1 2	Macrofaunal Diversity and Community Structure of the DeSoto Canyon and Adjacent Slope
3	
4	Authors:
5	
6	Arvind K. Shantharam ¹
7	Chih-Lin Wei, Institute of Oceanography ²
8	Mauricio Silva, Florida State University ¹
9	Amy R. Baco*, Florida State University ¹
10	
11	
12	
13	
15	
14	
15	
16	
17	* - corresponding author, abacotaylor@fsu.edu
18	1. Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, 1011
19	Academic Way, Tallahassee, FL 32306
17	Teadeline (rug), Tununussee, TE 52500
20	2. Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
21	

Macrofauna of DeSoto Canyon and adjacent slope

22

23 Abstract

24 Macrofauna within the DeSoto Canyon, northern Gulf of Mexico (GOM), along the 25 canyon wall and axis, and on the adjacent slope, were sampled along with sediment, terrain, and 26 water mass parameters. Within the canyon, abundance and species richness decreased with 27 depth, while evenness increased. Cluster analysis identified three depth-related groups within the 28 canyon that conformed to previously established bathymetric boundaries: stations at 464 - 48529 m, 669 - 1834 m, and > 2000 m. Abundance differed between depth groups. Species richness 30 was lowest for the deepest group and evenness was lowest for the shallowest. Community structure within the canyon most related to fluorometry and oxygen saturation, combined with 31 32 any of salinity, particulate organic carbon, sediment organic carbon, or slope.

Canyon wall abundances were higher than the canyon axis or adjacent slope. Community 33 34 structure differed between all three habitat types. Ordination of community structure suggests a longitudinal pattern that potentially tracks with increasing sea-surface chlorophyll that occurs in 35 36 the eastward direction across the northern GOM. Canyon and slope differences may result from 37 seasonal water masses entrained by canyon topography characterized by high salinity, oxygen saturation, fluorometry, and turbidity. Higher fluorescence and turbidity in the canyon did not 38 39 translate into higher sediment organic matter. Flushing along canyon wall channels and the 40 canyon axis may explain the low organic matter. Differences in abundance and structure between the canyon wall and axis may result from microhabitat heterogeneity due to potential 41 42 hydrocarbon seepage, organically enriched sediment deposits along channels, or remnant influence from the Deepwater Horizon blowout. 43

Macrofauna of DeSoto Canyon and adjacent slope

44 **1. Introduction**

45 Submarine canyons are one of the most common large-scale bathymetric features in oceanic basins around the world (Harris & Whiteway 2011). Over 9540 have been detected 46 along continental margins (Harris et al. 2014). They are known as hotspots of benthic 47 48 biodiversity and biomass, receiving increasing attention from deep-sea researchers (Rowe et al. 1982, Houston & Haedrich 1984, Gerino et al. 1995, Maurer et al. 1995, Vetter & Dayton 1998, 49 Sorbe 1999, Curdia et al. 2004, Tyler et al. 2009, De Leo et al. 2010, McClain & Barry 2010, 50 Cunha et al. 2011a, Paterson et al. 2011, Hunter et al. 2013, Gunton et al. 2015, Harriague et al. 51 52 2019). Through an interplay of local hydrography and canyon topography, canyons may channel currents and format upwelling (Klinck 1996, Hickey 1997, Canals et al. 2006), entrain 53 particulate organic matter (Vetter 1994, Vetter & Dayton 1998, Harrold et al. 2003, Company et 54 al. 2008, Rowe et al. 2008, De Leo et al. 2010, De Leo et al. 2012, Hunter et al. 2013), and 55 56 transport shelf sediments to slopes in episodic turbidity currents or mass-wasting events (de 57 Stigter et al. 2007, Oliveira et al. 2007, Arzola et al. 2008). This, in turn, concentrates diel vertical migrators (Greene et al. 1988, Lavoie et al. 2000, Genin 2004), and provides enhanced 58 59 seafloor habitat heterogeneity (Yoklavich et al. 2000, Brodeur 2001, Uiblein et al. 2003, Vetter et al. 2010, De Leo et al. 2012). 60

61 High seafloor habitat heterogeneity in turn enhances canyon benthic biodiversity. It can 62 create a patchwork availability of resources that result in gradients in density and faunal turnover 63 on 1 m - 1 km spatial scales (McClain & Barry 2010, De Leo et al. 2014, Campanyà-Llovet et 64 al. 2018). Entrained particulate organic matter accumulates and shifts in distribution within a 65 canyon to structure faunal density, biodiversity, biomass, and community structure (Vetter & 66 Dayton 1999, Curdia et al. 2004, Escobar-Briones et al. 2008). Topographically-induced

Macrofauna of DeSoto Canyon and adjacent slope

67	hydrographic and biochemical regimes are important sources of continual disturbance and have
68	been noted to elevate abundance, biomass, and species richness compared to adjacent non-
69	canyon regions (Duineveld et al. 2001, De Leo et al. 2010, De Leo et al. 2014, Harriague et al.
70	2019). All of this contributes to canyon denizens constituting a large proportion of marine
71	metazoan benthic biodiversity and production (Gage 1996, Snelgrove 1999, Ebbe et al. 2010).
72	Submarine canyons located in the Gulf of Mexico (GOM) have received minimal
73	attention in terms of the environmental and habitat heterogeneity and the effect these have on
74	resident benthic macrofauna. What has been done has shown that major GOM depressions and
75	canyons have high abundance and biomass, which has primarily been linked to large-scale
76	processes such as the Mississippi River outflow, particulate organic matter flux, or grain
77	(Baguley et al. 2006a, Baguley et al. 2006b, Escobar-Briones et al. 2008, Wei et al. 2012, Wei &
78	Rowe 2019). This, however, does not account for more local scale processes and microhabitats
79	that could strongly influence ecological processes affecting the macrobenthos.
80	The DeSoto Canyon, in the northeastern GOM, has been noted to contain high benthic
81	decapod diversity (Wicksten & Packard 2005) and high abundances of infaunal organisms
82	including both meiofauna (Baguley et al. 2006a) and macrofauna (Wei et al. 2010) compared to
83	adjacent GOM sites. Macrofaunal biomass is also significantly higher in the canyon (Wei et al.
84	2012) and has been attributed to the high amount of particulate organic carbon (POC) entrained
85	there (Morse & Beazley 2008, Wei & Rowe 2019) and perhaps from the large amount of
86	continental shelf export it receives (Hamilton et al. 2015). Highly productive habitats such as
87	hydrocarbon seeps also occur in the canyon (Washburn et al. 2018). While the question of how
88	benthic species richness differs in the canyon compared to the slope has been addressed (Wei et
89	al. 2019), a comparison of community structure largely has not.

Macrofauna of DeSoto Canyon and adjacent slope

90	The only previous study considering macrofaunal community structure of the DeSoto
91	canyon was part of larger comprehensive investigations of the northern Gulf of Mexico (NGOM)
92	macrobenthos, with a only a few samples collected in the canyon (Wei et al. 2010). Differences
93	in canyon and slope community structure was not explicitly tested but comparisons can be
94	inferred from the available data. The shallower of the canyon sites in that study, labeled S35, and
95	a deeper canyon site, S36 clustered with non-canyon sites to the east and west, and were grouped
96	into an "eastern mid-slope" zone. Similarly the deepest site in the canyon also clustered with
97	non-canyon sites in its depth range (Wei et al 2010). These results suggest no difference within
98	the canyon across a depth range of 1,721 m, nor between communities within the canyon
99	compared to non-canyons sites. However, marine canyons are known to exhibit high amounts of
100	beta diversity over small and large spatial scales for organisms in macrofaunal and megafaunal
101	size classes (Schlacher et al. 2007, McClain & Barry 2010, Campanyà-Llovet et al. 2018). For
102	example, Schlacher et al. (2007) reported highly restricted megafaunal sponge distributions in
103	southeastern Australian canyons with 76% of species occupying a single site and 79% inhabiting
104	single canyons. McClain & Barry (2010) observed high macrobenthic turnover (~40%) between
105	open canyon sites and sites closer (< 100 m) to the cliff faces of Monterey Canyon. On even
106	smaller spatial scales, 10s of m apart, Campanyà-Llovet et al. (2018) found distinct macrofauna
107	communities in the Barkley Canyon.

These studies suggest a potential for significant spatial variability in macrofaunal communities within the DeSoto Canyon that may have been missed at the coarse sampling scales previously undertaken. Therefore, the goal of this study was to characterize finer-scale spatial variability in the DeSoto Canyon macrofauna, particularly among the canyon wall, axis, and adjacent slope, across a range of depths, by testing for differences between macrofaunal

Macrofauna of DeSoto Canyon and adjacent slope

- abundance, diversity, and community structure (1) within the canyon, (2) compared to the
- neighboring eastern slope; and (3) to identify environmental parameters driving the observed
- 115 differences.
- 116

117 **2. Methods**

118 2.1 DeSoto Canyon characteristics

The DeSoto Canyon cuts into the northwest Florida shelf and slope, ranging in depth 119 120 from 400 – 3200 m (Fig 1). It is thought to be an inactive Canyon (Uchupi & Emery 1968, 121 Bouma 1972) and is noted as a transition zone in seafloor sediment type (Antoine & Bryant 1968). Bottom substrate around the canyon to the west and east differs in size class and 122 123 composition. To the west, sedimentation is dominated by siliclastic input from the Mississippi River. Bottom sediment primarily consists of quartz on the shelf, forming part of the Mississippi-124 Alabama-Florida Sand Sheet (Gould & Stewart 1955, Doyle & Sparks 1980). Continental slope 125 sediments are rich in siliclastic clays and silts, in contrast to pelagic carbonate oozes that make 126 127 up a majority of the deeper regions (Gould & Stewart 1955, Doyle & Sparks 1980, Balsam & 128 Beeson 2003). East of the canyon, biogenic carbonate production highly influences 129 sedimentation and forms the West Florida Sand Sheet on the mid-outer shelf, scaling down-slope to finer-grained West Florida Lime Mud (Doyle & Sparks 1980). Sediment accumulation rates 130 131 range from ~ 17 cm/ky (Emiliani et al. 1975) in the northwest area of the canyon to ~ 10 cm/ky in the southeast (Emiliani et al. 1975, Nürnberg et al. 2008). When compensating for down-core 132 compaction, accumulation rates reach 0.05 g/cm²/yr at ~1850 m (Yeager et al. 2004). Particulate 133

Macrofauna of DeSoto Canyon and adjacent slope

organic carbon (POC) can reach ~0.67 - 1.67% of the top 18.5 cm of a core at depths of ~1850 m

135 (Yeager et al. 2004, Morse & Beazley 2008).

136

137 2.2 Biological sample collection and processing

Sampling of ten sites within DeSoto Canyon was conducted as a part of the Gulf of 138 139 Mexico Research Initiative (GOMRI) Deep-C Consortium during the May/June 2014 cruise aboard the *R/V Weatherbird II* cruise #WB1411 (Table 1, Figure 1). A comparable depth range 140 141 of sampling sites was also targeted for the adjacent slope, but actual sampling was constrained by 142 the compromises of a multi-PI cruise; thus, it was only possible to sample 3 non-canyon sites to 143 the east of DeSoto Canyon. Sites within the DeSoto Canyon listed in Table 1 were selected to 144 characterize spatial variability in canyon geomorphology, biogeochemistry, water column 145 chemistry, and benthic communities along the canyon axis and canyon wall, following the 2010 146 Deepwater Horizon oil spill (Coleman et al. 2014), and to include DeSoto Canyon sites S35 and 147 S36 of Wei et al (2010). Non-canyon sites were selected to compare the ecological and 148 biogeochemical properties of the canyon with the open slope at the same depths and also to act 149 as a control site outside the potential benthic footprint of the 2010 Deepwater Horizon (DwH) oil 150 spill (Garcia-Pineda et al. 2013, Chanton et al. 2014), and to include one of the slope sites east of DeSoto canyon in Wei et al (2010), S42, that was most similar to S35 and S36 in that study. 151 152 Three replicate deployments of an MC-800 Multicorer were conducted at each site. Each 153 core had a diameter of 10 cm. Four cores from each deployment were sectioned on deck into 0-1,

154 1-5, 5-10 cm fractions and preserved whole in 10% formalin. In the laboratory, preserved

samples were sieved through 300 µm mesh and then transferred to 70% ethanol. Macrofaunal

Macrofauna of DeSoto Canyon and adjacent slope

156	organisms (sensu stricto) were sorted using a dissecting microscope and identified to the lowest
157	taxon possible, usually to class or order, and the dominant groups of bivalves, amphipods,
158	cumaceans, and polychaetes were identified to the family level. Family level identification is
159	considered sufficient to discern multivariate patterns in deep-sea ecosystems (Warwick 1988,
160	Somerfield & Clarke 1995, Gesteira et al. 2003). Meiofauna that were $>300 \mu m$ (e.g., nematodes
161	and harpacticoid copepods) were also identified and enumerated but left at the phylum to class
162	level and excluded from analysis.
163	
164	2.3 Sediment, water mass, and canyon terrain parameter measurement
165	Water column properties including temperature, salinity, oxygen, fluorescence
166	(chlorophyll and colored dissolved organic matter (CDOM)), and turbidity were measured using
167	the conductivity-temperature-depth (CTD) rosette aboard the R/V Weatherbird II at standard
168	depths every 0.25 seconds after deployment from the surface until ~ 10 m off the seafloor.
169	Bottom water conditions were obtained by averaging the parameters within ten meters of the
170	bottom. Ocean-color data from (pixel size = $\sim 1 \text{ km}^2$) were extracted from Visible Infrared
171	Imaging Radiometer Suite (VIIRS) 8-day averages spanning mid-May to early June. Average
172	surface chlorophyll concentration (SSC), photosynthetic aperture radar (PAR), and sea surface
173	temperature (SST) were used as inputs to approximate depth-integrated net primary production
174	(NPP) using a Vertical General Production Model (VGPM) (Behrenfeld & Falkowski 1997).
175	Particulate organic carbon (POC) flux was approximated from NPP employing the exponential

