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Abstract 
Current epidemiological data indicate that, in humans, females live longer than males but experience a 
worse quality of life in advanced age. The reasons for this sex disparity are still unknown, but it is likely that 
it derives from a strict interplay between biological and cultural factors. Epigenetic modifications likely 
contribute to shape sex gap in aging and longevity, and genome-wide DNA methylation differences between 
males and females in autosomal chromosomes have been reported. Several studies showed that DNA 
methylation patterns are profoundly remodelled during aging, modulated in part by environmental 
exposures. However, few studies have specifically investigated if DNA methylation is differently affected 
by aging in males and females.  
Here we performed a meta-analysis of 4 large whole blood datasets including males and females of different 
ages and we compared 4 aspects of epigenetic age-dependent remodelling between males and females: 
normative changes, variability, epimutations, and entropy. While we did not find differences in the age-
associated increase in epimutations and in entropy, we reported a list of highly reproducible sex-specific 
age-associated differentially methylated positions (saDMPs) and sex-specific age-associated variably 
methylated positions (saVMPs). We investigated the enrichment in saDMPs and saVMPs in genomic 
regions, imprinted and sex hormone-related genes and Reactome pathways. Furthermore, we experimentally 
validated the most robust saDMPs, mapping in FIGN and PRR4 genes, and showed sex-specific deviations 
of their methylation patterns in models of successful (centenarians) and unsuccessful (Down syndrome) 
aging. 
In conclusion, we provided a comprehensive description of sex-differences in DNA methylation changes 
with aging in whole blood. Our results can pave the way to the identification of possible molecular triggers 
of the sex gap in aging and longevity. 
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Introduction 
A profound and multifaceted remodeling of DNA methylation patterns occurs during human aging [1–3]. 
DNA methylation profiles tend to diverge among individuals during life course [4–6], shaped by an 
intricated combination of environmental exposures, random events and genetically-driven mechanisms. At 
the same time, several epigenome-wide association studies (EWAS) have shown that a subset of the about 
28 million CpG sites of the genome undergoes age-associated normative changes, i.e. reproducible 
hypermethylation or hypomethylation events that characterize aging individuals [7,8]. Despite some 
controversial results [9,10], at least a fraction of normative changes is tissue specific, indicating that the 
cellular microenvironment affects the activity of the molecular writers of DNA methylation patterns during 
aging. The number of studies identifying age-associated DNA methylation changes at the level of single 
CpG sites has exponentially increased in the last 10 years, paving the way for the development of 
mathematical models, termed “epigenetic clocks”, that predict the age of an individual on the basis of his/her 
epigenetic profile [11]. Epigenetic clocks are an appealing resource for chronological age estimation in 
forensic applications, but they have risen to the limelight particularly because multiple reports have shown 
that they are sensitive to the health status of an individual and are thus informative of his/her biological age. 
Although a conclusive association between epigenetic clocks predictions and risk of age-related diseases is 
still missing [12], several independent studies showed that epigenetic age acceleration (i.e., predicted 
epigenetic age higher than effective chronological age) is associated to age-related diseases like cancer, 
cardiovascular disease and neurodegenerative conditions and to all-cause mortality [13]. On the other side, 
epigenetic age deceleration was reported to be associated with successful aging and longevity [14,15]. 
Surprisingly, the research on the DNA methylation changes occurring during aging has largely neglected 
one of the hot topics in aging research, i.e. the sex differences in lifespan and health span. According to 
Global Health Observatory (GHO) data [16], global life expectancy at birth in 2016 was 74.2 years for 
females and 69.8 years for males and, although with different extent, this sex gap in longevity is worldwide 
[17]. At the same time, epidemiological data indicate that, in humans, females live longer than males but 
experience a worse quality of life in advanced age [18]. Sex disparity exists for several diseases: 
cardiovascular disease, cancer and Parkinson’s disease have higher mortality rates in males than in females 
at a given age, while females are at higher risk of Alzheimer’s disease and show an increased prevalence of 
disabling conditions like bone and joint problems and autoimmune diseases. The reasons of these 
differences are still unclear, but it is likely that they result from a strict interplay between nature (for 
example, differences in hormones, asymmetries in genetic inheritance, sexual dimorphism) and nurture (for 
example, different vulnerability to environmental hazards, sexual selection). Notably, sex-specific longevity 
loci have been recently identified [19], further pointing out the contribution of sex on aging trajectories.  
DNA methylation is a key regulator of development and it is sensitive to several environmental exposures. 
Independent studies reported DNA methylation differences between males and females in various tissues 
[20–22], involving CpG sites widespread across the autosomal chromosomes. Notwithstanding, few studies 
have investigated whether and how aging affects sex-dependent epigenetic patterns, or if sex-specific 
epigenetic profiles emerge specifically during the life of an individual. Two independent studies reported 
that according to Horvath’s clock males have accelerated epigenetic age compared to females [23,24]. 
Recently, Masser et al. analyzed genome-wide DNA methylation in mouse hippocampus and human frontal 
cortex and reported both CpG sites that show different DNA methylation levels between males and females 
lifelong (referred as sex differences) and CpG sites that are differently affected by aging in males and 
females (referred as sex divergence) [25]. The vast majority of EWAS studies on aging have been performed 
in whole blood, but to the best of our knowledge in these analysis sex has always been exiled as a 
confounding factor in statistical analysis. However, it is well known that immunological differences exist 
between males and females [26,27] and that age differently shapes the immune system in the two sexes [28]. 
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Furthermore, the peripheral tissue can reflect age-related patterns that have functional and phenotypic effects 
occurring in other tissues. 
On the basis of these considerations, question arises if DNA methylation differences exist in whole blood 
between males and females during aging and, if existing, whether they contribute to the sex gap in aging and 
longevity. In the present study we performed a meta-analysis of 4 large whole blood datasets including 
males and females of different ages, in order to identify sex-specific trends in age-related DNA methylation 
patterns. In order to provide a comprehensive view of this topic, we considered 4 aspects of epigenetic age: 
1) age-related normative changes in DNA methylation levels [8,29]; 2) age-related increase in DNA 
methylation variability, as described by Slieker et al. [5]; 3) age-related increase in epimutations, i.e. rare or 
stochastic changes in DNA methylation levels that are not shared among subjects, as defined by Gentilini et 
al. [6] 4) age-related increase in entropy in DNA methylation profiles, as previously described by Hannum et 
al. [30]. 
 
