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Abstract  

Cetaceans are the longest-lived species of mammals and the largest in the history of the 

planet. They have developed mechanisms against diseases like cancer, however their 

underlying molecular and genetic basis remain unknown. The goal of this study was to 

investigate the role of natural selection in the evolution of tumor suppressor genes in 

cetaceans. We found signal of positive selection 29 tumor suppressor genes and duplications 

in 197 genes. The turnover rate of tumor suppressor genes was almost 6 times faster in 

cetaceans when compared to other mammals. Those genes with duplications and with 

positive selection are involved in important cancer regulation mechanisms (e.g. chromosome 

break, DNA repair and biosynthesis of fatty acids). They are also related with multiple ageing 

and neurological disorders in humans (e.g. Alzheimer, Nijmegen breakage syndrome, and 

schizophrenia). These results provide evolutionary evidence that natural selection in tumor 

suppressor genes could act on species with large body sizes and extended life span, providing 

insights into the genetic basis of disease resistance. We propose that the cetaceans are an 

important model in cancer, ageing and neuronal, motor and behavior disorders. 
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Introduction  

Why large organisms do not always develop more cancer than smaller ones? This is an 

unresolved question that was proposed by Richard Peto in 1975 and it is known as “Peto’s 

paradox” 1. Peto’s paradox is based on the observation that the risk of developing cancer 

should increase with the number of cells. Higher number of cells is associated with more cell 

divisions, that is one of the main causes of errors that may result in DNA damage 

transforming a normal cell into a cancer cell 2,3. According to the Peto’s paradox, we should 

expect a higher probability of developing cancer in large organisms in comparison to small 

ones, however, this does not occur 4–6. Recently, the availability of genomes of a wide variety 

of species have stimulated the search for genes that could explain Peto’s paradox. In 

particular, understanding the molecular basis of the anticancer mechanisms in big and 

long-lived species will shed light into fundamental areas like medicine, behavior and ecology. 

The ways in which organisms reach and maintain larger body sizes and/or increased 

longevity, have puzzled scientists for decades 7. For example, the naked mole rat 

(Heterocephalus glaber) has an average body mass of 35g and a lifespan of 35 years 8. Long 

term studies suggest that their mortality rate 9 and risk of cancer does not increase with age 10. 

In this species special modifications in telomerase activity and sensitive contact inhibition 

mechanisms would be, in part, responsible for their extended lifespan 11. Among vertebrates 

other anti cancer-ageing mechanisms are described that could explain the maintenance of 

large body sizes and/or increased longevity. For example, in the little brown bat (Myotis 

lucifugus) it is described that telomere dynamics and changes in genes associated with growth 

factors are related to repair mechanisms that prevent the DNA damage with age 12,13. In the 

yellowmouth rockfish ( Sebastes reedi) there are no signs of aging in replicative senescence 14 

and in the African elephant (Loxodonta africana) it is described variation in gene copy 

number in TP53 and LIF genes 15. Molecular variation in tumor suppressor genes could work 

like a compensatory mechanism, by providing additional protection against DNA damage 

that could result in less probability of developing cancer 2. However, the evolutionary history 

of tumor suppressor genes remains unknown.  

Cetaceans evolved from a terrestrial ancestor and re-entered into the oceans around 50 

million years ago 16. Their adaptation to an aquatic lifestyle required large amount of 

morphological, physiological and behavior changes. The sub-order Cetacea is composed of 

two main lineages; Odontoceti (or toothed whales) and Mysticeti (or baleen whales) 16. 
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Baleen whales and toothed whales display a huge range of body mass and maximum lifespan, 

ranging from the 17 years in the Pygmy sperm whale (Kogia breviceps) to 211 years in the 

bowhead whale (Balaena mysticetus) and from 50 kg in the Maui's dolphin 

(Cephalorhynchus hectori maui) to 175 tons in the blue whale (Balaenoptera musculus) 8. 
Because there are species that live more than one hundred years, during their lifetime, they 

are exposed for a much longer time to the appearance of harmful mutations, pathogens and 

diseases. Then, it is expected that cetaceans developed improvements in the immune systems 

and DNA repair that could act favoring multiple traits. 17. In agreement with that, in the 

longest-living mammal, the bowhead whale (Balaena mysticetus, lifespan ≈ 211 years, 

weight ≈ 100 tons) and the Humpback whale, the signal of positive selection were identified 

in genes involved in DNA repair, cell cycle regulation, resistance to ageing and cancer 18,19. 