176 decay model of Lutz et al. (2007). More detailed methods on the ocean color data for the Gulf of

177 Mexico are provided in Biggs et al. (2008).

Macrofauna of DeSoto Canyon and adjacent slope

178	Sediment parameters of total organic carbon (TOC), total organic nitrogen (TON), and
179	grain size were measured from the 0-5 cm depth section of a spare core from each deployment
180	using a 30-cc syringe. Carbon and nitrogen samples were treated with 10% HCl to remove
181	carbonates. Subsequently, samples were freeze dried, ground, and sealed in tin cups for
182	combustion in a ThermoQuest CE Instrument NC2500 Analyzer. Percent carbon and nitrogen
183	were measured on a Thermo Fischer Scientific Delta Plus XP Isotope Ratio Mass Spectrometer.
184	Grain size subsamples of the same sediment core were taken from 0-5 cm and measured whole
185	for granulometry. The samples were dried to in an oven at 100°C overnight, ground to a powder,
186	and then treated with 15 ml 30% H_2O_2 and 15 ml 10% HCl to remove organic matter and
187	carbonates respectively (Jackson 1969). The powdered sediment was then suspended in water
188	and the grain size distribution was measured via laser diffraction using a Mastersizer 2000MU
189	Hydro. The samples were characterized by their percent clay (<8 μ m), silt (8-63 μ m), and sand
190	(>63 μ m) volume proportions, defined after Konert and Vandenberghe (1997). Characteristics of
191	the canyon sediment surface including slope, aspect, and rugosity (surface roughness) were
192	dervied from the bathymetry layer using the Benthic Terrain Modeler Tool (Rinehart et al. 2004)
193	in ArcMap 10.6.1. Slope was calculated in degrees using the 3 x 3 cell window (Burrough et al.
194	2015). Aspect calculates the downslope direction, measured clockwise in degrees from 0 (north)
195	to 360 (north) of each cell in relationship to its neighbors. It is derived from the z (bathymetry)
196	values in a 3 x 3 cell window (Burrough et al. 2015). As a circular variable, it was converted into
197	two parameters, northness (computed as cos(aspect)) and eastness (computed as sin(aspect)).
198	These parameters characterize sites that took a north-south aspect and sites of an east-west
199	aspect. A full list of environmental variables with data ranges can be found in Table 2.

200

Macrofauna of DeSoto Canyon and adjacent slope

201 2.4 Statistical comparisons

202 For all statistical analyses, the four cores from each deployment were combined as one 203 sample, with the deployments as the replicates for that site. The sampling constraints described 204 above resulted in the range of depths of the non-canyon sites being only a subset of the depths 205 sampled within the canyons. This prevented a balanced design for a comparison of within 206 canyon vs. non-canyon sites and so data were analyzed in two phases. Since depth (and its 207 correlates) is known to be a strong structuring factor in the deep sea (reviewed in Rex and Etter 208 2010), in phase I all the sampling stations within the canyon (depth range 464 - 2290 m) were 209 analyzed, to determine the depth structuring of the canyon communities. Then, to avoid the 210 confounding of depth, in phase II all samples in the depth group determined in phase I that 211 overlapped with the sampled depth range of the non-canyon sites (771-978 m), were used in the 212 comparisons among canyon wall, canyon axis, and adjacent non-canyon slope habitat types. Differences in macrofaunal community abundances and diversity metrics were tested as a 213 product of the following fixed factors in a one-way design: (1) a posteriori canyon depth groups 214

(464 - 485 m vs 669 - 1834 m vs > 2000 m) and (2) habitat type (canyon wall vs canyon axis vs

slope). Due to the large differences in sample size among depth and habitat groups, non-

217 parametric Kruskal-Wallis tests were conducted to test for differences, with Bonferoni-adjusted
218 Dunn's pairwise post-hoc analysis.

For multivariate analysis, community structure was depicted via cluster analysis and nonmetric multidimensional scaling (NMDS). ANOSIM, based on Bray-Curtis similarity, was used to test the *a priori* habitat types in phase II. Due to the imbalance in sample size between habitat types (canyon axis and slope sites outnumber the canyon wall sites in this depth range), biases may be encountered in the ANOSIM (Anderson & Walsh 2013), thus samples were removed

Macrofauna of DeSoto Canyon and adjacent slope

224	from the largest groups at random to match the smallest group. To ascertain which taxa were
225	driving observed differences between communities in each habitat type, a similarity percentage
226	(SIMPER) analysis was employed. Distance-based linear modeling (DISTLM) (Anderson et al.
227	2008), was used to find the optimal combination of abiotic factors that significantly correlated
228	with community structure. Prior to DISTLM analyses, environmental variables were normalized
229	and plotted pairwise using draftsmen plots. Log-transformations were applied to highly skewed
230	individual variables and highly collinear factors (>90%) removed. Interpolation of the
231	environmental parameters was conducted to replace missing replicates and to run analyses.
232	Environmental variables were first analyzed individually (marginal tests) and then the BEST
233	selection procedure was employed to select the optimal model based on the small sample
234	adjusted Akaike Information Criterion (AICc) for all possible combinations of environmental
235	predictor variables. AICc was employed because it was formulated to deal with situations where
236	the number of observations (N) to the number of variables (v) is < 40 (Burnham & Anderson
237	2004) as in the case of this dataset (N = 39, v \leq 13, N/v = 3.0).
238	The environmental data used for the input into the DISTLM was not the same for both
239	phases of analyses. The DISTLM for the phase I within canyon analyses included all sediment,
240	water mass, and terrain parameters. However, slope and terrain were unavailable for the non-
241	canyon slope sites because high-resolution bathymetry was not available (Table 2), so terrain
242	parameters were not included for the canyon axis vs. wall vs. slope DISTLM in phase II.
243	For all tests, differences at $p < 0.05$ were considered significant. All statistical
244	comparisons were conducted in R (R Core Team, 2019) and multivariate analyses were
245	conducted using in PRIMER v 7.0.13 (Clarke & Gorley 2015).

246

Macrofauna of DeSoto Canyon and adjacent slope

3. Results

248 3.1 Macrofaunal abundance and diversity within the DeSoto canyon

249	Within the DeSoto Canyon, a total of 6637 individuals were identified to the lowest
250	taxonomic level possible, most often family. Polychaetes (49.09 – 77.84%) were the most
251	abundant taxonomic group, followed by tanaids (2.27 – 16.46%), bivalves (2.84 – 13.53%),
252	nemertean worms $(2.32 - 5.80\%)$, and amphipods $(0.32 - 4.88\%)$ (Table 3). Groups with
253	otherwise low individual proportions, when aggregated to the phylum and subphylum level,
254	exhibit large relative abundance. These include other molluscs (scaphopods, gastropods, and
255	cavoliniids), which contained proportions 2.37 – 16.99%, and other crustaceans (isopods and
256	cumaceans), which had a relative abundance of $0.23 - 17.99\%$. Relative contribution from each
257	taxonomic group changed by site (Table 3). Anomalously high abundances compared to the
258	mean were found for bivalves at XC3, other molluscs at XC2, and for tanaids at PM and S35.
259	S36, PM and XC4 had high values for other crustaceans compared to the other sites.
260	By depth, the highest average abundance was observed at 485 m with a continual
261	decrease throughout the canyon (Fig 2A). A significant relationship was found with depth ($p =$
262	0.003). Mean richness formed a significant ($p = 0.0006$) parabolic relationship with depth
263	reaching a maximum around 1100 m (Fig 2B). Average Pielou's evenness increased with depth,
264	ranging between $0.75 - 0.90$ (Fig 2C) and was also found to have a significant increase with
265	depth ($p = 0.044$).

266

267 3.2 Community structure within the DeSoto Canyon

Macrofauna of DeSoto Canyon and adjacent slope

268	Three depth assemblages were identified through the cluster analysis of the within
269	canyon macrofauna (Fig 3A) and depicted via non-metric multidimensional scaling (Fig 3B):
270	Assemblage Group I included the shallowest canyon sites (464 – 485 m), Group II included the
271	bulk of the canyon sites (670 – 1834 m), and Assemblage Group III included the deepest sites (>
272	2000 m). Among these a posteriori depth groups, all main effect tests of abundance and within
273	canyon diversity metrics showed significant differences overall (Fig. 4). Abundance was
274	significantly different among all pairs of depth groups (Fig 4A). Pairwise comparison of depth
275	groups for species richness only found differences for the > 2000 m sites, which had lower
276	richness compared to either of the other two depth groups (Fig 4B). Evenness was lower for the
277	464 – 485 m sites compared to the deeper depth groups (Fig 4C).
278	Only those environmental variables with low collinearity with other variables ($R^2 < 0.90$)
279	were included in the DISTLM. Temperature had a high correlation with POC and oxygen
280	saturation, so it was removed prior to analysis. Of the remaining 14 variables available for the
281	DISTLM for communities within the canyon, 10 were found to be significant as indicated by the
282	marginal tests (Table 4). AICc values computed for top models spanned a narrow range (204.09
283	- 204.97) suggesting rather equivalent models explained the variation in community structure, as
284	typically a difference of 2 units between models indicates separate models (Burnham &
285	Anderson 2004, Anderson et al. 2008). The top model selected by DISTLM was a combination
286	of oxygen saturation and fluorometry ($R^2 = 0.2556$). The top models all included fluorometry,
287	and fluorometry by itself received an AICc value only 0.8 less than the best model. The top five
288	models contained some combination of oxygen, salinity, and/or percent organic carbon, with
289	fluorometry. For sediment and terrain parameters, percent organic carbon and slope were the

Macrofauna of DeSoto Canyon and adjacent slope

only to appear in the top models, with relatively similar fits, $R^2 = 0.3085$ and 0.3014

291 respectively.

292	The top model is plotted in the dbRDA plot (Fig 5). Deeper sites (Group III) and most of
293	the mid-slope sites (Group II) tended to fall higher along dbRDA axis 2. The shallowest sites and
294	S35 were differentiated along both axes. The dbRDA1 axis, explained 66.6% of the fitted
295	variation, but 17% of the community structure variation. Fluorometry had the strongest
296	relationship (0.864) with the first axis. The dbRDA2 axis, accounting for 33.4% of the fitted and
297	8.5% of the overall variation, had the strongest association with oxygen saturation (0.864).

298

3.3 DeSoto Canyon axis and wall vs. non-canyon slope: macrofaunal variation and abiotic
factors

Macrofaunal proportions by total individuals of major groups were reasonably 301 302 comparable across habitats in the canyon and on the adjacent slope (Fig 6). Polychaetes 303 dominated with proportions ranging from 58.41 - 64.54%, with slightly more in the canyon 304 habitats (63 - 65%) than the slope (58%). The next most abundant groups varied depending on 305 habitat and were generally the tanaids (8.84 - 8.72%) and bivalves (5.52 - 10.33%). Tanaids 306 held relatively similar proportions between habitats while bivalves exhibited higher proportions 307 on the canyon wall compared to the canyon axis and adjacent slope. Remaining groups held 308 proportions approximately 6% or less though macrofauna in too low of abundance to form their 309 own group, termed 'other', exhibited a combined proportion of 9.17% on the continental slope.

310 Global tests of abundance and diversity metrics of the three habitat types only detected 311 differences for abundance (p < 0.001). Abundance was highest on the canyon wall, followed by

Macrofauna of DeSoto Canyon and adjacent slope

312	the axis, and then the slope (Fig 7A). Pairwise comparisons of the canyon axis, wall and the
313	adjacent slope were all significantly different ($p < 0.05$). No differences were found among
314	habitats for species richness (Fig 7B) nor evenness (Fig 7C).
315	Of the 12 parameters available for comparison between habitat types, all but chlorophyll-
316	based fluorescence, POC, and percent silt showed significant differences among the habitat
317	types. Temperature was lower in the canyon compared to the adjacent slope (Fig 8A). Salinity
318	was significantly higher in the canyon compared to the slope (Figure 8B). Oxygen saturation was
319	significantly higher on the canyon wall $(6.05 - 6.63 \text{ mg/l})$ and canyon axis $(4.21 - 6.69 \text{ mg/l})$,
320	compared to the slope $(4.79 - 5.56 \text{ mg/l})$ (Fig 8C). CDOM fluorescence was higher on the
321	canyon wall than the slope (Fig 8E). Turbidity was higher in the canyon (Fig 8F). Organic matter
322	was significantly lower in the canyon for sediment percent carbon and percent nitrogen (Fig 8H-
323	I). Sediment percent sand of the canyon axis was significantly higher than the slope (Fig 8J).
324	Percent clay in the canyon wall and slope sites were higher than the canyon axis (Fig 8L).
325	
326	3.4 Community structure and relation to environmental variables of canyon and non-canyon
327	habitats
328	A one-way ANOSIM was significant for community structure across habitats ($p < 0.001$,
329	Table 5). All pairwise comparisons of habitat types were also significant, indicating differences
330	between all three habitats (Table 5). Community structure differences of canyon axis and wall
331	and slope sites, depicted via NMDS in Figure 9, also portray a west-to-east longitudinal gradient
332	moving from left to right across the ordination. Between canyon habitats, SIMPER analysis
333	results revealed an average dissimilarity of 36.5% (Table S1). Taxa contributing the most to

Macrofauna of DeSoto Canyon and adjacent slope

334	differences (>2%) included clams of the family Thyasiridae, numerous deposit feeding groups
335	spanning longosomatids, maldanids, syllids, paraonids, and cirratulid polychaetes, as well as
336	aplacophorans. Carnivorous and omnivorous polychaetes of the Families Hesionidae and
337	Sigalionidae were identified as well. Between slope and wall habitats, dissimilarity averaged
338	43.4% and many of the same groups differentiated community structure but also included
339	polynoids, fauveliopsids, and capitellids (Table S1). Taxa differentiating canyon axis and
340	adjacent slope habitats (average dissimilarity 39.0%) were fauveliopsid, syllid, sigalionid,
341	maldanid, and paralacydoniid polychaetes. Additionally, malletiid bivalves and various
342	cnidarians made contributions (Table S1).
343	The environmental factors of temperature and salinity were removed from consideration
344	prior to DISTLM to avoid model bias from high correlation with other variables, leaving 10
345	variables available for analysis of community structure differences between habitat types. Of
346	these all were significantly correlated with macrofauna community structure except percent sand
347	and percent silt (Table 6). AICc values spanned a small range (180.4 – 181.41). The BEST
348	model selected by DISTLM to explain most of the macrofaunal community variation included
349	only 2 factors, oxygen saturation and POC flux, explaining 20.7% of macrofaunal community
350	variation (Table 6). Water mass parameters exclusively comprised the top 9 models that
351	explained the most community variation and most of the models contained oxygen saturation. In
352	fact, the fifth best model included oxygen by itself with an AICc value only 0.84 higher than the
353	top model. The 10 th model was the only model to contain a sediment parameter, percent carbon,
354	which was paired with POC flux. The first axis of the dbRDA plot of the top model (Fig 10)
355	explained 64.2% of the fitted variation 13.3% of the total) and was strongly correlated with

Macrofauna of DeSoto Canyon and adjacent slope

oxygen saturation (-0.803). The second axis accounted for 35.8% of the fitted variation and 7.4%

overall and was most strongly correlated with POC flux (0.803).

