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Abstract 36 

Low success rates during drug development are due in part to the difficulty of 37 

defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, 38 

we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs 39 

and genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically 40 

investigate in cellular drug mechanism-of-action. We observed an enrichment for 41 

positive associations between drug sensitivity and knockout of their nominal targets, 42 

and by leveraging protein-protein networks we identified pathways that mediate drug 43 

response. This revealed an unappreciated role of mitochondrial E3 ubiquitin-protein 44 

ligase MARCH5 in sensitivity to MCL1 inhibitors. We also estimated drug on-target and 45 

off-target activity, informing on specificity, potency and toxicity. Linking drug and gene 46 

dependency together with genomic datasets uncovered contexts in which molecular 47 

networks when perturbed mediate cancer cell loss-of-fitness, and thereby provide 48 

independent and orthogonal evidence of biomarkers for drug development. This study 49 

illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function 50 

screens can elucidate mechanism-of-action to advance drug development. 51 

Introduction 52 

Understanding drug mechanism-of-action and evaluating in cellular activity is 53 

challenging (Santos et al, 2017) and widespread target promiscuity contributes to low success 54 

rates during drug development (Klaeger et al, 2017). For target-based drug development, a 55 

detailed understanding of drug mechanism-of-action provides information about specificity 56 

and undesirable off-target activity which could lead to toxicity and reduced therapeutic window 57 

(Lin et al, 2019). Moreover, molecular biomarkers can be used to monitor drug activity and to 58 

identify contexts in which drugs are more effective as the basis for patient stratification during 59 

clinical development.  60 

 61 

The cellular activity of a drug is influenced by multiple factors including the selectivity 62 

and affinity of the compound to its target(s) and the penetrance of target engagement on 63 

cellular phenotypes. An array of biochemical, biophysical, computational and cellular assays 64 

are currently used to investigate drug mechanism-of-action (Schenone et al, 2013). For 65 

example, protein kinase inhibitors are profiled in vitro for their specificity and potency against 66 

panels of purified recombinant protein kinases. While informative, this approach fails to 67 

recapitulate the native context of the full-length protein in cells which could influence drug 68 

activity, it does not identify non-kinase off-target effects, nor is it suitable to evaluate the 69 
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selectivity of compounds to non-kinase targets. Existing in cellular based approaches include 70 

transcriptional profiling following drug treatment of cells, chemical proteomics approaches 71 

such as kinobeads to measure drug-protein interactions, and multiplexed imaging or flow-72 

cytometry to measure multiple cellular parameters upon drug treatment (Subramanian et al, 73 

2017; Li et al, 2017; Reinecke et al, 2019). Despite the utility of these different approaches, 74 

gaining a full picture of drug mechanism-of-action, particularly in cells, remains a challenge 75 

and new approaches would be beneficial. 76 

 77 

Pharmacological screens (Barretina et al, 2012; Garnett et al, 2012; Iorio et al, 2016; 78 

Subramanian et al, 2017; Lee et al, 2018) have been used to profile the activity of hundreds 79 

of compounds in highly-annotated collections of cancer cell lines with the aim of identifying 80 

molecular markers of drug sensitivity to guide clinical development (Cook et al, 2014; Nelson 81 

et al, 2015). More recently, CRISPR-based gene-editing has enabled the evaluation of highly 82 

specific and penetrant gene-knockout effects on cell fitness genome-wide in hundreds of 83 

cancer cell lines (Jinek et al, 2012; Shalem et al, 2014; Hart et al, 2015; Meyers et al, 2017; 84 

Behan et al, 2019). This has provided rich functional resources to explore cancer 85 

vulnerabilities and new potential drug targets (Marcotte et al, 2016; Meyers et al, 2017; 86 

Tsherniak et al, 2017; Behan et al, 2019). Parallel integration of gene loss-of-function screens 87 

with drug response can be used to investigate drug mechanism-of-action (Deans et al, 2016; 88 

Subramanian et al, 2017; Jost & Weissman, 2018). 89 

 90 

 Here, we integrate recent genome-wide CRISPR-Cas9 loss-of-function screens with 91 

pharmacological data for 397 unique anti-cancer compounds in 484 cancer cell lines. We show 92 

that CRISPR-Cas9 datasets recapitulate drug targets, can provide insights into drug potency 93 

and selectivity, and define cellular networks underpinning drug sensitivity. This approach 94 

identified a link between mitochondrial ubiquitin ligase MARCH5 in MCL1 inhibitors response, 95 

and specifically in breast cancer cell lines. Furthermore, we defined robust pharmacogenomic 96 

associations, represented by genetic biomarkers independently supported by drug response 97 

and gene fitness measurements. These identify genetic contexts associated with drug-98 

pathway dependency and provide a more refined set of biomarkers. Taken together, we 99 

present here an approach to leverage pharmacological and CRISPR screening data to inform 100 

on drug in cellular mechanism-of-action to guide drug development. 101 
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Results 102 

Cancer cell line drug sensitivity and gene fitness effects 103 

We analysed datasets from a highly-annotated collection of 484 histologically diverse 104 

human cancer cell lines (Supplementary Table 1). These have been extensively genetically 105 

characterised and utilised for large-scale drug sensitivity testing and CRISPR-Cas9 whole-106 

genome loss-of-function screens (Garnett et al, 2012; Iorio et al, 2016; Meyers et al, 2017; 107 

Picco et al, 2019; van der Meer et al, 2019). We expanded on published single agent drug 108 

sensitivity data (Garnett et al, 2012; Lynch et al, 2016; Iorio et al, 2016; Picco et al, 2019) to 109 

consider 199,219 IC50 values for 397 unique cancer drugs (480 drugs including duplicates, 110 

Supplementary Table 2). These encompassed FDA-approved cancer drugs, drugs in clinical 111 

development, and investigational compounds with multiple modes of action, including 24 112 

chemotherapeutic agents and 367 small molecule inhibitors. Drugs considered in this study 113 

had a response in at least 3 cell lines (IC50 lower than half of the maximum screened 114 

concentration) and 86% of all possible drug/cell line IC50 measurements have been evaluated 115 