Further, recent investigations have found the signal of positive selection in genes that could 

be related to their variation of body size 17. Although for mammals the evidence shows that 

tumor suppressor genes play a key role in the evolution of body size and longevity, through 

decreasing the incidence of diseases such as cancer 7,20, it is still an open question which 

molecular variants allow cetaceans to have evolved a lower incidence of cancer 21–23. 

 The goal of this study was to investigate the evolution of tumor suppressor genes in 

cetaceans, evaluating two forms of molecular variation (dN/dS and gene copy number 

variation). We report a signal of positive selection in 29 tumor suppressor genes involved in 

multiple processes that control the cancer onset and progression. The turnover rate of tumor 

suppressor genes was faster in cetaceans in comparison to other mammals. We report almost 

two hundred genes with duplications in one or more species of cetaceans involved in ageing, 

motor and neuronal disorders, deficits in learning and memory and developmental disorders. 

This approach highlights how studying the role of natural selection in genes associated with 

human health could lead to advances in our understanding of the genetic basis of disease 

resistance. 

 

Methods 

DNA sequences and taxonomic sampling 

To study the evolution of tumor suppressor genes (TSGs) in cetaceans we implemented a 

phylogenetic design including 15 mammalian species. Our taxonomic sampling included five 

Odontocetes (bottlenose dolphin, Tursiops truncatus ; orca, Orcinus orca ; beluga, 
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Delphinapterus leucas; yangtze river dolphin, Lipotes vexillifer; and the sperm whale, 

Physeter catodon), two Mysticetes (common minke whale, Balaenoptera acutorostrata; 
bowhead whale, Balaena mysticetus), five other members of the superorder Laurasiatheria 

(cow, Bos taurus ; pig, Sus scrofa ; dog, Canis familiaris; horse, Equus caballus; microbat 

Myotis lucifugus), two Euarchontoglires (human, Homo sapiens ; mouse, Mus musculus ) and 

one Atlantogenata (African elephant, Loxodonta africana). The coding sequences of each 

species were downloaded from Ensembl v.96 ((http://www.ensembl.org), NCBI database 24 

and the Bowhead whale genome project (http://www.bowhead-whale.org/) (supplementary 

table 1). To remove low quality records, sequences were clustered using CD-HITest v.4.6 25 

with a sequence identity threshold of 90% and an alignment coverage control of 80%. After 

that, the longest open reading frame was kept using TransDecoder LongOrfs and 

TransDecoder-predicted in TransDecoder v3.0.1 

(https://github.com/TransDecoder/TransDecoder/).  
 

Homology inference 

We inferred homologous relationships between the 1088 tumor suppressor genes described 

for humans, available in public databases (Tumor Suppressor Gene Database, 

https://bioinfo.uth.edu/TSGene/ and the Tumor Associate Gene, 

http://www.binfo.ncku.edu.tw/TAG/GeneDoc.php), and the other 14 species included in our 

study using the program OMA standalone v.2.3.1 26 . We inferred two types of groupings 1) 

OMA Groups (OG), containing the sets of orthologous genes and 2) Hierarchical 

Orthologous Groups (HOGs), which are all genes that have descended from a common 

ancestral gene. The amino acid sequences were aligned using the L-INS-i algorithm from 

MAFFT v.7 27. Nucleotide alignments were generated using the amino acid alignments as a 

template using the function pxaa2cdn in phyx 28. Finally, to reduce the chance of false 

positives given for low quality alignment regions, we made a cleaning step with the 

codon.clean.msa algorithm of the rphast package 29, with the associated human tumor 

suppressor gene as reference sequence.  

 

Natural selection analysis 

To evaluate the role of natural selection in the evolution of tumor suppressor genes, we used 

the codon-based model in a maximum likelihood framework using the program PAML v4.9 
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30, as is implemented in the ETE-toolkit with the ete-evol function 31. We used the branch-site 

model to estimate the signature of positive selection in the last common ancestor of Cetacea, 

Mysticeti (baleen whales) and Odontoceti (toothed whales). We compared the null model, 

where the value of ω in the foreground branch was set to 1, with the model in which the 

omega value was estimated from the data using the likelihood ratio tests (LRT) 32 

(supplementary table 2). 

