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Abstract 
High-dimensional multi-omics data are now standard in biology. They can greatly enhance our 

understanding of biological systems when effectively integrated. To achieve this multi-omics 

data integration, Joint Dimensionality Reduction (jDR) methods are among the most efficient 

approaches. However, several jDR methods are available, urging the need for a 

comprehensive benchmark with practical guidelines. 

 

We performed a systematic evaluation of nine representative jDR methods using three 

complementary benchmarks. First, we evaluated their performances in retrieving ground-truth 

sample clustering from simulated multi-omics datasets. Second, we used TCGA cancer data 

to assess their strengths in predicting survival, clinical annotations and known 

pathways/biological processes. Finally, we assessed their classification of multi-omics single-

cell data. 

 

From these in-depth comparisons, we observed that intNMF performs best in clustering, while 

MCIA offers a consistent and effective behavior across many contexts. The full code of this 

benchmark is implemented in a Jupyter notebook - multi-omics mix (momix) - to foster 

reproducibility, and support data producers, users and future developers. 

 
 
Keywords: Matrix factorization, Dimensionality reduction, Data integration, Multi-omics, 

Cancer, Single-Cell 

 

 
Background 
Due to the advent of high-throughput technologies, high-dimensional “omics” data are 

produced at an increasing pace. In cancer biology, in particular, national and international 

consortia, such as The Cancer Genome Atlas (TCGA), have profiled thousands of tumor 
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samples for multiple molecular assays, including mRNA, microRNAs, DNA methylation and 

proteomics 
1
. Moreover, multi-omics approaches are currently being transposed at single-cell 

level, which further stresses the need for methods and tools enabling the joint analysis of such 

large and diverse datasets 
2
.  

 

While multi-omics data are becoming more accessible, and studies combining different omics 

more frequent, the genuine joint analysis of multi-omics data remain very rare. Achieving 

proper multi-omics integration is crucial to bridge the gap between the vast amount of available 

omics and our current understanding of biology. By integrating multiple sources of omics data, 

we can reduce the effect of experimental and biological noise. In addition, different omics 

technologies are expected to capture different aspects of cellular functioning. Indeed, the 

different omics are complementary, each omics containing information that is not present in 

others, and multi-omics integration is thereby expected to provide a more comprehensive 

overview of the biological system. In cancer research, omics have been profiled at different 

molecular layers, such as genomics, transcriptome, epigenome, and proteome. Integrating 

these large-scale and heterogeneous sources of data allows researchers to address crucial 

objectives, including (i) classifying cancer samples into subtypes, (ii) predicting the survival 

and therapeutic outcome of these subtypes, and (iii) understanding the underlying molecular 

mechanisms that span through different molecular layers 
3
.  

 

Designing theoretical and computational approaches for the joint analysis (aka intermediate 

integration) of multi-omics datasets is currently one of the most relevant and challenging 

questions in computational biology 
3,4

. Indeed, the different types of omics have a large 

number of heterogeneous biological variables and a relatively low number of biological 

samples, thereby opening to all the challenges typical of “Big Data”. In addition, each omics 

has its own technological limits, noise, and range of variability. All these elements can mask 

the underlying biological signals. Multi-omics integrative approaches should be able to capture 

not only signals shared by all omics data but also those emerging from the complementarity 

of the various omics data. 

 

The joint analysis of multiple omics can be performed with various integrative approaches, 

classified in broad categories 
4,5

. Bayesian methods, such as Bayesian Consensus Clustering 

(BCC) 
6
, build a statistical model by making assumptions on data distribution and 

dependencies. Network-based methods, such as Similarity Network Fusion (SNF) 
7
, infer 

relations between samples or features in each omics layer, and further combine the resulting 

networks. Dimensionality Reduction (DR) approaches decompose the omics into a shared 

low-dimensional latent space 
8,9

. Four recent reviews tested and discussed some of these 

existing methods from the clustering performance perspective 
10–13

. Pierre-Jean et al. 
12

, 

Rappoport et al.
10

 and Tini et al.
13

 selected one method from each of the aforementioned three 

categories, while Chauvel et al.
11

 focused on Bayesian and DR approaches.  

 

From these initial reviews, DR approaches emerged as particularly well-performing. They are 

well-adapted to solve high-dimensional mathematical problems. Furthermore, the richness of 

the information contained in their output enhances their relevance for multi-omics integration. 

Indeed, DR methods enable the classification of samples (clustering/subtyping), the clinical 

characterization of the identified clusters/subtypes and a variety of other downstream 

analyses, including the analysis of cellular processes and/or pathways (Figure 1). Thus, DR 

simultaneously provides information on all the key objectives mentioned above, namely the 
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classification of samples into subtypes, their association with outcome/survival as well as the 

reconstruction of their underlying molecular mechanisms. As a consequence, the design of 

DR approaches for the joint analysis and integration of multiple omics (jDR) is currently a 

highly active area of research 
5,8,10,11,14

. 

 

Here, we report an in-depth comparison of representative state-of-the-art multi-omics joint 

Dimension Reduction (jDR) approaches, in the context of cancer data analysis. We 

extensively benchmarked nine approaches, spanning the main mathematical formulations of 

multi-omics jDR, in three different contexts. First, we simulated multi-omics datasets and 

evaluated the performance of the nine jDR approaches in retrieving ground-truth sample 

clustering. Second, we used TCGA multi-omics cancer data to assess the strengths of jDR 

methods in predicting survival, clinical annotations, and known pathways/biological processes. 

Finally, we evaluated the performance of the methods in classifying multi-omics single-cell 

data from cancer cell lines. 

  

All these analyses allow formulating recommendations and guidelines for users, as well as 

indications for methodological improvements for developers. We also provide the Jupyter 

notebook multi-omics mix (momix) and its associated Conda environment containing all the 

required libraries installed (https://github.com/ComputationalSystemsBiology/momix-

notebook) . Overall, momix can be used to reproduce the benchmark, but also to test jDR 

algorithms on other datasets, and to evaluate novel jDR methods and compare them to 

reference ones. 

 

 

Results 

 
Table 1. Selected nine joint Dimensionality Reduction approaches benchmarked in this study.  

