
mosaicFlye: Resolving long mosaic repeats using long error-prone reads

Anton Bankevich* and Pavel Pevzner
Dept. of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA

*abankevich@ucsd.edu

Abstract

Long-read technologies revolutionized genome assembly and enabled resolution of bridged repeats (i.e.,
repeats that are spanned by some reads) in various genomes. However the problem of resolving unbridged
repeats (such as long segmental duplications in the human genome) remains largely unsolved, making it a
major obstacle towards achieving the goal of complete genome assemblies. Moreover, the challenge of
resolving unbridged repeats is not limited to eukaryotic genomes but also impairs assemblies of long
repeats in bacterial genomes and metagenomes. We describe the mosaicFlye algorithm for resolving
complex unbridged repeats based on differences between various repeat copies and show how it
improves assemblies of bacterial genomes and metagenomes.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

mailto:abankevich@ucsd.edu
https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction
Single Molecule Sequencing (SMS) technologies (such as the ones developed by Pacific Biosciences (PB)
and Oxford Nanopore Technologies (ONT)) opened a new long-read era in genome assembly. Long reads
often bridge long repeats and resolve many segmental duplications that otherwise were nearly impossible
to assemble using short-read technologies. As a result, the contiguity of the recently described long-read
human genome assemblies already exceeds the contiguity of the reference human genome assembled
using short reads (Jain et. al, 2018, Miga et al., 2019).

Although long reads greatly improved the contiguity of genome assemblies, resolving long repeats
remains a challenging task. For example, the state-of-the art long-read assemblers fail to fully assemble
~50% of bacterial genomes from the NCTC 3000 project aimed at sequencing 3000 bacterial genomes
from the England’s National Collection of Type Cultures (Kamath et al., 2017). Additionally the base-pair
accuracy of the long-read assemblies in the repeated regions is reduced (as compared to unique regions)
since it is often unclear how to align reads to various repeat copies even if the repeat itself was bridged by
some but not all reads.

Long error-prone reads and short accurate reads have their strengths and weaknesses with respect to
repeat resolution, e.g., short reads may resolve some repeats that are difficult to resolve with long reads.
For example, diverged copies of a long repeat (e.g., copies differing by 3%) often don’t share k-mers (for
typical values of k used in short-read assemblers) and thus are automatically resolved by the de Bruijn
graph-based assemblers such as SPAdes (Bankevich et al., 2012). In contrast, long-read assemblers face
difficulties resolving such repeats since repeat copies with 3% divergence are difficult to distinguish using
the error-prone reads that have error rates exceeding 10%. Thus, long-read assemblers trade the ability to
resolve the unbridged but divergent repeat copies for the ability to resolve bridged repeats.

Since nearly all genomes have long repeats, long-read assemblers (such as Falcon (Chin et al., 2016),
Canu (Koren et al., 2017), Marvel (Nowoshilow et al., 2018), Flye (Kolmogorov et al., 2019a), wtdbg2
(Ruan and Li, 2019), and others) currently face the same repeat-resolution challenge that short-read
assemblers faced a decade ago, albeit at a different scale of repeat lengths. To improve the contiguity of
assemblies, long read technologies are often complemented by Hi-C (Ghurye et al., 2017) and optical
mapping (Weissensteiner et al., 2017) data. However, these technologies add significant cost to the
sequencing projects (estimated to be higher than the cost of generating long reads in a typical vertebrate
assembly project) and typically fail to accurately reconstruct various repeat copies even if they resolve
these copies. Moreover, it remains unclear how the inherent errors of data generated by these additional
technologies affect the accuracy of the final assemblies. Thus, resolving unbridged repeats using long
reads represents the crucial step towards improving the long-read assembly algorithms and achieving the
goals of large sequencing programs such as the Earth BioGenome Project (Lewin et al., 2018).

Repeats in a genome accumulate mutations and result in divergent repeat copies, e.g., most segmental
duplications in the human genome diverge by more than 1% (Pu et al., 2018). Vollger et al., 2019
described how to use the variations between various repeat copies for reconstructing all copies of a
divergent repeat. This problem is similar to the haplotype assembly problem in the case of high ploidy
with several important distinctions. First, the number of copies (edge multiplicity in the assembly graph)
is often unknown and may vary along a repeat. Second, unlike the haplotype assembly, where all
haplomes align to a consensus sequence, many repeats have complex mosaic structure (Pevzner et al.,
2004, Jiang et al., 2007, Pu et al., 2018) that prevents utilization of a single consensus sequence as a
template for aligning all copies of a repeat. Such mosaic repeats are also common in cancer genomes,
making it difficult to analyze duplications that represent the hallmarks of many cancers (Nattestad, 2018).
Such difficult cases were not considered in Vollger et al. 2019 that focused on resolving repeat copies
with a single consensus sequence. However, mosaic repeats consist of several smaller sub-repeats that
appear with varying multiplicities and in different combinations within various copies of a mosaic repeat

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

(Figure 1). Such mosaic repeats are common, e.g., most segmental duplications in the human genome (Pu
et al., 2018) and many repeats in bacterial genomes (Pevzner et al., 2004) represent mosaic repeats.

We describe mosaicFlye algorithm and an open source tool for reconstructing individual copies of
mosaic repeats based on differences between various copies and demonstrate how it contributes to
improving genome and metagenome assemblies.

Methods
De Bruijn graph. Given a parameter k, we define the genome graph by representing each chromosome of
length n in the genome as a path on n-k+1 vertices (a position in the chromosome corresponds to a vertex
labeled by a k-mer that starts at this position). Let DB(Genome, k) be the de Bruijn graph of a genome
Genome, where vertices and edges correspond to k-mers and (k+1)-mers in Genome, respectively
(Compeau et al., 2011). Alternatively, the de Bruijn graph can be constructed by “gluing” identical k-mers
in the genome graph (Pevzner et al., 2004). We will work with the condensed de Bruijn graphs , where
each non-branching path is collapsed into a single edge labeled by the corresponding substring of the
genome. Each chromosome in Genome corresponds to a path in this graph and the set of these paths forms
the genome traversal of the graph.

Given a read-set Reads sampled from Genome, one can view each read as a “mini-chromosome” and
construct the de Bruijn graph of the resulting genome (Pevzner et al., 2004) that we refer to as DB(Reads,
k). In contrast to DB(Genome, k) (where each edge is labeled by a substring of Genome), edges of
DB(Reads, k) inherit errors in reads. Since the graph DB(Reads, k) encodes all errors in reads, it is much
more complex than the graph DB(Genome, k). In the case of short reads, various graph-based error
correction approaches transform the graph DB(Reads, k) into the assembly graph that approximates
DB(Genome, k) (Pevzner et al., 2004, Bankevich et al., 2012). However, these error correction approaches
assume that nearly all k-mers from Genome also occur in reads, the condition that holds for short-read
datasets but is violated for long reads. As a result, constructing an accurate assembly graph from long
error-prone reads remains an open problem.

Repeat graph. Kolmogorov et al., 2019a developed a Flye assembler that attempts to solve this
problem by making some concessions. Flye constructs the repeat graph of long reads (also known as the
A-Bruijn graph) with the goal to approximate the de Bruijn graph DB(Genome, k) in the case of a large k,
e.g., k=1500. Since this task proved to be difficult in the case of error-prone reads, the Flye assembler
collapses similar (rather than only identical as in the de Bruijn graph) k-mers in the genome graph into a
single vertex in the repeat graph and labels this vertex by the consensus sequence of all collapsed k -mers.