Materials and Methods 
Datasets 
The Gene Expression Omnibus (GEO) Datasets repository [31] was interrogated using “GPL13534” (the 
accession code of the platform HumanMethylation450 BeadChip, Illumina) and “blood” as search terms, 
setting “tissue”, “age”, “gender” and “sex” as attributes and sorting the results by Number of Samples (High 
to Low). Only datasets including healthy subjects were considered. Based on these criteria, as to June 1st 
2019 we selected the 3 datasets including the highest number of samples: GSE40279 [30], GSE87571 [32] 
and GSE55763 [33]. Furthermore, we analyzed a fourth dataset not uploaded in GEO that is part of the EPIC 
Italy study [34]. The total number of subjects included in each dataset, as well as the number of males and 
females, is reported in Supplementary Table 1. Supplementary Figure 1 reports, for each dataset, the number 
of males and females according to age. 
Raw data (.idat files) were available only for GSE87571 dataset. We extracted raw data using minfi 
Bioconductor package and normalized them using the preprocessFunnorm function implemented in the 
same package. For the remaining datasets the analyses were performed on available beta value data, which 
according to authors’ indications were normalized by quantile normalization of intensity values (GSE55763) 
or using an in-house software written for the R environment and extensively described in [35]. For 
GSE40279, available beta values were not normalized but adjusted for internal controls with Illumina's 
Genome Studio software. 
Probes mapping on sex chromosomes and probes with internal SNPs, with non-unique mapping to the 
bisulfite-converted genome and with off-target hybridization, according to [36], were excluded from each 
dataset, leaving 414505 probes for GSE40279, 414950 probes for GSE87571, 349534 probes for EPIC and 
382458 probes for GSE55763. 
In each dataset, blood cell counts were estimated from methylation data using Horvath calculator [29,37]. 
Residuals were calculated regressing out from beta values the estimates of CD8T cells, CD4T cells, NK 
cells, B cells and Granulocytes. 
 
Identification of probes having sex-specific trends in age-associated methylation changes 
To identify CpG sites showing sex-specific trends in age-associated hyper- or hypo-methylation (sex-
specific age-associated differentially methylated positions, saDMPs), each dataset was divided into two 
subsets (females and males) and a linear regression model by Ordinary Least Squares method was built for 
each probe, considering the dependence of beta values on age. The normality of residuals distribution was 
checked by Shapiro-Wilk test and only the probes having a Benjamini-Hochberg corrected p-value higher 
than 0.05 were retained. A CpG site was defined as having a sex-specific trend in age-associated hyper- or 
hypo-methylation if it fulfilled the following criteria (polygon approach): 1) the probe undergoes hyper- or 
hypo-methylation during aging at least in one sex: we selected probes having linear regression slope for 
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males or females greater than 0.001; 2) the probe has age-dependent beta values distribution only partially 
overlapping between males and females: for each probe we calculated the allowed region in males and 
females using confidence intervals for slope and intercept of linear regression and we selected only those 
probes having relative intersection area (i.e. area of intersection divided by area of union) between allowed 
regions for females and males less than 0.5. An example of allowed regions intersection area is shown in 
Figure 1A. 
 
