URI

accessible on the website. The archive section of the website contains references to these files for all past analyses, allowing

tracking of sorter performance over time.

Finally, the data from this JSON output file is loaded into a MongoDB database for efficient access by the website’s front

end.

Website front end
The primary user interface for the SpikeForest platform is an isomorphic JavaScript web application with overall structure as

shown on the right side of Fig. 4. Built from reusable React components, the front end utilizes the D3 library to render the

interactive tables and plots. A Node.JS backend, organized using the Redux state container, queries a MongoDB database

to retrieve JSON files for each datatype and generate the comparative visualizations. For more detailed plots, like the spike

sprays, larger data objects are retrieved via the content-addressable storage database.

We optimized the interface for efficient hierarchical navigation through the results and rapid loading and interactive

response (for instance, when a user adjusts the SNR or accuracy cut-off slider bar). When the user clicks on results at the

individual recording or unit level, they are taken to a page (with an auto-generated, shareable URL) specific to the study in

question. This page allows one-click comparison of the sorters on this study. Clicking on individual units in the scatter plot

for a given sorter-study pair brings up spike waveforms for that unit (Fig. 3) and a link to sub-page with details specific to the

particular sorter-recording run. This latter page includes sorter parameters used, the console output of the run and a link

to an auto-generated python script with human-readable documentation to reproduce that sorter run within SpikeForest.

A permanent top-level menu bar allows access to all meta-data about sorters (as in Table 2), study sets (as in Table 1, also

allowing hierarchical drilling down to the individual recording level), historical snapshots, metrics used, and an explanation

of the project. All of the website data and results sub-pages are automatically generated from the SpikeForest databases.

Discussion
We have introduced a Python framework and public website for evaluating and comparing many popular spike sorting

algorithms by running them on a large and diverse set of curated electrophysiology datasets with ground truth. We have

described the principal features of the website and the methodology used to prepare the ground truth data of varying

types (paired, synthetic, hybrid, and manually-curated) and apply the spike sorting algorithms in a uniform, transparent and

unbiased manner. We have summarized initial findings comparing sorter accuracies, and invite the reader to explore the

continually updating results on the live site.

One conclusion is that (as of this time) there is no single sorter that is the most accurate across a diversity of probe types,

experimental conditions, metric types and SNR cut-offs. Rather, several different sorters are optimal in different settings.

For example, MountainSort4 performs especially well for low channel counts (tetrodes and monotrodes), IronClust excels
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in the simulated and drifting datasets, while KiloSort2 retains higher accuracy (for units that are found) at lower SNR than

other sorters.

Our contribution also helps to overcome some practical issues with neurophysiology research in the laboratory. Tra-

ditionally, spike sorting codes bring special requirements for installation and custom input/output file formats, and also

require expertise in sorting parameter selection and using visualization and curation utilities intimately tied to that code.

This problem has been exacerbated by the use of GPU computing to improve performance in recently developed codes.

It is therefore challenging, and unusual, for a laboratory to have more than one or two installed sorters for in-house eval-

uation. Part of this obstacle is overcome by the SpikeInterface project (Buccino et al., 2019), which SpikeForest utilizes,
but another part is solved by the Docker and Singularity containers that we have developed to fully capture the operating

system environments needed by each sorter.

In the past, comparisons between spike sorting algorithms have been biased or limited. Almost all have been presented

in the context of a new or improved method, and so the choice of simulations used for evaluation can often be (uninten-

tionally) biased toward showing that the new method is superior. Given only such reports, it is also impractical for readers

to verify that the various sorters were used properly and with sensible parameters. The openness and reproducibility of

SpikeForest aims to remedy this situation.

There are many ongoing challenges to the validation of spike sorters. With SpikeForest we made the decision to pack-

age sorters and run them on our own compute cluster, on recordings that we make publicly available; this contrasts

“competition”-style comparisons on held-out test data (discussed in the Introduction). Although some effort has been made

to choose good parameters for each sorter, optimal choices are not guaranteed. We anticipate that a use case for Spike-

Forest will be finding the best combination of sorter and parameters for a particular recording type. However, automated

parameter optimization (as in ClustEval by Wiwie et al. (2015)) has not yet been implemented since it would multiply the
total CPU cost by a large factor. For now, we encourage the community to contact us with improved settings or algorithms.

Indeed, we reached out to the developers of all ten tested sorters in mid-2019 with preliminary results, and several develop-

ers (including at least those of SpyKING CIRCUS, HerdingSpikes2, IronClust, and Tridesclous) have already used SpikeForest

to improve their software. We emphasize that, for reproducibility, sorter versions and parameter choices used for each

date-stamped analysis are available in the downloadable analysis archives linked from the website.