 

 

 

1. Joint Dimensionality Reduction approaches and principles 
 

The goal of joint Dimensionality Reduction (jDR) approaches is to reduce high-dimensional 

omics data into a lower dimensional space. We consider " omics matrices #$ ,% = 1, . . . , " of 

dimension * ×,,	with * features (e.g. genes, proteins) and , samples. A jDR jointly 

decomposes the P omics matrices into the product of a . ×,	factor matrix (/)and 
	* × .	omics-specific weight/projection matrices (1$) (Figure 1). Here and in the following, we 

will denote as factors the columns of the factor matrix and as metagenes the rows of the 
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weight/projection matrix corresponding to transcriptomic data (Methods). A description of the 

mathematical formulations of the nine jDR approaches is provided in the Method section. 

 

A wide variety of methods exist to perform jDR (Supplementary Table 1). These methods are 

based on different underlying mathematical formulations, including Principal Components 

Analysis, Factor analysis, co-inertia analysis, Gaussian latent model, matrix tri-factorization, 

Non-negative Matrix Factorization, CCA or tensor representations (Supplementary Table 1). 

We selected nine jDR approaches representative of each of these main mathematical 

formulations (Table 1), focusing on methods able to combine more than two omics, 

implemented in R or Python, and with software readily available and documented. These jDR 

approaches are iCluster
15

, Integrative NMF (intNMF)
16

, Joint and Individual Variation 

Explained (JIVE)
17

, Multiple co-inertia analysis (MCIA)
18

, Multi-Omics Factor Analysis 

(MOFA)
19

, Multi-Study Factor Analysis (MSFA)
20

, Regularized Generalized Canonical 

Correlation Analysis (RGCCA)
21

, matrix-tri-factorization (scikit-fusion)
22

 and tensorial 

Independent Component Analysis (tICA)
23

.  

 

Some of the selected nine jDR approaches are extensions of DR methods initially designed 

for single omics datasets: intNMF is an extension of non-Negative Matrix Factorization (NMF); 

tICA is an extension of Independent Component Analysis (ICA); MCIA and JIVE are different 

extensions of Principal Component Analysis (PCA); and MOFA, MSFA, and iCluster are 

extensions of Factor Analysis. As a consequence, the different jDR algorithms make different 

assumptions on the distribution of the factors (Methods). The different jDR approaches also 

make different assumptions on the across-omics constraints on the factors. Some algorithms, 

such as MOFA, consider the factors to be shared across all omics datasets. In contrast, the 

factors of RGCCA and MCIA are different for each omics layer, i.e., they are omics-specific 
factors. These omics-specific approaches still maximize some measures of interrelation 

between the omics-specific factors such as their correlation (RGCCA), or their co-inertia 

(MCIA). Finally, JIVE and MSFA consider mixed factors, decomposing the omics data as the 

sum of two factorizations, one containing a unique factor matrix common to all omics, and the 

second having omics-specific factor matrices. These last two categories of methods, omics-

specific and mixed thus address also the complementarity of the multi-omics. 

  

The majority of the jDR approaches can manage different features (e.g., genes, miRNAs, 

CpGs…), but require a match between the samples of the different omics datasets (columns 

of the #$matrices, see Table 1). Some algorithms, such as MOFA, scikit-fusion and JIVE, can 

also cope with omics matrices having not all samples in common. This is particularly suitable 

for multi-omics integration given that missing samples are frequent in data collections, such 

as in TCGA. For the sake of comparison, we applied here all methods considering only the 

samples profiled for all omics. Tensorial approaches, represented by tICA, require by definition 

that all matrices#$ have exactly the same samples and features. Nonetheless, the features of 

multi-omics data are frequently different (e.g. genes, miRNAs). A possible strategy to have 

the same features for all omics would be to convert all the features to the same level, e.g. 

gene symbols. This is sometimes unfeasible: miRNAs cannot be converted to gene symbols, 

for instance. We applied here another strategy, where we considered for each omics the matrix 

of correlation-of-correlation between samples (Methods). Both strategies imply a loss of 

information, which can affect the results of the omics integration. 
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Noteworthy, intNMF and iCluster produce, in addition to the factors, a clustering of the 

samples. Scikit-fusion can combine omics data with additional annotation (i.e., side 

information, such as pathway or process annotations). However, for the sake of comparisons 

with other algorithms, scikit-fusion is applied here without side-information. 
 
2) Benchmarking joint Dimensionality Reduction approaches on simulated 
omics datasets 
 
We first evaluated the jDR approaches on artificial multi-omics datasets. We simulated these 

datasets using the InterSIM CRAN package 
24

. This package generates three artificial omics 

datasets with imposed reference clustering by manipulating TCGA ovarian cancer data. 

Thereby, it avoids making assumptions on the distribution of the simulated data. We simulated 

multi-omics data with five, ten, and fifteen clusters. In addition, each set of clusters is simulated 

in two versions, either with all clusters of the same size, or with clusters of variable random 

sizes (Methods).  

 

We applied the nine jDR methods, requiring the decomposition of multi-omics data into five, 

ten, and fifteen factors, depending on the simulated datasets. The performances of the nine 

jDR approaches are then compared based on their clustering of samples. As mentioned 

before, intNMF and iCluster are intrinsically designed for sample clustering, while the 

remaining seven algorithms detect factors without providing a direct clustering. Accordingly, 

we applied directly intNMF and icluster. For the seven other algorithms, we obtained the 

clustering of the samples by applying consensus clustering to the factor matrix (Methods) 
25

. 

 

The agreement between the clustering obtained by the various jDR algorithms and the ground-

truth clustering is measured with the Jaccard Index (JI) (Methods). First, we observed that all 

methods perform reasonably well in the different simulated scenarios (JIs >= 0.6, Figure 2). 

The two algorithms intrinsically designed for clustering, namely intNMF and iCluster, display 

the best performances. In particular, intNMF retrieves perfectly the ground-truth clusters (JI ~ 

1). iCluster presents some variability for five and ten clusters, independently of the size 

distribution of the clusters. Regarding the remaining seven jDR approaches, MCIA, MOFA, 

and RGCCA are overall the best-performing methods. These methods are indeed among the 

top-three best algorithms in 6/6, 6/6, and 5/6 simulated scenarios, respectively. tICA and scikit-

fusion are the less effective methods in this benchmark. tICA structures the multi-omics data 

into a tensor. As described previously, to obtain these tensors, we transformed the omics data 

into correlation-of-correlation matrices, which might induce a loss of information. scikit-fusion 

is designed to work with side information, which are used to build a relation network connecting 

the various entities (e.g. samples, genes, proteins). However, for the sake of comparison with 

the other jDR methods, side-information was not considered, and this could have affected the 

results of the algorithm. 