Identification of probes having sex-specific trends in age-associated methylation variability 
To identify probes having sex-specific differences in age-dependent variability of methylation (sex-specific 
age-associated variably methylated positions, saVMPs), we first of all filtered out probes with bi-, three- 
modal distribution of beta values using data clustering algorithm DBSCAN – density-based spatial 
clustering of applications with noise [38], leaving 412618 probes for GSE40279, 412015 probes for 
GSE87571, 348564 probes for EPIC and 381006 probes for GSE55763. 
For each age value present in each dataset, we applied a sliding window of 16 years, thus selecting all the 
subjects 8 years younger and 8 years older. Then in each subset, we calculated 5% and 95% percentiles of 
beta values distributions for males and females separately. We then fitted these values with linear regression 
in different scales: 1) untransformed age and untransformed beta values; 2) untransformed age and 
logarithmic beta values; 3) logarithmic age and logarithmic beta values. For each probe and for each sex, we 
selected the best fitting scale, which is the one with the highest R2 value. For each probe, we had therefore 
four R2 values (two associated to sex and two associated to 5% and 95% percentiles). We selected the 
minimal R2 value to guarantee good fitting for both sexes and both quartiles at once. Then, for each dataset 
we chose probes having R2 value greater than 75% percentile for the distribution of R2 (Supplementary 
Figure 2), leaving 103155 probes for GSE40279, 103004 probes for GSE87571, 87141 probe for EPIC and 
95252 probes for GSE55763. The quartiles values were 0.128 for GSE40279, 0.298 for GSE87571, 0.335 
for EPIC and 0.357 for GSE55763. The R2 values were drastically lower in GSE40279 dataset compared to 
the other datasets, which may be due to normalization absence in the dataset. 
Then, for each probe we used the specific fitting identified above and calculated the difference between 95% 
and 5% percentiles at the smallest (s) and the highest (h) age within each dataset for males and for females 
separately (Figure 1B). We calculated the ratio between these two values (h/s if h higher than s and s/h in the 
opposite case) in order to define the absolute value of age-dependent change in variance (v). Finally, we 
calculated I, that is the ratio of v in males and females (vmale/vfemale if vmale higher than vfemale and vfemale/vmale 
in the opposite case) to quantify absolute sex-related differences in age-dependent variability. To identify 
probes with robust sex-specific differences in age-dependent variability in all datasets, we intersected the 4 
lists of probes, leaving 10829 probes. Then, we selected only probes concordant between all datasets (probes 
with vmale greater than vfemale or vice versa in all 4 datasets), leaving 1231 probes.  
Value of I depends of the dataset age range and type of 5% and 95% percentiles fitting: it is greater for the 
larger age range and nonlinear fitting. To equalize the 4 datasets, for each probe we calculated mean I value 
between all datasets and selected the probes with mean I higher than 1.5, which corresponds to at least 50% 
difference between sexes in increase (or decrease) of age-dependent variability in all datasets.  
When we applied the same analysis on the residuals, we identified 103155 probes for GSE40279, 103004 
probes for GSE87571, 87141 probe for EPIC and 95252 probes for GSE55763 having R2 value greater than 
75% percentile for the distribution of R2. Intersection of 4 lists of probes left 13231 probes and 1687 probes 
concordant between all datasets.  
 
Identification of epimutations and Shannon entropy analysis 
To identify epimutations (i.e., CpG probes for which one or few individuals show extremely different 
methylation levels compared to the rest of the cohort), for each probe we calculated the interquartile ranges 
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of beta values; we then selected the probes having one or more subjects (epimutated subjects) having a beta 
value exceeding three times interquartile ranges (Q1 – (3×IQR) and Q3 + (3×IQR)), as reported in [6]. 
To calculate Shannon entropy, we applied the following procedure, according to [39]: 1) we obtained 
residuals by filtering out the dependence of beta-values on age and blood cells count; 2) we recalculated 
beta-values according to the formula: 
βi,j

adj = residualsi,j + mean(βi) (1) 

where mean(bi) is the average methylation level for ith CpG site, i is the index of CpG and j is the index of 
subject. Then, we calculated Shannon entropy using the following formula, as indicated in [30]: 
Entropy = 1 / N · log (1/2) ∑i [βi

adj · log(βi
adj) + (1 - βi

adj) · log(1 - βi
adj)] (2) 

where βi
adj is the recalculated methylation level for ith CpG site and N is the number of CpG sites. 

 
Gene-targeted DNA methylation analysis 
The EpiTYPER assay (Agena) was used to measure DNA methylation of FIGN and PRR4 in whole blood 
from 571 subjects belonging to 4 groups: 419 healthy controls of different ages, 49 centenarians, 48 
centenarians’ offspring and 44 persons with Down Syndrome. Age range and sex distribution of the 4 
cohorts are reported in Supplementary Table 2. All subjects were recruited following approval by the Ethical 
Committee of Sant’Orsola-Malpighi University Hospital (Bologna, Italy). 
Genomic DNA was extracted using the QIAamp 96 DNA Blood Kit (Qiagen) and 500 ng were bisulphite 
converted using EZ-96 DNA Methylation Kit (Zymo Research Corporation). Ten ng of bisulphite-converted 
DNA were amplified using the following bisulphite-specific primers, containing tag sequences for 
EpiTYPER protocol: FIGN forward aggaagagagTTTTTTGAAAAGAGAGAAAGAAGGA; FIGN reverse 
cagtaatacgactcactatagggagaaggctATAAACAATCAAACCATCCAATTTCTA; PRR4 forward 
aggaagagagTTTGTGTTTTGAGTTGAGTTTAGAG; PRR4 reverse 
cagtaatacgactcactatagggagaaggctCCTAAAAATAAAACTTCTATCATCCA. Primers for FIGN and PRR4 
amplified chr2:164,589,883-164,590,418 and chr12:11,001,978-11,002,636 (GRCh37/hg19 genome 
assembly) respectively. 
 