Specifically, to construct the repeat graph of a genome, Flye generates all local self-alignments of the
genome against itself that have divergence below the divergence threshold d%. Two positions in the
genome are defined as equivalent if they are aligned against each other in one of these alignments.
Kolmogorov et al., 2019a defined the repeat graph RG(Genome, k, d) as the graph obtained from the
genome graph by collapsing all equivalent positions (vertices) into a single vertex. Note that the graph
RG(Genome, k, 0) = DB(Genome, k).

Kolmogorov et al., 2019 defined the repeat graph RG(Reads, k, d) similarly to RG(Genome, k, d) by
applying the same approach to a “genome” formed by all reads (each read is viewed as a
“mini-chromosome”). They further described how to construct RG(Reads, k, d) in the case when d is not
too small (e.g., exceeds 5%) and demonstrated that RG(Reads, k, d) approximates RG(Genome, k, d) .
However, although the problem of constructing (approximating) the repeat graph of a genome from long
error-prone reads has been solved, it remains unclear how to construct the de Bruijn graph from such
reads. Solving this problem is arguably one of the most pressing needs in assembly of long error-prone
reads since it would result in assemblies of the same quality as assemblies of long error-free reads.

Figure 1 illustrates this problem in the case of a genome where each k-mer is unique. In this case, the
de Bruijn graph is a cycle (resulting in a unique genome reconstruction) but the repeat graph is complex

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

since the genome contains similar k-mers. Moreover, in the realm of genome assembly, the labels of
complex vertices of the repeat graph are unknown (cryptic repeat graphs).

Figure 1. A genome (top left), its repeat graph (top right), its cryptic repeat graph (bottom left), and its
partial repeat graph (bottom right). Since all 4-mers in the genome are unique, its de Bruijn graph is a cycle.
However, its repeat graph is not (two 4-mers are defined as similar if they are at most 1 substitution apart). In the
realm of genome assembly (when the genome is unknown), the label of each complex vertex in the cryptic repeat
graph represents the consensus of all individual k-mers that were glued into this vertex. Since this consensus k-mers
do not reveal information about the individual k-mers, we assume that the labels of complex vertices in the cryptic
repeat graph are unknown. The partial repeat graph (a subgraph of the repeat graph formed by its simple vertices),
provides even less information than the cryptic repeat graph.

mosaicFlye uses variations between various copies of a mosaic repeat for resolving these copies and

thus untangling the repeat graph of reads RG(Reads,k,d) constructed by the Flye assembler. Kolmogorov
et al., 2019a first described how Flye constructs the graph RG(Genome,k,d) and later explained how to
construct the graph RG(Reads,k,d) by simply applying the same approach to a “genome” formed by all
reads. Similarly, we first describe the idea of the mosaicFlye algorithm using Genome and later explain
how it works in the case when Genome is unknown and only the read-set Reads is given.

The challenge of transforming the repeat graph into the de Bruijn graph. mosaicFlye attempts to
solve this problem. Although the repeat graph constructed by Flye provides a useful representation of
repeats in a genome, its main deficiency (compared to the graph DB(Genome, k)) is that sequences of
various instances of each repeat edge remain unknown as they are substituted by a consensus sequence of
this edge. Flye and other long-read assemblers do not resolve such repeats, resulting in a lower contiguity
as compared to the assembly represented by the de Bruijn graph DB(Genome, k).

Figure 2 illustrates the differences between the de Bruijn graph and the repeat graph in the case of a
“genome” that contains three instances of a mosaic repeat. Colored segments of the genome represent
non-diverged parts of the three copies of a mosaic repeat (each triple of colored segments is collapsed in a
single colored edge in the de Bruijn graph). In the repeat graph, all three instances of the mosaic repeat
are collapsed into a single purple edge, resulting in a simpler graph (as compared to the de Bruijn graph)
but making it difficult to reconstruct three different instances of the mosaic repeat.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: A genome with three copies of a mosaic repeat (left), its de Bruijn graph (middle top), its repeat
graph (right top), alignment of reads to the de Bruijn graph (middle bottom), and to the repeat graph (right
bottom), The genome contains three instances of a mosaic repeat (marked by purple) formed by four non-diverged
sub-repeats shown in red, yellow, green, and blue with 3, 2, 2, and 3 copies, respectively. Six unique regions in the
genome are shown in gray. Reads bridging red, yellow, green, and blue sub-repeats are shown in gray.

Flye classifies edges in the repeat graph RG(Reads, k, d) into unique and repeat edges (Kolmogorov

et al., 2019). A read bridges a repeat if its read-path in the repeat graph starts at a unique edge, traverses
some repeat edges, and ends in a unique edge. Although the repeat-bridging reads enable the repeat
resolution algorithm in the Flye assembler, this algorithm has some limitations. Figure 2 illustrates that, in
contrast to the de Bruijn graph that has bridging reads (that enable complete genome reconstructions), the
repeat graph does not have bridging reads since the purple repeat is longer than any read. mosaicFlye
addresses this limitation of the repeat graph and enables resolution of unbridged repeats as long as they
have some diverged positions.

Genome polishing challenge. Each read Read originates from a region in a genome that we refer to
as its origin . A read is correctly aligned to a genome if it is aligned against its origin, and incorrectly
aligned otherwise. A read-set is called correctly aligned if all reads in this set are correctly aligned. We
define a high-coverage read-set as a read-set with coverage depth exceeding the coverage threshold (the
default value is 30x in the case of PB reads).

Even if a genome is unknown and only its error-prone version is given, polishing algorithms correct
most errors and generate highly accurate genome sequence in the case of high-coverage and correctly
aligned read-sets (Loman et al., 2015, Lin et al., 2016, Vaser et al., 2017, Lima et al., 2019). However, it
is not clear how to construct a draft genome sequence, not to mention correctly align all reads. Although it
is easy to do for reads that fit into unique regions of a genome (or overlap these regions), it is not clear
what specific copy of a repeat in a draft genome a read correctly aligns to. Incorrect read alignments to
wrong copies of a repeat result in a contamination of reads recruited to each copy by “foreign” reads from
other copies that mislead the polishing procedure and turn multiple diverged copies of a repeat into a
single consensus of all copies. On the other hand, if the entire error-free genome sequence is known,
finding correct read alignments turns into an easy problem since the alignment with the maximal score is
typically correct (unless the read aligns to identical or nearly identical instances of the repeat which
makes selection of the correct alignment impossible). Thus, correct read alignments are required to polish
the draft genome but the polished genome is needed to construct the correct read alignments.

Transforming the repeat graph into the de Bruijn graph by gradually shrinking the set of
similar k-mers. We first describe the idea of the mosaicFlye algorithm using Genome and later explain
how it works in the case when Genome is unknown and only the read-set Reads is given. Flye uses a
rather general concept of similarity that takes into account mismatches, insertions and deletions. For the
sake of simplicity, we will consider a less general notion of similarity (limited to mismatches only) when

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

similar k-mers are defined as k-mers with at most delta mismatches . We will thus redefine the repeat
graph for this less general notion using the concept of the similarity graph.