 

Copy number variation analysis 

To estimate the gene turnover rate of the tumor suppressor genes we used the software 

CAFE, version 4.2.1 (Computational Analysis of Gene Family Evolution) 33. Briefly, CAFE 

uses a stochastic birth and death model to estimate the expansions and contractions of genes 

using as a frame of reference the sister group relationships among species and divergence 

times. Using this approach we can infer the rate of evolution (λ) and the direction of the 

change in the size of the gene families in different lineages. We implemented two models. In 

the first, one λ was estimated for cetaceans as total group and other for the outgroup. In the 

second model, we estimated four λ values (i) the stem cetacea, (ii) the total group of 

Mysticeti, (iii) the total group of Odontoceti and (iv) the outgroup. All the comparisons were 

calculated using p<0.01 and the CAFE correction for the genome assembly and annotation 

random error. The divergence time between species was obtained from the TimeTree 

database (http://www.timetree.org/) 34 . However, Odontoceti shows a polytomy, then we 

re-calibrate the tree using the packages APE and Phytools 33,35 in R 36, and the time-data of the 

most actualized time calibrated phylogeny of Odontoceti 37.  

Enrichment analysis  

To gain insight into the specific functions associated to the TSGs with signal of positive 

selection (dN/dS or CNV) we performed enrichment analyses using the gene ontology 

classification through DAVID bioinformatics resources - DAVID 6.7 38.  

 

Results 

Homology inference 

Whales are the longest-lived mammals and the largest in the history of our planet. During 

their evolutionary history they developed mechanisms against ageing and diseases, however, 

most of them remain unknown. In this study we performed an evolutionary analysis to 
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understand the role of natural selection, by estimating dN/dS and gene copy number variation, 

in the evolution of tumor suppressor genes in cetaceans. From the 1088 TSGs described for 

humans, we obtained 364 OrthoGroups (OG) containing the 15 mammalian species included 

in this study (supplementary file3) and 1044 hierarchical orthologous groups (HOG) 

containing two or more species (supplementary file 4, supplementary table 6).  

 

TSGs with positive selection in cetaceans are related with multiple human disorders 

According to our analyses, carried out in a set of 364 orthologous genes, we found the signal 

of positive selection in 29 tumor suppressor genes: 4 in the stem Cetacea, 4 in the stem of 

toothed whales (Odontoceti) and 21 in the stem of baleen whales (Mysticeti) (Fig.1, 

supplementary table 3). The TSGs with signal of positive selection are involved in multiple 

types of cancer and other human disorders (e.g., Fanconi anemia, Alzheimer, Nijmegen 

breakage syndrome and Coffin-Siris syndrome) (Table 1). The genes with a signature of 

positive selection were significantly enriched in 33 biological processes (supplementary table 

4). In the last common ancestor of cetaceans we found enriched categories related with cancer 

regulation like chromosome break (BRCA2) and chemotaxis (CXCR2), but also involved in 

brain development that are linked with nervous system disorders in humans (PALB2 and 

BRCA2). In toothed whales, we found enriched categories related with the regulation of the 

cell cycle arrest (MYBBP1A), an important anti-cancer ageing mechanism reported before in 

other long-lived species (Huang et al., 2019), and also related with nervous system 

development (SMARCA4 and ACHE). In the last common ancestor of baleen whales, the 

lineage that includes the largest and long-lived species of mammals, the most represented 

functional categories found were related with aging and ADN repair (PRKAA1 and 

PRKAA2), apoptosis (SERPINB5), chromosome break (BRCA1), biosynthesis of fatty acids 

and cholesterol and regulation of TOR signaling (PRKAA1 and PRKAA2).  

In summary, we report the signature of natural selection in TSGs involved in multiple 

human disorders. Since TSGs with the signature of positive selection in baleen whales and 

toothed whales are categorized into different biological processes, we suggest that these 

lineages could have evolved similar anticancer/ageing phenotype independently, reducing the 

risk of cancer, and favoring longevity and body mass. 

 

Cetaceans have an accelerated gene turnover rate in comparison to other mammals  
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Our results revealed that the turnover rate of TSGs of cetaceans, as a total group, is more than 

five times faster (λc = 0.0037) in comparison to the rest of the tree (λo = 0.0007) (Fig. 2a). 

In the second model, in which we specified four rates of gene family evolution, we found that 

the turnover rate values estimated for the last common ancestor of baleen whales (λmy= 

0.0036) and the last common ancestor of cetaceans (λC= 0.0037) are similar, but lower in 

comparison to the estimate of the last common ancestor of toothed whales (λod= 0.0046) (Fig. 

2b). In all cases the gene turnover rate is almost 6 times faster in comparison to the outgroup 

(Fig. 2b). 