This raises the issue of potential overfitting. Because all SpikeForest data are public, the community may continue to
optimize sorters using SpikeForest as a benchmark, so one might wonder if this will lead to SpikeForest metrics which

overestimate true real-world performance. We believe that such bias will be small, and certainly smaller than the bias

of studies conducted in order to propose a single sorting algorithm, for the following reasons. 1) Our database is large

and diverse, comprising 13 different types of study sets. It is difficult to imagine overfitting to 650 different recordings by

optimizing even dozens of parameters, and, while we allow the potential (as yet unused) for different parameter choices for

different studies, multiple recordings would still have to be overfit by one parameter set. 2) All code and parameter settings

are available for public inspection, making the above style of parameter and algorithm hacking obvious, were it to occur.

We feel that the benefit to the community of improved, validated sorters far outweighs the risk of overfitting. Naturally,

SpikeForest results are biased towards the types of neurons and conditions for which ground-truth data exist; by keeping
results for different study sets separate we expose such biases as much as possible. In the long run, we appreciate that

both held-out and open data benchmarks will play a useful role in comparison and standardization.
Another issue is the paucity of paired ground-truth units in the database, a consequence of the time-consuming nature

of their collection. For instance the study set PAIRED_KAMPFF has 15 units, of which only 11 have sufficient SNR to be

sortable by any of the sorters. Therefore a single false split or merge by a sorter can lead to variations in reported study-
averaged accuracy as large as ±0.05, and dictate the most accurate sorter for that study set. In (small-scale) laboratory
pipelines it is possible that such splits or merges would be detected by expert human curation; the point of SpikeForest is

to measure the performance of purely automated algorithms. Such sensitivity will be reduced as the size of ground-truth

studies increases.

In the future we plan to report false positive units. Currently only the one sorted unit which best matches each ground-

truth unit is assessed for accuracy. Thus there is no penalty for a sorter which generates many spurious units that are not

present in the data (this is necessarily true for KiloSort in most cases, since the number of returned units is set in advance

by the user). Results from such a sorter would of course then be less credible, and, even if examined by an expert, much

harder to curate. This failure mode is not revealed by paired recordings; yet, in simulations (where every single firing is
ground truth) a new metric capturing the fraction of such spurious units could be included (see Buccino et al. (2019)).

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.14.900688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.900688
http://creativecommons.org/licenses/by-nc/4.0/


These issues help inform several specific future goals:

1. SpikeForest does not directly address the common laboratory task of deciding, given a new sorting of electrophysiology

recordings, which neural units are to be trusted and which discarded. Assessing the credibility of putative neural units

output by spike sorters remains a crucial question, and many quality metrics are used in practice, including SNR, firing

rate, metrics of cluster isolation or separation from the “noise cluster”, stability, and cross-correlograms (Pouzat et al.,
2002; Schmitzer-Torbert et al., 2005; Hill et al., 2011;Neymotin et al., 2011; Barnett et al., 2016; Chung et al., 2017). Yet
the SpikeForest database provides a unique opportunity to tabulate such quality metrics for multiple sorter outputs,

then correlate each to the actual ground-truth accuracy with the goal of assessing the predictive power of each metric,
or combinations thereof. Note that we have already made one step in this direction with scatter plots of accuracy vs.

SNR (Fig. 3, left side), but plan to add other quality metrics.

2. It is currently not as easy as it could be to identify common failure modes such as false merges and false splits. We

plan to display confusion matrices (see, e.g., Barnett et al. (2016)) between ground-truth and a given sorting; this would
also allow comparison between two different sorter outputs.

3. We plan to add accuracymetrics that address specific tasks, such as the ability to handle probe drift and long recording

durations (currently only two hybrid and one synthetic study explicitly test drift). The website could visualize successful

tracking as a function of recording duration. We also plan to include accuracy metrics that penalize false positive units,

as discussed above, or that evaluate the stability with respect to repeated runs (see (Barnett et al., 2016)).
4. The comparison of CPU time for each sorter is currently sub-optimal, because multiple sorters may be running on

one node. We plan to include special timing comparisons on dedicated nodes in order to reflect actual laboratory use

cases.

5. The number of sorter job crashes and time-outs needs be reduced, which requires detailed diagnosis on many sorter-

recording pairs. For instance, currently KiloSort2 has a larger proportion of crashes or time-outs than many other

sorters, yet this is not fully understood and not quantified in accuracy summary results.

6. Finally, we envision that the machinery of SpikeForest could be used for a web-based spike sorting platform, to which
users would upload their data (which becomes public), run possibly more than one sorter, visualize, curate, and down-

load the results. This could render all spike sorting and human curation affecting the downstream science analysis

accessible and reproducible.

We anticipate that, as the use and scale of spike sorting as a tool continues to grow, SpikeForest will become a resource

for comparison and validation of sorter codes and encourage more rigorous reproducibility in neuroscience. To this end,

we seek contributions and input from the electrophysiology community, both to optimize parameter settings for existing

algorithms, and to further expand the set of algorithms and ground-truth recordings included in the analysis.
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