Given a set of similar pairs of k-mers sim=sim(Genome), we define a similarity graph with the
vertex-set formed by all k-mers in Genome and the edge set sim(Genome). We call two k-mers similar if
they belong to the same connected component of the similarity graph. In difference from the de Bruijn
graph (constructed by gluing all identical k-mers into a single vertex), the repeat graph
RG(Genome)=RG(Genome,sim) is constructed by gluing all similar k-mers in the genome graph into a
single vertex. Note that the de Bruijn graph is the repeat graph with the empty set sim(Genome) .

The number of vertices in the repeat graph is equal to the number of connected components in the
similarity graph and each vertex v is labeled by a set of k-mers (forming a connected component in the
similarity graph) that we refer to as label(v) . A vertex is called simple if its label consists of a single
k-mer, and complex otherwise.

In the realm of long-read assembly, although Genome is unknown, the Flye assembler constructs the
repeat graph RG(Reads)=RG(Reads,sim) from reads that approximates the graph
RG(Genome)=RG(Genome,sim). For the sake of simplicity, in addition to the condition that all k-mers
with at most delta mismatches form the set sim(Genome), we also assume that every two k-mers in the
same connected component of the similarity graph differ by at most delta mismatches (transitivity
condition).

We will transform the repeat graph RG(Reads) (that approximates RG(Genome)) into a graph that
approximates the de Bruijn graph DB(Genome)=DB(Genome,k) by gradually shrinking the set sim and
thus resolving more and more repeats. We note that, since Genome is unknown, we will perform this
transformation using some operations that can be implemented using information about reads.

Ungluing complex vertices in the repeat graph. Each complex vertex v in the repeat graph
corresponds to a connected component in the similarity graph. Removal of all edges of this connected
component results in a smaller set of pairs of similar k-mer that we refer to as sim(v). Given a complex
vertex v in the repeat graph RG(Genome,sim), the ungluing operation on this vertex returns the repeat
graph RG(Genome,sim(v)). Below we show how to use reads to perform some ungluing operations even
though, in the realm of genome assembly, the labels of complex vertices are unknown.

Cryptic repeat graphs. Flye classifies edges of the graph RG(Reads) into unique and repeated and
further applies the Flye polishing algorithm (Lin et al., 2016) to derive the consensus of each edge. Since
polishing results in an accurate consensus in the case of a unique edge, we assume that these edges are
perfectly polished and thus all k-mers on these edges (referred to as unique k-mers) are known and
represent k-mers from Genome. In contrast, since polishing of repeated edges results in a consensus
sequence (rather than sequences of individual instances of each repeat), we assume that the labels of
repeated k-mers (located on repeat edges) are unknown.

Thus, to model the reality of genome assembly, we will work with cryptic repeat graphs with known
labels of simple vertices but hidden labels of complex vertices (Figure 1). Our goal is to transform a
cryptic repeat graph into the de Bruijn graph, an easy task if we were able to perform a series of ungluing
operations on all vertices of the cryptic repeat graph. Although it is not clear how to perform ungluing
operations in the realm of genome assembly, mosaicFlye uses reads to identify some vertices in the
cryptic repeat graph that enable ungluing operations.

Transforming a cryptic repeat graph into a de Bruijn graph. A complex vertex is called
semi-complex if either all its predecessors are simple or all its successors are simple. An ungluing
operation on a semi-complex vertex is called a legal ungluing operation . mosaicFlye iteratively identifies
semi-complex vertices in the repeat graph, performs legal ungluing operation on these vertices, and
returns the resulting graph that we refer to as mosaic(Genome). For now, we treat a legal ungluing
operation as a black-box function (without explaining how it works) but the subsection “Implementing
legal ungluing” explains how mosaicFlye uses reads to implement this black-box.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Legal ungluing operation contribute to repeats resolution by reducing the number of complex vertices
in the repeat graph. However, although the graph mosaic(Genome) has no semi-complex vertices
(otherwise, we would be able to perform additional ungluing operations) it may still have complex
vertices. We refer to the subgraph on the set of remaining complex vertices in mosaic(Genome) as the
complex subgraph . Since there are no sources and sinks in the complex subgraph (otherwise, a source or a
sink vertex would be semi-complex), each connected component of the complex subgraph contains a
directed cycle. Such connected components represents the most complex mosaic repeats (referred to as
cyclorepeats) such as long tandem repeats or cyclic segmental duplications analyzed in Pu et al., 2018.
With the exception of the recently proposed algorithm for assembling centromeres (Bzikadze and
Pevzner, 2019), existing repeat resolution tools (including mosaicFlye) are unable to resolve cyclorepeats.

From mosaic(Genome) to mosaic(Reads). Above we explained how to construct the graph
mosaic(Genome) but did not explain what various concepts introduced above (e.g., the “legal ungluing”
black-box) mean in the realm of genome assembly. In the next section, we explain how mosaicFlye
constructs the graph mosaic(Reads).

To construct the repeat graph of a genome, Flye generates a genomic dot-plot representing all local
self-alignments within a genome (analog of the similarity graph) and uses this dot-pot to construct the
graph RG(Genome) (analog of the graph RG(Genome, sim)). Similarly, to construct the repeat graph of
reads, it generates all local alignments between reads (analog of the similarity graph) and constructs the
graph RG(Reads) (an analog of the graph RG(Genome,sim)) by considering each disjointig (Kolmogorov
et al., 2019a) as a mini-chromosome. mosaicFlye iteratively performs legal ungluing operations on the
graph RG(Reads) as described below.

Implementing legal ungluing: from k-mers to K-mers. mosaicFlye sets two parameters: the
k-mer-size (typical value k=1500) and a much larger K-mer size (typical value K=2500). The parameters k
and K in mosaicFlye are not unlike parameters k and k+1 in the de Bruijn graph construction. In the case
of the de Bruijn graph, each vertex a is labeled by a k-mer and outgoing edges from a are labeled by
(k+1)-mers. Each such (k +1)-mer reveals information about a vertex b that follows a (lays in the
immediate vicinity of a vertex a). However, information about this (k +1)-mer is not sufficient to unglue
the vertex b since it lacks information about the outgoing edges from b. mosaicFlye takes a step further by
considering a larger K -mer that follows a (for K > k+1) and thus speeding up the ungluing process.

Let a be a unique k-mer from Genome and extension K(a) be the (unknown) K-mer in Genome with
prefix a (for K > k+ 1). We define similar(a) as the set of all k-mers from Genome that are similar to a and
align all reads to a in a hope to find extension K(a). However, in the case of error-prone reads, this
alignment will return reads spanning all k-mers that are similar to a rather than all reads spanning a single
k-mer a, making it impossible to reconstruct extension K(a). However, below we show that the situation is
not hopeless if all k -mers from similar(a)={a 1, …, at} represent simple and unique vertices in RG(Reads).

Indeed, if one aligns a read to all k-mers in similar(a), a highest-scoring alignment among these t
alignments almost always detects a specific k-mer in similar(a) spanned by this read. This observation
results in partitioning of all reads that align to a into t clusters such that reads from the i-th cluster span
the k-mer ai. Thus, given a semi-complex vertex v in RG(Reads), one can consider all its predecessors (or
successors) and align reads to each of t predecessors, thus resulting in t clusters of reads. Performing
polishing on each of these clusters reveals the set of K-mers {extension K(a1), … ,extension K(at)} for K >
k+1. mosaicFlye uses these K -mers to unglue the vertex v.