 
3) Benchmarking joint Dimensionality Reduction approaches on cancer 
datasets 
 
In the second step, we downloaded TCGA multi-omics data for ten different cancer types 

10
 

(https://portal.gdc.cancer.gov/). These data are composed of three omics layers: gene 

expression, DNA methylation, and miRNA expression. The number of samples ranges from 
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170 for Acute Myeloid Leukemia (AML) to 621 for Breast cancer. We applied the nine jDR 

approaches to each of these cancer multi-omics datasets, jointly decomposing them in ten 

factors, as in the work of Bismeijer and colleagues 
26

. Most cancer subtyping approaches 

indeed revealed ten or fewer clusters of samples (i.e., subtypes). The Factor Analysis 

approach MSFA did not converge to any solution and was thereby not further considered. 

Importantly, we do not have ground-truth for cancer subtyping (i.e. clustering of cancer 

samples). We hence compared the performances of the remaining eight jDR approaches 

regarding their ability to identify factors predictive of survival, as well as factors associated 

with clinical annotations. We also evaluated the weight matrices resulting from the jDR 

methods, by assessing their enrichment in known biological pathways and processes. 

 
To test the association of the jDR factors with survival, we used the Cox proportional-hazards 

regression model. We observed first that the number of factors associated with survival 

depends more on the cancer types than on the jDR algorithm (Figure 3 and Supplementary 

Figure 1). Indeed, for three cancer types (Colon, Lung, and Ovarian), none of the jDR methods 

was able to identify survival-associated factors. This result is in agreement with previous 

observations testing the association of multi-omics clusters with survival on the same TCGA 

data with the log-rank test 
10

. In four other cancer types (Sarcoma, Liver, Kidney, and Breast), 

all jDR algorithms identified one or two survival-associated factors. Finally, in Melanoma, 

GBM, and AML, the majority of the jDR methods identified three or four survival-associated 

factors. In general, MCIA, RGCCA, and JIVE achieved the best performances, finding factors 

significantly associated with survival in seven out of ten cancer types. These approaches also 

offered the most significant p-values in the higher number of cancer types. JIVE is the best 

approach in three cancer types: Liver cancer (p-value ~ 10
-4

), AML (10
-3

) and in GBM (10
-3

); 

RGCCA is the best in Melanoma (10
-8

) and Breast cancer (10
-3

); and MCIA is the best in 

Kidney cancer (10
-4

) and Sarcoma (10
-5

). Furthermore, RGCCA, MCIA, and JIVE showed the 

most promising results for the cancer types having overall less survival-associated factors 

(Sarcoma, Liver, Kidney, and Breast, Figure 3 and Supplementary Figure 1).  

 

Afterward, we assessed the association of the jDR factors with clinical annotations. We 

selected four clinical annotations: “age of patients,” “days to new tumor,” “gender”, and “neo-

adjuvant therapy somministration” (Methods). To test the significance of the associations of 

the factors identified by the jDR methods with these clinical annotations, we used Kruskal-

Wallis tests for multi-class annotations (“age of patients” and “days to new tumor”), and 

Wilcoxon rank-sum for binary annotations (“gender” and “neo-adjuvant therapy 

somministration”). In addition, we intended to evaluate the methods not only by their capacity 

to associate factors with clinical annotations, but also by their ability to achieve these 

associations with a one-to-one mapping between a factor and a clinical annotation, i.e. their 

selectivity (Figure 4). Indeed, a jDR method detecting one factor associated with multiple 

clinical annotations cannot distinguish the annotations from each other. To the contrary, a jDR 

method detecting multiple factors associated with only one clinical annotation does not 

maximally explore the spectrum of all possible annotations. We defined a selectivity score 

having a maximum value of 1 when each factor is associated with one and only one clinical 

annotation, and a minimum of 0 when all factors are associated with all clinical annotations 

(Methods). The average selectivity value of all methods across all cancer types is 0.49. The 

top methods in each cancer type are defined as those having a maximum number of factors 

associated with clinical annotations, together with a selectivity value above the average. 

RGCCA, MCIA, and MOFA are overall the best-performing algorithms, since they rank among 
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the top three methods in 6/10, 5/10, and 5/10 cancer types, respectively. In contrast, intNMF, 

scikit-fusion, and tICA are less effective (among the top three methods in only two out of ten 

cancer types).  

 

Finally, we assessed the jDR methods performances in associating factors with biological 

processes and pathways (Figure 4). To achieve this goal, we need to take into account genes 

(i.e., weight matrices) and not samples (i.e., factor matrices). We computed the number of 

metagenes (corresponding to the rows of the transcriptomics weight matrix) enriched in at least 

one biological annotation from Reactome, Gene Ontology (GO), and cancer Hallmarks annotation 

databases (Methods). An optimal jDR method should maximize the number of metagenes enriched 

in at least one biological annotation, while optimizing also the selectivity (defined as above for 

clinical annotations and in the Methods). The average selectivity of all methods across the ten 

cancers is 0.3 for Reactome, 0.35 for GO, and 0.26 for cancer Hallmarks. The top methods in 

each cancer type are defined as those having a maximum number of metagenes associated 

with biological annotations, together with selectivity values above the average. Scikit-fusion, 

tICA, and RGCCA are overall the best-performing algorithms for Reactome annotations 

(ranking among the top three methods in 4/10, 3/10, 3/10 cancer types, respectively). tICA, 

iCluster and MCIA offered the best performances in cancer Hallmarks annotations (ranked 

among the top three methods in 4/10, 3/10, 3/10 cancers, respectively) and MCIA, intNMF 

and iCluster performed the best in GO annotations (ranked among the top three methods in 

4/10, 3/10, 3/10 cancers, respectively). Overall, among all jDR methods, tICA and MCIA offer 

the most promising results for two out of three annotation databases considered in this study 

and they get the best average performances across the three annotations databases (Table 

1). 