358

359 **4. Discussion**

360 4.1 Influence of the DwH spill on the DeSoto canyon

The primary goal of this study was to examine spatial variability in macrofaunal 361 362 communities within the DeSoto Canyon that may have been missed at the coarse sampling scales 363 previously undertaken. However because this study was undertaken <4 years after the Deepwater Horizon (DwH) Oil Spill, we must first consider what effect, if any, the spill had on the DeSoto 364 Canyon fauna. Starting in April 2010, the DwH spill release 130 M gal of crude oil and natural 365 gas from a depth of 1500 m (McNutt et al. 2012). Of the total oil, 3.0-4.9% (1.6 to 2.6 x 10^{10} g) 366 is estimated to have deposited to the deep seafloor in a 8400 km² footprint, with the highest 367 concentration found in a 3200 km² area immediately around the wellhead (Chanton et al. 2014, 368 Valentine et al. 2014). Small oil droplets and dissolved oil and gas formed plumes at two known 369 370 depths, 50 – 500 m and 1,100 – 1500 m (Camilli et al. 2010, Socolofsky et al. 2011, Valentine et 371 al. 2014). Where the plumes intersected the continental slope, hydrocarbons deposited. 372 Hydrocarbons at the surface and persisting in the water column structured microbial blooms 373 (Hazen et al. 2010, Valentine et al. 2010, Kessler et al. 2011, Redmond & Valentine 2012, 374 Mason et al. 2014a, Kleindienst et al. 2015) whose products aggregated with unprocessed 375 hydrocarbons, bacterial products, and phytoplankton (Passow et al. 2012, Ziervogel et al. 2012) and deposited on the seafloor (Schrope 2013, Brooks et al. 2015). The rapid plume and 376 377 settlement of hydrocarbon-plankton-bacterial product aggregation deposited in an event called

Macrofauna of DeSoto Canyon and adjacent slope

378	the marine oil-snow sedimentation and flocculent accumulation (MOSSFA) (Brooks et al. 2015,
379	Schwing et al. 2017b).

380	Consistent with these observations, in 2011, one year following the spill, rapid soluble
381	and insoluble hydrocarbon deposition was detected in contaminated sediment in sites located in
382	the DeSoto Canyon, including sites PCB06, XC2, and XC3 (Brooks et al. 2015, Romero et al.
383	2015) of the present study. Total PAH concentration of the sediment increased two to three fold
384	(Romero et al. 2015). Sediments near the deeper plumes also experienced spikes in oil-degrading
385	bacteria in September/October 2010 and in the summer seasons of 2012 – 2014 (Mason et al.
386	2014b, Overholt 2018).

Satellite measurements indicated surface plumes triggered a phytoplankton bloom over 387 the canyon within weeks after the wellhead was capped (Hu et al. 2011). Elevated photosynthetic 388 microbial groups in the top 1 cm of the sediment in November and December of 2010 also 389 390 confirm the influence of the phytoplankton blooms (Brooks et al. 2015). Consistent with these 391 observations, from 2010-2013, the sediment redoxcline sustained lasting changes indicative of an 392 influx of enriched organic matter (Hastings et al. 2015). As a result of one or both of these 393 perturbations, benthic foraminiferans in the canyon experienced a decline in density, species 394 richness, and bioturbation overall of the sediment ceased, initially after the spill (Brooks et al. 395 2015, Schwing et al. 2015, Schwing et al. 2017a).

The distribution of highly depleted radiocarbon indicative of the DwH hydrocarbons were relatively light (Shantharam et al, in prep). Deposited hydrocarbons consisted of decayed, high molecular weight compounds *n*-alkanes (67%), low molecular weight *n*-alkanes (9%) and low weight PAHs (6%). This composition remained relatively unchanged for 3 years though large reductions in concentrations did occur for homohopanes (~67%) and low weight

Macrofauna of DeSoto Canyon and adjacent slope

401	compounds (n-alkanes and PAHs, ~65% and ~66% respectively) and to a lesser degree high
402	molecular weight <i>n</i> -alkanes (~43%) and PAHs (~12%) (Romero et al. 2020). Perturbations to
403	phytoplankton productivity largely abated by 2014 and 2015 (Li et al. 2019) over the canyon and
404	sedimentary bacterial communities likely returned to baseline conditions (Yang et al. 2016, Liu
405	et al. 2017). Between 2013 – 2016, sediment bioturbation resumed (Larson et al. 2018), redox
406	steady-state conditions returned (Hastings et al. 2020), and foraminifera density and diversity
407	increased and stabilized (Schwing et al. 2018, Schwing & Machain-Castillo 2020). Macrofauna
408	for PCB06, XC2, XC3, S36, and XC4, in a similar timeframe (2012 – 2014) showed no change
409	in richness and evenness, but elevated abundance in 2012 compared to 2013 and 2014
410	(Shantharam et al. In prep). Other macrofauna-based community stress and oil-impact indicators
411	showed little to no signs of impact by 2014 and almost no difference from control sites by 2014
412	(Shantharam et al., in prep). Since the influence of oil at DeSoto Canyons sites seems to have
413	tapered off by the 2014 sampling for the current study, the assumption is therefore made that the
414	observed patterns are representative of the "typical" environmental forcing in the DeSoto
415	Canyon region for sediment macrofauna, although potential exceptions are noted.
416	

417 4.2 DeSoto Canyon macrofauna abundance, diversity, and community composition

Macrofauna in the DeSoto Canyon exhibited a general decrease in abundance with depth
and between depth groups (Figure 2 and 4A respectively), consistent with some of the earliest
GOM studies (Rowe & Menzel 1971, Rowe et al. 1974), previous deep-sea NGOM benthic
faunal surveys and studies (Blake & Doyle 1983, Pequegnat et al. 1983, Pequegnat et al. 1990,
Escobar-Briones et al. 1999), other studies of GOM canyons (Escobar-Briones et al. 2008) and
the general deep sea (reviewed in Etter and Rex 2010). Peak abundance occurred at the

Macrofauna of DeSoto Canyon and adjacent slope

424	shallowest stations at 485 m. This corresponds with earlier studies of northeastern GOM that
425	reported max density between 355 and 650 m depending on season (Pequegnat et al. 1983,
426	Pequegnat et al. 1990) and seems common to GOM macrofauna studies (Rowe & Menzel 1971,
427	Rowe et al. 1974, Blake & Doyle 1983, Escobar-Briones et al. 1999, Stuart et al. 2016). Several
428	studies also noted secondary peaks at around 1100 and 1500 m, in the central and western
429	NGOM (Pequegnat et al. 1983, Pequegnat et al. 1990, Escobar-Briones et al. 1999, Stuart et al.
430	2016). In the current study these depths also have slightly higher values but not enough to stand
431	out from the regression. Infaunal density in other large basins and depressions of the GOM report
432	peak or high densities at similar depths. Baguley et al. (2006a) reported the highest density (9457
433	ind. m ⁻²) for central NGOM meiofauna in the Mississippi Trough at 482 m.
434	The negative parabolic relationship observed for macrofaunal species richness with depth
435	within DeSoto Canyon, with a peak at 1100 m, is comparable to the pattern observed for general
436	NGOM fauna (Pequegnat et al. 1990, Haedrich et al. 2008, Stuart et al. 2016, Wei & Rowe
437	2019) and singular taxonomic groups over the larger GOM (Wicksten & Packard 2005, Reuscher
438	& Shirley 2014, Shantharam & Baco 2019). Patterns of NGOM macrofauna richness are related
439	to a host of environmental parameters that include food, habitat, pollution, and location
440	(Haedrich et al. 2008), but the most influential, especially with depth, seems to be POC flux
441	(Wei & Rowe 2019, Wei et al. accepted).
442	Evenness has not been reported in studies of NGOM macrofauna and only a few studies
443	focused on canyons measure it. However, the classic increase of evenness with depth (Rex &
444	Etter 2010) was observed within the Canyon and is consistent with what has been observed in the

445 Scripps and La Jolla Canyons (~0.30 – 0.80; Vetter and Dayton 1998), Nazaré Canyon (0.087 -

446 0.563; Curdia et al. 2004), the Whittard Canyon (0.662 – 0.923; Gunton 2015) and canyons of

Macrofauna of DeSoto Canyon and adjacent slope

447	the Campos and Espirito Santo Basins off Brazil (~0.58 – 0.90, Bernardino et al. 2019). Previous
448	studies report a large range of evenness values in canyons, indicative of an inherent disturbance
449	regime. Macrofaunal evenness in DeSoto Canyon is somewhat narrower than what has been
450	reported in other canyons $(0.7253 - 0.919)$ and although the Canyon has previously been
451	described as inactive (Uchupi & Emery 1968, Bouma 1972), the range of evenness values
452	reported here does not preclude an inherent disturbance regime. Cross-slope and deeper currents
453	are known to be quite strong in the NGOM (Hamilton 1992, Hamilton & Lugo Fernandez
454	2001) and can create a strong resonance in the narrowest part of the canyon at ~715 m (Clarke &
455	Van Gorder 2016) which theoretically may result in a flushing-type disturbance regime within
456	Desoto akin to steeper-sided canyons.
157	

457

458 4.3 DeSoto Canyon macrofauna composition, community structure, and association with
459 environmental factors

Across the general NGOM Pequegnat et al (1990) first described three main depth zones 460 for sediment macrofaunal assemblages: the Shelf/Slope-Transition (300 - 700 m), the 461 Archibenthal Zone (700 – 1650 m), and the Abyssal (> 2000 m). Wei et al. (2010) had broader, 462 overlapping depths with the NGOM divided into 4 zones, named the upper (213 - 542 m) with 463 464 an extension submerging at 1572 m, mid and lower slope zones that split into eastern and 465 western subzones (mid-eastern slope (625 – 1828 m), mid-western slope (863 – 1620 m), lower eastern slope (2275 – 3314 m), and lower western slope (2042 – 3008 m)), and also the abyssal 466 plain (2954 - 3732). Within the DeSoto Canyon, macrofaunal community structure in this study 467 468 showed three depth assemblages which largely fit into the regions of Pequegnat et al (1990);

Macrofauna of DeSoto Canyon and adjacent slope

469	assemblage I at depths of $464 - 485$ m, assemblage II at $669 - 1834$ m, and assemblage III for
470	sites greater than 2000 m.

471 Compositionally, the dominant macrofaunal groups maintained mostly similar proportions 472 throughout the canvon, and the depth of peak abundances varied for all groups. Polychaetes 473 dominated in the DeSoto Canyon, like most soft sediment continental margin environments (Gage & Tyler 1991, Grassle & Maciolek 1992), followed by crustaceans, and molluscs. While 474 this coincides with previous NGOM surveys (Pequegnat et al. 1990), and some other Atlantic 475 canyons (Gunton et al. 2015, Harriague et al. 2019), this pattern is not true of all canyons. 476 477 Polychaetes, while the most prevalent in submarine canyons in the Hawaiian islands, are followed by molluscs and then crustaceans are the next most common (De Leo et al. 2014). 478 Hudson Canyon off New York state, also while dominated by polychaetes, has a strong 479 proportion of bivalves, and sipunculans. (Rowe et al. 1982). Newport Canyon off California is 480 481 strongly dominated by polychaetes, nemerteans, aplacophorans, and some echinoderms (Hartman 1963, Maurer et al. 1995). Adjacent canyons can show highly heterogeneous 482 compositions as well. Cunha et al. (2011) report the Setúbal Canyon off Portugal has abundant 483 484 taxa similar in proportion to the DeSoto Canyon but nearby Nazaré Canyon is predominated by molluses, followed by polychaetes, arthropods, and echinoderms and the Cascais Canyon 485 maintains crustaceans as the most abundant, then polychaetes, and then molluscs. The substrate 486 487 can strongly determine the most abundant group in some canyons. Polychaetes and cumaceans, 488 for example, are the most common in muddy/silty sections of the Carson Canyon off California, 489 sandy sections had sigunculans and isopods, and the more gravel-heavy sections exhibited 490 majority cumaceans and echinoderms (Houston & Haedrich 1984).