(Supplementary Figure 1a, Supplementary Table 3). Two experimental protocols were used 116 

to generate the drug sensitivity measurements, termed here as GDSC1 (Iorio et al, 2016) and 117 

GDSC2 (Picco et al, 2019), chronologically ordered (Supplementary Figure 1b). A principal 118 

component analysis (PCA) of IC50 values identified a screen specific batch effect associated 119 

with principal component (PC) 2 which explained 2.8% of the total variance (Supplementary 120 

Figure 1c). For this reason, despite the fact that compounds screened with both technologies 121 

showed good agreement (n=66, mean Pearson’s R=0.50), we analysed the measurements of 122 

the screens separately. Analysis of the drug response variation across cell lines revealed that 123 

PC 1 (28.7% variance captured) was significantly correlated with cell line growth rate 124 

(Pearson’s R=-0.51, p-value=1.2e-28), particularly for chemotherapy agents and growth 125 

inhibitors (Supplementary Figure 1d and1e). 126 

 127 

Cell fitness effects for 16,643 gene knockouts have been measured using genome-128 

wide CRISPR-Cas9 screens at the Sanger and Broad Institutes (Meyers et al, 2017; Behan et 129 

al, 2019; DepMap, 2019) (Supplementary Table 4). The first PC across the cell lines (6.8% 130 

variance explained) separated the two institutes of origin (Supplementary Figure 2a), 131 

consistent with a comparative analysis performed on an overlapping set of cell lines (Dempster 132 

et al, 2019). Growth rate was less significantly associated with CRISPR knockout response 133 

(Supplementary Figure 2b and 2c).  134 
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Gene knockout fitness effects correspond with drug targets 135 

We began by investigating the extent to which drug sensitivity corresponded to 136 

CRISPR knock-out of drug targets. We systematically searched for associations between drug 137 

sensitivity and gene fitness effects across the 484 cell lines (Figure 1a). We expect this to 138 

capture a variety of relationships ranging from direct drug-target interactions to more complex 139 

associations arising from interactions with regulators of the drug target(s). We tested a total of 140 

7,988,640 single-feature gene-drug associations using linear mixed regression models. 141 

Potential confounding effects such as growth rate, culture conditions, data source and sample 142 

structure were considered in the models. We identified 865 significant associations (FDR 143 

adjusted p-value < 10%, Supplementary Table 5) between drug response and gene fitness 144 

profiles (Figure 1b), termed hereafter as significant drug-gene pairs. For this analysis we were 145 

able to manually curate the nominal therapeutic target(s) for 94.7% (n=376) of the anti-cancer 146 

drugs (Supplementary Figure 3a and Supplementary Table 1).  147 

 148 

 149 

Figure 1. Integration of drug and gene dependencies in cancer cell lines. a, we used linear models to integrate 150 

drug sensitivity and gene fitness measurements. b, volcano plot showing the effect sizes and the p-value for 151 

statistically significant associations, Benjamini-Hochberg False Discovery Rate (FDR) adjusted p-value < 10%. 152 

Drug-gene associated pairs are coloured according to their shortest distance in a protein-protein interaction 153 

network of the gene to any of the nominal target of the drug. c, percentage of the 358 drugs with significant 154 

associations and their closest distance to the drug nominal targets. T represents drugs that have a significant 155 

association with at least 1 of their canonical targets and X are those which have no significant association. d, 156 

representative examples of the top drug response correlations with target gene fitness. MCL_1284 and Venetoclax 157 

are MCL1 and BCL2 selective inhibitors, respectively. Gene fitness log2 fold-changes (FC) are scaled by using 158 
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previously defined sets of essential (median scaled log2 FC = -1) and non-essential (median scaled log2 FC = 0) 159 

genes. Drug response IC50 measurements are represented using the natural log (ln IC50). e, kinobead affinity is 160 

significantly higher (lower pKd) for compounds with a significant association with their target (n = 20, Mann-Whitney 161 

p-value=3.1e-07). 162 

 163 

For 26% (n=94) of the 358 drugs with target annotation and for which the target was 164 

knocked-out with the CRISPR-Cas9 libraries, we identified significant drug-gene pairs with 165 

their putative targets (Figure 1c). For example, there were strong associations between MCL1 166 

and BCL2 inhibitors and their knockouts (Figure 1d). Notably, drug-gene associations with the 167 

drug target had a skewed distribution towards positive effect sizes (Mann–Whitney U test p-168 

value < 1.36e-105, Supplementary Figure 3b) and were among the strongest associations 169 

(Figure 1b). To investigate this further, we utilised independently acquired kinobead drug-170 

protein affinity measurements for an overlapping 64 protein kinase inhibitors which were 171 

profiled for their specificity against 202 kinases (Klaeger et al, 2017). Drugs with significant 172 

associations with the target also had stronger affinity to their target in the kinobead assay, 173 

providing independent evidence that the strongest drug-gene associations are enriched for 174 

targets of the drugs (Figure 1e). Overall, we identified the nominal target of approximately one 175 

quarter of the drugs tested using orthogonal CRISPR gene fitness screens, and drug targets 176 

were amongst the most significant associations. 177 

 178 

Cellular networks underpinning drug response 179 

The remaining 74% (n=264) of drugs were not significantly associated with the 180 

CRISPR loss-of-function measurements of their nominal targets (Figure 1c). We reasoned 181 

that superimposing the significant drug-gene pairs onto a protein interaction network may shed 182 

further insight into drug mechanism-of-action. We used a protein-protein interaction (PPI) 183 

network assembled from STRING database (Szklarczyk et al, 2017) (10,587 nodes and 184 

205,251 interactions), and for the significant drug-genes pairs calculated the distances 185 

between the drug nominal targets and the associated gene-products. For 76 drugs no 186 

significant association with their target was identified, but instead had a significant association 187 

with their target’s first neighbour or a protein closely related in the network (1, 2 or 3 PPI 188 

interactions distance from any of the drug targets) (Figure 1b and c). Thus, 47.5% of the 189 

annotated compounds (n=170) had an association with either the target or a functionally-190 

related protein. 191 

 192 

The strongest drug-gene pair associations were between the drug and the canonical 193 

targets rather than components of the PPI network, and significance decreased (along with 194 
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the number of associations) as the interaction distance increased (Figure 2a). To exclude that 195 

this observation is related to the topology of the network, we calculated the length of all the 196 

shortest paths between the drug targets and their associated genes and confirmed the 197 

enrichment of first and second neighbours in significant drug-gene associations 198 