 

4) Benchmarking joint Dimensionality Reduction approaches on single-cell 
datasets 
Similarly to bulk multi-omics analyses, the joint analysis of single-cell multi-omics is expected 

to provide tremendous power to untangle the cellular complexity. In addition, jDR approaches 

could compensate for the strong intrinsic limitations of single-cell multi-omics, such as small 

number of sequencing reads, systematic noise due to the stochasticity of gene expression at 

single-cell level, or dropouts. However, the nine jDR algorithms that we are considering 

(excepted MOFA) have been designed and applied to bulk multi-omics data. It is therefore 

crucial to evaluate and benchmark the performances of these jDR algorithms for single-cell 

multi-omics integration. 

 

To test the jDR approaches on single-cell datasets, we fetched scRNA-seq and scATAC-seq, 

simultaneously measuring gene expression and chromatin accessibility on three cancer cell 

lines (HTC, Hela and K562) for a total of 206 cells, and reported in the study of Liu and 

colleagues 
27

. As these cells have been obtained from three different cancer cell lines, we 

expect that the first two factors of the various jDR approaches would cluster single-cells 

according to their cancer cell line of origin. 

The first two factors of the nine jDR algorithms show overall good performances to cluster 

cells according to cell lines of origin (Figure 5). To compare quantitatively these clustering 

results, we measured the C-index with values in the range [0,1], where 0 represents an optimal 

clustering. According to our results, tICA and MSFA are best-performing jDR methods with a 

C-index of 0, immediately followed by MCIA and intNMF (C-indices 0.018 and 0.025, 
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respectively), followed by RGCCA, MOFA, and scikit-fusion(C-indices 0.077, 0.12, 0.19, 

respectively), and finally, JIVE and iCluster (C-indices 0.23 and 0.25, respectively).  

 

5) Multi-omics mix (momix) Jupyter notebook 
 
To foster the reproducibility of all the results and figures presented in this benchmark study, 

we implemented the corresponding code in a Jupyter notebook available at 

https://github.com/ComputationalSystemsBiology/momix-notebook together with the 

associated Conda environment containing all the required libraries installed. Written in R, this 

notebook is structured in three main parts corresponding to the three test cases here 

considered (simulated data, bulk TCGA cancer data and single-cell data). Importantly, this 

notebook can be easily modified to test the nine jDR algorithms on user-provided datasets. 

The notebook can also be adjusted to benchmark novel jDR algorithms on our three test 

cases. Full documentation to achieve these goals is included in the notebook. 

 
Discussion 
 

We benchmarked in-depth nine jDR algorithms, representative of multi-omics integration 

approaches, in the context of cancer data analysis. In contrast to existing comparisons 
10–13

, 

our benchmark not only focuses on the evaluation of the clustering outputs, but also evaluates 

the biological, clinical, and survival annotations of the factors and metagenes. Existing 

comparisons also mainly use simulated data; we here consider large datasets of bulk cancer 

multi-omics as well as single-cell data. 

 

When performing clustering on simulated multi-omics datasets, intNMF, intrinsically designed 

as a clustering algorithm, offered the most promising results. In the same sub-benchmark, 

MCIA, MOFA, and RGCCA showed the best performance among the set of methods not 

intrinsically designed for clustering. In the cancer data sub-benchmark, when we evaluated 

the associations of the factors with survival or clinical annotations, MCIA, JIVE, MOFA, and 

RGCCA were the most efficient methods. When assessing the associations of the metagenes 

with biological annotations, MCIA and tICA were the most efficient. Finally, in the last sub-

benchmark, when clustering single-cell multi-omics data, MSFA and tICA, as well as MCIA 

and intNMF, outperformed other approaches.  

 

As mentioned earlier, intNMF, representative of the Non-negative Matrix Factorization (NMF) 

approaches, performs well for the clustering tasks, i.e., for detecting substantial patterns of 

variation across the omics datasets. This is observed for both simulated bulk data clustering 

and single-cell data clustering. Hence, intNMF should be prioritized by researchers focusing 

on clustering samples. However, intNMF is not effective when assessing the quality of 

individual factors and metagenes, as observed in the bulk cancer sub-benchmark. Our results 

rather suggest that researchers interested in exploring factor-level information, such as 

associations with clinical annotation or survival, should rather consider MCIA, JIVE, MOFA 

and RGGCA. When focusing on the underlying biology of the metagenes, tICA and MCIA 

should be prioritized. Indeed, we showed that these approaches are efficient to detect 

pathways or processes, but they could also be interesting to identify biomarkers or other 

molecular mechanisms. Finally, our study highlights the potentiality of MCIA. Indeed, MCIA is 

the method with the most consistent and effective behavior across all the different sub-
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benchmarks. It can thereby be useful for researchers interested in applying jDR without 

favouring any particular biological question. 

 

In the future, it would be interesting to extend our benchmark to evaluate the jDR methods 

also integrating discrete omics data. Indeed our current benchmark focuses on continuous 

data (e.g. expression, methylation), whereas many -omics and annotations can be formalized 

as discrete data (e.g. copy number, mutation, drug response). Further extensions of our 

benchmark could also investigate the impact of different variables on the jDR methods, such 

as the stability of the methods with respect to variations in the structure of omics data (e.g. 

imbalance in variability or number of features); or optimal performances according to different 

combinations of omics data (e.g. are three omics more informative than two?). In addition, to 

make a fairer comparison, we imposed the same numbers of factors to all of jDR methods, 

but we could imagine using the optimal number of factors directly computed by each method, 

as in the work of Tini and colleagues 
13

. Finally, multi-omics data are frequently profiled from 

different sets of patients/samples, leading to missing data, and further extensions of the 

benchmark could take this point into account. 

 

Among the methods selected in our benchmark, MOFA is the only approach already tested 

for the multi-omics integration of single-cell data. But recently, other jDR methods have been 

published for this purpose: LIGER 
28

, Seurat 
29

 and MOFA+ 
14

, for instance. However, these 

single-cell jDR approaches cannot be evaluated on our first two sub-benchmarks that focus 

on bulk data. In our single-cell sub-benchmark, we evaluated the jDR approaches for their 

clustering capacities. This evaluation should be complemented in the future by benchmarks 

focusing on single-cell multi-omics integration, and retrieving also pseudo-temporal 

trajectories, for instance.  