Macrofauna of DeSoto Canyon and adjacent slope

491	Within the DeSoto Canyon, some taxa, departed from the mean and had standout
492	proportions at certain sites. Some of these disparate compositions may be attributable to
493	hydrocarbon seep influence. Seeps occur in the canyon just as they do in with the larger GOM
494	(MacDonald et al. 2015). Two sites sampled in the current study, Seep A and Peanut Mound, are
495	known seeps, however since a video-guided multicorer was not employed, it could not be
496	determined whether seep-influenced sediments were directly sampled or if general background
497	sediments were sampled at these sites. Macrofauna in GOM seeps tends to consist of background
498	GOM taxa and exhibit a large degree of heterogeneity in composition and community structure
499	within seep microhabitat types (i.e., microbial mat, tubeworm, and soft sediment) (Washburn et
500	al. 2018), typical of most seep habitats (Bernardino et al. 2012). Washburn et al. (2018)
501	described NGOM seeps to generally be dominated by the polychaete Families Dorvilleidae,
502	Hesionidae, and Ampharetidae, and DeSoto Canyon seeps sampled in the same study had high
503	abundances of spionid and syllid polychaetes, and tanaid crustaceans. While none of the
504	dominant GOM seep polychaete families were dominant in the samples of the current study,
505	Seep A and Peanut Mound do show a high presence of syllids, spionids, and tanaids. Peanut
506	Mound especially contained the most disparate community composition with the lowest
507	proportion of polychaetes of the stations and the highest percentage of other crustaceans (isopods
508	and cumaceans) and tanaids, though this did not yield a standout community structure in the
509	NMDS. Cumaceans can especially be dominant on bacterial mats and sulfide seeps (Levin
510	2005). Thus these results may support the sampling of seeps at Seep A and Peanut Mound,
511	however comparison to Washburn et al. (2018) is obfuscated by the coarse taxonomic resolution
512	of the current data, the fact that syllids and spionids are some of the most diverse polychaete

Macrofauna of DeSoto Canyon and adjacent slope

513 groups throughout the GOM (Reuscher & Shirley 2014), and that tanaids are generally dominant

throughout the canyon sites sampled in the present study.

515

516 4.4 DeSoto Canyon wall vs. axis vs. the adjacent slope.

517 The comparisons among the canyon axis, canyon wall and adjacent slope showed no difference in species richness or evenness among habitats, comparable to the findings of Wei and 518 519 Rowe (2019). However, abundance was significantly higher on the canyon wall than the other 520 habitats, and higher in the canyon axis compared to the adjacent slope. Higher abundance in the canyon is consistent with the high biomass previously observed in the canyon (Wei et al. 2012). 521 522 The increased abundance on the canyon wall may be indicative of favorable environmental conditions. Parameters that were higher in at least one canyon habitat included salinity, oxygen, 523 fluorescence, turbidity and percent sand. The parameters that showed the strongest correlation to 524 community structure the DISTLM analyses were oxygen and POC flux. Greater oxygen in the 525 526 canyon could overcome any limitation of the oxygen minimum zone observed in most mid-water regions of continental margins (Levin et al. 2001), however the lowest oxygen value of 4.22 mg/l 527 528 would not be expected to be limiting to most macrofaunal species. Greater turbidity and 529 fluorescence, potentially a product of a canyon-entrained water mass, would signify higher 530 suspended particles in the canyon than outside and perhaps greater particulate organic matter 531 flux to the sediments. Yet, this is contradicted by lower organic carbon and nitrogen in the 532 canyon sediments compared to the adjacent slope. Average POC flux does show a trend of 533 highest POC flux on the canyon wall, followed by the canyon axis, and lowest on the adjacent 534 slope, but the differences were not statistically significant. This likely reflects the coarse

Macrofauna of DeSoto Canyon and adjacent slope

535	resolution of the satellite measurements inadequately capturing habitat differences over a narrow
536	geographic range but does not diminish the contribution that POC makes to community structure
537	in general. Higher sediment organic matter has been found in the canyon before (Morse &
538	Beazley 2008) and after (Brooks & Larson 2013, Chanton 2014) the DwH but did not appear to
539	remain by 2014. Other unmeasured environmental variability may also influence canyon
540	sediment macrofauna. The DeSoto Canyon contains a series of submarine channels, especially
541	along the western wall, formed by mass movements that culminate in debris depots in the deeper
542	basin (McAdoo et al. 2000). Sharp V-shaped incisions of these channels indicate high flushing
543	and mass slumping until the channels reach the abyssal plain (Silva 2017). Additionally, strong
544	currents occur along the narrow axis of the canyon (~700 m) generated by subinertial canyon
545	resonance (Clarke & Van Gorder 2016) can reach velocities to flush sediment in the canyon (A.
546	Clarke, pers comm), and would potentially limit accumulation of organic material along the axis,
547	explaining the lower abundance observed. Other canyon studies have also found sediment
548	organic matter higher on the adjacent slope rather than the canyon as a result of high sedimental
549	flushing (Liao et al. 2017).

550

551 4.5 Community structure across habitats

Based on the geographic locations of the bathymetric zones within the Gulf of Mexico designated by Wei et al. (2010), all sites from the current study, including the sites S35, S36, and S42 from Wei et al. (2010) that were revisited, should fall into the eastern mid-slope zone of that study. In Wei et al (2010), this zone included the DeSoto Canyon and extended east and west of the canyon with a slender portion reaching well into the western NGOM. However, the finer

Macrofauna of DeSoto Canyon and adjacent slope

scale sampling of the current study revealed differences in community structure not only of the
DeSoto Canyon sites from the adjacent slope, but also disparate structure of the canyon wall
compared to the canyon axis.

560 Differences were also found between the environmental parameters tied to community 561 structure. For the zones of Wei et al (2010), cluster analysis indicated that sites in this zone were highly influenced by POC mediated by the Mississippi River, dissolved oxygen, temperature, 562 depth, sand, relative backscatter, and percent clay. In contrast, in the finer spatial scale of the 563 current study, many of the grain size parameters, though significant individually, fell away in the 564 DISTLM models and more emphasis was placed on oxygen and POC flux in the water column. 565 In the summer, the season the canyon was sampled, cyclonic and anticyclonic eddies near the 566 DeSoto Canyon can move low salinity, biologically productive Mississippi River output across 567 the shelf and the head of the canyon (Müller Karger et al. 1991, Belabbassi et al. 2005, Walker 568 et al. 2005, Biggs et al. 2008, Jochens & DiMarco 2008). Strong thermohaline stratification 569 prevents further intrusion into deeper waters, however (Jochens & DiMarco 2008). This leaves 570 571 high salinity, highly oxygenated water characteristic of the North Atlantic Deepwater (NADW) 572 (Rivas et al. 2005, Morse & Beazley 2008) to occupy the deep (>1000 m) sites, suggesting a strong influence of in situ seawater conditions on macrobenthic communities. Community 573 structure differences between the habitat types may be driven in part by the higher abundance 574 575 observed in the canyon, likewise the canyon wall over the canyon axis. Environmental factors 576 that contribute to the difference in abundance among the habitats may also have an influence on 577 community composition and community structure. These were discussed in the previous section. 578 and included higher fluorescence, turbidity, and oxygen saturation in the canyon. The greater 579 turbidity and fluorescence (measure of water-borne chlorophyll) could support a greater

Macrofauna of DeSoto Canyon and adjacent slope

580	proportion of suspension-feeding bivalves and polychaetes and explain the higher abundances in
581	the canyon. The difference in community structure also tracked with an eastward trend in
582	longitude. Biggs et al. (2008) noted sea-surface chlorophyll was higher in the northeast GOM
583	compared to the northwest, typically reaching a peak in the June-August timeframe and
584	structuring the slope macrobenthos across the NGOM. This seasonality may also operate in
585	smaller scale regions such as the DeSoto Canyon. Dissolved oxygen also demonstrates a
586	longitudinal trend with decreasing values moving west to east but does not reach limiting levels
587	and stands in contrast to the typical increase of oxygen at this depth (Jochens et al. 2005).
588	Differing community structure is not novel when comparing macrofaunal communities in
589	canyons against the adjacent slope (Vetter & Dayton 1998, Duineveld et al. 2001, De Leo et al.
590	2014, Gunton et al. 2015, Bernardino et al. 2019a, Harriague et al. 2019). Disparate structures
591	have been attributed to altered community composition that occurs because of topographical
592	heterogeneity (De Leo et al. 2014) or higher organic loading in the canyon (Vetter & Dayton
593	1998, Duineveld et al. 2001, Gunton et al. 2015, Harriague et al. 2019). Many of the groups
594	contributing to differences between DeSoto Canyon and the open slope communities were
595	indicative of organic loading, such as thyasirid bivalves and opportunistic polychaetes.
596	Thyasirids especially are common in canyons where high organic deposition is present (Vetter &
597	Dayton 1998, Cunha et al. 2011b, Bernardino et al. 2019a, Harriague et al. 2019) and can be the
598	most discriminating taxon between canyon and adjacent slope habitats (Harriague et al. 2019).
599	While the difference in abundance and community structure between canyon and slope
600	habitats is not unexpected, what drives differences within the canyon habitat communities
601	remains elusive. Two sites which make up the canyon wall habitat, XC2 and XC3, in terms of
602	taxonomic composition, contained proportions of molluscs higher than any of the other sites,

Macrofauna of DeSoto Canyon and adjacent slope

603	with a high abundance of bivalves at XC3 and a high abundance of other molluscs at XC2. Noted
604	seep-characteristic bivalve family Thyasiridae was several times more abundant at XC3 than
605	other stations, contributing to that station's high bivalve proportions. This hints at a
606	chemosynthetic influence such as localized hydrocarbon seepage or bacterial decomposition of
607	some type of organic enrichment, as has been observed in other canyons (Ingels et al. 2011,
608	Bernardino et al. 2019a, Harriague et al. 2019). However, both XC2 and XC3 were also
609	confirmed to have received DwH-induced sediment pulses and have been shown to have had
610	high rates of organic matter respiration in the sediment following the spill (Hastings et al. 2015).
611	Drawdowns in sediment porewater oxygen and the toxicity of petroleum aromatic hydrocarbons
612	were responsible for an initial benthic decline (i.e., foraminiferans) (Schwing et al. 2015). But as
613	the sediment environment recovered, the concomitant recolonization and succession of benthic
614	fauna, along with any organic matter respiration, could have boosted benthic populations in XC2
615	and XC3. Thyasirids were found to be tolerant of DwH contamination (Washburn et al. 2016).
616	The organic enrichment observed (Hastings et al. 2015, Hastings et al. 2020) at XC3 may have
617	bolstered bacterial production and provided an ideal habitat for this chemosymbiotic bivalve to
618	expand in numbers. Thus, the higher macrofaunal abundance on the canyon wall in 2014 may be
619	a remnant of that effect.

The confounding issue with either the seep or DwH argument is that sediment organic carbon was not particularly high for XC3 (average 1.54%). Differences might then instead be attributed to even smaller scale heterogeneity within the canyon. Channels along the wall exhibit a high amount of sinuosity and sediment accumulation along sediment channel curves (Silva 2017), potentially developing patches of high organic matter that could also explain the higher abundances observed. The greater sediment clay content on the canyon wall compared to the axis

Macrofauna of DeSoto Canyon and adjacent slope

626	could reflect generally higher refractory organic matter content driving differences within the
627	canyon. Further sampling at a higher resolution would not only better locate organically rich
628	channel deposits but also enable identification of productive hydrocarbon seep habitats. It has
629	been shown that there can be high turnover of canyon fauna on small spatial scales (< 100 m)
630	(McClain & Barry 2010, Campanyà-Llovet et al. 2018) that can be driven by highly sporadic
631	food patches (Campanyà-Llovet et al. 2018). The NGOM exhibits a high degree of microhabitat
632	heterogeneity, on the order of centimeters to hundreds of kilometers, over singular isobaths
633	(Nunnally et al. 2018) that seem to support the patch-mosaic model of Grassle and Sanders
634	(1973). Thus, further research, at a finer sampling resolution, may be required to parse out the

635 differences observed here.

Macrofauna of DeSoto Canyon and adjacent slope

636 Acknowledgements

637	The authors would like to thank the captains and crew of the RV Weatherbird II and
638	fellow cruise field PIs Ian MacDonald and Joel Kostka along with the many volunteers at sea.
639	Numerous undergraduate and graduate sorters helped process sediment samples and identify
640	specimens including Lauren Gillies-Campbell, Ben Labelle, Melissa Olguin, Kaitlin Hurley,
641	Christine Palmer, Savannah Goode, Rose Luzader, Meaghan Fahletti, Chrissoula Rakowski,
642	Andrea Schmidt, Morgan Harrison, Juliana De Andrade Souza, Madison Savage, Suhavi Kaur,
643	Reena Manohar, Ashley Christine Alvarez, Travis Ferguson, Daniel Cardenas, Julie Andrews
644	and Jefferson Hemphill. This research was made possible by a grant from the Gulf of Mexico
645	Research Initiative to support the Deep-C: Deep Sea to Coast Connectivity in the Eastern Gulf of
646	Mexico Research Consortium.