To gain insights into the mechanisms related to ageing and disease resistance that are 

related to the tumor suppressor gene families, we identified the TSGs with specific 

duplications in cetaceans. According to our analyses we identified 197 TSGs with specific 

duplications in one or more cetacean species (Fig 3a, supplementary table 7 ). These 

duplicate genes are related with ageing (21 TSGs, supplementary table 8), immune system, 

vision and neurological, cardiovascular, metabolic and developmental disorders in humans 

(Fig 3b). Also they are involved in multiple biological processes (supplementary table 9) 

which are directly associated with the regulation of cancer, like cell proliferation (DAB2, 

FES, YAP1, BIN1), cell migration (EFNA1, PTPRK), apoptosis (LITAF, EPB41L3. KIF1B) 

and metabolism pathways (NEO1, PAX6, PTPRD and PTPRK). In our analysis, we also 

report extensive variation in the expansion and contraction of TSGs families in cetaceans and 

in the African elephant (Loxodonta africana) and the little brown bat (Myotis lucifugus), 
mammalian species that are well known for being cancer resistant (Gorbunova et al., 2014) 

(Fig. 4).  

In summary, we found an accelerated rate of evolution of TSGs in cetaceans in 

comparison to other mammals. The gene families with an accelerated rate of evolution are 

related with important anticancer process that has also been reported in other long-lived 

species, like DNA repair, cell cycle and replicative senescence. Finally, we report almost two 

hundred genes duplicated just in one or more cetaceans, that are involved in multiple human 

disorders that comes from immune system and ageing to neurological disorders.  

 

Discussion  

TSGs with the signature of positive selection are related to cancer and Falcony anemia 
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To understand the evolution of tumor suppressor genes in cetaceans, we studied the role of 

positive selection in genes involved in detection and repair of genetic damage, because this 

could be an important process in preventing the appearance of mutations that promote the 

spread of cancer cells in the organism. In the ancestor of cetaceans we report the signature of 

positive selection in the CXCR2 gene, that is a chemotaxis receptor, that regulates the 

recruitment of leukocytes during the inflammation processes and has also been described as a 

crucial factor in the tumor cell dissemination 39. The MYBBP1A gene had the signature of 

positive selection in the ancestor of toothed whales, and is involved in p53 activation playing 

a fundamental role in programmed cell death 40. In baleen whales we also found genes that 

could protect against the tumor growth, like the SERPINB5 gene, that has an important role 

in angiogenesis and metastasis 41. Considering the evolution of the enormous body size in 

cetaceans, molecular variants in CXCR2, MYBBP1A and SERPINB5 could arise as a 

protective mechanism against the development of tumors.  

We also found the signature of positive selection in the BRCA2 gene (marginally 

significant p-value of 0.06) in the ancestor of cetaceans and BRCA1 and PALB2 in the 

ancestor of baleen whales. BRCA1-2 genes are strongly associated with breast, ovarian and 

prostate cancer, the most common malignancy among the human population 42. These genes 

have a central role in the maintenance of genomic stability and are also involved with 

chromosome breakage and cell cycle control 43. Previous studies have also shown the 

signature of positive selection in BRCA2 in long-lived species of bats 13, suggesting that 

BRCA2, in association with their paralog BRCA1, could improve the DNA repair process 

protecting against the accumulation of DNA damage in cetaceans. 

In humans, the BRCA1-2 and PALB2 genes are also related with Fanconi anemia, a 

genetic disease that is involved in bone-marrow failure and congenital malformation, which 

made patients more susceptible to cancer at younger ages. Damages in those genes cause an 

increased cancer predisposition by DNA repair deficiency 44. Patients with Fanconi anemia 

also have accelerated telomere shortening, product of the DNA damage and oxidative stress 
45, which are determinants of ageing and cell senescence. In cetaceans, the combination of 

new molecular variants (e.g. BRCA1/2 and PALB2) could reduce the incidence of cancer and 

lead us to understand new routes that could improve the mechanisms of DNA damage, cancer 

and ageing. 
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TSGs with the signature of positive selection are related with ageing 

Ageing is the biggest risk factor for developing cancer and is characterized by the progressive 

accumulation of cellular damage, but the mechanisms linking these two processes -ageing 

and cancer- remain unclear 46. One of the mechanisms that define how well we age, is the 

regulation of energy flow in the cells 47. The genes PRKAA1 and PRKAA2 had signature of 

positive selection in baleen whales, and are part of the AMP- activated protein kinase 