Partial repeat graphs. Above we assumed that the repeat graph is given (even though the labels of
its complex vertices are unknown) and described how to transform it into the de Bruijn graph using legal
ungluing operations. However, since Flye may distort the structure of complex mosaic repeats in the
repeat graph and miscalculate multiplicities of its subrepeats, the repeat graph constructed by Flye is not
necessarily 100% correct. Below we assume that we are only given the subgraph of the repeat graph
formed by its unique edges (referred to as the partial repeat graph that is illustrated in Figure 1). We use

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

reads to iteratively transform the partial repeat graph (that is reliably reconstructed by Flye) into the de
Bruijn graph of the entire genome.

Transforming a partial repeat graph into a de Bruijn graph. At each iteration, we find the
best-scoring alignment of each read to the partial repeat graph. Given a k-mer (vertex) a in a partial
repeat graph, the reads aligned to a reveal a K-mer extension K(a). The k-mer that starts in the 2nd position
of the K-mer extension K(a) (i.e., the k-mer that follows a) may represent a still unexplored complex vertex
of the repeat graph. If this vertex (referred to as next(a)) is semi-complex, it can be unglued as described
above, thus adding new simple vertices to the partial repeat graph. The repeated application of this
procedure has a potential to eventually reconstruct the entire de Bruijn graph.

However, this procedure faces the challenge of verifying whether a still unexplored complex vertex
next(a) of the repeat graph is semi-complex. Although this test is easy to conduct when the entire repeat
graph is given, it requires additional analysis in the case of the partial repeat graph. Specifically, we align
all reads to next(a) and use these reads to find all k-mers that precede next(a) . If all these k-mers represent
simple and unique vertices in the partial repeat graph, we classify a vertex next(a) as semi-complete and
unglue it as described above.

mosaicFlye meets the realities of genome assembly. The description above leaves many questions
about constructing the graph mosaic(Reads) unanswered, e.g., “How do we know accurate labels of
simple vertices in the repeat graph?”, “How do we align all reads to a given k-mer a to find
extension K(a)”, etc. These questions are answered in Appendices that we briefly summarize below.

Appendix “Fitting and overlap alignments of reads” explains how mosaicFlye aligns reads against an
assembly and generates accurate labels of simple vertices in the repeat graph. Although reads originating
from a unique region in an assembly are easy to align, it is not clear how to align reads originating from
the repeated regions (Li, 2018). mosaicFlye generates the sets Fitting(Read, C) and Overlap(Read, C) of
all high-scoring fitting and overlap alignments between a read Read and a contig-set C. This procedure
results in generating accurate (polished) sequences of simple vertices.

Appendix “Alignment tournament” explains how mosaicFlye selects the correct alignment of a read
out of many alignments in Fitting(Read, C) and Overlap(Read, C). Since repeats in a genome accumulate
mutations, the correct alignment of a read (to a repeat copy that it originated from) typically has a larger
percent identity than the alignment of the same read to an incorrect repeat copy. However, this difference
is often small compared to the percent identity between the read and its origin and, in the case of highly
similar repeat copies, errors in a read sometimes result in cases when the percent identity of the correct
read alignment is lower as compared to the incorrect one. To avoid selecting false alignments, mosaicFlye
uses a probabilistic model for comparing alignments described in Lin et al., 2016 and specifies the
tournament between different repeat copies “competing” for a given read.

Extending k-mers into K-mers is a key step of mosaicFlye that requires correct read alignments.
Section “Genome polishing challenge” explained that correct read alignments are required to polish the
draft genome but the polished genome is needed to construct the correct read alignments. To resolve this
catch-22, mosaicFlye uses the expanding alignment-consensus loop (EACL) and applies it for genome
polishing (appendix “Alignment-consensus loop”) and for transforming the repeat graph into the de
Bruijn graph (appendices “Expanding alignment-consensus loop” and “Expanding alignment-consensus
loop for transforming the repeat graph into the de Bruijn graph”).

Figure 3 illustrates an iterative transformation of the repeat graph into the de Bruijn graph using
EACL. In the first iteration, mosaicFlye finds all reads (referred to as incoming reads) that align to the
three incoming unique edges and “enter” into the purple repeat (Figure 3, upper left). Since the incoming
reads extend into the repeat edge, they cover the neighbourhoods of the three incoming repeat edges in the
genome traversal and thus provide information about three different instances of the repeat edge, at least
for their initial segments that are well covered by the incoming reads. Since these segments are covered
by correctly-aligned reads, they can be accurately polished, thus revealing the sequences of each such

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

segment. mosaicFlye replaces the beginning of the purple edge representing these segments by the part of
the de Bruijn graph constructed from these segments. As a result, two repeats (blue and orange) and three
unique (grey) edges, that are missing in the initial repeat graph, are revealed (Figure 3, upper right). In the
second iteration, mosaicFlye generates new incoming reads by aligning reads to the new unique edges
constructed at the previous iteration (Figure 3, middle left) and reveals the remaining structure of de
Bruijn graph (Figure 3, middle right). Finally, after one more EACL iteration, it generates accurate
consensus sequences of all edges within a mosaic repeat and concludes the transformation of the repeat
graph into the de Bruijn graph. The length of each repeat edge in the resulting graph has reduced
(compared to the length of the initial purple edge), leading to emergence of bridging reads and thus a
possibility to resolve repeats in the resulting de Bruijn graph.

Figure 3: Transforming the repeat graph (top left) into the de Bruijn graph (bottom right). Resolved edges are
shown as dashed and unique edges are shown as grey. Paths highlighted by solid lines show the alignment of the
consensus of reads that align to unique edges. Note that these paths represent the consensus of reads rather than
individual reads as in Figure 2.

The EACL approach faces the challenge of selecting the correct alignment of reads to the growing

contigs. Although aligning a read to an initial assembly is an easy task (since all k-mers in the initial
assembly are unique), it is not clear how to align a read to each intermediate assembly since some k-mers
in intermediate assemblies are not unique. Indeed, since a read may overlap with several contigs in an
intermediate assembly, the choice of the correct overlap alignment becomes non-trivial. Appendix “The
challenge of aligning reads to the growing assembly ” explains how mosaicFlye addresses this challenge.

Flye reconstructs the accurate sequences of unique edges that mosaicFlye uses as the initial contigs in
the EACL approach. It initializes the set of resolved k-mers as the set of all k-mers occuring in unique
edges and iteratively expands it with each EACL iteration in an attempt to find as many resolved k-mers
as possible. Appendix “Expanding the set of resolved k-mers by traversing mosaic repeats” describes how
mosaicFlye expands the set of resolved k -mers.

mosaicFlye faces difficulties in the case of corrupted mosaic repeats that inaccurately represent
various subrepeats of a mosaic repeat. Appendices: “Corrupted mosaic repeats”, “From a resolved prefix
k-mer to a resolved K-mer” and “From a resolved K-mer to a resolved suffix k-mer” explain how
mosaicFlye addresses this challenge. Appendix “Merging contigs and bridging repeats” describes how
mosaicFlye merges contigs and bridges repeats.