(Supplementary Figure 3c). In comparison, cell line gene expression profiles are less powered 199 

to identify associations with the PPI neighbours of the drug target (Figure 2b; Supplementary 200 

Table 6). In particular, the number of drugs significantly associated with their targets 201 

substantially decreased (n=17) and significant associations were predominantly found with 202 

gene-products further away in the PPI network and close to the average length of all paths (lG 203 

= 3.9). As an example, MIEN1 gene expression is significantly correlated with multiple EGFR 204 

and ERBB2 inhibitors which can be explained, not by a functional relationship, but by genomic 205 

co-localisation with ERBB2 on chromosome 17. Hence, CRISPR measurements are more 206 

powered than gene expression to identify drug functional interaction networks. 207 

 208 

To investigate putative regulatory networks for drugs, we weighted the PPI network 209 

edges with the correlation between the fitness profiles of the two connected nodes and 210 

integrated the resulting weighted network with drug response associations. EGFR inhibitors 211 

are the most abundant drug class in our set, and we observed that multiple inhibitors (e.g. 212 

cetuximab) showed significant associations with EGFR and known pathway members, for 213 

example SHC1 and GRB2 (Zheng et al, 2013; Scaltriti & Baselga, 2006) (Figure 2c). 214 

Additionally, the weighted network shows pathway members that have strongly correlated 215 

fitness profiles, which are likely functionally related (Pan et al, 2018). For EGFR inhibitors 216 

these included tyrosine receptor kinases NTRK3 and MET, and the protein phosphatase 217 

PTPN11 (Wang et al, 2017; Pan et al, 2018) (Figure 2d). Drug-target tailored networks can be 218 

used to understand drug mechanism-of-action, and have the potential to identify resistance 219 

mechanisms and propose alternative targets in the network. 220 

 221 

Despite our finding that we can illuminate drug functional networks, 46.6% (n=167) of 222 

the tested drugs had no significant drug-gene associations. This could in part be explained by 223 

lower variability in CRISPR fold change measurements for the target of these drugs (Figure 224 

2e). For example, where genetic knockout induces strong uniform loss-of-fitness effects in 225 

contrast to incomplete target inhibition by a drug (Supplementary Figure 3d). Additionally, 226 

inhibition of a protein is intrinsically different than a knockout, as observed for PARP inhibitors 227 

whose activity is mediated through formation of cytotoxic PARP-DNA complexes, whereas as 228 

PARP knockout has little or no effect on cells (Gill et al, 2015; Murai & Pommier, 229 

2015)(Supplementary Figure 3e). A lack of variability was much less pronounced in the drug 230 

sensitivity measurements since we only considered drugs which showed a minimal level of 231 
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activity, i.e. IC50 lower than half of the maximum screened concentration (Supplementary 232 

Figure 3f). Drugs with no significant association were also approximately 3 times less likely to 233 

be associated with a genomic biomarker linked to sensitivity (Supplementary Figure 3g). Thus, 234 

the absence of an association between drug sensitivity and CRISPR loss-of-function effects 235 

could warrant further investigation into drug mechanism-of-action to understand possible 236 

underlying factors, such as low potency, alternative molecular mechanisms, or 237 

polypharmacology. Collectively, our network analysis demonstrates that CRISPR screens can 238 

provide functional insights into drug in cellular activity extending beyond the direct drug target 239 

into the associated functional network. 240 

 241 

 242 

Figure 2. Drug response protein-protein networks. a, distribution of the FDR adjusted p-values (top) and count 243 

(bottom) of the significant drug-gene (CRISPR) associations according to their distance between the gene and 244 

corresponding drug targets in the protein-protein interaction network. b, similar to a, but instead gene expression 245 

(GExp) was tested to identify associations with drug response. c, representative example (cetuximab - EGFR 246 

inhibitor) of the associations and d, networks that can be obtained from the integrative analysis. Edges in the 247 

network are weighted with the Pearson correlation coefficient obtained between the fitness profiles of interacting 248 

nodes. e, drug-target associations stratified by statistical significance and plotted against the standard deviation of 249 

the drug-target CRISPR fold changes. Upper and lower dashed lines represent the standard deviations of essential 250 

and non-essential genes, respectively. 251 

Cancer drugs mechanism-of-action  252 

Next, we set out to investigate in detail some of the strongest drug sensitivity and gene 253 

fitness associations (Supplementary Table 5). Strikingly, 46 of the top 50 strongly associated 254 

drugs have significant associations with their nominal target and with known functionally 255 

related genes (Figure 3). Some of the strongest associations were between MCL1 inhibitors 256 

and their target fitness effects (Figure 1d), including AZD5991 which is currently in clinical 257 

trials for treatment of hematologic cancers (Hird et al, 2017). Additionally, for several Insulin-258 
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Like Growth Factor 1 Receptor (IGFR1) inhibitors the association with the target was 259 

recapitulated. Moreover, significant associations with proprotein convertase furin were 260 

observed, supporting the known genetic association that IGFR1 is a furin substrate, and 261 

increased levels of furin are associated with increased levels of processed IGFR1 and worse 262 

prognosis in several cancers (Thomas, 2002). 263 

 264 

Protein kinase inhibitors are an important class of cancer drugs (Santos et al, 2017). 265 

Because of the conserved structural features of the commonly targeted kinase domain, the 266 

clinical development of kinase inhibitors is hampered by poor selectivity, which consequently 267 

may lead to undesirable off-target activity (Klaeger et al, 2017). Furthermore, some kinases 268 

have multiple isoforms with non-redundant roles in tissues, as exemplified by the clinical 269 

development of PI3K inhibitors, and this has led to the development of isoform-selective 270 

inhibitors to reduce toxicity and increase the therapeutic window (Thorpe et al, 2015). 271 

Interestingly, several PI3K inhibitors had strong associations with only one gene encoding a 272 

single isoform (Figure 3), this together with the increased kinobead binding affinity of 273 

significant associations (Figure 1e), suggests these are isoform selective compounds. For 274 

example, alpelisib (Figure 3 first row) was associated with PIK3CA, consistent with its 275 

development as an alpha-isoform selective compound (Thorpe et al, 2015), whereas AZD8186 276 