(AMPK) complex, one of the primary regulators of energy homeostasis in eukaryotic cells 

and is considered as “a metabolic master-switch” 48. The AMPK modulators have an 

important role in cardiac disorders (e.g. Wolff-Parkinson-White) 49, metabolic diseases (e.g. 

diabetes type II and obesity) 50 and also preventing the proliferation of cancer cells 51. This 

pro-longevity mechanism has been used as therapeutic targets for age-related disorders in 

mammals 52,53 and it could be an important ageing mechanism in the evolution of baleen 

whales, who can live more than two hundred years. In baleen whales, the mechanisms 

associated with cancer resistance may have responded to selective pressures related to the 

increase in body size. Then, new pathways that improved their repair mechanisms of DNA 

damage, product of the metabolism of fatty acids and cholesterol, could arise in response to 

variants of these genes.  

Previous studies with the bowhead whale genome (the longest-lived mammal) found a 

link between genes involved in metabolism and the evolution of longevity 19. A number of 

studies have supported associations between sindroms related with metabolism and 

cardiovascular diseases, diabetes and schizophrenia 54. For example, Hansen et al., (2011) 

studied 410 Danish patients with type II diabetes, 4089 with schizophrenia and others 17,597 

european patients as controls. They found that the patients with type II diabetes increases the 

risk of developing schizophrenia and the genetic risk factor is associated mutations in the 

gene TCF7L2 55. In our study, we found ten copies of this gene in the killer whale and seven 

in beluga, however, the physiological consequences of having an increased number of copies 

and its relation with diabetes and schizophrenia remains unknown. Comparative studies in 

genes related with ageing and cancer, will provide insights into the evolution of 

physiological, morphological and behavioural traits. 

Another anticancer and ageing mechanism is replicative senescence. This process is in 

charge of stopping cell proliferation 56 and in species that evolved large body sizes is 

considered as an important tumour suppressor mechanism 11. In our study we report four 
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copies of the IRF5 gene in the orca and three copies of the PTPRD gene in the orca and in the 

sperm whale, both of them promoters of replicative senescence. The PTPRD gene has been 

associated with different types of cancer, including laryngeal, head and neck squamous cell 

carcinomas 57. The fact that cases of oral squamous cell carcinoma have been diagnosed in 

dolphins of the genus Tursiops  58, coincides with the fact that they only have one copy of the 

PTPRD gene. In contrast, we report five copies of the PTPRD gene in beluga and minke 

whale and two copies in the killer whale and the river dolphin. An increase in the copy 

number of TSGs (e.g PTPRD and IRF5) could work as an extra protection against the 

development of squamous cell carcinomas in cetaceans, since it has been suggested that 

increasing the number of copies would act as "guardians" to prevent somatic mutations 

spreading in the cell population 4,59. This result is in agreement with previous studies, where it 

has been shown that longevity-associated gene families evolve faster (increase the number of 

gene family members) in long-lived species 60.  

 

TSGs with the signature of positive selection are related with neurological disorders  

Given that whales, porpoises and dolphins have developed complex neurological systems and 

have the greatest absolute brain size among animals 61, it is expectable that they possess 

molecular variants to reduce the development of nervous system disorders (e.g. Alzheimer's, 

Nijmegen breakage syndrome, Coffin-Siris syndrome and spatial learning and motor 

coordination diseases). For example, the EPB41L3 gene is involved in meningiomas 

development 62, that is the most common central nervous system tumors in humans 63. In our 

study we found 13 copies in the minke whale, eight in the beluga, four in the river dolphin 

and two in the killer whale and the sperm whale. On the other hand, BRCA2 gene (with 

positive selection in the stem of cetaceans) has also an important role in maintaining neural 

homeostasis in the central nervous system 64. Experiments in mice have shown that the 

deletion of the BRCA2 gene affect their embryonic and postnatal neural development 65, 

while in humans, mutations in this gene could cause microcephaly 66. Other duplicated gene 

in cetaceans related with neurological disorders, like depression and schizophrenia, is the 

DLG1 gene 67, and we identified three to five copies in five cetaceans species. Thus, amino 

acid changes in the BRCA2 gene in addition extra copies of the EPB41L3 and DLG1 genes, 

could be seen as an adaptive process improving the DNA repair system and providing an 
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improved protection against cancer and neurological disorders, a hypothesis that needs to be 

tested. 