Enrichment analyses and Transcriptomine search 
Enrichment of genomic regions, imprinted genes and sex-hormone related genes was calculated using Fisher 
exact test, as implemented in the fisher.test function in the stats R package. Enrichment of Reactome 
annotations was calculated using the methylgometh function implemented in the methylGSA R package, 
using default settings. Transcriptomine database available at NURSA website 
(www.nursa.org/nursa/transcriptomine) was searched for the 5 genes FIGN, PRR4, SOGA3, PEX10 and 
BAG3, selecting the following pathways: “AR & Androgens”, “ERs and estrogens”, “ERR subfamily”. 
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Results 
Identification of sex-specific age-associated differentially methylated positions (saDMPs) 
As a first step, we aimed at identifying those probes undergoing hyper- or hypo-methylation during aging 
(normative changes) and displaying differences between males and females in these changes (sex-specific 
age-associated differentially methylated positions, saDMPs). To this end, we applied a “polygon” approach, 
described in the Materials and Methods section and represented in Figure 1A. The number of CpGs selected 
according to the polygon approach in each dataset and their intersections are shown in Figure 1B, while the 
complete list of probes is reported in Supplementary File 1. 
The number of probes satisfying the selection criteria was drastically lower in GSE40279 dataset compared 
to the other datasets. This difference can be attributed to the fact that GSE40279 has the smallest size, or to 
the fact that only not normalized beta values were available in GEO for this dataset. We identified 7 
saDMPs common to all the 4 datasets (Table 1), and 29 when GSE40279 was excluded (Supplementary File 
1). Figure 1C reports DNA methylation values according to age and sex in each dataset for each of the 7 
saDMPs. Six out 7 of the saDMPs that we identified in our analysis have been reported to have sex-
dependent methylation (independently from age) in previous reports [20–22], 3 of them also when newborns 
were considered [22] (Supplementary File 1). The 7 probes common to all datasets map in the 5 genes 
FIGN, PRR4, C6orf174/SOGA3, PEX10 and BAG3. We searched these 5 genes in the Transcriptomine 
database, which allows to evaluate genes for their regulation by nuclear receptors, including receptors for 
androgens and estrogens. We found different evidences, summarized in Supplementary File 2, suggesting 
that the target genes can be regulated by estrogens and/or androgens in in vitro cell cultures, in part 
depending on the type of molecule, its concentration and duration of the exposure. 
Age-associated changes in DNA methylation values can reflect modifications in the relative proportions of 
blood cell counts. To take into account this potentially confounding effect, we estimated blood cell counts 
from methylation data and we repeated the polygon analysis on the residuals of methylation values regressed 
for blood cells counts. Two CpG sites, mapping in FIGN and PRR4 genes, were identified in all the 4 
datasets (Supplementary Figure 2A). Both probes were the same identified in the analysis performed on beta 
values. Again, GSE40279 returned the smallest number of selected CpG probes, and removing it from the 
analysis led to the identification of 26 probes common to GSE55763, GSE87571 and EPIC datasets 
(Supplementary Figure 2B; Supplementary File 3). Seventeen of these probes were common to those 
identified above in the analysis performed on beta values. 
Then, we aimed at investigating the possible functional meaning of differential regulation of DNA 
methylation in males and females during aging. As the list of 7 saDMPs common to all the 4 datasets was 
too short to perform this analysis, we focused only on GSE87571 dataset, as it had the most homogeneous 
distribution of ages. Using the above-described criteria, we identified 354 saDMPs in GSE87571 dataset 
(Supplementary File 1).  
First of all, we explored whether these 354 saDMPs were enriched in specific genomic regions 
(Supplementary Figure 3A). We found that, when the analysis was performed on beta values, the selected 
probes were significantly enriched for CpG islands, north shores and north shelves (p-value 1.31e-8, 2.7e-3 
and 2.7e-3 respectively). A similar trend was observed when the analysis was performed on the residuals, 
with the selected probes (n=306; Supplementary File 3) significantly enriched in CpG islands (p-value 
4.90e-14; Supplementary Figure 3 B). 
Next, we tested the enrichment of the 354 saDMPs in imprinted genes and in sex hormone-related genes 
(Supplementary File 4). The 354 probes mapped in 170 genes, 5 of which are reported as imprinted in the 
Geneimprint database; this enrichment was significant according to Fisher exact test (p-value 0.047; odds 
ratio: 2.64). We also checked for an enrichment in sex hormone-related genes, as suggested by [21], but no 
enrichment was found (Supplementary File 4). No enrichment for imprinted genes or for sex hormone- 
related genes was found when we considered the list of 306 saDMPs deriving from the analysis on residuals.  
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Finally, we performed pathway analysis using Reactome database. The list of saDMPs was enriched in 
genes involved in dermatan sulfate biosynthesis, in the response to metal ions and in biosynthesis of lipid 
mediators (Supplementary File 4). Some of these pathways (dermatan sulfate biosynthesis,  biosynthesis of 
lipid mediators) were found also when pathway analysis was performed on the list of saDMPs calculated 
correcting for blood cell counts (Supplementary File 5). 
 