(Figure 3 second row) was only associated with PIK3CB confirming its beta-selectivity. 277 

Conversely, two pan-PI3K inhibitors (buparlisib and omipalisib) displayed no significant 278 

association with any PI3K isoform (Supplementary Table 5), consistent with less isoform 279 

specificity and potential polypharmacology. Interestingly, MTOR and pan-PI3K inhibitor, 280 

dactolisib, had significant associations with RPTOR and MTOR but none with PI3K isoforms 281 

(Supplementary Table 5), consistent with recently reported greater specificity for inhibition of 282 

the MTOR complex (Reinecke et al, 2019). Similarly, we observed that selective EGFR 283 

inhibitors cetuximab, erlotinib and gefitinib (Figure 3 second and third rows) were associated 284 

with EGFR but not ERBB2, whereas afatinib, poziotinib and sapatinib (AZD8931) (Figure 3 285 

fourth and fifth rows) were all associated with both EGFR and ERBB2. Furthermore, we 286 

observed isoform selectivity of different FGFR inhibitors.  287 

 288 

Our analysis can also provide insights into possible off-target activity of drugs. 289 

Unsupervised clustering of the drug-gene associations effect sizes (betas) revealed classes 290 

of inhibitors with similar targets and mechanism-of-action (Supplementary Figure 3h). Of note, 291 

BTK inhibitor, ibrutinib, clustered with EGFR inhibitors and displayed significant associations 292 

with EGFR and ERBB2 gene fitness. This is consistent with recent findings that brutinib 293 

covalently bind and inhibit EGFR (Lee et al, 2018), and is also supported by kinobead 294 

measurements (Klaeger et al, 2017). Additionally, 24 compounds have significant associations 295 
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with genes identified as core fitness (Behan et al, 2019) across multiple cancer types, 296 

indicating an increased risk of cellular toxicity. Out of these, two compounds, PD0166285 and 297 

CCT244747, have significant associations with their nominal target (PKMYT1 and 298 

CHEK1/WEE1) and the remaining compounds (n=22) are correlated with proteins closely 299 

connected in the PPI network. 300 

 301 

 302 

Figure 3. Top 50 most significantly associated drugs. Each bar plot group represents a unique drug where 303 

genes are ranked by statistical significance of their association. Effect sizes of the associations are reported under 304 

the bars along the x axis. Shortest distance (number of interactions) in a protein-protein interaction network 305 

between the gene and the drug nominal target(s) is represented on the top of the bars, where T and orange bar 306 

represent the target and ‘-’ represents no link was found. 307 

A functional link between MARCH5 and MCL1 inhibitor sensitivity 308 

Seven out of nine inhibitors of the anti-apoptotic BCL2 family member myeloid cell 309 

leukemia 1 (MCL1) were strongly and nearly exclusively associated with their putative target, 310 

suggesting these are potent and specific compounds in cells (Figure 4a). MCL1 is frequently 311 

amplified in human cancers (Beroukhim et al, 2010) and associated with chemotherapeutic 312 
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resistance and relapse (Wuillème-Toumi et al, 2005; Wei et al, 2006). MCL1 is a negative 313 

regulator of the mitochondrial apoptotic pathway, regulating BAX/BAK1 which co-localise with 314 

Drp1/Fis1 in the mitochondria outer membrane and control mitochondrial fragmentation and 315 

cytochrome c release, both of which are important for inducing apoptosis (Youle & Karbowski, 316 

2005; Mojsa et al, 2014; Morciano et al, 2016). Interestingly, knockout of a key regulator of 317 

mitochondrial fission, mitochondrial E3 ubiquitin-protein ligase MARCH5 (Karbowski et al, 318 

2007), is significantly associated with MCL1 inhibitors sensitivity (Supplementary Figure 4a), 319 

and positively correlated with MCL1 gene fitness, suggesting a functional relationship (Figure 320 

4b). A recent study confirmed a synthetic-lethal interaction between MARCH5 and well know 321 

MCL1 negative regulator BCL2L1 using dropout screens in isogenic cancer cell lines 322 

(DeWeirdt et al, 2019). Correlation between MCL1 and MARCH5 fitness profiles shows that 323 

cell lines dependent on MARCH5 are also dependent on MCL1, while the inverse is not 324 

necessarily true with a subgroup of cell lines dependent on MCL1 but not on MARCH5. Cell 325 

lines independently dependent on both gene-products have increased sensitivity to MCL1 326 

inhibitors (Supplementary Figure 4b). This is particularly marked in breast carcinoma cancer 327 

cell lines, with MCL1 and MARCH5 dependent cells having similar sensitivity to hematologic 328 

cancer cell lines (acute myeloid leukemia), where MCL1 inhibitors are in clinical development 329 

(Figure 4c).  330 

 331 

We investigated the potential molecular mechanisms underlying MCL1 inhibitors 332 

response. MCL1 copy number and gene expression alone are not a good predictor of MCL1 333 

inhibitors sensitivity (Figure 4d, Supplementary Figure 4c). This is in contrast to BCL2 and 334 

BCL2L1 inhibitors, where their target gene expression is significantly correlated with drug 335 

sensitivity (Figure 4d). Next, we used multilinear regression models to predict sensitivity to 336 

each MCL1 inhibitor using gene fitness and/or gene expression of known regulators of MCL1 337 

(e.g. BCL2, BCL2L1, BAX) (Czabotar et al, 2014) and MARCH5. For two MCL1 inhibitors, 338 

MIM1 and UMI-77, the trained models performed poorly likely due to lack of in cellular activity 339 

of these compounds. For the remaining seven MCL1 inhibitors, drug response was well 340 

predicted (CRISPR+GEXP mean R-squared=0.55). Models trained with only CRISPR 341 

displayed overall better predictions compared to models only trained with gene expression, 342 

and models trained with both data types out-performed all others (Figure 4e). As expected, 343 

MCL1 fitness-effect was the most predictive feature, followed by BCL2L1 expression and 344 