Macrofauna of DeSoto Canyon and adjacent slope

648

References

649	Anderson M, Gorley RN, Clarke K (2008) PERMANOVA+ for primer: Guide to software and statistical
650	methods
651	Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of
652	heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr 83:557-574
653	Antoine J, Bryant W (1968) The Major Transition Zones of the Gulf of Mexico: Desoto and Campeche
654	Canyons. AAPG Bull 52:1831 - 1831
655	Arzola RG, Wynn RB, Lastras G, Masson DG, Weaver PP (2008) Sedimentary features and processes in
656	the Nazaré and Setúbal submarine canyons, west Iberian margin. Mar Geol 250:64-88
657	Baguley JG, Montagna PA, Hyde LJ, Kalke RD, Rowe GT (2006a) Metazoan meiofauna abundance in
658	relation to environmental variables in the northern Gulf of Mexico deep sea. Deep Sea Research
659	Part I: Oceanographic Research Papers 53:1344-1362
660	Baguley JG, Montagna PA, Lee W, Hyde LJ, Rowe GT (2006b) Spatial and bathymetric trends in
661	Harpacticoida (Copepoda) community structure in the Northern Gulf of Mexico deep-sea. J Exp
662	Mar Biol Ecol 330:327-341
663	Balsam WL, Beeson JP (2003) Sea-floor sediment distribution in the Gulf of Mexico. Deep Sea Research
664	Part I: Oceanographic Research Papers 50:1421-1444
665	Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite based chlorophyll
666	concentration. Limnol Oceanogr 42:1-20
667	Belabbassi L, Chapman P, Nowlin Jr WD, Jochens AE, Biggs DC (2005) Summertime nutrient supply to
668	near-surface waters of the northeastern Gulf of Mexico: 1998, 1999, and 2000. Gulf Mex Sci 23:1
669	Bernardino AF, Gama RN, Mazzuco ACA, Omena EP, Lavrado HP (2019a) Submarine canyons support
670	distinct macrofaunal assemblages on the deep SE Brazil margin. Deep Sea Research Part I:
671	Oceanographic Research Papers 149:103052
672	Bernardino AF, Gama RN, Mazzuco ACA, Omena EP, Lavrado HP (2019b) Submarine canyons support
673	distinct macrofaunal assemblages on the deep SE Brazil margin. Deep Sea Research Part I:
674	Oceanographic Research Papers
675	Bernardino AF, Levin LA, Thurber AR, Smith CR (2012) Comparative Composition, Diversity and
676	Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls. PLOS ONE
677	7:e33515
678	Biggs DC, Hu C, Müller-Karger FE (2008) Remotely sensed sea-surface chlorophyll and POC flux at
679	Deep Gulf of Mexico Benthos sampling stations. Deep Sea Research Part II: Topical Studies in
680	Oceanography 55:2555-2562
681	Blake NJ, Doyle LJ (1983) Infaunal-sediment relationships at the shelf-slope break. SEPM Special
682	Publication:381-389
683	Bouma AH (1972) Distribution of sediments and sedimentary structures in the Gulf of Mexico.
684	Brodeur RD (2001) Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in Pribilof
685	Canyon, Bering Sea. Cont Shelf Res 21:207-224
686	Brooks GR, Larson RA (2013) Sediment texture and composition, NE Gulf of Mexico, 2010-2013. Gulf
687	of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Corpus Christi, TX
688	Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings
689	DW, Overholt WA (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010
690	DWH blowout. PLOS ONE 10:e0132341
691	Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model
692	selection. Sociol Methods Res 33:261-304
693	Burrough PA, McDonnell R, McDonnell RA, Lloyd CD (2015) Principles of geographical information
694	systems. Oxford university press

695	Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP,
696	Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater
697	Horizon. Science 330:201-204
698	Campanyà-Llovet N, Snelgrove PVR, De Leo FC (2018) Food quantity and quality in Barkley Canyon
699	(NE Pacific) and its influence on macroinfaunal community structure. Prog Oceanogr 169:106-
700	119
701	Canals M, Puig P, de Madron XD, Heussner S, Palanques A, Fabres J (2006) Flushing submarine
702	canyons. Nature 444:354-357
703	Chanton J, Zhao T, Rosenheim BE, Joye SB, Bosman S, Brunner CA, Yeager KM, Diercks AR,
704	Hollander D (2014) Using Natural Abundance Radiocarbon to trace the Flux of Petrocarbon to
705	the Seafloor following the Deepwater Horizon Oil Spill. Environ Sci Technol 49:847-854
706	Chanton JP (2014) Radiocarbon measurements on surface sediment organic matter following the
707	Deepwater Horizon Oil Spill, 2010-2012. Gulf of Mexico Research Initiative Information and
708	Data Cooperative (GRIIDC), Corpus Christi, TX
709	Clarke AJ, Van Gorder S (2016) Subinertial canyon resonance. Geophys Res Lett 43:3872-3879
710	Clarke K, Gorley R (2015) PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2015.
711	PRIMER-E, Plymouth, UK
712	Coleman FC, Chanton JP, Chassignet EP (2014) Ecological Connectivity in Northeastern Gulf of Mexico
713	- The Deep-C Initiative. International Oil Spill Conference Proceedings 2014:1972-1984
714	Company JB, Puig P, Sarda F, Palanques A, Latasa M, Scharek R (2008) Climate influence on deep sea
715	populations. PLOS ONE 3:e1431
716	Cunha MR, Paterson GL, Amaro T, Blackbird S, de Stigter HC, Ferreira C, Glover A, Hilario A,
717	Kiriakoulakis K, Neal L (2011a) Biodiversity of macrofaunal assemblages from three Portuguese
718	submarine canyons (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography
719	58:2433-2447
720	Cunha MR, Paterson GLJ, Amaro T, Blackbird S, de Stigter HC, Ferreira C, Glover A, Hilário A,
721	Kiriakoulakis K, Neal L, Ravara A, Rodrigues CF, Tiago Á, Billett DSM (2011b) Biodiversity of
722	macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). Deep Sea
723	Research Part II: Topical Studies in Oceanography 58:2433-2447
724	Curdia J, Carvalho S, Ravara A, Gage J, Rodrigues A, Quintino V (2004) Deep macrobenthic
725	communities from Nazaré submarine canyon (NW Portugal). Sci Mar 68:171-180
726	De Leo FC, Drazen JC, Vetter EW, Rowden AA, Smith CR (2012) The effects of submarine canyons and
727	the oxygen minimum zone on deep-sea fish assemblages off Hawai'i. Deep Sea Research Part I:
728	Oceanographic Research Papers 64:54-70
729	De Leo FC, Smith CR, Rowden AA, Bowden DA, Clark MR (2010) Submarine canyons: hotspots of
730	benthic biomass and productivity in the deep sea. Proceedings of the Royal Society of London B:
731	Biological Sciences:rspb20100462
732	De Leo FC, Vetter EW, Smith CR, Rowden AA, McGranaghan M (2014) Spatial scale-dependent habitat
733	heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main
734	and Northwest Hawaiian Islands. Deep Sea Research Part II: Topical Studies in Oceanography
735	104:267-290
736	de Stigter HC, Boer W, de Jesus Mendes PA, Jesus CC, Thomsen L, van den Bergh GD, van Weering TC
737	(2007) Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental
738	margin. Mar Geol 246:144-164
739	Doyle LJ, Sparks TN (1980) Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental
740	shelf. J Sediment Res 50:905-915
741	Duineveld G, Lavaleye M, Berghuis E, de Wilde P (2001) Activity and composition of the benthic fauna
742	in the Whittard Canyon and the adjacent continental slope (NE Atlantic). Oceanol Acta 24:69-83
743	Ebbe B, Billett DS, Brandt A, Ellingsen K, Glover A, Keller S, Malyutina M, Martínez Arbizu P,
744	Molodtsova T, Rex M (2010) Diversity of abyssal marine life. Life in the World's Oceans:
745	Diversity, Distribution, and Abundance, edited by: McIntyre, A:139-160

746	Emiliani C, Gartner S, Lidz B, Eldridge K, Elvey DK, Huang TC, Stipp JJ, Swanson MF (1975)
747	Paleoclimatological analysis of late Quaternary cores from the northeastern Gulf of Mexico.
748	Science 189:1083-1088
749	Escobar-Briones E, Santillán ELE, Legendre P (2008) Macrofaunal density and biomass in the Campeche
750	Canyon, Southwestern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in
751	Oceanography 55:2679-2685
752	Escobar-Briones E, Signoret M, Hernández D (1999) Variation of the macrobenthic infaunal density in a
753	bathymetric gradient: Western Gulf of Mexico. Cienc Mar 25:193-212
754	Gage JD (1996) Why are there so many species in deep-sea sediments? J Exp Mar Biol Ecol 200:257-286
755	Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor.
756	Cambridge University Press
757	Garcia-Pineda O, Macdonald I, Hu C, Svejkovsky J, Hess M, Dukhovskoy D, Morey SL (2013) Detection
758	of floating oil anomalies from the Deepwater Horizon oil spill with synthetic aperture radar.
759	Oceanography 26:124-137
760	Genin A (2004) Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt
761	topographies. J Mar Syst 50:3-20
762	Gerino M, Stora G, Poydenot F, Bourcier M (1995) Benthic fauna and bioturbation on the Mediterranean
763	continental slope: Toulon Canyon. Cont Shelf Res 15:1483-1496
764	Gesteira JG, Dauvin J, Fraga MS (2003) Taxonomic level for assessing oil spill effects on soft-bottom
765	sublittoral benthic communities. Mar Pollut Bull 46:562-572
766	Gould HR, Stewart RH (1955) Continental terrace sediments in the northeastern Gulf of Mexico. Special
767	Publications of SEPM Finding Ancient Shorelines:2-20
768	Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from
769	quantitative bottom samples. Am Nat:313-341
770	Grassle JF, Sanders HL Life histories and the role of disturbance. Proc Deep Sea Research and
771	Oceanographic Abstracts. Elsevier
772	Greene C, Wiebe P, Burczynski J, Youngbluth M (1988) Acoustical detection of high-density krill
773	demersal layers in the submarine canyons off Georges Bank. Science 241:359-361
774	Gunton L (2015) Deep-sea macrofaunal biodiversity of the Whittard Canyon (NE Atlantic). PhD,
775	University of Southampton,
776	Gunton LM, Gooday AJ, Glover AG, Bett BJ (2015) Macrofaunal abundance and community
777	composition at lower bathyal depths in different branches of the Whittard Canyon and on the
778	adjacent slope (3500 m; NE Atlantic). Deep Sea Research Part I: Oceanographic Research Papers
779	97:29-39
780	Haedrich RL, Devine JA, Kendall VJ (2008) Predictors of species richness in the deep-benthic fauna of
781	the northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography
782	55:2650-2656
783	Hamilton P (1992) Lower continental slope cyclonic eddies in the central Gulf of Mexico. Journal of
784	Geophysical Research: Oceans 97:2185-2200
785	Hamilton P, Lugo Fernandez A (2001) Observations of high speed deep currents in the northern Gulf of
786	Mexico. Geophys Res Lett 28:2867-2870
787	Hamilton P, Speer K, Snyder R, Wienders N, Leben RR (2015) Shelf break exchange events near the De
788	Soto Canyon. Cont Shelf Res 110:25-38
789 700	Harriague AC, Danovaro R, Misic C (2019) Macrofaunal assemblages in canyon and adjacent slope of
790 701	the NW and Central Mediterranean systems. Prog Oceanogr 171:38-48
791	Harris P, Macmillan-Lawler M, Rupp J, Baker E (2014) Geomorphology of the oceans. Mar Geol 352:4- 24
792 703	
793 794	Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: Geomorphic differences
/94	between active and passive continental margins. Mar Geol 285:69-86

795	Harrold C, Light K, Lisin S (2003) Organic enrichment of submarine any on and continental shelf
796	benthic communities by macroalgal drift imported from nearshore kelp forests. Limnol Oceanogr
797	43:669-678
798	Hartman O (1963) Quantitative survey of the benthos of San Pedro Basin, Southern California. Part II
799	Biology. Allan Hancock Pacific Expedition 27:424
800	Hastings DW, Bartlett T, Brooks GR, Larson RA, Quinn KA, Razionale D, Schwing PT, Bernal LHP,
801	Ruiz-Fernández AC, Sánchez-Cabeza J-A (2020) Changes in Redox Conditions of Surface
802	Sediments Following the Deepwater Horizon and Ixtoc 1 Events. Deep Oil Spills. Springer
803	Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T,
804	Romero IC, Hollander DJ (2015) Changes in sediment redox conditions following the BP DWH
805	blowout event. Deep Sea Research Part II: Topical Studies in Oceanography 129:167-198
806	Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A,
807	Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria.
808	Science 330:204-208
809	Hickey BM (1997) The response of a steep-sided, narrow canyon to time-variable wind forcing. J Phys
810	Oceanogr 27:697-726
811	Houston K, Haedrich R (1984) Abundance and biomass of macrobenthos in the vicinity of Carson
812	Submarine Canyon, northwest Atlantic Ocean. Mar Biol 82:301-305
813	Hu C, Weisberg RH, Liu Y, Zheng L, Daly KL, English DC, Zhao J, Vargo GA (2011) Did the
814	northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophys Res
815	Lett 38
816	Hunter W, Jamieson A, Huvenne V, Witte U (2013) Sediment community responses to marine vs.
817	terrigenous organic matter in a submarine canyon. Biogeosciences 10:67-80
818	Ingels J, Tchesunov AV, Vanreusel A (2011) Meiofauna in the Gollum Channels and the Whittard
819	Canyon, Celtic Margin—how local environmental conditions shape nematode structure and
820	function. PLOS ONE 6:e20094
821	Jackson MLR (1969) Soil Chemical Analysis: Advanced Course : a Manual of Methods Useful for
822	Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil
823	Genesis. M.L. Jackson Jochans A.F. Bandar J. DiMarca S. Marca J. Konnightt MC. Howard M. Nowlin Jr WD (2005)
824 825	Jochens AE, Bender L, DiMarco S, Morse J, Kennicutt MC, Howard M, Nowlin Jr WD (2005) Understanding the Processes that Maintain the Oxygen Levels in the Deep Gulf of Mexico:
825	Synthesis Report. In: Interior UDot (ed). Bureau of Ocean Energy Management
820	Jochens AE, DiMarco SF (2008) Physical oceanographic conditions in the deepwater Gulf of Mexico in
828	summer 2000–2002. Deep Sea Research Part II: Topical Studies in Oceanography 55:2541-2554
829	Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ,
830	Shusta SS, Werra LM (2011) A persistent oxygen anomaly reveals the fate of spilled methane in
831	the deep Gulf of Mexico. Science 331:312-315
832	Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2015) Diverse, rare microbial
833	taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J
834	Klinck JM (1996) Circulation near submarine canyons: A modeling study. Journal of Geophysical
835	Research: Oceans 101:1211-1223
836	Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis:
837	a solution for the underestimation of the clay fraction. Sedimentology 44:523-535
838	Larson RA, Brooks GR, Schwing PT, Holmes CW, Carter SR, Hollander DJ (2018) High-resolution
839	investigation of event driven sedimentation: Northeastern Gulf of Mexico. Anthropocene 24:40-
840	50
841	Lavoie D, Simard Y, Saucier FJ (2000) Aggregation and dispersion of krill at channel heads and shelf
842	edges: the dynamics in the Saguenay-St. Lawrence Marine Park. Can J Fish Aquat Sci 57:1853-
843	1869