 

From a technical perspective, we observed that the methods that seek for omics-specific 

factors often led to a better performance than the methods designed for finding shared or 

mixed factors. We hypothesize that jDRs with omics-specific factors could successfully detect 

not only biological processes shared across multiple omics but also those processes that are 

complementary in multiple sources of omics data. In addition, when using algorithms having 

omics-specific factors, we only evaluated the transcriptome-associated omics-specific factors 

(Methods). The outputs of these methods often contain relevant information, such as 

additional omics-specific factors. The use of co-inertia (as implemented in MCIA) further 

seems more efficient to enforce relationships across omics than the use of correlation (as 

implemented in RGCCA). Accordingly, we suggest developers to prioritize omics-specific 

factors for further methodological developments. In addition, there is room for development of 

approaches managing missing data, as many of the best performing approaches, such as 

MCIA, can work only on omics profiled from the same samples. This is also true for the 

consideration of discrete data as among the methods considered here, only MOFA and scikit-

fusion have been previously applied to such data. Finally, most of the considered methods 

detect only linear signals. MOFA, in particular in its most recent version (MOFA+)
14

, is the only 

algorithm in our benchmark that can also detect slightly nonlinear signal. As a result, future 

developments should be directed towards methods that can capture the nonlinear signals 

present in the data. Developers could take advantage of the momix Jupyter notebook using it 

to compare novel methods with established ones.  
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Methods 

We consider P omics matrices #$, % = 1, . . , ", each of dimension (*	 × 	,), where the n lines 

correspond to the features (e.g. genes, miRNAs, CpGs), and the m columns correspond to 

the samples. jDR jointly decomposes #$, % = 1, . . , ", into a factor matrix (of dimension .	 × 	,)  

and omics-specific weight matrices (of dimension *	 × 	.). We will denote as factors the 

columns of the factor matrix and metagenes the rows of the weight matrix associated with 

transcriptome. 

 

Presentation of the nine jDR algorithms 
 

We detail here the nine jDR methods benchmarked in momix. We selected default parameters 

for each approach. Each method can in principle optimize its number of factors to be detected, 

but for the sake of comparison, we imposed the same number of factors on all approaches. 

Please note that we followed the mathematical formulations and notations provided in each 

method publication. 

 

1. Integrative Non-negative Matrix Factorization (intNMF)  
intNMF 

16
 is one of the numerous generalizations of NMF to multi-omics data. The method 

decomposes each omics matrix #$ into a product of non-negative matrices: the factor matrix W, 

and an omics-specific matrix 2$ 
 

#$ = 32$, for % = 1, . . . , " with 3 and 2$	positive matrices for % = 1, . . . , ". 

 

The algorithm minimizes the objective function4 = ,%*56 ∑ 8$ 9:#$ −32$:9<
$=> . 

 

Once the matrices 3 and 2$ % = 1, . . . , "have been computed, samples are assigned to 

clusters based on the W matrix; Each sample is associated with the cluster in which it has the 

highest weight. The algorithm is implemented into the CRAN R package intNMF (https://cran.r-
project.org/web/packages/IntNMF/index.html). 
 

2. Joint and Individual Variation Explained (JIVE)  
JIVE

17
 is an extension of PCA to multi-omics data. JIVE decomposes each omics matrix into 

three structures: a joint factor matrix (J), a omics-specific factor matrix (A) and a residual 

noise (E): 

 

#$=?$@+1$+A$, BCD	% = 1, . . . , ",		   
                  

with A$, 1$ and ?$ are (ni x k) matrices and S is a common score matrix explaining variability 

across multiple data types. 

 

The algorithm minimizes ‖A‖F, with A$ = #$−?$@ − 1$ and A = [A>. . . A<]I. 

 

JIVE is implemented into the R package r.jive (https://cran.r-
project.org/web/packages/r.jive/index.html). 
 

3. Multiple co-inertia analysis (MCIA)  
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MCIA
18

, is an extension of co-inertia analysis (CIA) to more than two omics datasets. MCIA 

factorizes each omics into omics-specific factors 

 

#$ = 1$/$ 	+ A$, for % = 1, . . . , ", 
 

 

by first applying a dimensionality reduction approach, such as PCA, to each omics matrix 

#$separately and then maximizing their co-inertia, i.e. the sum of the squared covariance 

between scores of each factor: 

 

KDL,KMNOO...NPO ∑ QCRF(#T$ UT$ , #$U$)<
T=> ,  

 

with RKD(#$U$) = 1and U$correspond to the global PCA projections. MCIA is implemented in 

the R package omicade4 
(https://bioconductor.org/packages/release/bioc/html/omicade4.html). 
 

4. Regularized Generalized Canonical Correlation Analysis (RGCCA) 
RGCCA

21
 is one of the most widely used generalizations of CCA to multi-omics data. Similarly 

to MCIA, RGCCA factorizes each omics into omics-specific factors:  

 

#$ = 1$/$ 	+ A$, for % = 1, . . . , ".  
 

RGCCA maximizes the correlation between the omics-specific factors by finding projection 

vectors V$such that the projected data have maximal correlation: 

 

KDL,KM$,WXCDD(#$V$, #WVW)for all possible couples %, Y = 1, . . . , ". 
 

Solving this optimization problem requires inversion of the covariance matrix. However, omics 

data usually have a higher number of features than samples, and these matrices are therefore 

not invertible. RGCCA thus apply regularization to CCA. RGCCA is implemented into the 

CRAN package RGCCA (https://cran.r-project.org/web/packages/RGCCA/index.html). 
 
5. iCluster  
iCluster

15
 decomposes each omics into the product of a factor matrix that is shared across all 

omics, and omics-specific weight matrices: 

 

#$ = 1$F	 + A$, for % = 1, . . . , ".  
 
iCluster solves the equation above by first deriving a likelihood-based formulation of the same 

equation and then applying Expectation-Maximization (EM). The method assumes that both 

the error A$ and the factor matrix / are normally distributed. Finally, clusters are obtained 

from the factor matrix by applying K-means. The algorithm is implemented into the CRAN 

package iCluster (https://rdrr.io/bioc/iClusterPlus/man/iCluster.html). 
  