MARCH5 essentiality (Figure 4f). No genomic feature, mutation or copy number alterations 345 

correlated significantly with MCL1 inhibitors response, including MCL1 amplifications 346 

(Supplementary Figure 4c), likely a consequence of the strong post-transcriptional regulation 347 

and short half-life of MCL1. 348 

 349 
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Altogether, we highlight a functional link between MARCH5 and MCL1 inhibitors 350 

sensitivity. With further investigation, this could shed light on MCL1 inhibitor mechanism and 351 

the development of stratification approaches in solid tumours, such as breast carcinomas. 352 

 353 

 354 

Figure 4. MCL1 inhibitors associations. a, significant associations with MCL1 inhibitors (7 out of 9 included in 355 

the screen). b, association between the gene fitness profiles of MCL1 and MARCH5. c, stratification of the MCL1 356 

inhibitor sensitivity according to the essentiality profile of MCL1 and MARCH5, where MCL1 + MARCH5 represents 357 

a cell line that is independently dependent on both genes. Dashed orange line (left) represents the mean IC50 in 358 

acute myeloid leukemia cell lines. Grey dashed line (right) represents the maximum concentration used in the 359 

dosage response curve. d, BCL2, BCL2L1 and MCL1 inhibitors and the respective association with their targets, 360 

on the x axis with CRISPR gene fitness and on the y axis with gene expression. The statistical significance of the 361 

association is represented with a backward slash for CRISPR and forward slash for GEXP. e, regularised 362 

multilinear regression to predict drug response of all MCL1 inhibitors using gene expression, fitness or both of 363 

known regulators of the BCL2 family and MARCH5. Predictive performance is estimated using R2 metric 364 

represented in the x axis. f, effect size of each feature used in each MCL1 inhibitor model.  365 

Robust molecular markers of drug sensitivity networks 366 

The identification of molecular biomarkers of drug sensitivity is fundamental to guide 367 

clinical drug development. We hypothesized that molecular biomarkers independently linked 368 

with both drug response and gene fitness would be of particularly high value – termed robust 369 

pharmacogenomic biomarkers. To identify these, we used the set of significant drug-gene 370 

pairs (n=865) and we searched independently for significant associations between each 371 

measurement type in each pair (drug response or gene fitness) and 519 genomic (mutations 372 

and copy number alterations) and 15,368 gene expression features (Figure 5a, 373 

Supplementary Figure 5a) (Garnett et al, 2012; Iorio et al, 2016; Garcia-Alonso et al, 2018). 374 
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This analysis recapitulated established genomic and expression biomarkers of either drug 375 

sensitivity or gene fitness effects in cancer cells (Supplementary Figure 5b and c). A total of 376 

224 and 679 robust pharmacogenomic associations were identified with genomic 377 

(Supplementary Table 7) and gene expression features (Supplementary Table 8), 378 

respectively. Overall, 30.6% (265 of 865) of drug-gene pairs have at least one robust 379 

molecular marker that correlated significantly with both drug response and gene fitness (Figure 380 

5b). The number of robust biomarkers was smaller than the number of biomarkers associated 381 

with only one type of measurement, likely due to the stringent requirement for an association 382 

with both drug sensitivity and gene fitness effects. 383 

 384 

From the subset of 129 drug-gene pair associations that were linked by the drug target, 385 

50.4% (n=65) had one or more robust pharmacogenomic associations (Supplementary Figure 386 

5d). Most of these were established dependencies of cancer cells, including: Nutlin-3a 387 

sensitivity associated with TP53 mutation status; BRAF and PIK3CA mutation induced 388 

CRISPR dependency; olaparib sensitivity mediated by the presence of EWSR1-FLI1 fusion, 389 

also recapitulated by FLI1 essentiality profile; MCL1 inhibitors biomarker association with 390 

BCL2L1, and nutlin-3a with BAX expression (Figure 5c and Supplementary Figure 5e and 5f). 391 

Similarly, of the 413 significant gene-drug pairs closely related within the PPI network (<=3 392 

interactions from the drug target), we identified robust pharmacogenomic associations for 393 

29.5% (n=122) (Supplementary Figure 5d), enabling the discovery of cellular contexts where 394 

drug response networks are important. For example, we identified increased tumour necrosis 395 

factor (TNF) expression as a robust pharmacogenomic marker for drugs targeting the 396 

downstream cellular inhibitor of apoptosis (cIAP) proteins BIRC2 and BIRC3 (e.g. IAP_5620), 397 

and based on CRISPR dependency data, for multiple members of the cIAP pathway, including 398 

BIRC2, MAP3K7 and RNF31 (Beug et al, 2012) (Figure 5d).  399 
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 400 

Figure 5. Robust pharmacological associations. a, diagram representing how genomic and gene expression 401 

data-sets are integrated to identify significant associations with drug-gene pairs that were previously found to be 402 

significantly correlated. b, number of drug-gene pairs with at least one significant association with drug response, 403 

gene fitness or both, considering either genomic or gene expression profiles. c, canonical examples of robust 404 

pharmacological associations. d, representative example of a BIRC2/BIRC3 inhibitor, IAP_5620, showing the 405 

significant associations with CRISPR gene fitness profiles and their location in a representation of the TNF pathway. 406 

 407 

Discussion 408 

Understanding drug mechanism-of-action and the biological pathways underpinning 409 

drug response is an important step in preclinical studies. Here, we demonstrate how the 410 

integration of drug sensitivity and CRISPR-Cas9 gene fitness data can be used to inform on 411 

multiple aspects of drug mechanisms in cells, including drug specificity and potency. Our 412 

analysis recapitulated drug targets for approximately a quarter of drugs tested and for 413 

approximately another quarter revealed associations enriched for proteins closely related with 414 

the drug target. Critically, the strength of these associations reflects specificity and 415 

polypharmacology of the cancer drugs. Furthermore, these associations define networks of 416 

protein interactions that are functionally related with drug targets and underpin drug response. 417 