844	Levin L, Etter R, Rex M, Gooday A, Smith C, Pineda J, Stuart CT, Hessler R, Pawson D (2001)
845	Environmental Influences on Regional Deep-Sea Species Diversity. Annu Rev Ecol Syst 32:51-
846	93
847	Levin LA (2005) Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and
848	microbes. Oceanogr Mar Biol 43:1-46
849	Li Y, Hu C, Quigg A, Gao H (2019) Potential influence of the Deepwater Horizon oil spill on
850	phytoplankton primary productivity in the northern Gulf of Mexico. Environ Res Lett 14:094018
851	Liao J-X, Chen G-M, Chiou M-D, Jan S, Wei C-L (2017) Internal tides affect benthic community
852	structure in an energetic submarine canyon off SW Taiwan. Deep Sea Research Part I:
853	Oceanographic Research Papers 125:147-160
854	Liu J, Bacosa HP, Liu Z (2017) Potential environmental factors affecting oil-degrading bacterial
855	populations in deep and surface waters of the northern Gulf of Mexico. Front Microbiol 7:2131
856	Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and
857	particulate organic carbon flux to depth describe the efficiency of biological pump in the global
858	ocean. Journal of Geophysical Research: Oceans (1978–2012) 112:C10011
859	MacDonald IR, Garcia-Pineda O, Beet A, Daneshgar Asl S, Feng L, Graettinger G, French-McCay D,
860	Holmes J, Hu C, Huffer F, Leifer I, Muller-Karger F, Solow A, Silva M, Swayze G (2015)
861	Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research: Oceans
862	120:8364-8380
863	Mason O, Han J, Woyke T, Jansson J (2014a) Single-cell genomics reveals features of a Colwellia
864	species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5:332
865	Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E,
866	Borglin S, Joyner DC, Fortney J, Jurelevicius D, Stringfellow WT, Hazen TC, Knight R, Gilbert
867	JA, Jansson JK (2014b) Metagenomics reveals sediment microbial community response to
868	Deepwater Horizon oil spill. ISME J 8:1464-1475
869	Maurer D, Robertson G, Gerlinger T (1995) Community Structure of Soft Bottom Macrobenthos of the
870	Newport Submarine Canyon, California. Marine Ecology 16:57-72
871	McAdoo B, Pratson L, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar
872	Geol 169:103-136
873	McClain C, R., Nunnally C, Benfield Mark C (2019) Persistent and substantial impacts of the Deepwater
874	Horizon oil spill on deep-sea megafauna. Royal Society Open Science 6:191164
875	McClain CR, Barry JP (2010) Habitat heterogeneity, disturbance, and productivity work in concert to
876	regulate biodiversity in deep submarine canyons. Ecology 91:964-976
877	McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F (2012)
878	Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci USA
879	109:20260-20267
880	Morse JW, Beazley MJ (2008) Organic matter in deepwater sediments of the Northern Gulf of Mexico
881	and its relationship to the distribution of benthic organisms. Deep Sea Research Part II: Topical
882	Studies in Oceanography 55:2563-2571
883	Müller Karger FE, Walsh JJ, Evans RH, Meyers MB (1991) On the seasonal phytoplankton
884	concentration and sea surface temperature cycles of the Gulf of Mexico as determined by
885	satellites. Journal of Geophysical Research: Oceans 96:12645-12665
886	Nunnally C, Landry C, Gholson S, McClain C (2018) Patchiness of sediment communities in the deep
887	Gulf of Mexico across several spatial scales indicate a diversity of microscale habitat differences
888	that drive diversity. Ocean Science Meeting, Portland, OR
889	Nürnberg D, Ziegler M, Karas C, Tiedemann R, Schmidt MW (2008) Interacting Loop Current variability
890	and Mississippi River discharge over the past 400 kyr. Earth Planet Sci Lett 272:278-289
891	Oliveira A, Santos A, Rodrigues A, Vitorino J (2007) Sedimentary particle distribution and dynamics on
892	the Nazaré canyon system and adjacent shelf (Portugal). Mar Geol 246:105-122
893	Overholt WA (2018) The response of marine benthic microbial populations to the Deepwater Horizon oil
894	spill. Ph.D., Georgia Institute of Technology, Atlanta, GA

895	Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the
896	Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Research Letters 7:035301
897	Paterson GL, Glover AG, Cunha MR, Neal L, de Stigter HC, Kiriakoulakis K, Billett DS, Wolff GA,
898	Tiago A, Ravara A (2011) Disturbance, productivity and diversity in deep-sea canyons: A worm's
899	eye view. Deep Sea Research Part II: Topical Studies in Oceanography 58:2448-2460
900	Pequegnat W, Pequegnat L, Kleypas J, James B, Kennedy E, Hubbard G (1983) The ecological
901	communities of the continental slope and adjacent regimes of the northern Gulf of Mexico. Final
902	report to US Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region,
903	New Orleans, LA.(Contract No. AA851-CT1-12)
904	Pequegnat WE, Gallaway BJ, Pequegnat LH (1990) Aspects of the ecology of the deep-water fauna of the
905	Gulf of Mexico. Am Zool 30:45-64
906	Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community
907	response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences
908	109:20292-20297
909	Reuscher MG, Shirley TC (2014) Diversity, distribution, and zoogeography of benthic polychaetes in the
910	Gulf of Mexico. Marine Biodiversity 44:519-532
911	Rex MA, Etter RJ (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press
912	Rinehart R, Wright DJ, Lundblad ER, Larkin EM, Murphy J, Cary-Kothera L ArcGIS 8. x benthic terrain
913	modeler: Analysis in American Samoa. Proc Proceedings of the 24th Annual ESRI User
914	Conference, San Diego, CA
915	Rivas D, Badan A, Ochoa J (2005) The Ventilation of the Deep Gulf of Mexico. J Phys Oceanogr
916	35:1763-1781
917	Romero I, Schwing P, Brooks G, Larson R, Hastings D, Ellis G, Goddard E, Hollander D (2015)
918	Hydrocarbons in Deep-Sea Sediments following the 2010 Deepwater Horizon Blowout in the
919	Northeast Gulf of Mexico. PLOS ONE 10:e0128371-e0128371
920	Romero IC, Chanton JP, Roseheim BE, Radović JR, Schwing PT, Hollander DJ, Larter SR, Oldenburg
921	TB (2020) Long-Term Preservation of Oil Spill Events in Sediments: The Case for the Deepwater
922	Horizon Oil Spill in the Northern Gulf of Mexico. Deep Oil Spills. Springer
923	Rowe GT, Menzel DW (1971) Quantitative benthic samples from the deep Gulf of Mexico with some
924	comments on the measurement of deep-sea biomass. Bull Mar Sci 21:556-566
925	Rowe GT, Morse J, Nunnally C, Boland GS (2008) Sediment community oxygen consumption in the
926	deep Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 55:2686-2691
927	Rowe GT, Polloni PT, Haedrich RL (1982) The deep-sea macrobenthos on the continental margin of the
928	northwest Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research Papers 29:257-
929	278
930	Rowe GT, Polloni PT, Horner S Benthic biomass estimates from the northwestern Atlantic Ocean and the
931	northern Gulf of Mexico. Proc Deep Sea Research and Oceanographic Abstracts. Elsevier
932	Schlacher TA, Schlacher-Hoenlinger M, A., Williams A, Althaus F, Hooper J, Kloser R (2007) Richness
933	and distribution of sponge megabenthos in continental margin canyons off southeastern Australia.
934	Mar Ecol Prog Ser 340:73-88
935	Schrope M (2013) Dirty blizzard buried Deepwater Horizon oil. Nature
936	Schwing P, O'malley B, Romero I, Martínez-Colón M, Hastings D, Glabach M, Hladky E, Greco A,
937	Hollander D (2017a) Characterizing the variability of benthic foraminifera in the northeastern
938	Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and
939	Pollution Research 24:2754-2769
940	Schwing PT, Brooks GR, Larson R, Holmes C, O'Malley B, Hollander DJ (2017b) Constraining the
941	spatial extent of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA)
942	following the Deepwater Horizon Event using an excess 210Pb flux approach. Environ Sci
943	Technol 51:5962-5968 Schwing PT Machain Castilla ML (2020) Impact and Pasiliance of Panthia Foreminifere in the
944	Schwing PT, Machain-Castillo ML (2020) Impact and Resilience of Benthic Foraminifera in the
945	Aftermath of the Deepwater Horizon and Ixtoc 1 Oil Spills. Deep Oil Spills. Springer

946	Schwing PT, O'Malley BJ, Hollander DJ (2018) Resilience of benthic foraminifera in the Northern Gulf
947	of Mexico following the Deepwater Horizon event (2011–2015). Ecol Indic 84:753-764
948	Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ (2015) A Decline in
949	Benthic Foraminifera following the Deepwater Horizon Event in the Northeastern Gulf of
950	Mexico. PLOS ONE 10:e0120565
951	Shantharam AK, Baco AR (2019) Biogeographic and Bathymetric Patterns of Benthic Molluscs in the
951 952	Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers:103167
952 953	
	Shantharam AK, Wei C-L, Baco A (In prep) Interannual temporal patterns of DeSoto Canyon macrofauna
954 055	and resilience to the Deepwater Horizon Oil Spill. Mar Pollut Bull
955	Silva MG (2017) Fate of the Mesophotic Coral Ecosystem (MCE) in the Northeastern Gulf of Mexico
956	after the Deepwater Horizon Incident. Ph.D., Florida State University, Tallahassee, FL
957	Snelgrove PV (1999) Getting to the bottom of marine biodiversity: sedimentary habitats: ocean bottoms
958	are the most widespread habitat on earth and support high biodiversity and key ecosystem
959	services. Bioscience 49:129-138
960	Socolofsky SA, Adams EE, Sherwood CR (2011) Formation dynamics of subsurface hydrocarbon
961	intrusions following the Deepwater Horizon blowout. Geophys Res Lett 38:L09602
962	Somerfield P, Clarke K (1995) Taxonomic levels, in marine community studies, revisited. Marine
963	ecology progress series. Oldendorf 127:113-119
964	Sorbe JC (1999) Deep-sea macrofaunal assemblages within the benthic boundary layer of the Cap-Ferret
965	Canyon (Bay of Biscay, NE Atlantic). Deep Sea Research Part II: Topical Studies in
966	Oceanography 46:2309-2329
967	Stuart CT, Brault S, Rowe GT, Wei CL, Wagstaff M, McClain CR, Rex MA (2016) Nestedness and
968	species replacement along bathymetric gradients in the deep sea reflect productivity: a test with
969	polychaete assemblages in the oligotrophic north west Gulf of Mexico. J Biogeogr 44:548-555
970	Team RC (2019) R: A language and environment for statistical computing. R Foundation for Statistical
971	Computing, Vienna, Austria
972	Tyler P, Amaro T, Arzola R, Cunha MR, De Stigter H, Gooday A, Huvenne V, Ingels J, Kiriakoulakis K,
973	Lastras G, Masson D, Oliveira A, Pattenden A, Vanreusel ANN, Van Weering T, Vitorino J,
974	Witte U, Wolff G (2009) Europe's Grand Canyon Nazare Submarine Canyon. Oceanography
975	22:46-57
975 976	Uchupi E, Emery KO (1968) Structure of continental margin off Gulf Coast of United States. AAPG Bull
970 977	52:1162-1193
978	Uiblein F, Lorance P, Latrouite D (2003) Behaviour and habitat utilisation of seven demersal fish species
979	on the Bay of Biscay continental slope, NE Atlantic. Mar Ecol Prog Ser 257:223-232
980	Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume
981	of submerged oil from Deepwater Horizon. Proc Natl Acad Sci USA 111:15906-15911
982	Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS,
983	Yvon-Lewis S, Du M (2010) Propane respiration jump-starts microbial response to a deep oil
984	spill. Science 330:208-211
985	Vetter E, Dayton P (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine
986	canyon system. Deep Sea Research Part II: Topical Studies in Oceanography 45:25-54
987	Vetter E, Dayton P (1999) Organic enrichment by macrophyte detritus, and abundance patterns of
988	megafaunal populations in submarine canyons. Marine ecology. Progress series 186:137-148
989	Vetter EW (1994) Hotspots of benthic production. Nature 372:47
990	Vetter EW, Smith CR, De Leo FC (2010) Hawaiian hotspots: enhanced megafaunal abundance and
991	diversity in submarine canyons on the oceanic islands of Hawaii. Marine Ecology 31:183-199
992	Walker ND, Wiseman Jr WJ, Rouse Jr LJ, Babin A (2005) Effects of river discharge, wind stress, and
993	slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. J
994	Coast Res:1228-1244
995	Warwick R (1988) Analysis of community attributes of the macrobenthos of Frierfjord/Langesundfjord at
996	taxonomic levels higher than species. Mar Ecol Prog Ser 46:167-170

Macrofauna of DeSoto Canyon and adjacent slope

997	Washburn T, Rhodes AC, Montagna PA (2016) Benthic taxa as potential indicators of a deep-sea oil spill.
998	Ecol Indic 71:587-597
999	Washburn TW, Demopoulos AWJ, Montagna PA (2018) Macrobenthic infaunal communities associated
1000	with deep-sea hydrocarbon seeps in the northern Gulf of Mexico. Marine Ecology 39:e12508
1001	Wei C-L, Chen M, Wicksten MK, Rowe Gilbert T (accepted) Macrofauna bivalve diversity from the deep
1002	northern Gulf of Mexico. Ecol Res
1003	Wei C-L, Rowe GT (2019) Productivity controls macrofauna diversity in the deep northern Gulf of
1004	Mexico. Deep Sea Research Part I: Oceanographic Research Papers 143:17-27
1005	Wei C-L, Rowe GT, Escobar-Briones E, Nunnally C, Soliman Y, Ellis N (2012) Standing Stocks and
1006	Body Size of Deep-sea Macrofauna: Predicting the Baseline of 2010 Deepwater Horizon Oil
1007	Spill in the Northern Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers
1008	Wei C-L, Rowe GT, Hubbard GF, Scheltema AH, Wilson GD, Petrescu I, Foster JM, Wicksten MK,
1009	Chen M, Davenport R, Soliman YS, Wang Y (2010) Bathymetric zonation of deep-sea
1010	macrofauna in relation to export of surface phytoplankton production. Mar Ecol Prog Ser 399:1-
1011	14
1012	Wicksten MK, Packard JM (2005) A qualitative zoogeographic analysis of decapod crustaceans of the
1013	continental slopes and abyssal plain of the Gulf of Mexico. Deep Sea Research Part I:
1014	Oceanographic Research Papers 52:1745-1765
1015	Yang T, Nigro LM, Gutierrez T, Joye SB, Highsmith R, Teske A (2016) Pulsed blooms and persistent oil-
1016	degrading bacterial populations in the water column during and after the Deepwater Horizon
1017	blowout. Deep Sea Research Part II: Topical Studies in Oceanography 129:282-291
1018	Yeager KM, Santschi PH, Rowe GT (2004) Sediment accumulation and radionuclide inventories ^{239,240} Pu,
1019	²¹⁰ Pb and ²³⁴ Th) in the northern Gulf of Mexico, as influenced by organic matter and macrofaunal
1020	density. Mar Chem 91:1-14
1021	Yoklavich MM, Greene HG, Cailliet GM, Sullivan DE, Lea RN, Love MS (2000) Habitat associations of
1022	deep-water rockfishes in a submarine canyon: an example of a natural refuge. Fishery Bulletin-
1023	National Oceanic and Atmospheric Administration 98:625-641
1024	Ziervogel K, McKay L, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C, Teske A (2012) Microbial
1025	activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the
1026	Deepwater Horizon oil spill site. PLOS ONE 7:e34816

1027

Macrofauna of DeSoto Canyon and adjacent slope

1029 Table 1. Station list with summary data for multicore deployments on the *R/V Weatherbird II*, in the

1030 DeSoto Canyon and adjacent slope in 2014. Three replicate deployments of the multicore were made at1031 each station.