6. Multi-Omics Factor Analysis (MOFA)  
MOFA

19
 decomposes each omics into the product of a factor matrix that is shared across all 

omics, and omics-specific weight matrices: 
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#$ = 1$F	 + A$, for % = 1, . . . , ". 
 

MOFA first formulates the equation above in a probabilistic Bayesian model, placing prior 

distributions on all unobserved variables 1$, /	K*[	A$ . Then it solves the model by 

maximizing the Evidence Lower Bound (ELBO), which is equal to the sum of the model 

evidence and the negative Kullback–Leibler divergence between the true posterior and the 

variational distribution. MOFA is an extension of Factor Analysis to multi-omics data, but it is 

also partially related to iCluster. However, differently from iCluster, MOFA does not assume a 

normal distribution for the errors but supports combinations of different omics-specific error 

distributions. The code to run MOFA is available at https://github.com/bioFAM/MOFA. The 

MOFA package further implements an automatic downstream analysis pipeline for the 

interpretation of the obtained factor and weight matrices through pathways, top-contributing 

features or percentage of variance-explained interpretation. 

 

7. Tensorial Independent Component Analysis (tICA) 
A natural extension of DR methods to multi-omic data is based on the use of tensors, i.e. 

higher-order matrices. Indeed, all the methods designed for single-omics can be naturally 

extended to multi-omics with tensors. However, this requires to work with omics data sharing 

both the same samples and features. Here, to overcome this limitation we ran the tensorial 

algorithm on the correlation-of-correlation matrix, i.e. the matrix having on rows and columns 

the samples that are common to all the omics data and having in position (i,j) the correlation 

of sample i with sample j.  

 

We chose tensorial ICA (tICA)
23

 to represent the tensor-based methods in our benchmark. 

Considering the multi-omics data organized into a tensor X, the equation solved by tICA is: 

 

#	 = 	@	 ⊙$=>
< ]$,  

 

where S is a tensor, with the same dimension of X, and composed of @>. . . @<random variables 

mutually statistically independent and satisfying A[@>. . . @<] = 	0 and _KD[@>. . . @<] = 	`and 

	⊙ denotes the tensor contraction operator.  

 

Thus, tICA searches for independent signals. Since biological processes are generally non-

Gaussian and often sparse, the assumption of tICA can improve the deconvolution of complex 

mixtures and hence better identify biological functions and pathways underlying the multi-

omics data. Given that multiple tensorial versions of ICA exist, we considered the tensorial 

fourth-order blind identification (tFOBI), whose implementation in R is available in 
23

.  
 

8. Multi-Study Factor Analysis (MSFA)  
MSFA is a generalization of Factor Analysis (FA), which models the omics matrices #$as the 

sum of data-specific and shared factors: 

 

#$ = a/$ + b$c$ + A$	, for % = 1, . . . , ".  
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whereA$	has a multivariate normal distribution and the marginal distributions of /$,c$and #$are 

multivariate normal. MFSA is implemented in R and available at 

https://github.com/rdevito/MSFA. 

 

9. Data fusion (scikit-fusion)  
The data-fusion approach (scikit-fusion)

22
 is based on two steps. First, two groups of matrices 

are constructed from the multi-omics data: relation (d) and constraint (X ) matrices. The R 

matrix encodes relations inferred between features of different omics (e.g., genes to proteins) 

and the matrix C describes relations between features of the same omics (e.g. protein-protein 

interactions). The matrix C thus corresponds to the side information that scikit-fusion can 

consider in the factorization. Then, tri-matrix factorization is used to simultaneously factorize 

the various relation matrices R under constraints C. Given that the R and C matrices are block-

matrices, with element d$Wcontaining a relation between the elements of the i-th omics and 

those of the j-th, the matrix tri-factorization is applied separately to each block: 

 

d$W ≈ f$@$WfW, with f$shared across all the d$g	for h = 1. . . "(matrices that relate the i-th object 

to others). 

 

Hence, scikit-fusion can naturally combine additional side-information in the factorization of 

the multi-omics data, such as protein-protein interactions, Gene Ontology annotations. It is 

implemented in Python and available at https://github.com/marinkaz/scikit-fusion . 

 

Factor selection for performance comparisons 

The jDR approaches make different assumptions on the cross-omics constraints of the factors. 

The various jDR can be thus classified in shared factors, omics-specific factors and mixed 

factors approach. To use the factor matrices to compare the performances of the various jDR 

methods, e.g. to cluster the samples based on the factors, we had to select which factor matrix 

to use for each jDR. Shared factors jDR methods compute a unique factor matrix, which is 

used in our benchmark. Omics-specific jDR methods compute a factor matrix for each omics 

dataset. In these cases, we selected the factor matrix associated with transcriptomic data for 

our benchmark. However, jDRs with omics-specific factors maximize correlation or co-inertia 

between the various omics-specific factor matrices. The values of the transcriptomic factor 

matrix are then influenced by the other omics. Finally, for mixed factors jDRs methods, we 

considered the joint factor matrix /. As a consequence, all jDR methods with omics-specific 

and mixed factors contain in their factorization more information than those considered here 

for sake of comparison.  

 

Data simulation 
The simulated multi-omics datasets have been produced by the InterSIM 24

 CRAN package. 

InterSIM simulates multiple interrelated data types with realistic intra- and inter-relationships 

based on the DNA methylation, mRNA gene expression, and protein expression from TCGA 

ovarian cancer data. We generated 100 simulated datasets, with a number of clusters set by 

the user. We considered five, ten and fifteen clusters in this study. The proportion of samples 

belonging to each subtype is also set by the user, while we considered here two conditions 

with equally sized clusters and variable random sizes, respectively.  

 

Clustering of factor matrix 
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To identify the clusters of samples starting from the jDR factor matrix, we applied k-means 

clustering to the factor matrix. We chose k-means for clustering in agreement with the use of 

k-means in iCluster and euclidean distance in intNMF for clustering. As k-means clustering is 

stochastic 
25

, we performed clustering 1000 times and computed a consensus consisting in 

the most frequent associations between samples and clusters 

 

Comparing jDR algorithm clusters to ground-truth clusters 

The matching between the ground-truth clustering and the clustering inferred by the various 

jDR algorithms is measured with the Jaccard Index (JI). JI is a similarity coefficient between 

two finite sets A and B, defined by the size of the intersection of the sets, divided by the size 

of their union:  i`(1, j) = k∩m
k∪m

. It takes its values in [0;1].  