This revealed a previously unappreciated interaction between MARCH5 and MCL1 inhibitors, 418 

with potential utility to derive predictive models of MCL1 inhibitor response across multiple 419 
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cancer types, and particularly in solid tumours such as breast carcinomas. Robust 420 

pharmacogenomic biomarkers leveraged both datasets to provide refined biomarkers that are 421 

correlated with both drug response and biological networks. Interestingly, the networks we 422 

have defined can provide alternative targets that are functionally related with the drug target 423 

and mediate similar effects on cell fitness, potentially providing strategies for combination 424 

therapies to limit therapy resistance.  425 

 426 

Pre-clinical biomarker development is an important step in drug discovery and is 427 

associated with increased success rates during clinical development (Nelson et al, 2015). 428 

Traditionally this has been performed by building predictive models of drug response using 429 

mutation, copy number and gene expression (Iorio et al, 2016; Tsherniak et al, 2017). Here 430 

we extended this approach, and propose what we term as robust pharmacogenomic 431 

association - a drug response and gene fitness pair that are significantly correlated and are 432 

also both significantly related to the same molecular biomarker. This approach gives greater 433 

confidence in molecular biomarkers identified, since they are recapitulated using data from 434 

two orthogonal assays and provides markers at the level of the network. In addition, by 435 

focusing only on drugs involved in significant gene-drug pairs, we enrich for drugs most likely 436 

to have greater specificity, and thereby better enabling biomarker discovery. 437 

 438 

Nearly half of the drugs did not have a significant association with gene fitness effects 439 

and may warrant further investigation. Possible explanations for this include: (i) drug 440 

polypharmacology which is difficult to deconvolute using single gene knockout data; (ii) 441 

intrinsic difference between protein inhibition and knockout; (iii) a dosage dependent response 442 

leading to incomplete inhibition of the drug target; (iv) functional redundancy between protein 443 

isoforms resulting in less penetrant effects with gene knockout; and (v) limitations of the 444 

sgRNA efficacy across the cancer cell lines. We expect that some of these issues can be 445 

addressed by expanding this analysis to integrate other types of functional genomic screens, 446 

such as CRISPR inhibition, which might mimic drug inhibition more closely. 447 

 448 

This study extends previous efforts, and utilises new CRISPR loss-of-function 449 

datasets, to study drug mechanism-of-action in cells with unparalleled scale and precision. 450 

We anticipate this approach to be useful for many compounds, and could become a routine 451 

step during drug development. In particular, it is likely to have utility during the hit-to-lead 452 

optimisation stage of drug development to select lead chemical series and compounds with 453 

optimal potency and selectivity. The utility of this approach is likely to expand as the availability 454 

of CRISPR knock-out screening data, and other datasets such as CRISPR activation and 455 

inhibition, increases across ever larger collections of highly-annotated cancer cell models. In 456 
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conclusion, this study illustrates a new approach for investigating in cellular drug mechanism-457 

of-action that can be applied to multiple critical aspects of drug development. 458 

 459 

Materials and Methods 460 

Table of contents 461 

 462 

1. Cancer cell lines panel 463 

2. High-throughput drug sensitivity 464 

3. Genome-wide CRISPR-Cas9 dropout screens 465 

4. PCA of drug sensitivity and gene fitness 466 

5. Drug response linear mixed model associations 467 

6. Protein-protein interaction network 468 

7. Robust pharmacogenomic associations 469 

8. Predictive models of drug response of MCL1 inhibitors 470 

9. Code availability 471 

 472 

1. Cancer cell lines panel 473 

The 484 cancer cell lines used in this manuscript have been compiled from publicly 474 

available repositories as well as private collections and maintained following the supplier 475 

guidelines. STR and SNP fingerprints were used to ensure cell lines selected were genetically 476 

unique and matched those in public repositories 477 

(http://cancer.sanger.ac.uk/cell_lines/download). Detailed cell line model information is 478 

available through Cell Model Passports database (https://cellmodelpassports.sanger.ac.uk/) 479 

(van der Meer et al, 2019). Cell lines growth rate is represented as the ratio between the mean 480 

of the untreated negative controls measured at day 1 (time of drug treatment) and the mean 481 

of the DMSO treated negative controls at day 4 (72 hours post drug treatment). 482 

2. High-throughput drug sensitivity 483 

Experimental details of both GDSC1 and GDSC2 screens can be found in the 484 

Genomics of Drug Sensitivity in Cancer (GDSC) project (www.cancerRxgene.org) (Yang et al, 485 

2013). Cell viability and dose response curve fitting models were previously described in detail 486 

(Iorio et al, 2016; Vis et al, 2016). Maximum screened drug concentration (µM) are provided 487 
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in Supplementary Table 1. Each compound was measured on average across 393 cell lines 488 

rendering a nearly complete matrix with only 14.2% missing values. All considered compounds 489 

displayed an IC50 lower than half of the maximum screened concentration in at least 3 cell 490 

lines. This filter ensures the compounds display an informative profile in at least a small subset 491 

of the cell lines. Drug nominal oncology target annotation was manually curated from literature 492 

(Supplementary Table 1).  493 

 494 

3. Genome-wide CRISPR-Cas9 dropout screens 495 

The CRISPR-Cas9 screens for the 484 cancer cell lines considered in this study 496 

(Supplementary Table 2) were assembled from two distinct projects, 320 were generated as 497 

part of Sanger DepMap Project Score (Behan et al, 2019) and 164 from the Broad DepMap 498 

version 19Q3 (Meyers et al, 2017; DepMap, 2019). Only cell lines that passed quality control 499 

filtering similarly to Behan et al. (2019) and with matched drug response measurements were 500 

considered. Different CRISPR-Cas9 sgRNA libraries were used in each project (Koike-Yusa 501 

et al, 2014; Doench et al, 2016; Tzelepis et al, 2016). Consequently, library-specific effects 502 

were present (Dempster et al, 2019) (Supplementary Figure 2a) which hampers averaging of 503 

cell lines that were screened in both data-sets. Thus, for the overlapping cell lines only data 504 

from Sanger DepMap Project Score was used. This also minimises potential cell line specific 505 

differences, for example due to genetic drift (Ben-David et al, 2018), and thereby increasing 506 

concordance with the drug response data-set also generated at the Wellcome Sanger 507 