Validation of saDMPs 
The above-identified saDMPs were experimentally validated using the EpiTYPER assay, a high throughput 
approach for target DNA methylation analysis.  Target regions were chosen within FIGN and PRR4 in order 
to include the cg01620164 and cg23256579 probes respectively. We analyzed whole blood from 198 males 
from 15 to 98 years old and 221 females from 23 to 98 years old.  
The FIGN target region included 13 CpG sites; of these, 7 were measurable by the assay, grouped in 5 CpG 
units. CpG unit 3.4.5 included the microarray probe cg01620164. We found that this group of CpG sites 
showed a sex-specific DNA hypomethylation trajectory comparable to the one resulting from the microarray 
(Supplementary Figure 4); also the adjacent CpG sites showed a similar profile (Supplementary Figure 4), in 
particular CpG unit 9 (Figure 2A). This result suggests that in blood the CpG sites in this locus of at least 
250bp are commonly regulated during aging according to the sex of the individual. 
The PRR4 target region included 5 CpG sites, all assessable by EpiTYPER and all corresponding to an 
Infinium450k probe; CpG units 3 and 4, corresponding to the Infinium450k probes cg23256579 and 
cg27615582, had the same mass and returned the same methylation value in the EpiTYPER assay. While 
CpG units 1 and 2 did not show age-dependent changes nor sex specificity (Supplementary Figure 5), CpG 
units 3 and 4 showed sex-dependent trajectories with aging (Figure 2B). However, while in the GSE87571 
methylation values of cg23256579 and cg27615582 tended to diverge between the two sexes during aging, 
in EpiTYPER results, an opposite trend was found. This discrepancy could be due to the fact that the 
EpiTYPER assay is not able to distinguish the two CpG sites. Although less evident, also CpG 5 showed 
sex-related differences in age-associated methylation changes (Supplementary Figure 5). 
As a further step, we used the EpiTYPER assay to evaluate the two validated loci in samples from additional 
cohorts available in our laboratory: persons affected by Down syndrome, that we previously demonstrated to 
have an acceleration in epigenetic age [40]; and centenarians and their offspring, as a model of successful 
aging experiencing a deceleration in epigenetic age [14]. Interestingly, we found sex-specific patterns of 
FIGN and PRR4 methylation also in these models. Compared to aged controls (>80 years old), centenarian 
males displayed a highly variable DNA methylation profiles for FIGN amplicon, with about half of the 
subjects showing a female-like DNA methylation level (Figure 2A and Supplementary Figure 6); the 
differences in variance between control and centenarians' males (but not females) reached statistical 
significance for CpG unit 9 (F-test p-value: 0.02). No specific trends were found for PRR4 amplicon in 
centenarians' cohort (Supplementary Figure 7). Centenarians’ offspring showed DNA methylation patterns 
comparable to age-matched controls for both the amplicons (Supplementary Figures 6 and 7). Persons 
affected by Down Syndrome showed DNA methylation profiles similar to age-matched controls in FIGN 
locus (Supplementary Figure 6). On the contrary, females affected by Down syndrome showed lower values 
of CpG unit 3 in PRR4 amplicon compared to sex- and age-matched healthy controls (p-value: 6.2*10-5; 
anova corrected for age), while no significant differences were found between males affected by Down 
syndrome compared to sex- and age-matched controls (Figure 2B and Supplementary Figure 7). The results 
of the statistical analyses performed on the centenarians', centenarians' offspring and Down syndrome 
cohorts are summarized in Supplementary File 6. 
 
Identification of sex-specific age-associated variably methylated positions (saVMPs) 
An increase in inter-individual DNA methylation variability has been described during aging, but a possible 
sex-specific effect has not been investigated. To have a general view of the sex-dependent trends in age-
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related increase in DNA methylation variability, we plotted the density distributions of standard deviation 
values, calculated in the GSE87571 dataset in 3 age-ranges (14-39 years; 40-59 years; 60-94 years) 
considering the whole cohort (Supplementary Figure 8A) or separating males and females (Supplementary 
Figure 8B). A clear increase in standard deviation across the 3 age ranges was evident when considering the 
entire cohort. No clear differences between males and females were evident in the first 2 age ranges, while 
we found a trend towards higher variability in males in the oldest group. 
To identify probes having sex-specific differences in age-dependent variability (sex-specific age-associated 
variably methylated positions, saVMPs), we applied the approach described in Materials and Methods and 
reported in Figure 3A. We identified 65 saVMPs showing different beta values variability in males and 
females at different ages, in a reproducible way among the 4 datasets. All 65 saVMPs showed increasing 
variance with age for both sexes in all datasets. Some examples are represented in Figure 3B and the full list 
is reported in Supplementary File 7. Only 2 of the saVMPs have sex differences according to previous 
reports [20–22]. As above, we repeated the same analysis on residuals of methylation values regressed for 
blood cells counts. We identified 99 saVMPs, all showing increasing variance with age for both sexes in all 
datasets (Supplementary File 8). Notably, 33 probes were identified in both beta values and residuals 
analysis, suggesting that sex-specific age-related variability of these probes is reproducible and not affected 
by changes in blood cell counts.  
As for saDMPs, we focused on GSE87571 dataset and we used Fisher exact test to explore whether the 
saVMPs were enriched in specific genomic regions (Supplementary Figure 9). We found that, when the 
analysis was performed on beta values, the selected probes (n=1682; Supplementary File 6) were 
significantly enriched for CpG islands, south and north shelves (p-values 1.42e-72, 5.67e-8 and 4.92e-6 
respectively). A similar trend was observed when the analysis was performed on the residuals, with the 
selected probes (n=1562; Supplementary File 7) significantly enriched in CpG islands, north and south 
shelves (p-values 7.96e-108, 8.50e-11 and 5.54e-9 respectively). The list of 1682 saDMPs was highly 
enriched in imprinted genes (p-value 1.7e-10; odds ratio: 3.68), and a similar enrichment was found when 
we considered the list of 1562 saVMPs calculated on residuals (p-value 9.2e-8; odds ratio: 3.22; 
Supplementary File 8). No enrichment in sex-related genes was found using both the lists (Supplementary 
File 8). 
Finally, when we performed pathway analysis using Reactome database, we found only one pathway 
(Regulation of gene expression in early pancreatic precursor cells) enriched in saVMPs calculated on beta 
values (Supplementary File 9). 
 