Results
Benchmarking mosaicFlye. Long-read genome assemblers often generate highly contiguous

assemblies (as compared to short-read assemblies) that consists of a few contigs. Since mosaicFlye aims
to resolve the remaining few unbridged repeats and accurately reconstruct the sequence of each repeat
copy, the traditional genome assembly metrics (such as N50 or assembly size) sometimes do not
adequately reflect the improvements in the mosaicFlye assembly as compared to the Flye assembly. Thus,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

the key advantage of mosaicFlye over existing assembly tools lies in reconstructing the accurate
sequences of repeat copies and a relatively small reduction in the number of contigs. However, these
improvements are important, for example, long bacterial repeats often correspond to important sequences
such as 16s rRNAs (Yuan et al., Bioinformatics 2015) or antibiotic resistance genes (Antipov et al.,
2019). To benchmark mosaicFlye, we applied it to multiple datasets with complex repeats that the
state-of-the art long-read genome assemblers failed to resolve.

Wick and Holt, 2019 recently benchmarked various long-read assemblers and demonstrated that Flye
improves on other long-read assemblers in the case of bacterial genomes. Since this conclusion was
further confirmed in recent bacterial studies (Ring et al., 2018, Schmid et al., 2018, Somerville et al.,
2019), we only analyzed how mosaicFlye improves on the Flye and metaFlye (Kolmogorov et al., 2019b)
assemblies in the case of bacterial genomes and metagenomes.

Datasets. We benchmarked mosaicFlye on isolate bacterial datasets using datasets from the NCTC
3000 project. We randomly selected 20 datasets which were not assembled into a single circular
chromosome by Flye. We also benchmarked mosaicFlye on metagenomic datasets using the
ZymoBIOMICS Microbial Community Standards dataset generated using ONT reads (Nicholls et al.,
2019). The ZymoEven mock community consists of eight bacteria with abundance ≅12% and two yeast
species with abundance ≅2%. ZymoBIOMICS community was sequenced using GridION (total read
lengths 14 Gb) and PromethION (total read lengths 146 Gb).

Resolving repeats in bacterial isolates with mosaicFlye. Table 1 illustrates that mosaicFlye
improved assembly of 14 out of the 20 bacterial datasets. Note that some repeats that are not resolved by
mosaicFlye have a very low divergence and thus cannot be resolved even in theory. Figure 4 presents
examples of mosaic repeats resolved by mosaicFlye.

dataset

contigs in

the Flye assembly
contigs in

the mosaicFlye assembly
resolved repeat

copies
total length of all repeat copies resolved by

mosaicFlye (kb)
4450 35 29 8 66
7921 8 5 3 12
8294 6 4 2 60
8333 18 8 10 136
8359 16 8 8 54
8603 6 4 2 43
8684 10 10 0 0
9002 3 3 2 96
9006 8 3 5 71
9007 4 4 0 0
9012 6 4 2 40
9016 8 8 0 0
9024 4 4 0 0
9028 15 10 5 51
9657 9 7 4 53

10864 14 9 5 73
11658 6 6 0 0
11692 10 4 6 20
11962 5 3 2 15
12158 5 5 0 0

Table 1 . Results of mosaicFlye on 15 selected datasets from the NCTC 3000 project. The column “# resolved repeat copies”
shows the number of pairs of unique edges from the initial repeat graph that were connected into a single contig by mosaicFlye.
This value roughly corresponds to the reduction of the number of contigs in the assembly with the difference that a contigs that
becomes circular as the result of the mosaicFlye repeat resolution contributes one additional point to this score.

Resolving repeats in metagenomes with mosaicFlye. metaFlye (Kolmogorov et al., 2019b)
assembled all but two bacterial genomes in the ZymoEven PromethION dataset into a single
chromosome. However the remaining two genomes (L. monocytogenes and E. faecalis) share a 35.5 kb
long unbridged repeat. mosaicFlye resolved this repeat even though the average divergence between its

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

copies is only 0.3 %. Moreover, mosaicFlye was able to resolve this repeat using only reads from the
smaller GridION dataset (rather than a much larger set of reads from the PromethION dataset).

Figure 4. Mosaic repeats in the assembly graphs for the NCTC dataset 10864 (a), the NCTC dataset 9012 (b)
and the ZymoEven GridION dataset (c) that were resolved by mosaicFlye. Purple edges represent repeat edges
that form mosaic repeats. The unique edges that are adjacent to unique edges are shown in grey. Each repeat edge
has two labels showing its length and divergence. The lengths of the longest copies of a mosaic repeat is 25 kb for
the NCTC dataset 10864 and 18 kb for the NCTC dataset 9012. The multiplicity of different subrepeats within these
repeats varies from 2 to 5 and the divergence between repeat copies varies between 0.4% and 2%. The mosaic repeat
in the ZymoEven GridION dataset consists of five subrepeats that are incident to 28 unique regions (shown as black
edges). Five subrepeats have lengths 28 kb, 5 kb, 17 kb, 5 kb, and 23 kb.

Since the GridION dataset has a lower coverage than the PromethION dataset, the metaFlye assembly
graph of the ZymoEven GridION dataset is more complex than the assembly graph of the ZymoEven
PromethION dataset. To further challenge mosaicFlye we applied it to a complex unbridged repeat in the
assembly graph of the ZymoEven GridION dataset. Since this repeat was bridged by some reads in the
PromethION dataset, we used these bridging reads for checking the accuracy of the mosaicFlye repeat
resolution. Using these PromethION reads we verified that mosaicFlye correctly resolved this repeat
(Figure 4c) using only reads from the GridION dataset.

Discussion
The ongoing large-scale sequencing projects, such as the Earth Biogenome Project (Lewin et al.,

2018) and Telomere-2-Telomere project (Miga et al., 2019), use long-read technologies to generate
complete genomes. At the same time, large bacterial sequencing projects (such as NCTC 3000) and
metagenomic projects (Bertrand et al., 2019) use long reads to dramatically improve bacterial assemblies.
However, since two algorithmic problems (assembling long mosaic repeats and long tandem repeats)
remain unsolved, these projects have to complement long read generation by rather expensive
complementary technologies such as optical maps, synthetic long reads, and Hi-C. Since all these
technologies have their inherent error rates (that are still poorly understood), genome assembly is often
accompanied by manual analysis that may generate errors. Thus, improving the contiguity of long-read
assemblies by resolving mosaic and tandem repeats represent an important goal that will benefit the
ongoing genome sequencing projects. We demonstrated that mosaicFlye represent a step in this direction
that addresses the key bottleneck in improving the state-of-the-art long-read assemblers. However, it is
only the first step since it does not resolve cyclorepeats representing the most complex type of mosaic
repeats. Our next goal is to complement the ideas from mosaicFlye with the algorithm from Bzikadze and
Pevzner, 2019 that succeeded in resolved some specific cyclorepeats (centromeres) but has not been
generalized yet for arbitrary cyclorepeats.