1032						
	Station	Lat (N)	Long (W)	Date (dd-mm-	Depth	Treatment
1033			_	2014)	(m)	
	S35	29.3337	-87.0502	1-Jun	669	Axis
1034	PCB06	29.1950	-87.4383	2-Jun	1167	Axis
1035	S36	28.9163	-87.6692	3-Jun	1834	Axis
1000	Seep A	29.0430	-87.2825	7-Jun	1114	Axis
1036	AC1	29.4745	-86.9587	4-Jun	464	Axis
	XC1	29.2482	-87.7318	2-Jun	485	Wall
1037	XC2	29.1210	-87.8655	3-Jun	1137	Wall
1038	XC3	28.9762	-87.8683	4-Jun	1510	Wall
1000	Peanut Mound	28.5497	-88.0862	9-Jun	2045	Wall
1039	(PM)					
	XC4	28.6365	-87.8685	9-Jun	2290	Wall
1040	NT800	28.0560	-85.9335	30-May	808	Slope
1041	NT1000	28.0040	-85.9990	31-May	978	Slope
1041	S42	28.2528	-86.4217	31-May	771	Slope
10.10	L					

-

			Sample Av	ailability		
Variable type	Name	Source	Canyon	Slope	Range	Unit
Seafloor/Terrain	Slope	Bathymetry	Х		0.16 - 4.33	degrees
	Aspect - northness	Bathymetry	Х		-1.0 - 1.0	degrees
	Aspect-eastness	Bathymetry	Х		-1.0 - 1.0	degrees
Sediment environment	%carbon	Core sub-sample	X	Х	1.30 - 2.67	%
	%nitrogen	Core sub-sample	X	Х	0.12 - 0.36	%
	%sand	Core sub-sample	X	Х	14.81 - 65.04	%
	%silt	Core sub-sample	X	Х	30.43 - 74.93	%
	%clay	Core sub-sample	Х	X	0.14 - 29.50	%
Water mass	Salinity	CTD rosette	Х	Х	34.89 - 35.27	PSU
	Temperature	CTD rosette	X	Х	4.27 - 10.61	deg C
	O ₂ sat	CTD rosette	X	X	3.81 - 6.72	mg/l
	Fluorometry Eco- Afl and CDOM	CTD rosette	X	Х	2.95 - 9.04	mg/m ³
	Turbidity	CTD rosette	X	Х	0.18 - 8.08	NTU
	Particulate Organic Carbon	Remote sensing	X	Х	7.90 - 34.35	mg C/m²/day

1056 Table 2. Summary of environmental factors sampled in the DeSoto Canyon with ranges of values for each parameter across all samples.

			Other					Other	
Station	Depth (m)	Bivalvia	Mollusca	Nemertea	Polychaeta	Amphipoda	Tanaidacea	Crustacea	Miscellaneous
XC1	485	2.84	8.53	5.80	77.84	2.50	2.27	0.23	3.3
AC1	464	3.99	2.37	4.73	74.74	1.77	3.69	4.28	5.32
S35	669	3.92	8.55	2.32	63.64	2.32	12.12	7.84	3.21
SEEP A	1114	3.88	3.40	4.61	69.17	3.88	7.04	4.85	3.89
PCB06	1167	8.88	9.06	4.83	59.85	3.28	7.53	4.05	5.99
XC2	1137	7.60	16.99	3.73	63.81	3.87	5.66	2.62	4.01
XC3	1510	13.53	4.51	4.51	65.38	0.32	8.21	2.09	2.74
S36	1834	6.94	3.85	4.11	59.64	4.88	7.20	9.51	4.37
Peanut									
Mound	2045	4.88	3.04	3.96	49.09	3.05	16.46	17.99	2.44
XC4	2290	6.37	2.45	4.41	65.20	1.47	6.86	11.76	2.45

1059 Table 3. Major taxonomic group proportions for Desoto Canyon macrofauna by station.

1060

Macrofauna of DeSoto Canyon and adjacent slope

1061 Table 4. DISTLM marginal tests and overall best solutions for the environmental factors compared to

1062 macrofaunal assemblage structure within the DeSoto Canyon.

Variable No.	Variable	SS(trace)	Pseudo-F	Р	Prop.
1	Salinity	3227.2	3.5318	0.002	0.11201
2	O ₂ saturation [mg/l]	4141.9	4.701	0.001	0.14376
3	Fluorometry Eco-afl mg/m ³	4887.9	5.7207	0.001	0.16965
4	Fluorometry CDOM mg/m ³	1590.3	1.6358	0.069	0.055197
5	POC	4593.4	5.3106	0.001	0.15943
6	Turbidity	2916.2	3.1531	0.002	0.10121
7	%carbon	4295.8	4.9062	0.001	0.1491
8	%nitrogen	3175.6	3.4684	0.001	0.11022
9	%sand	2152.3	2.2606	0.009	0.074703
10	%silt	1698.3	1.7538	0.044	0.058944
11	%clay	1226.8	1.2452	0.17	0.042578
12	Aspect-northness	800.71	0.80038	0.691	0.027791
13	Aspect-eastness	1400.6	1.4306	0.118	0.048611
14	Slope	2707	2.9035	0.001	0.093954
Overall Best So	olutions				
AICc	R^2	RSS	No.Variables	Selections	
204.09	0.25555	21449	2	2,3	
204.25	0.31549	19722	3	1-3	
204.4	0.24777	21673	2	1,3	
204.55	0.3085	19923	3	2,3,7	
204.62	0.24227	21832	2	3,7	
204.71	0.30498	20025	3	2-4	
204.86	0.30142	20127	3	2,3,14	
204.89	0.16965	23924	1	3	
204.91	0.30025	20161	3	2,3,5	
204.97	0.23345	22086	2	3,5	

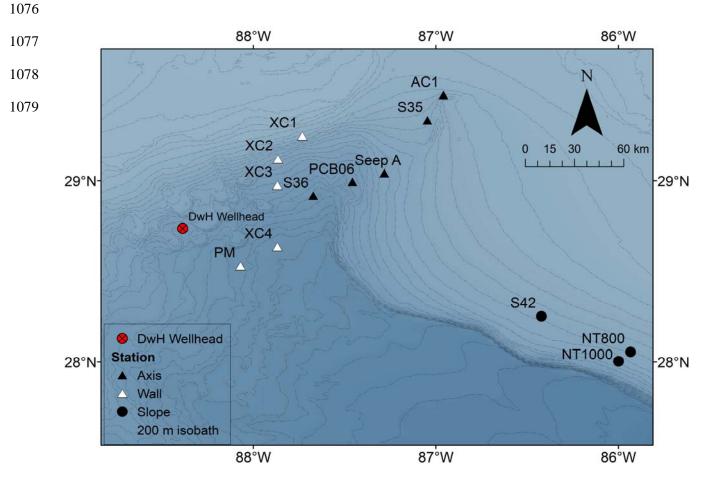
1063

Macrofauna of DeSoto Canyon and adjacent slope

- 1065 Table 5. One-way ANOSIM with pairwise comparisons of community structure among and between
- habitat types in the canyon (wall and axis, 669 1834 m) and adjacent slope (771 978 m). Bolded
- 1067 values indicate significant differences between groups (p<0.05).

Canyon Wall vs. Axis vs. Slope	\mathbb{R}^2	p-value	Permutations
Global test	0.483	0.001	999
Pairwise groups			
Slope, Axis	0.485	0.004	462
Slope, Wall	0.757	0.002	462
Axis, Wall	0.291	0.030	462

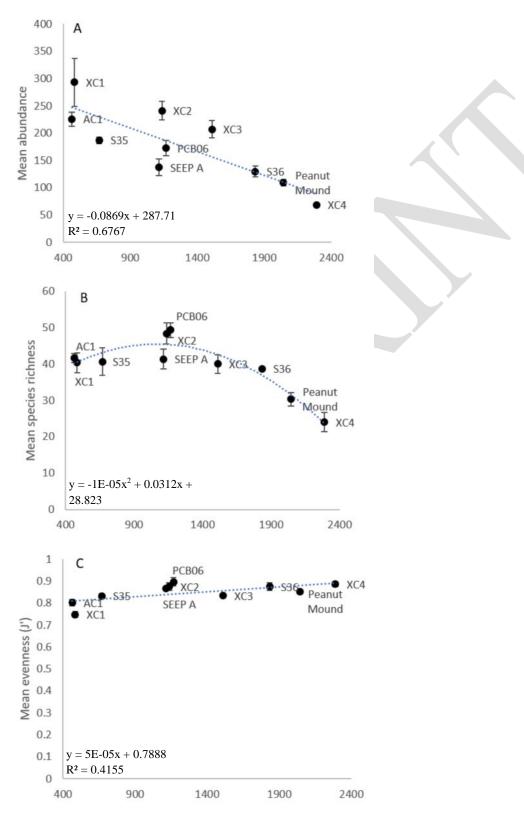
Macrofauna of DeSoto Canyon and adjacent slope


1069 Table 6. DISTLM marginal tests and overall best solutions for the environmental factors compared to

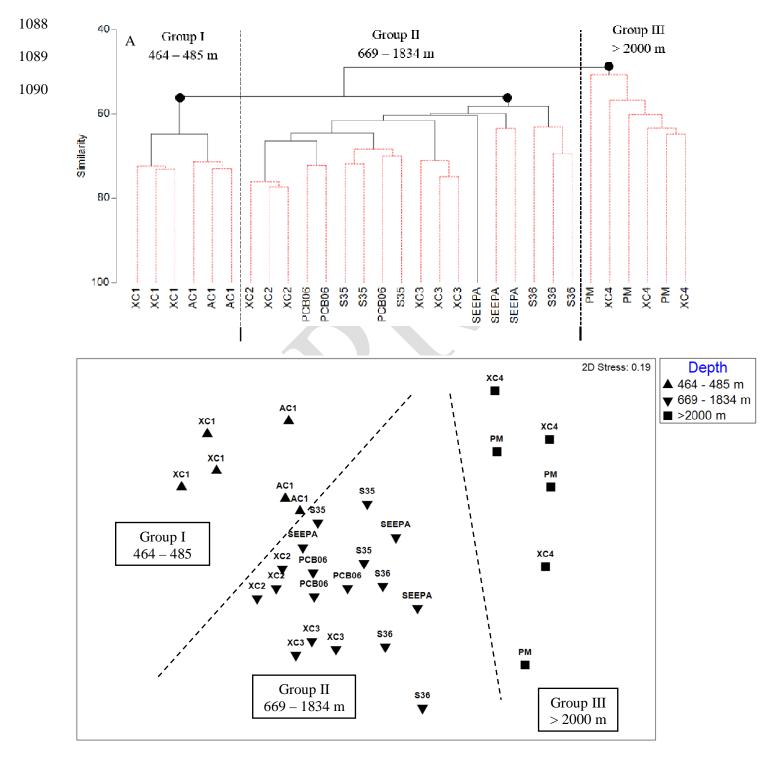
1070 macrofaunal assemblage structure among the axis and wall canyon macrofauna communities at depths of

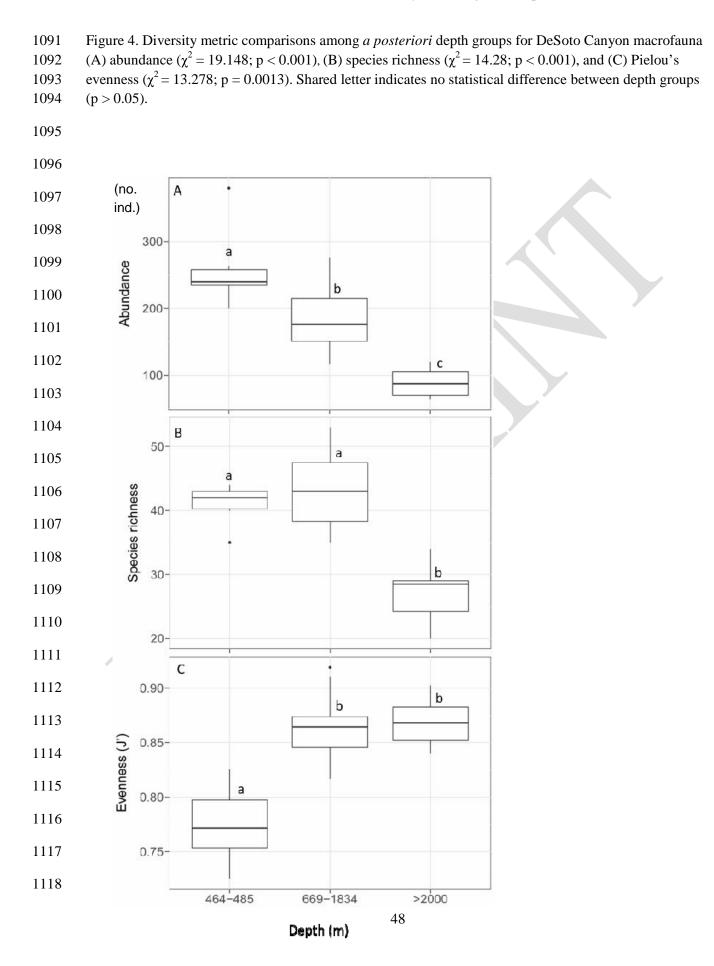
 $1071 \quad 669 - 1834 \text{ m}$ compared to the adjacent non-canyon slope at 771 - 978 m depth.