Epimutations and entropy analysis 
Number of epimutations in the 4 datasets is shown in Figure 4A. Results demonstrated a non-sex-specific 
increase in the number of epimutations with age. The use of the second criterion of the “polygon” approach, 
described in Materials and Methods section, to epimutations data confirmed that there was no sex-specificity 
in the increase in epimutation numbers during aging. 
The dependence of Shannon entropy on age for the 4 datasets is shown in Figure 4B. For all the datasets, 
entropy showed non-sex-specific a increase with age. Again, we applied the second criterion of “polygon” 
approach to entropy data, confirmeing that there was no statistically significant difference between sexes in 
Shannon entropy age-dependent increase. 
 
 
Discussion 
In the present study we exploited 4 large EWAS studies on human whole blood to investigate sex-specific 
changes in DNA methylation during aging, considering 4 different layers of epigenetic remodelling that 
potentially can, either individually or in combination, contribute to sex-specific traits of human aging: 
normative changes (age-associated hyper- or hypomethylation events), changes in variability, increase in 
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epimutations and increase in entropy. We focused on these 4 different aspects of age-associated remodelling 
of DNA methylation profiles as they have been largely described in their association with human aging, but 
they have been rarely (in the case of normative changes) or never (for the other 3 aspects) investigated for 
their sex-specificity. 
Our results suggest that males and females do not differ for the age-associated increase in epimutations and 
in entropy, while we found a short list of CpG sites showing sex-specific changes in DNA methylation 
values (sex-specific age-associated differentially methylated positions, saDMPs) and variability (sex-
specific age-associated variably methylated positions, saVMPs) during aging. Importantly, these short lists 
result from the intersection of analyses performed independently in 4 distinct datasets and include therefore 
robust, highly reproducible candidates of sex-specificity in age-associated epigenetic changes. Furthermore, 
the simultaneous analysis of different cohorts, recruited in different geographic area (United States, Sweden, 
Italy, United Kingdom) and including different ethnicities (Caucasian and Hispanic), contributes to 
disentangle the effects of sex from those of potentially confounding factors like genetic background and 
socio-cultural aspects contributing to gender definition. At the same time, it must be considered that the 
analyzed datasets differ in terms of size, age-range and data pre-processing procedures. It is therefore likely 
that our rigorous selection excluded additional CpG sites displaying a sex-specificity in their age-associated 
methylation trends, but not evident in all the datasets due to the above-mentioned differences between them. 
For this reason, for more descriptive analyses like region and pathways enrichment we focused on the 
GSE87571 dataset, which includes a large number of subjects well distributed in a wide age-range. 
The 7 saDMPs map in 6 genes with different functions. FIGN gene encodes for Fidgetin protein, an ATP-
dependent microtubule severing enzyme which catalyzes internal breaks in microtubules and is involved in 
different cellular processes, including cell division and neurogenesis [41]. The gene is poorly expressed in 
whole blood, while it is expressed at higher levels in arteries and in female reproductive organs. PRR4 gene 
encodes for Proline-rich protein 4, a poorly characterized protein expressed in tear fluid. The gene has very 
low expression in most human tissues, including whole blood. Interestingly, whole blood methylation of 
cg23256579 probe has been previously reported to be associated with lupus nephritis in women with 
systemic lupus erythematosus [42]. PEX10 encodes for a protein localized to the peroxisomal membrane and 
involved in import of peroxisomal matrix proteins. The gene is highly expressed in testis, and a meta-
analysis suggests that PEX10 polymorphisms are associated with male infertility, especially with non-
obstructive azoospermia susceptibility. SOGA3 is a member of SOGA (suppressor of glucose from 
autophagy) proteins, a poorly characterized family that inhibit glucose production, while BAG3 is part of a 
family of anti-apoptotic proteins acting as co-chaperones of Hsp70 [43]. Recent studies indicate that BAG3 
plays a central role in selective macroautophagy pathway, which mediates degradation of aggregation-prone 
proteins that can accumulate upon cellular stress or aging [43,44]. As member of the protein quality control 
machinery, whose activity undergoes substantial changes during aging [45,46], BAG3 has been implicated in 
several age-associated diseases, including cancer and neurodegenerative diseases [47]. FIGN and PRR4 
were found also when our analytical approach for the identification of saDMPs was corrected for blood cells 
counts, considering the intersection of all 4 the datasets; in addition, PEX10 and SOGA3 were found when 
correcting for blood cell counts but excluding the GSE40279 dataset. These results suggest that the 
differences that we identified in saDMPs (and in the associated genes) tend to be robust to the changes in 
blood cell counts that can be related to differences in the immune system between the two sexes during 
aging [48,49]. In addition, we found a large overlap between the probes in the short saDMPs list (and those 
in the GSE87571 saDMPs list) and the probes reported as differentially methylated between males and 
females, regardless the effect of aging, in previous studies [20–22]. It is worth to note that the 5 genes 
showed different trends in their sex-specific methylation changes during aging. For FIGN, PRR4 and BAG3 
differences between males and females are divergent during aging: they arise early, at 20-30 years or before 
menopause, and tend to be more marked at older ages. On the contrary, SOGA3 shows convergent patterns, 
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in which the differences between males and females tend to reduce during aging. Finally, differences in 
PEX10 methylation between males and females tend do remain constant during aging. 
It is difficult to speculate the mechanisms leading to differential methylation patterns of these genes in males 
and females aging. When considering autosomal differences of DNA methylation between men and women 
(correcting for age), Singmann et al. found an enrichment in CpG island shores and in imprinted genes, but 
they did not find an enrichment in sex hormone-related genes. Similarly, when considering only GSE87571 
dataset, we found an enrichment in CpG island shores and, in addition, in CpG islands. We also found a 
mild enrichment in imprinted genes, and noteworthy one out the 5 genes in our short list is imprinted 
(PEX10). Similarly to Singmann et al., we did not found any enrichment in sex-hormone related genes, as 
only 1 out 170 genes in our list (POMC, which encodes for proopiomelanocortin) belonged to this category. 
On the other side, the Transcriptomine search suggests that sex hormones regulate the expression of the 
genes in which saDMPs map in in vitro cell cultures. Future studies should assess if sex hormones can 
directly regulate the methylation of the genes that we identified, as previously demonstrated for other 
genomic loci [50]. 
Another question is if and how the saDMPs that we identified contribute to the sex gap in health span and 
longevity. The data on Down syndrome (a model of premature/accelerated aging [51]) and on centenarians 
(a model of successful aging [14]) are intriguing, as both  showed a sex-specific alteration in the observed 
sex-specific trends of FIGN and PRR4 epigenetic patterns. In particular, a subset of centenarian males 
showed a “feminization” of FIGN methylation values, while females with Down syndrome showed a 
“masculinization” of PRR4 methylation values. Further studies should deepen these results and identify 
other changes in saDMPs that are associated to age-related diseases or longevity. 
Finally, we focused on the differences in age-associated variance in methylation patterns between the two 
sexes. First of all, we confirmed that an increase in DNA methylation variance occurs with aging [5] and we 
further reported a trend towards higher epigenetic variance in males compared to females at older ages. This 
result mimics what observed for gene expression in the hippocampus of male and female mice at different 
ages [52], thus suggesting that the loss of epigenetic and transcriptional control that occurs during aging is 
more marked in males than in females. Accordingly, higher genomic instability has been suggested in adult 
males compared to females [53]. A more specific analysis of saVMPs returned a list of 65 loci, 33 of which 
were replicated also after correction for blood cell counts. Interestingly, the list of saVMPs calculated on the 
GSE87571 dataset was not enriched in particular pathways, but was highly enriched in imprinted genes. 
In conclusion, we provided a comprehensive description of sex-differences in DNA methylation changes 
with aging in whole blood. Future studies should investigate the tissue-specificity of these patterns and their 
relationship with gene expression differences between males and females, in order to identify possible 
molecular triggers of sex gap in aging and longevity. 
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Tables 
 