Alzheimer's disease is another neurodegenerative disorder developed mainly in old 

ages that affects the cognitive functions and generating slow memory loss 68. In cetaceans, we 

report multiple copies of genes that has been recognized as a genetic risk factors in human 

Alzheimer's. Some of those genes are EPHA1, that is a positive regulator of angiogenesis, 

and metastases 69; the ACHE gene, that encodes for the enzyme acetylcholinesterase, which is 

a catabolic enzyme for the neurotransmitter acetylcholine that is involved in the nervous 

system development pathways 70 and the BIN1 gene, that is a neuroinflammation related gene 
71. Particularly, for the BIN1 gene we found eleven copies in the beluga, eight in the river 

dolphin and four in the killer whale. The extra copies could serve as a complement to prevent 

the emergence of diseases that can cause memory loss that could affect the social abilities of 

the group. Then, in toothed whales, the anticancer mechanism could have evolved in response 

to the cognitive demands associated with complex cognitive system, sociability and use of 

echolocation. Thus TSGs may have been positively selected by natural selection by 

improving the mechanisms that lead to the appearance of diseases such as Alzheimer's.  

In the ancestor of toothed whales, we found TSGs with positive selection involved in 

neurodevelopmental disorders like Nijmegen breakage syndrome (NBS) and Coffin-Siris 

syndrome (CSS).  NBS is a genetic disorder characterized by severe microcephaly leaded by 

growth retardation, short stature, and malfunctioning of the immune system, making the 

individuals with more predisposition to cancer 72. The NBS is associated with mutations in 

the gene MDC1, that is involved in the signalling, detection and reparation of DNA damage 
73. The gene MDC1 could be an important anticancer mechanism in toothed whales. On the 

other hand, Coffin-Siris syndrome (CSS) is a rare neurodevelopmental disorder, characterized 

by cognitive and developmental disability 74. CSS is related with mutations in the SMARCA4 

gene in the 11% of patients 75. SMARCA4 is part of the ATP-dependent chromatin 

remodelling complex BAF (or SWI\SNF complex) 76. This complex is in charge of the 

regulation of gene expression and cell differentiation and maintenance of stem cell 

pluripotency 77. Particularly, SMARCA4 has been also associated with small-cell carcinoma 

of the ovary hypercalcemic type (SCCOHT), a malignant tumour with poor response to 

chemotherapy 78. Overall, these genes which are related to neurodevelopmental disorders in 
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humans, in species that developed complex cognitive systems, like the toothed whales, could 

underlie new discoveries and gene pathways that could have an impact in human medicine.  

 

TGSs duplications in cetaceans are related with spatial learning and motor disorders in 

humans 

As in humans, cetaceans possess a fascinating evolution of behavior, with a complex social 

structure, developinging language comprehension and self-recognition ability 79. Dolphins 

and whales are characterized for having few fully developed young, which develop a faster 

self-recognition ability and are capable of following the mother shortly after birth in a 

behavior that is known as a "infant carrying" 80. During lactancy and infant carrying, the 

morphological and physiological hydrodynamic development of the young impacts in the 

swimming performance 81. Newborns with diseases, motor malformations or poorly 

self-recognition ability usually are killed or left to die as they do not have enough skills to 

survive in nature 82. In our study we identify duplicated genes in cetaceans that are related 

with spatial learning and motor disorders in humans. For example, EPB41 gene is involved in 

involved in the actomyosin structure organization that is a machinery that works in the 

contractile apparatus in muscle cells and neuronal membrane receptor complexes 83. 

Experiments with EPB41 knockout mice also revealed erythroid disorders and others 

neuronal defects related with spatial learning and motor coordination 84. In our study we 

found four copies of the EPB41 gene in the minke whale and beluga and five copies in the 

river dolphin. An increase in the copy number of EPB41 could represent a way to develop 

new pathways to regulate the machinerie that controls the muscle contractions in an aquatic 

environment and also control and/or avoid neuronal disorders. 

Another gene duplicated in cetaceans is the PAX6 gene, that is involved in the central 

nervous system and eye development across the tree of life 85,86. Mutations in the PAX6 gene 

cause ocular pathologies, like aniridia in humans 87 or malformed retina and lens in frogs 

(Xenopus tropicalis) 88. Also, it has been related with neurological phenotypes (e.g autism 

and mental retardation) 89,90. In zebrafish (Danio rerio ) has been identified two PAX6 genes, 

as a consequence of the teleost-specific genome duplication, suggesting a division of labor 

between the two copies during the development of brain and eye structures 91. In our study we 

report four copies in beluga and four copies in the common minke whale. Studying human 

ageing under a comparative evolutionary perspective offers an avenue that could provide 
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information about the role of natural selection in the evolution of species that found another 

way to avoid ageing diseases like cancer.  