 
Selection of the clinical annotations 
The clinical annotations selected for benchmark testing are “age of patients”, “days to new 

tumor”, “gender” and “neo-adjuvant therapy somministration”. This set of annotations is 

obtained after excluding redundant annotations (e.g. “age_at_initial_pathologic_diagnosis” 

and “years_of_initial_pathologic_diagnosis”), annotations having missing values for more than 

half of the samples, and annotations having no biological relevance (e.g. “vial_number”, 

“patient_id”). Four clinical annotations are available for nine or ten out of ten cancer types, 

while the others are only present for six or fewer cancer types (with most of them being 

available only for one or two cancer types). 

 

Selectivity score 
We define the selectivity as: 

                           @	 = 2	 p
qr	s	qt

u
v 

where Nc is the total number of clinical annotations associated with at least a factor, Nf the 

total number of factors associated with at least a clinical annotation, and L the total number of 

associations between clinical annotations and factors. S has a maximum value of 1 when each 

factor is associated with one and only one clinical/biological annotation, and a minimum of 0 

in the opposite case. An optimal method should thus maximize its number of factors 

associated with clinical/biological annotations without having a too low selectivity.  

 

Testing the biological enrichment of metagenes 
To test if metagenes are enriched in biological annotations, we used PrerankedGSEA, 

implemented in the fgsea R package. In prerankedGSEA, each metagene is considered as a 

ranking of genes, and the significance of the association of a biological annotation with the higher 

or lower part of the ranking is tested. We considered as biological annotations Reactome 

pathways, Gene Ontology (GO) and cancer Hallmarks, all obtained from MsigDB30,31.  
 
Quality of single-cell clusters 
To evaluate the quality of the clusters obtained from single-cell multi-omics data, we employed 

the C-index measure
32

, an internal clustering evaluation index comparing the distance 

between intra-cluster points and inter-clusters points. The C-index has values in [0,1] and 

should be minimum in an optimal clustering. 
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Figure legends 

 
Figure 1. Joint Dimensionality Reduction methods overview. Multi-omics are profiled from the same 

set of samples. Each omics corresponds to a different matrix #$. jDR methods factorize the matrices Xi 

into the product of a factor matrix / and weight matrices 1$. These matrices can then be used to cluster 

samples and identify molecular processes.  

 

 
Figure 2. jDR clustering of simulated multi-omics datasets. Boxplots of the Jaccard Index computed 

between the clusters identified by the different jDR methods and the ground-truth clusters imposed on 

the simulated data (for 5, 10 and 15 imposed clusters). For each method (e.g. RGCCA), performances 

on heterogeneous and equally-sized clusters are reported (denoted as RGCCA and RGCCA_EQ, 

respectively).  

 
Figure 3. Identification of factors predictive of survival in Ovarian, Breast and Melanoma cancer 
samples by the jDR methods. For each method the Bonferroni-corrected p-values associating each 
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of the 10 factors to survival (Cox regression-based survival analysis) are reported. The dot lines 

correspond to a corrected p-value threshold of 0.05. The results corresponding to the other seven 

cancer types are presented in Supplementary Figure 1. 

 
Figure 4. Identification of factors associated with clinical annotations, and metagenes 
associated with biological annotations in Ovarian, Breast and Melanoma samples, by the jDR 
methods. For clinical annotations, the plot represents, for each method, the number of clinical 

annotations enriched in at least one factor together with the selectivity of the associations between the 

factors and the clinical annotations (Method). For the three annotation sources (MsigDB Hallmarks, 

REACTOME and Gene Ontology), the number of metagenes identified by the different jDR methods 

enriched in at least a biological annotation are plotted against the selectivity of the associations between 

the metagene and the annotation. See Supplementary Figure 2 for the results corresponding to the 

other seven cancer types. 
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Figure 5. jDR clustering of single-cell multi-omics according to the cancer cell line of origin. 
Scatterplots of factor 1 and 2 (i.e., the first two columns of the factor matrix) are reported for each jDR 

method. The colors denote the cancer cell line of origin: pink for K562, orange for Hela and blue for 

HCT. The C-index (in the range [0-1]) reports the quality of the obtained clusters (0 being the best). 
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Supp Table 1. Extended list of existing DR multi-omics integrative algorithms. The algorithms are grouped based on their underlying approach. The columns of the table 
report, the names of the DR method, its underlying approach, the contrained that it assumes on the factors, if it requires to match features and/or samples, the link to the code, 
the language of the code, if the algorithm has been tested in our benchmark and the link to the paper of the method.

DR approach 
names

Underlying 
approach

Constraints on the 
factors

Dimension matching 
requirements Code availability Language

Tested in 
Jupyter 

notebook
Paper citation

tICA (tensors) Tensorial extension of ICA shared factors matching of both samples and 
features (tensor) Supplementary Data paper R YES Teschendorff, Andrew E., et al. Genome biology 

19.1 (2018): 76.

tPCA (tensors) Tensorial extension of PCA shared factors matching of both samples and 
features (tensor) Supplementary Data paper R NO Teschendorff, Andrew E., et al. Genome biology 19.1 

(2018): 76.

PARAFAC (tensors) Tensorial extension of PCA shared factors matching of both samples and 
features (tensor)

R package multiway R NO Harshman, Richard A.,et al. Computational Statistics & 
Data Analysis 18.1 (1994): 39-72.

tensor CCA Tensorial extension of CCA omics-specific factors matching of both samples and 
features (tensor) https://github.com/rciszek/mdr_tcca MATLAB NO Luo, Yong, et al. IEEE transactions on Knowledge and 

Data Engineering 27.11 (2015): 3111-3124.

sCCA CCA omics-specific factors matching of samples R package PMA R NO Witten, Daniela M., et al. Biostatistics 10.3 (2009): 515-
534.

MCCA CCA omics-specific factors matching of samples NO NO Witten, Daniela M., et al.  Statistical applications in 
genetics and molecular biology 8.1 (2009): 1-27.