Bibliography

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of

short and long reads. Bioinformatics . 32(7):1009-15 (2016)

Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic

data sets. Genome Res . 29(6):961-968 (2019)

Bankevich, A. et al . SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
J. Comput. Biol. 19, 455-477 (2012)

Bertrand, D., Shaw, J., Kalathiappan, M, Hui, A Ng, Q., Muthiah S., Li, C., Dvornicic, M., Soldo, J.P., Koh,
J.Y., Tek, N.O., Barkham, T., Young, B., Marimuthu, K., Rei, C.K., Sikic, M., Nagarajan N. Nanopore sequencing
enables high-resolution analysis of resistance determinants and mobile elements in the human gut microbiome.
Nature Biotechnology . 37(8):937-944 (2019)

Bzikadze A., Pevzner P.A. centroFlye: Assembling Centromeres with Long Error-Prone Reads. Biorxiv,
doi: https://doi.org/10.1101/772103 (2019)

Chin, C.S. et al . Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods . 13,
1050-1054 (2016).

Compeau, P.C.A., Tesler, G., Pevzner, P.A. How to apply de Bruijn graphs to genome assembly. Nature
Biotechnolog y, 29(11):987-91 (2011)

Ghurye, J., Pop, M., Koren, S., Bickhart, D., & Chin, C. S. Scaffolding of long read assemblies using long range
contact information. BMC Genomics . 18, 527 (2017)

Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., ... & Malla, S. Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature Biotechnology , 36(4), 338 (2018)

Jiang Z. et al . Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome
evolution. Nat. Genet. 39, 1361-1368 (2007)

Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A., & David, N. T. HINGE: long-read assembly achieves
optimal repeat resolution. Genome Research , 27(5), 747-756 (2017)

Kolmogorov, M., Jeffrey, Y., Lin, Y. and Pevzner, P.A. (2019) Assembly of long, error-prone reads using

repeat graphs. Nature Biotechnology 37(5) 540 (2019a)

Kolmogorov, M., Rayko, M., Yuan, J., Polevikov, E., Pevzner, P.: metaFlye: scalable long-read metagenome

assembly using repeat graphs. bioRxiv (2019b)

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. Canu: scalable and

accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research , 27(5), 722-736
(2017)

Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, Durbin R, Edwards SV, Forest F,

Gilbert MTP, Goldstein MM, Grigoriev IV, Hackett KJ, Haussler D, Jarvis ED, Johnson WE, Patrinos A, Richards
S, Castilla-Rubio JC, van Sluys MA, Soltis PS, Xu X, Yang H, Zhang G. Earth BioGenome Project: Sequencing life
for the future of life. Proc Natl Acad Sci U S A. 115(17): 4325-4333 2018

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics , 34(18), pp.3094-3100 (2018)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/772103
https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Lima, L., Marchet, C., Caboche, S., Da Silva, C., Istace, B., Aury, J.M., Touzet, H., Chikhi, R. Briefings in
Bioinformatics , bbz058 (2019)

Lin, Y., Yuan J., Kolmogorov, M., Shen M., Pevzner P.A. Assembly of long error-prone reads using de Bruijn

graphs. Proc. Nat. Acad. Sci. USA. 113, E8396-E8405 (2016)

Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore

sequencing data. Nature Methods 12(8): 733–735 (2015)

Miga, KH, Koren, S, Rhie, A, Vollger, M.R., Gershman, A., Bzikadze, A., Brooks, Howe, SE, Porubsky, D.,
Logsdon, G., Schneider V.A., Potapova, T, Wood, J., Chow, W., Armstrong, J., Fredrickson, J., Pak, E., Tigyi, K.,
Kremitzki, M., Markovic, C., Maduro, V., Dutra, A., Bouffard, GG., Chang, A., Hansen, NF., Thibaud-Nissen, F.,
Schmitt, A., Belton, J., Selvaraj, S., Dennis , M.Y., Soto, D., Sahasrabudhe, R., Kaya, G., Loman, N.J., Holmes N.,
Loose, M., Surti, U., Risques, R., Graves Lindsay, TA., Fulton, R., Hall, I., Paten, B., Howe , K., Timp , T., Young ,
A., Mullikin, JC., Pevzner, PA., Gerton, JL., Sullivan, BA., Eichler, EE., Phillippy, AM Telomere-to-telomere
assembly of a complete human X chromosome, bioRxiv , 10.1101/735928 (2019)

Nattestad, M., Goodwin, S., Ng, K., Baslan, T., Sedlazeck, FJ, Rescheneder, P., Garvin, T., Fang, H.,
Gurtowski, J., Hutton, E., Tseng, E., Chin, C.S., Beck, T., Sundaravadanam, Y., Kramer, M., Antoniou, E.,
McPherson, J.D., Hicks, J., McCombie, W.R., Schatz. M.C. Genome Research , 8, 1126-1135 (2018)

Nowoshilow S. et al . The axolotl genome and the evolution of key tissue formation regulators. Nature. 554,
50-55 (2018)

Pevzner, P. A., Tang, H., & Tesler, G. De novo repeat classification and fragment assembly. Genome Res. 14,
1786-1796 (2004)

Pu. L., Lin, Y. & Pevzner P.A. Detection and analysis of ancient segmental duplications in mammalian
genomes. Genome Res. 28, 901-909 (2018)

Ring, N., Abrahams, J., Jain, M., Olsen, H., Preston, A., Bagby, S. Resolving the complex Bordetella pertussis
genome using barcoded nanopore sequencing. Microbial Genomics 4(11) (2018)

Ruan, J., Li, H. Fast and accurate long-read assembly with wtdbg2. bioRxiv , doi: https://doi.org/10.1101/530972
(2019)

Schmid, M, D. et al. Pushing the limits of de novo genome assembly for complex prokaryotic genomes
harboring very long, near identical repeats. Nucleic Acids Res. 46, 8953-8965 (2018).

Somerville, V., Lutz, S., Schmid, M., Frei, D., Moser, A., Irmler, S., ... & Ahrens, C. H. Long read-based de
novo assembly of low complex metagenome samples results in finished genomes and reveals insights into strain
diversity and an active phage system. BMC microbiology , 19(1): 143 (2019)

Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK,

Chaisson MJP, Eichler EE. Long-read sequence and assembly of segmental duplications. Nat Methods . 16(1):88-94
(2019)

Vaser, R., Sović, I, Nagarajan, N., Šikić, M. Fast and accurate de novo genome assembly from long uncorrected

reads. Genome Res ., 27(5):737-746 (2017)

Weissensteiner M.H. et al. Combination of short-read, long-read, and optical mapping assemblies reveals

large-scale tandem repeat arrays with population genetic implications. Genome Res. 27, 697-708 (2017)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/530972
https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wick, R.R., Holt, K.E. (2019) Benchmarking of long-read assembly tools for bacterial whole genomes
https://github.com/rrwick/Long-read-assembler-comparison

Yuan C, Lei J, Cole J, Sun Y. Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics.
31(12):i35-43 (2015)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://github.com/rrwick/Long-read-assembler-comparison
https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendices

● Fitting and overlap alignments of reads
● Alignment tournament
● Optimal genome assembly
● Alignment-consensus loop
● Expanding alignment-consensus loop
● Expanding alignment-consensus loop for transforming the repeat graph into the de Bruijn graph
● The challenge of aligning reads to a growing assembly
● Expanding the set of resolved k -mers by traversing mosaic repeats
● Corrupted mosaic repeats
● From a resolved prefix k -mer to a resolved K -mer
● From a resolved K-mer to a resolved suffix k-mer
● Merging contigs and bridging repeats

Appendix: Fitting and overlap alignments of reads

Given sequences S1 and S2, we define their maximum-scoring global alignment as A=A(S1,S2). We

also define Query(A) = S 1 and Target(A) = S 2. The percent identity PI(A) is defined as the percentage of
matching positions in the alignment A among all positions in the alignment. For the sake of simplicity, we
ignore chimeric reads that do not align to the genome over their entire length

Given an integer k (k-mer size), we define PI k(A) as the minimum of the percent identity among all
segments of length at least k in the alignment A (the default value k=1500). Given sequences S1 and S2, we
define their percent identity as PI (S1,S2)=PI (A(S1,S2)), and their divergence as Div(S 1, S2)=100-PI (S1,S2).
The concepts PI k(S1,S2) and Divk(S1, S2) are defined similarly. Below we use the term “alignment” only for
“strong” alignments with sufficiently large percent identity PI k(S1,S2) and ignore all other alignments.
Specifically, given a percent identity threshold PI min (the default value 85%), we say that the sequences S1
and S 2 align if PI k(S1,S2) > PI min.