In the same direction, ABI2 gene is a regulator of cell migration and when is mutated 

generates aberrant dendritic spine morphogenesis and deficits in learning and memory 92. 

ABI2 has a paralog, ABI1, which positively regulates lung metastasis of aggressive breast 

cancer 93. Regua et al., (2008) suggest that in the absence of ABI1, its paralog could play a 

compensatory role that may support primary tumor growth. In our study, we report seven 

copies of ABI2 in the killer whale, four in the beluga, six in the river dolphin, two in the 

sperm whale, and two in the minke whale. Charcot Marie Tooth disease (CMT) is a 

hereditary motor and sensory neuropathy. The CMT type 1C cause abnormalities in myelin 

and affect the health of the nerve fiber, this disorder is associated with mutations in the 

LITAF gene 94. In CMT type 2A the sensory peripheral nerves are malfunction, developing 

alterations in the sensorial capacity, atrophy and muscle weakness. The CMT type 2A? has 

been related related with mutations in the KIF1B gene that is a precursor in the axon from the 

cell body to the synapse 95. However, even when affect an important morphological and 

physiological traits, it seems that the CMT disease do not decrease the lifespan of the 

individuals 96. In our study, we report four copies of the LITAF gene in the river dolphin and 

three copies in the bowhead whale found an increased number of copies of the KIF1B gene in 

four cetaceans species: six in the minke whale, four in beluga, four in the sperm whale and 

two in the river dolphin. The role of the expanded repertoire of LITAF and KIF1B in 

cetaceans remain unknown, however, they could play a role at neuronal and motor level, 

taking into account that the organs of senses (including the sonar) and the development of 

hydrodynamic body shape were ones of the most remarkable morphological modifications in 

the evolution of the cetaceans. 

In big, social and long-lived organisms, natural selection could favor disease resistant 

mechanisms for the improvement of the immune system, DNA repair mechanisms and 

metabolic pathway, but could also select positively molecular variants associated to avoid 

neuronal and motor pathologies.  

 

Conclusions  

The main goal of this study was to shed light into the evolution of tumor suppressor genes in 

cetaceans. We reported signal of positive selection in 29 TSGs and an accelerated gene 
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turnover rate in comparison to other mammals, with duplications in 197 genes in one or more 

cetacean species. These genes were involved in important process in ageing (e.g. PTPRD, 

PRKAA1 and PRKAA2) and cancer regulation like chromosome break, chemotaxis, 

programmed cell death and metabolism of fatty acids and cholesterol. In cetaceans, natural 

selection could favor new molecular variants that could improve the mechanism of DNA 

repair, energy consumption and ageing. We also report TSGs with positive selection and/or 

gene duplications related with multiple human disorders like Fanconi anemia (BRCA1-2 and 

PALB2), Alzheimer (EPHA1, ACHE), diabetes and schizophrenia (TCF7L2, DLG1), 

Nijmegen breakage syndrome (MDC1), Coffin-Siris syndrome (SMARCA4). Other TGSs 

with duplications in cetaceans were related with spatial learning and motor disorders in 

humans (EPB41, ABI2, KIF1B, LITAF). Studying genes that are related to human 

malignancies from a comparative perspective offers a novel avenue that could provide clues 

about the role of natural selection in the evolution of species that found a way to beat 

diseases. This study provide evolutionary evidence that natural selection in tumor suppressor 

genes could act on species with large body sizes and extended life span, providing insights 

into the genetic basis associated with the evolution of disease resistance. We propose that the 

cetaceans are an important model to understand longevity, neuronal, motor and behavioral 

disorders in humans and other animals. 
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Figure legends  

 

Figure 1. Tumor suppressor genes with the signature of positive selection in different 

branches of the cetacean tree of life. 

 

Figure 2. Turnover rate of tumor suppressor genes (TSGs) in cetaceans. a) The first model 

represent the rate of evolution (λ) of TSGs for the total group of cetacea (branches in orange) 

and the rate of evolution of TGSs for the outgroup (branches in grey). The 𝜆 values show that 

the gene turnover rate of TSGs in cetaceans is almost 6 times more accelerated in comparison 

to other placental mammals. b) In the second model, the λ values represents the rate of 

evolution of the total group of baleen whales (branches in green), the total group of toothed 

whales (branches in light blue) and ancestor of cetaceans (branch in orange).  