 Table 1. saDMPs common to all the 4 Infinium450k datasets analyzed 

ID_REF CHR MAPINFO 
REFGENE 
NAME 

REFGENE 
GROUP 

RELATION TO CPG 
ISLAND 

cg01620164 2 164590272 FIGN Body N_Shelf 

cg23256579 12 11002403 PPR4 TSS1500;Body  
cg27615582 12 11002411 PPR4 TSS1500; Body  
cg14079463 6 127796989 C6orf174 Body Island 

cg04580344 6 127797022 C6orf174 Body Island 

cg23928726 1 2344998 PEX10 TSS1500 N_Shore 

cg17076667 10 121418050 BAG3 Body  
 
 
Supplementary Table 1. Characteristics of the Infinium450k datasets investigated in the present study 
 GSE40279 GSE87571 EPIC GSE55763 

Number of subjects 656 729 1803 2670 

Number of females 338 388 1114 860 

Number of males 318 341 689 1810 

Age range 19 – 101 14 – 94 34 – 74 35 – 75 

 
 
Supplementary Table 2. Characteristics of the samples analysed by the EpiTYPER assay 

 Healthy controls 
n=419 

Centenarians 
n=49 

Centenarians’ offspring 
n=48 

Down syndrome 
n=49 

Males n=198 
25-98 years 

n=15 
100-105 years 

n=15 
58-84 years 

n=25 
22-63 years 

Females n=221 
23-98 years 

n=34 
100-112 years 

n=33 
55-89 years 

n=19 
19-66 years 

 

Figure legends 

Figure 1. Identification of sex-specific age-associated differentially methylated positions (saDMPs). (A) The 
polygon approach used to identify saDMPs. The scatter plot reports methylation, expressed as beta values, 
respect to age in females (red) and males (blue). Allowed regions for females and males are highlighted in 
red and blue respectively, while the intersection between the allowed regions is highlighted in yellow. (B) 
Venn diagram of the number of saDMPs identified according to the polygon approach in the 4 datasets. (C) 
Scatter plots of saDMPs identified in all the 4 Infinium450k analyzed datasets. x axis represents the age of 
subjects, y axis the methylation levels expressed as beta values. 