Given a read and a genome assembly, various read mapping algorithms (Li, 2018) align this read
against all contigs in the assembly. Although reads originating from the unique regions in an assembly are
easy to align, it is unclear how to align reads originating from the repeated regions, i.e., to decide which
specific copy of a repeat in an assembly a read should be aligned to. To find all such copies, the mapping
algorithms usually align such reads to all copies of a repeat (with varying scores) resulting in a set of
non-overlapping fitting alignments for each read.

Specifically, given a sequence S (a read) and a sequence-set C (a set of contigs in an assembly), a
“strong” fitting alignment of S against C defines a substring S’ of one of sequences in C that aligns against
S. i.e., PI k(S,S’) > PI min. Given a sequence S and a sequence-set C, we describe how mosaicFlye generates
the set of all strong non-overlapping fitting alignments Fitting(S, C). It first finds a highest-scoring fitting
alignment of S against C. If this alignment aligns S against a substring S’ of a sequence S* in C, we
represent S* as the concatenate of three sequences prefix(S*), S’, and suffix(S*) . We further remove S*
from the sequence-set C, substitute it by sequences prefix(S*) and suffix(S*), and iteratively repeat the
process of finding the strong fitting alignments until it stops, i.e., no strong fitting alignment is found. We
refer to the resulting set of fitting alignments as Fitting(S, C). In practice, given a read S and an
sequence-set C, we use minimap2 (Li et al., 2018) to generate an approximation of the set Fitting(S, C) .
We assume that alignments between reads and genome segments are transitive in the following sense:

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

given a read (or a genome segment S), if its alignments A1 and A2 belong to Fitting(S, Genome) then
Target(A1) strongly aligns to Target(A 2).

Given a read Read and a sequence-set C, an overlap alignment of Read against C defines a suffix S’
of one of sequences in C with the maximum scoring global alignment against a prefix S of Read among all
prefixes of all sequences in C. We classify an overlap alignment as strong if S and S’ have strong
alignment and the length of this alignment is at least k. If the overlap alignment is strong, we remove the
sequence in C that has suffix S’ and iteratively repeat the process of finding the strong overlap alignments
until it stops. We refer to the resulting set of overlap alignments as Overlap(Read, C) and further combine
the sets Fitting(Read, C) and Overlap(Read, C) into a single set Alignments(Read,C). A local alignment
between a read Read and a contig c that aligns a segment S1 of Read to a segment S2 of c is correct if
Origin(S1) = Origin(S 2).

Appendix “Optimal genome assembly” describes the goal of mosaicFlye with respect to analyzing all
fitting and overlap alignments.

Appendix: Alignment tournament

Below we assume that each read Read was generated from a genome segment Origin(Read) and

Fittings (Read, Genome) contains an alignment from Read to Origin(Read) that we refer to as the correct
alignment. Our goal is to find the correct alignment among all alignments in Fitting(Read, Genome)
between a read Read and genome Genome. We will first consider the case when the set Fitting(Read,
Genome) includes only two alignments A 1 and A2.

Repeats in a genome accumulate mutations and result in divergent repeat copies, e.g., most segmental
duplications in the human genome diverge by more than 1% (Pu et al., 2018). As a result, the correct
alignment of a read (to a repeat copy that it originated from) typically has a larger percent identity than
the alignment of the same read to an incorrect repeat copy. Moreover, our analysis revealed that, in most
cases, the divergence between the repeat copies (defined as Div(Target(A1), Target(A2))) is approximately
equal to the difference in percent identity PI(A1) - PI(A2) between correct alignment A1 and incorrect
alignment A2 two alignments (Figure A1, left). However, this difference is often low compared to the
percent identity between the read and its origin and, in the case of highly similar repeat copies, errors in a
read sometimes result in cases when the percent identity of the correct read alignment is even lower as
compared to the incorrect one (Figure A1).

To avoid selecting false alignments, we use a probabilistic model for comparing alignments described
in Lin et al., 2016. Given an alignment A, we compute the likelihood that the sequence Query(A) is
generated from a genome segment Target(A) as a read (for a specific sequencing technology). We further
consider the likelihood-ratio LikelihoodRatio (A1,A2) to distinguish between two hypotheses:
Origin(Read)=Target(A 1) and Origin(Read)=Target(A 2). If LikelihoodRatio (A1,A2) exceeds a threshold
minLikelihoodRatio, we report A1 as the correct alignment and if falls below 1/minLikelihoodRatio, we
report A2 as the correct alignment. Otherwise, we report no alignment for this read - this usually happens
when Target(A1) and Target(A2) have very few diverged positions, making it difficult to infer the correct
alignment.

To select the value of minLikelihoodRatio we constructed a histogram of the likelihood ratios between
the correct alignment A1 and an incorrect alignment A2 for reads from NCTC dataset 10864 (Figure 1A,
right). As the histogram illustrates, some incorrect alignments have higher likelihood ratios than the
correct alignments. However it hardly ever falls below 10-5 which roughly corresponds to the probability
of 2-3 mismatches. Based on this observation we chose minLikelihoodRatio = 10 5.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure A1. The scatter-plot of the divergence between alignment targets and the difference between percent
identities of these alignments (left) and the histogram of the ratio LikelihoodRatio(A 1 , A2) (right). The read
alignments were generated for the NCTC dataset 10864.

In the case when the set Fitting(Read, Genome) contains more than two alignments, mosaicFlye
setups an alignment tournament to test each pair of alignments A1 and A2 from Fitting(Read, Genome) as
described above. An alignment that “won” each pairwise comparison is reported as correct.

We will make the following simplifying assumption about the results of the alignment procedure: if
an alignment A was selected for a read Read then for any segment S of Read this procedure would either
select a reduction of A to S or return no alignment. We further assume that correct alignments selected by
this procedure provide the coverage of the genome with aligned reads that is sufficient for polishing the
entire genome and thus Genome is a stable point of alignment-consensus loop described in the next
appendix. We will use these assumptions in the mosaicFlye algorithm.