CCA-RLS CCA omics-specific factors matching of samples NO NO Vía, Javier, et al.  Neural Networks 20.1 (2007): 139-
152.

RGCCA CCA omics-specific factors matching of samples R package RGCCA R YES Tenenhaus, Arthur, et al. Biostatistics 15.3 (2014): 569-
583.

DIABLO CCA omics-specific factors matching of samples http://mixomics.org/mixdiablo/ R NO Singh, Amrit, et al. Bioinformatics (2019).

jointNMF  NMF shared factors matching of samples
Supplementary Data paper/ MIA on 

http://page.amss.ac.cn/shihua.
zhang/software.html

MATLAB NO Zhang, Shihua, et al.  Nucleic acids research 40.19 
(2012): 9379-9391.

MultiNMF NMF shared factors matching of samples NO NO Liu, Jialu, et al.  Proceedings of the 2013 SIAM 
International Conference on Data Mining. 

EquiNMF NMF shared factors matching of samples NO NO Hidru, Daniel, and Anna Goldenberg.arXiv preprint 
arXiv:1409.4018 (2014).

IntNMF NMF shared factors matching of samples R package intNMF R YES Chalise P and Fridley B (2017). PLOS ONE, 12(5), 
e0176278.

iCell NMF-based matrix tri-factorization shared factors matching of samples http://www0.cs.ucl.ac.
uk/staff/natasa/iCell MATLAB NO Malod-Dognin, Noël, et al.  Nat comm 10.1 (2019): 805.

Scikit-fusion Matrix tri-factorization shared factors matching of samples https://github.com/marinkaz/scikit-
fusion python YES

Žitnik, Marinka, and Blaž Zupan. "Data fusion by 
matrix factorization." IEEE transactions on pattern 
analysis and machine intelligence 37.1 (2015): 41-

53.

Higher-order GSVD (HO 
GSVD)  SVD (Matrix tri-factorization) shared factors matching of samples R package hogsvdR R NO Sankaranarayanan, Preethi, et al. PloS one  6.12 

(2011): e28072.

iCluster Gaussian latent variable model shared factors matching of samples R package iCluster R YES Shen, Ronglai, et al.  PloS one 7.4 (2012): e35236.

funcSFA Gaussian latent variable model shared factors matching of samples https://github.com/NKI-CCB/funcsfa python NO Bismeijer, Tycho et al.  PLoS computational biology 
14.10 (2018): e1006520.

JIVE Principal Component Analysis 
(PCA) mixed factors none R package r.jive R YES Lock, Eric F., et al. The annals of applied statistics 

7.1 (2013): 523.

AJIVE Principal Component Analysis 
(PCA) mixed factors none https://github.

com/MeileiJiang/AJIVE_Project MATLAB NO Feng, Qing, et al.  Journal of Multivariate Analysis 166 
(2018): 241-265

MCIA Co-Inertia Analysis (CIA) omics-specific factors matching of samples R package omicade4 R YES Meng, Chen, et al. BMC bioinformatics 15.1 (2014): 
162.

MOFA Factor Analysis (FA) (Bayesian) shared factors none https://github.com/bioFAM/MOFA R YES Argelaguet, Ricard, et al.  Molecular systems 
biology 14.6 (2018): e8124.

Group Factor Analysis 
(GFA) Factor Analysis (FA) shared factors matching of samples GFA CRAN package R NO Leppäaho, E. et al. The Journal of Machine Learning 

Research 18.1 (2017): 1294-1298.

MSFA Factor Analysis (FA) (Bayesian) mixed factors matching of samples https://github.com/rdevito/MSFA R YES De Vito, Roberta, et al. arXiv preprint arXiv:
1611.06350 (2016).

Joint Bayesian factors Factor Analysis (FA) (Bayesian) mixed factors matching of samples https://sites.google.
com/site/jointgenomics/ MATLAB NO

Ray, Priyadip, et al. "Bayesian joint analysis of 
heterogeneous genomics data." Bioinformatics 30.10 

(2014): 1370-1376.

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

at
io

na
l l

ic
en

se
pe

rp
et

ui
ty

. I
t i

s 
m

ad
e 

av
ai

la
bl

e 
un

de
r 

a
pr

ep
rin

t (
w

hi
ch

 w
as

 n
ot

 c
er

tif
ie

d 
by

 p
ee

r 
re

vi
ew

) 
is

 th
e 

au
th

or
/fu

nd
er

, w
ho

 h
as

 g
ra

nt
ed

 b
io

R
xi

v 
a 

lic
en

se
 to

 d
is

pl
ay

 th
e 

pr
ep

rin
t i

n 
T

he
 c

op
yr

ig
ht

 h
ol

de
r 

fo
r 

th
is

th
is

 v
er

si
on

 p
os

te
d 

Ja
nu

ar
y 

14
, 2

02
0.

 
; 

ht
tp

s:
//d

oi
.o

rg
/1

0.
11

01
/2

02
0.

01
.1

4.
90

57
60

do
i: 

bi
oR

xi
v 

pr
ep

rin
t 

https://doi.org/10.1101/2020.01.14.905760
http://creativecommons.org/licenses/by-nc-nd/4.0/


AML Colon GBM

Kidney Liver Lung

Sarcoma

-lo
g(

Bo
nf

er
ro

ni
-c

or
re

ct
ed

su
rv

iv
al

  P
-v

al
ue

)

Supp Figure1. Identification of factors
predictive of survival in cancer samples by 
the jDR methods. For each method the 
Bonferroni-corrected p-values associating
each of the 10 factors to survival (Cox 
regression-based survival analysis) are 
reported. The dot lines correspond to a 
corrected p-value threshold of 0.05.
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Supp Figure 2. Identification of factors associated with clinical annotations, and metagenes
associated with biological annotations in cancer samples, by the jDR methods. For clinical
annotations, the plot represents, for each method, the number of clinical annotations enriched in at 
least one factor together with the selectivity of the associations between the factors and the clinical
annotations (Method). For the three annotation sources (MsigDB Hallmarks, REACTOME and Gene 
Ontology), the number of metagenes identified by the different jDR methods enriched in at least a 
biological annotation are plotted against the selectivity of the associations between the metagene and 
the annotation.
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