 

Figure 2 Validation of FIGN and PRR4 locus by EpiTYPER. (A) Methylation of CpG unit 9 in FIGN 
amplicon vs age. (B) Methylation of CpG unit 3 in PRR4 amplicon vs age. For each CpG unit , DNA 
methylation in controls (general population), centenarians, centenarian's offspring and persons with Down 
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syndrome is reported vs the age of the subjects. Males are in blue, females are in red. Linear regression 
between DNA methylation and age was calculated separately for males and females in control subjects and 
was reported in each plot. 
 

Figure 3. Identification of sex-specific age-associated variably methylated positions (saVMPs) (A) The 
approach used to indentify saVMPs. The scatter plot reports methylation, expressed as beta values, respect 
to age in females (red) and males (blue). The best 5% and 95% percentiles fittings for females and males are 
shown as red and blue lines, respectively. (B) Some examples of saVMPs common to the 4 datasets 
GSE40279, GSE87571, EPIC, GSE55763. Lines represent best type of 5% and 95% percentiles fitting. X 
axis corresponds to age of subjects, Y axis to methylation levels. 
 

Figure 4. (A) Number of epimutations (log scale) in dependence on age in females (red) and males (blue). 
(B) Shannon entropy for 4 considered datasets: GSE40279, GSE87571, EPIC, GSE55763. 
 

Supplementary Figure 1. Histograms of the number of females (red) and males (blue) according to age in 
GSE40279, GSE87571, EPIC and GSE55763 datasets. 
 
Supplementary Figure 2. Identification of sex-specific age-associated differentially methylated positions 
(saDMPs) when correcting for blood cell counts. (A) Venn diagram of the number of saDMPs identified in 
the 4 datasets when the polygon approach was applied to residuals obtained after regressing out blood cell 
counts. (B) Scatter plots of saDMPs common to all the 4 Infinium450k datasets analyzed, when the polygon 
approach was applied to residuals. x axis represents the age of subjects, y axis the methylation levels 
expressed as beta values. 
 
Supplementary Figure 3. Enrichment (odds ratio) of genomic localizations for saDMPs calculated from beta 
values (A) or residuals (B). 
 
Supplementary Figure 4. Validation of PRR4 locus by EpiTYPER. For each of the CpG units returned by the 
EpiTYPER assay, DNA methylation in controls (general population), centenarians, centenarian's offspring 
and persons with Down syndrome is reported vs the age of the subjects. Males are in blue, females are in 
red. Linear regression between DNA methylation and age was calculated separately for males and females 
in control subjects and was reported in each plot. 
 
Supplementary Figure 5. Validation of PRR4 locus by EpiTYPER. For each of the 5 CpG units returned by 
the EpiTYPER assay, DNA methylation in controls (general population), centenarians, centenarian's 
offspring and persons with Down syndrome is reported vs the age of the subjects. Males are in blue, females 
are in red. Linear regression between DNA methylation and age was calculated separately for males and 
females in control subjects and was reported in each plot. 
 
Supplementary Figure 6. Boxplots of DNA methylation for each CpG unit in FIGN amplicon in 
centenarians, centenarians' offspring and Down syndrome cohorts. Left panels: for each CpG unit in FIGN 
locus, boxplots of DNA methylation in centenarian males and females, compared to control (>80, < 100 
years) males and females. Middle panels: for each CpG unit in FIGN locus, boxplots of DNA methylation in 
centenarians' offspring males and females, compared to age-matched control (>54, < 90 years) males and 
females. Right panels: for each CpG unit in FIGN locus, boxplots of DNA methylation in Down syndrome 
males and females, compared to age-matched control (>18, < 67 years) males and females. 
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Supplementary Figure 7. Boxplots of DNA methylation for each CpG unit in PRR4 amplicon in 
centenarians, centenarians' offspring and Down syndrome cohorts. Left panels: for each CpG unit in PRR4 
locus, boxplots of DNA methylation in centenarian males and females, compared to control (>80, < 100 
years) males and females. Middle panels: for each CpG unit in PRR4 locus, boxplots of DNA methylation in 
centenarians' offspring males and females, compared to age-matched control (>54, < 90 years) males and 
females. Right panels: for each CpG unit in PRR4 locus, boxplots of DNA methylation in Down syndrome 
males and females, compared to age-matched control (>18, < 67 years) males and females. 
 
Supplementary Figure 8. Density distribution of standard deviation values calculated in the GSE87571 
dataset for 3 age classes, considering males and females together (A) or separated (B). 
 
Supplementary Figure 9. Enrichment (odds ratio) of genomic localizations for saVMPs calculated from beta 
values (A) or residuals (B). 
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