Institute. Fold changes (log2) were estimated comparing samples with the respective control 508 

plasmid. As copy number profiles were not available for all of the cell lines, gene-independent 509 

deleterious effects induced by copy number amplifications in CRISPR-Cas9 screens (Aguirre 510 

et al, 2016; Munoz et al, 2016; Gonçalves et al, 2019) were corrected on a per sample basis 511 

using the unsupervised method CRISPRcleanR (Iorio et al, 2018). Replicates were mean 512 

averaged and gene level fold changes were estimated by taking the mean of all the mapping 513 

sgRNAs. Gene level fold changes were quantile normalised per sample and then median 514 

scaled using previously defined lists of cancer cell lines essential and non-essential genes 515 

(Hart et al, 2015), thus essential genes have a median log2 fold change of -1 and non-essential 516 

genes a median log2 fold change of 0. Only overlapping genes between the two libraries were 517 

considered, thus generating a full matrix of 16,643 genes across the 484 cell lines. A cell line 518 

was considered dependent on a gene if the knockout had a log2 fold change of at least 50% 519 

of that expected of essential genes (scaled log2 fold change < -0.5). 520 
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4. PCA of drug sensitivity and gene fitness 521 

Principal component analysis (PCA) was performed using scikit-learn (v0.21.2) 522 

(Pedregosa et al, 2011) using sklearn.decomposition.PCA with default parameters and the 523 

number of components (n_components) set to 10. For the drug response data-set, and only 524 

for the PCA analysis, missing values of each drug were imputed using the drug mean IC50 525 

response across the rest of the cell lines. Imputation was not required for the CRISPR-Cas9 526 

data-set since the matrix had no missing values. 527 

5. Drug response linear mixed model associations 528 

Associations between drug response and gene fitness scores were performed using 529 

an efficient implementation of mixed-effect linear models available in the LIMIX Python module 530 

(v3.0.3) (Lippert et al, 2014; Casale et al, 2017). We considered the following covariates in the 531 

model: (i) binary variables indicating the institute of origin of the cell line CRISPR-Cas9 screen; 532 

(ii) principal component 1 of the drug response data-set which is a correlative of cell lines 533 

growth rate; and (iii) growing conditions (adherent, suspension or semi-adherent) represented 534 

as binary variables. Additionally, gene fitness similarity matrix of the samples is considered as 535 

random effects in the model to account for potential sample structure. Taken together, we 536 

fitted the following mixed linear regression model for each drug-gene pair: 537 

 538 

[1] 𝑑 =  𝛽0 𝑀 + 𝛽1 𝑒 + 𝜇 𝑋 + 𝜀 539 

 540 

Where, d represents a vector of the drug response IC50 values across the cell lines; 541 

M is the matrix of covariates and  𝛽0 is the vector of effect sizes; e is the vector of gene 542 

CRISPR-Cas9 log2 fold changes and 𝛽1 the effect size; X the similarity matrix based on the 543 

CRISPR-Cas9 gene fitness measurements; 𝜇 is the random effects; 𝜀 is the general noise 544 

term. For each drug, cell lines with missing values were dropped from the fit. 545 

 546 

We statistically assessed the significance of each association by performing likelihood 547 

ratio tests between the alternative model (𝜃1̂) and the null model which excludes the gene 548 

CRISPR gene fitness scores vector e and its parameter 𝛽1(𝜃0̂). The parameter inference is 549 

performed using maximum likelihood estimation: 550 

 551 

[2] 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑑 | 𝑀, 𝑋;  𝜃) 552 

 553 

And the p-value of the association is defined by: 554 

 555 
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[3] 
𝑝(𝑑 | 𝑀,𝑋; 𝜃0̂)

𝑝(𝑑 | 𝑀,𝑋; 𝜃1̂)
 556 

 557 

We tested all the single-feature pairwise associations between the 480 compounds 558 

and the 16,643 genes, making a total of 7,988,640 tested associations. P-value adjustment 559 

for multiple testing was performed per drug using the Benjamini-Hochberg False Discovery 560 

Rate (FDR). Contrary to performing the adjustment across all tests, per drug correction has 561 

the following benefits: (i) associations assembled from the different screening platforms 562 

(GDSC1 and GDSC2) are kept separate hence not biasing for measurement type; and (ii) 563 

drugs with stronger responses across larger subsets of cancer cell lines, for example Nutlin-564 

3a response across TP53 wild-type cell lines, display stronger associations than most drugs, 565 

thus correcting across all drugs would retain more associations from these drugs at a specific 566 

error rate, i.e. 10%, compared to the rest. 567 

6. Protein-protein interaction network 568 

We assembled from STRING database (Szklarczyk et al, 2017) a high confidence 569 

undirected protein-protein interaction network. We only consider interactions with a combined 570 

confidence score higher than 900. Nodes’ STRING identifiers were converted to HUGO gene 571 

symbols, nodes not mapping or with multiple mappings were removed. Using igraph Python 572 

wrapper (Csardi & Nepusz, 2006) the network was simplified by removing unconnected nodes, 573 

self-loops and duplicated edges, leaving a total of 10,587 nodes and 205,251 interactions. A 574 

weighted version of the network was also assembled by correlating the gene fitness profiles 575 

of the connected nodes. Network nodes, and corresponding edges, that were not covered by 576 

the CRISPR-Cas9 screens were removed, making a total of 9,595 nodes and 172,584 577 

weighted interactions. 578 

7. Robust pharmacogenomic associations 579 

Robust pharmacological associations were estimated similarly to the previous 580 

associations, but in this case only drug-gene pairs that are significantly correlated were 581 

considered to test associations with the genomic features (binarised copy number and 582 

mutation status (Iorio et al, 2016)) and gene expression profiles (RNA-seq voom (Law et al, 583 

2014) transformed RPKMs (Garcia-Alonso et al, 2018)). A robust pharmacogenomic 584 

association is defined as: (i) a drug-gene pair whose drug sensitivity and gene fitness is 585 

significantly correlated, and (ii) genomic alteration or gene expression profile is significantly 586 

correlated with both drug response and gene fitness. Log-ratio test p-values are independently 587 

estimated for drug response and gene fitness measurements and corrected per drug-gene. 588 
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Drug-gene pairs associated to a genomic or gene expression feature with an FDR lower than 589 

10% are called robust pharmacogenomic associations (Supplementary Tables 7 and 8). 590 