 

Figure 3. Tumor suppressor genes (TSGs) with duplications in Cetaceans. a) The heat map 

represents the copy number variation of TSGs duplicated in one or more cetacean species. 

The color code correspond to the number of copies of each gene per species. The symbols on 

the branches of the tree represents the name of the species: Tt -Tursiops truncatus , 
Oc-Orcinus Orca, Dl-Delphinapterus leucas, Lv-Lipotes vexillifer, Pc-Physeter catodon 

(synonym name of Physeter macrocephalus), Ba-Balaenoptera acutorostrata, Bm-Balaena 

mysticetus, SS- Sus scrofa , Ec-Equus caballus, Ml- Myotis lucifugus, Mm- Mus musculus , 
Hs- Homo sapiens, La-Loxodonta africana. b) Functional classification of the TSGs 

duplicated in cetaceans in relation with the Gene Associated Disease (GAD) class given by 

the DAVID enrichment analysis.  

 

Figure 4. Expansion and Contraction of Tumor suppressor gene families in placental 

mammals.  
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Tables  

Table 1. Human diseases related with the genes with the signature of positive selection in the 

ancestor of cetaceans, baleen whales and toothed whales and their relation with ageing. The 

information was obtained from GeneCards (https://www.genecards.org/), GeneAge database 

(https://genomics.senescence.info/genes/) and the KEGG enrichment analysis (supplementary 

table 5).  

Group 

Genes with 

positive 

selection signal 

GeneCards - Diseases associated 

GenAge genes 

and longevity 

pathways 

Stem 

Cetacea 

BRCA2 
Breast, ovarian, prostate, gastric and 

pancreatic cancer - Fanconi anemia 
No 

CDH1 
Blepharo Cheilo Dontic syndrome 1 - Gastric 

cancer – Bladder cancer 
No 

EPHA1 
Placenta praevia – Ovarian serous 

adenocarcinoma 
No 

CXCR2 

Autosomal recessive severe congenital 

neutropenia – Neutrophil migration - 

Immune system 

No 

Stem 

toothed 

whales 

ACHE 
Yt Blood group antigen – Colonic 

pseudo-obstruction 
No 

MYBBP1A 
Cerebrovascular benign neoplasm – 

Circadian rhythm 
No 

MDC1 
Nijmegen breakage syndrome - 

Brachydactyly, Type C 
No 

SMARCA4 
Coffin-Siris syndrome 4 - Rhabdoid tumor 

predisposition syndrome 2 
Yes 

Stem 

baleen 

whales 

ADAMTS8 Diseases of glycosylation – Lung neoplasm No 

AKAP12 
Myasthenia Gravis - Juvenile 

myelomonocytic leukemia 
No 
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BRCA1 
Breast, ovarian and gastric cancer - Fanconi 

Anemia 
Yes 

CHFR Cell cycle progression and tumorigenesis No 

DAB2 
Malignant epithelial mesothelioma – 

Hypercholesterolemia autosomal recessive 
No 

DSC3 
Hypotrichosis - Recurrent skin vesicles - 

Subcorneal pustular dermatosis 
No 

DSP 
Skin Fragility-Woolly Hair syndrome – 

Cardiomyopathy – Immune system 
No 

EPHA2 
Cataract 6, multiple types - Early-Onset 

posterior subcapsular cataract 
No 

IGF2R 
Hepatocellular carcinoma - Inclusion-Cell 

disease 
No 

INTS6 Expression suppressing in tumor cell growth No 

KL 
Tumoral calcinosis hypophosphatemic 

familial 1 and 3 
Yes 

PALB2 Pancreatic cancer – Fanconi Anemia No 

PLCB3 Multiple endocrine neoplasia, Type I No 

PLCE1 

Nephrotic syndrome, type 3 - Sporadic 

idiopathic steroid-resistant nephrotic 

syndrome with diffuse mesangial sclerosis 

No 

PRKAA1 
Wolff-Parkinson-White Syndrome and Body 

Mass Index 
Yes 

PRKAA2 
Peutz-Jeghers Syndrome and 

Wolff-Parkinson-White Syndrome 
Yes 

RECK 
Ovarian Cancer - Middle ear squamous cell 

carcinoma 
No 

SAFB2 Regulation of immune genes No 
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SERPINB5 Breast cancer No 

TMPRSS11A 
Iron-Refractory iron deficiency anemia – 

Ichthyosis follicular 
No 

UNC5A 
Axon guidance – Downregulated in several 

cancers 
No 
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Figure 2
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Figure 3
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