Variable No.	Variable Name	SS(trace)	Pseudo-F	p-value	Prop
1	O ₂ saturation [mg/l]	2115.5	2.1826	0.001	0.10113
2	Fluorometry Eco-afl mg/m ³	1602.7	2.0744	0.007	0.076617
3	Fluorometry CDOM mg/m ³	1534.5	1.979	0.006	0.073354
4	POC	1782.5	2.3292	0.001	0.085226
5	Turbidity	1927.1	2.5367	0.001	0.092122
6	%carbon	1927.8	2.5379	0.001	0.092159
7	%nitrogen	1487.3	1.9136	0.015	0.071102
8	% sand	666.78	0.82311	0.696	0.031875
9	% silt	910.78	1.138	0.3	0.043539
10	%clay	1418.3	1.8183	0.017	0.0678
С	Verall Best Solutions				
AICc	\mathbb{R}^2	RSS	No.Variables	Selections	
180.4	0.20708	16587	2	1,4	
180.73	0.27562	15153	3	1,3,4	
180.77	0.19618	16815	2	1,5	
181.11	0.26526	15370	3	1,4,5	
181.24	0.10113	18803	1	1	
181.26	0.1814	17124	2	3,4	
181.26	0.2612	15455	3	1,2,4	
181.27	0.18095	17133	2	1,2	
181.31	0.25991	15482	3	1,3,5	
181.41	0.17683	17219	2	4,6	

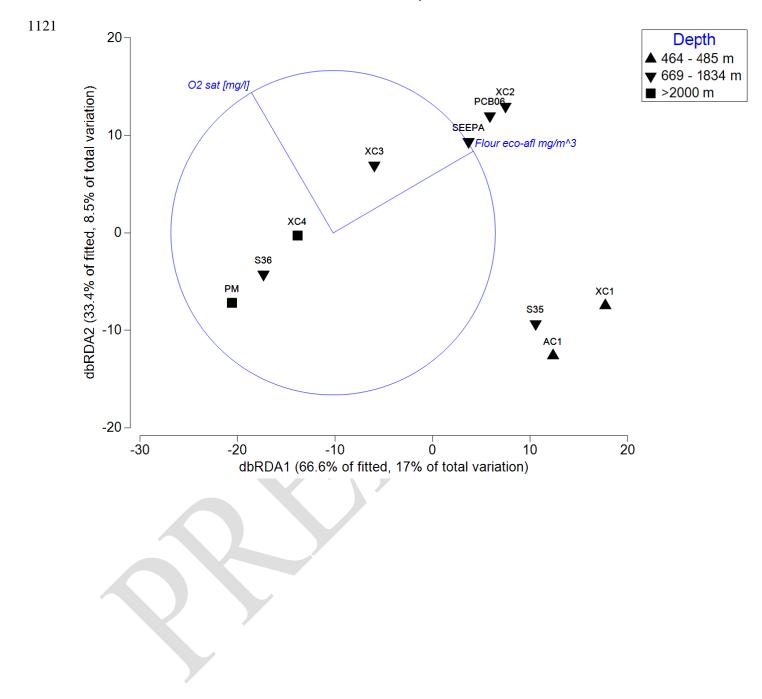

- 1073 Figure 1. Bathymetric map of DeSoto Canyon sites sampled in 2014 relative to the position of the DwH
- 1074 wellhead. Ten sites traverse along the axis of the canyon (black triangles) and along the canyon wall
- 1075 (open triangles) and three are located on the adjacent slope (circles). Contour line depths are in meters.

- 1080 Figure 2. Mean abundance and diversity metrics within the DeSoto Canyon ordered by depth. A)
- 1081 Abundance ($F_{(1, 8)} = 16.75$). B) Species richness ($F_{(2, 7)} = 25.56$). C) Pielou's evenness ($F_{(1, 8)} = 5.686$).
- 1082 Error bars are standard error of the mean.

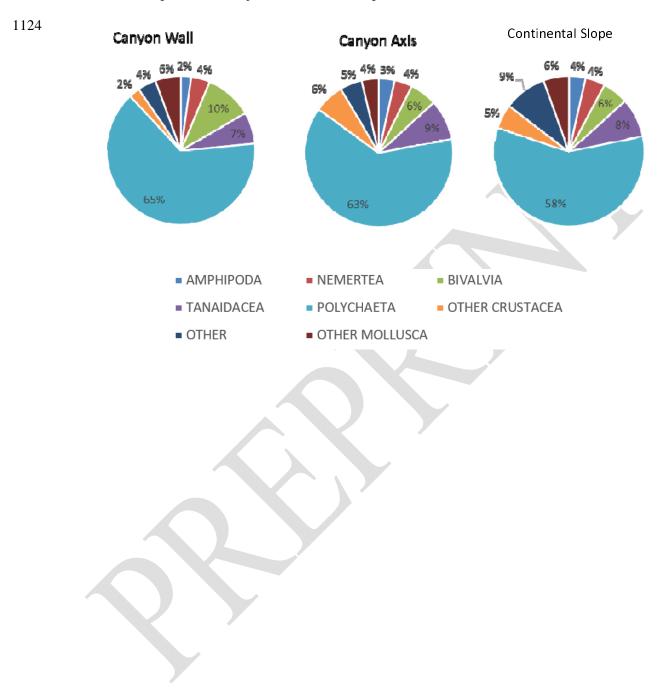



Macrofauna of DeSoto Canyon and adjacent slope

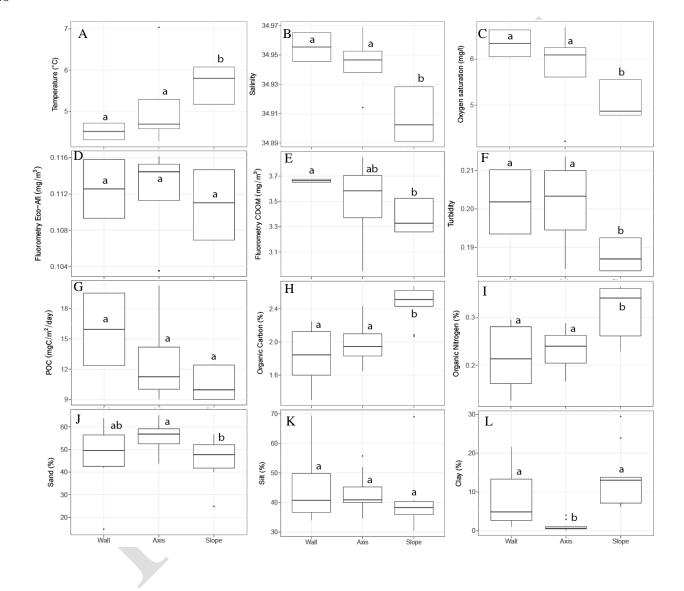
1084


1085Figure 3. A) Cluster analysis based on root-transformed abundances of DeSoto Canyon macrofauna. The1086black dots indicate nodes of significant clusters (Pairwise ANOSIM R = 0.526 - 0.904, p $\leq 0.001 -$

1087 0.002). B) Non-metric multidimensional scaling of DeSoto Canyon macrofauna.

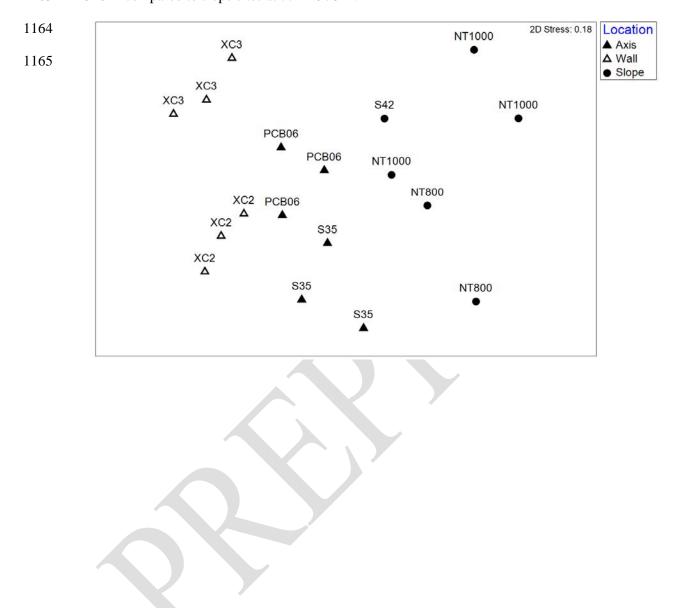


- 1119 Figure 5. Distance-based redundancy analysis (dbRDA) plot of the top DISTLM model of community
- 1120 structure and environmental variables within DeSoto Canyon.


- 1122 Figure 6. Relative abundance of major taxonomic groups by overall totals in the DeSoto Canyon habitats
- 1123 (wall, axis) compared to the adjacent continental slope.

- 1125 Figure 7. Diversity metrics comparing canyon habitat Group II axis and wall sites (669 - 1510 m) and
- adjacent slope (771 978 m). A) Abundance ($\chi^2 = 15.72$; p < 0.001). B) Species richness ($\chi^2 = 1.3324$; p = 0.5137). C) Pielou's evenness ($\chi^2 = 1.4951$; p = 0.4735). Shared letter indicates no statistical difference 1126
- 1127 1128 between depth groups (p > 0.05).
- 1129 (no. ind.) 1130 А 1131 250 а 1132 Abundance 1133 200 b 1134 1135 150 b 1136 100 1137 В 1138 50 1139 а а Species richness 1140 45 а 1141 40 1142 1143 35 1144 1145 С 1146 0.90-1147 а Evenness (J') а а 1148 0.87 1149 1150 0.84 1151 1152 Wall Axis Slope

- Figure 8. Boxplots of environmental factors across habitat types (canyon wall, axis and adjacent slope).


- Figure 8. Boxplots of environmental factors across habitat types (carryon wan, axis and adjacent stope). Shared letter indicates no statistical difference between depth groups (p > 0.05). A) Temperature ($\chi^2 = 8.125$, p = 0.01721). B) Salinity ($\chi^2 = 13.903$, p < 0.001). C) Oxygen saturation ($\chi^2 = 8.125$, p = 0.01721). D) Fluorometry Eco-Afl ($\chi^2 = 1.95$, p = 0.3772). E) Fluorometry CDOM ($\chi^2 = 7.1861$, p = 0.02751). F) Turbidity ($\chi^2 = 10.761$, p = 0.004605). G) POC flux ($\chi^2 = 5.7778$, p = 0.05564). H) Organic carbon ($\chi^2 = 12.568$, p = 0.001866). I) Organic nitrogen ($\chi^2 = 8.3891$, p = 0.01508). J) % sand ($\chi^2 = 6.9524$, p = 0.03092). K) % silt ($\chi^2 = 2.7557$, p = 0.2521). L) % clay ($\chi^2 = 18.015$, p < 0.001).

Macrofauna of DeSoto Canyon and adjacent slope

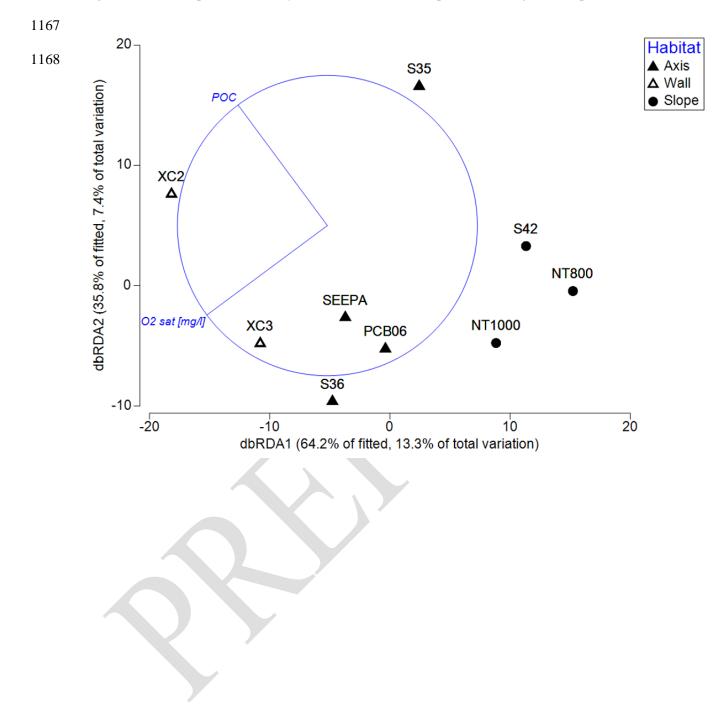

1161

Figure 9. Non-metric multidimensional scaling of group II canyon axis and wall sites at depths of 669 –
1163 1510 m compared to slope sites at 771 – 978 m.

Macrofauna of DeSoto Canyon and adjacent slope

Figure 10. dbRDA plots of the canyon at 669 - 1834 m compared to the adjacent slope at 771 - 978 m.