8. Predictive models of drug response of MCL1 inhibitors 591 

L2-regularised linear regression models to predict MCL1 inhibitors drug response were 592 

trained using gene fitness, gene expression measurements or both of canonical regulators of 593 

MCL1, namely MARCH5, MCL1, BCL2, BCL2L1, BCL2L11, PMAIP1, BAX, BAK1, BBC3, BID, 594 

BIK, BAD. For the 9 MCL1 inhibitors considered in this study predictive models of drug 595 

response measurements were trained using Ridge regressions with an internal cross-596 

validation optimisation of the regularization parameter, implemented in Sklearn with RidgeCV 597 

class (Pedregosa et al, 2011). Additionally, drug response measurements are split randomly 598 

1,000 times, where 70% of the measurements are for training the model and 30% are left out 599 

as a test set. Model’s performance is quantified using the R2 metric on the test set, comparing 600 

the predicted versus the observed drug response measurements.  601 

9. Code and data availability 602 

Source code, analysis reports and Jupyter notebooks are publicly available in GitHub 603 

project https://github.com/EmanuelGoncalves/dtrace. Drug response and gene fitness 604 

CRISPR-Cas9 data-sets used in this analysis are available in the supplementary tables and 605 

accessible through figshare on https://doi.org/10.6084/m9.figshare.10338413.v1. 606 

  607 
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Supplementary Figures 608 

 609 

 610 

Supplementary Figure 1. Overview of the drug sensitivity datasets. a, histogram of the number of IC50 values 611 

measured per drug. b, number of drugs measured per cell line in each pharmacological dataset. c, PCA analysis 612 

of the drug response measurements separated by the screen type. d, Pearson correlation coefficient between each 613 

principal component (PC) and cell lines growth rate. e, top absolutely correlated drugs with growth rate.  614 
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 615 

Supplementary Figure 2. Overview of the CRISPR-Cas9 datasets. a, PCA analysis of the samples in the 616 

CRISPR-Cas9 screens, samples institute of origin is highlighted. b, correlation coefficients between all top 10 PCs 617 

and growth rate. c, correlation between cell lines growth rate and PC3 (Pearson correlation coefficient reported in 618 

the top left). 619 
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 620 

Supplementary Figure 3. Drug response and gene fitness associations. a, total number of drugs utilised in the 621 

study and the different levels of information available: ‘All’ represents all the drugs including replicates screened 622 

with different technologies (GDSC1 and GDSC2); ‘Unique’ counts the number of unique drug names; ‘Annotated’ 623 

shows the number of unique drugs with manual annotation of nominal targets; and ‘Target tested’ represents the 624 

number of unique drugs, with target information, for which the target has been knocked-out in the CRISPR-Cas9 625 

screens. b, histogram of the drug-gene associations effect sizes (beta) highlighting drug-target associations. c, 626 

distribution of the shortest path lengths between all the tested drug-gene pairs. For drugs with multiple targets the 627 

smallest shortest path of all the targets was taken. d, PLK1 inhibitors drug response correlation with PLK1 knockout 628 

log2 fold change (FC) gene fitness effects. The dashed grey line indicates the  dose response highest drug 629 

concentration. e, similar to d, correlation of olaparib drug response and both targets PARP1 and PARP2 gene 630 

fitness effects. f, drug-target associations split by significance (FDR < 10%) plotted against the standard deviation 631 

of the drug IC50 (ln) measurements of the respective pair. g, contingency matrix of significant drug associations 632 

with CRISPR fold changes and binarised event matrix of genomic features, i.e. mutations and copy number gain 633 

or loss. h, correlation heatmap of the drug-gene effect size across all the genes. Drugs are coloured according to 634 

their targets.  635 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.14.905729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905729
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

 636 

Supplementary Figure 4. MCL1 inhibitors. a, correlation of all MCL1 inhibitor IC50 values against MCL1 and 637 

MARCH5 gene fitness profiles. Effect sizes (b) and FDR (p) of the association are reported on the bottom. b, 638 

stratification of the MCL1 inhibitors drug response measurements according to the cell line dependency on 639 

MARCH5 and/or MCL1. Gene vulnerabilities are independent from each other, meaning knockouts were introduced 640 

independently and not at the same time. Responses are then split according to the cancer type of the cell lines. 641 

Vulnerable cell lines to MARCH5 and MCL1 knockout were defined as those with a depletion of at least 50% of 642 

that visible for essential genes (scaled log2 fold change < -0.5). c, representative example of a MCL1 inhibitor and 643 

their relation with MCL1 gene fitness, with cell lines containing copy number amplification of MCL1 highlighted in 644 

orange. Copy number amplified cells were defined taking into consideration their ploidy status, cells with (ploidy <= 645 

2.7 and copy number >= 5) or (ploidy > 2.7 and copy number >= 9) were considered as having MCL1 amplified. 646 
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 647 
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Supplementary Figure 5. Robust pharmacological associations. a, most frequent genomic alterations across 648 

the cancer cell lines. Most significant associations between b, genomic features and c, gene expression profiles 649 

with drug response and gene fitness. d, number of significant drug-gene pairs across the different types of 650 

interactions. Drug-gene pairs were categorised considering the shortest path length between the drug targets and 651 

the associated gene. e, robust pharmacological association between the expression of BCL2L1 and the 652 

significantly correlated pair of MCL1_1284 drug and MCL1 gene fitness profile. f, similarly to e, but instead it 653 

represents a robust pharmacological association between BAX and MDM2 and Nutlin-3a. 654 

Supplementary Table Legends 655 

Supplementary Table 1. Annotated list of the cancer cell lines used in this study. 656 

Supplementary Table 2. List of cancer drugs considered in the study. 657 

Supplementary Table 3. Drug response matrix (natural log IC50s) for 480 cancer drugs. 658 

Supplementary Table 4. Gene fitness CRISPR-Cas9 scaled fold change. 659 

Supplementary Table 5. Significant drug-CRISPR associations. 660 

Supplementary Table 6. Significant drug-gene expression associations. 661 

Supplementary Table 7. Significant robust pharmacogenomic associations with genomic 662 

mutation and copy number alterations. 663 

Supplementary Table 8. Significant robust pharmacogenomic associations with gene 664 

expression. 665 
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