Appendix: Optimal genome assembly

Given a read-set Reads and a sequence-set C we define fitting of Reads to C as a collection of fitting

alignments of reads from Reads to C (at most one fitting alignment for each read). A target-set of a fitting
is a collection of targets of all alignments from this fitting. Given an integer K, a fitting is called covering
if each K-mer in C is contained within at least minCover segments from the origin-set (the default value
minCover =10). Note that the collection of alignments between reads and their origins in Genome forms a
fitting from Reads to Genome that we refer to as origin fitting . Given a read-set and a K-mer from
Genome, we define its coverage as the number of read origins that contain this K-mer. The K-mer
coverage of a genome is defined as the average coverage of its K-mers. mosaicFlye sets the value of K in
such a way that the K-mer coverage is equal to minCover (for a typical bacterial genome, K = 2500 for a
read-set with coverage depth 50x and average read length 6 kb).

A sequence S is a genome candidate for a read-set Reads if there exists a covering fitting of reads
from this read-set to S. We assume that the origin of each read coincides with one of the target sequences
in Fitting(Read, Genome) and that the read coverage of the genome is uniform. Thus, Genome is also a
genome candidate as long as the coverage depth of the read-set exceeds a threshold.

A set of strings is called free if no string in the set contains another string as a substring. We define a
genome assembly as an arbitrary free set of strings and say that an assembly C1 covers an assembly C2
(written as C1 > C2) if each sequence from C2 is a substring of a sequence from C1. An assembly C is
called correct for a read-set Reads if for any genome candidate G satisfying a condition AC(G, Reads) =G,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

we have C < G . Strings from a correct assembly are referred to as contigs . We will assume that each
contig c matches to only one segment of the genome and denote this segment as Origin(c) . An optimal
assembly for a given read-set is defined as a correct assembly that covers all other correct assemblies for
this read-set. Our goal is to find an optimal assembly.

Appendix: Alignment-consensus loop

As described in the main text, correct read alignments are required to polish the draft genome but the

polished genome is needed to construct the correct read alignments. To resolve this catch-22, mosaicFlye
uses the alignment-consensus loop described below. It selects a highest-scoring alignment of each read to
the draft assembly and uses the aligned reads for polishing. Given a sequence S (a draft genome) and a
read-set Reads generated from an unknown genome, we refer to a single application of this procedure as
the alignment-consensus (AC) step and denote its result as AC(S,Reads) .

One can apply the AC step iteratively to a draft error-prone sequence of a genome in a hope that it
will converge (Figure A2). We refer to such iterative application of this procedure as the
alignment-consensus loop (ACL). Although ACL does not necessarily converge, it is not always
necessary to find the correct alignment for each read as we only need to align enough reads to provide a
sufficient read coverage to polish the genome sequence. As described in Appendix: “Alignment
tournament”, the alignment tournament procedure has a low false alignment rate but reports “no
alignment” decision in the case of difficult-to-align reads.

Figure A2. The alignment-consensus loop. Single nucleotide variations between two copies of the “purple”

repeat are shown in green (in the first copy) and in orange (in the second copy). Reads originating from the first
(second) copy of this repeat “inherit” green and orange variations. Errors in the draft assembly and reads are shown
in red. Four reads that have incorrect alignments to the draft assembly at the first round of polishing are shown in
solid boxes. The same four reads that have correct alignments to the draft assembly at the second round of polishing
are shown in solid boxes.

Appendix: Expanding alignment-consensus loop

Instead of considering a complete genome, we will now consider a genome assembly and apply the

ACL for genome assembly rather than for polishing as before.
We define the multiplicity of a string S in a genome Genome as the size of Fitting(S, Genome) and

refer to sequences of multiplicity one as unique . The Flye assembler uses reads to construct the repeat
graph of the genome and further uses bridging reads to resolve the repeat edges in this graph

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

(Kolmogorov et al., 2019). mosaicFLye starts from the Flye repeat graph (before the repeat resolution
step that uses the bridging reads) and selects sequences of all unique edges in this graph as the contigs in
the initial mosaicFlye assembly C0 (shown in grey in Figure A3). Since Flye collapses all repeats of
length k and longer, the unique edges in the Flye repeat graph contain only unique k-mers, i.e., k-mers
that do not align to other regions in C 0.

Figure A3. The expanded alignment-consensus loop reconstructs two instances of a repeat.

mosaicFlye uses parameters k and K (k < K) and assumes that all reads have length at least k. Since

all k-mers in assembly C0 are unique, all alignments of reads to sequences from C0 are correct. Thus, we
can assume that sequences in C0 are polished and C0 is a correct assembly. mosaicFlye constructs a series
of correct assemblies C0 < C 1 < C 2 … < Cm = C m+1 until this process converges, i.e., until Cm = C m+1 (Cm
is reported as an approximation of an optimal assembly). At each step, mosaicFlye constructs correct
alignments of reads to sequences in an assembly (contigs) and uses these reads to construct even longer
contigs as illustrated in Figure A3. We refer to this procedure as the expanding alignment-consensus loop
(EACL).

We start by explaining how EACL constructs C1 from C0. Given a contig c from C0 and a read Read
mapped to this contig, all alignments from Overlap(Read, c) are correct since all k-mers from C0 are
unique. Since any K-mer in the genome is covered by at least minCover reads then at least minCover
reads that cover the last k-mer of c also cover the next K - k nucleotides in Genome after Origin(c) . Thus,
the contig c in C0 can be prolonged by at least K - k nucleotides using one these reads. Since the resulting
expanded contig has sufficient coverage (for at least K - k nucleotides), it can be polished over its entire
length resulting in a longer polished contigs as compared to c. Applying this procedure to all contigs in C0
results in the set of elongated contigs C1. The consequent assemblies C2, C3,... are constructed in a similar
way by selecting the correct alignment for reads that overlap with contigs and using new reads to prolong
these contigs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Expanding alignment-consensus loop for transforming the repeat graph into the de

Bruijn graph

The alignment-consensus loop can be applied to a draft assembly resulting from a traversal of the

repeat graph. If we knew which reads originated from each copy of a repeat edge (for each repeat edge in
the repeat graph), we would be able to accurately polish sequences of each copy of each repeat and thus
reconstruct the de Bruijn graph as described in the previous sub-section. After constructing the de Bruijn
graph, one can find the top-scoring alignment of reads to paths in the de Bruijn graph using an approach
similar to the hybridSPAdes algorithm (Antipov et al., 2016). Similarly to the top-scoring alignment of a
read against the genome, the top-scoring alignment of a read against the de Bruijn graph is likely to be
correct (it is still impossible to find the correct alignment for reads that align to several identical or nearly
identical copies of a repeat).

mosaicFlye applies the EACL to gradually transform the repeat graph into the de Bruijn graph and
thus to resolve repeats by revealing unique edges in the de Bruijn graph that were collapsed by the Flye
algorithm for the repeat graph construction. We classify an edge of a graph as resolved if its sequence is a
substring of a genome and as unique if it is resolved and occurs only once in the genome. In the de Bruijn
graph all edges are resolved. In the repeat graph, unique edges are resolved and unique (since they can be
polished using correct alignments) but repeat edges are not resolved. mosaicFlye constructs a sequence of
graphs G0 = RG(Reads, k), G 1, G2,... where each graph contains all resolved edges of the previous graph
as substrings of its resolved edges. At each step, mosaicFlye constructs correct alignments of reads on
resolved edges and uses these reads to prolong the perfectly polished sequence and create more resolved
edges (Figure 3 in the main text).

Appendix: The challenge of aligning reads to the growing assembly

The EACL approach, while conceptually simple, faces the challenge of selecting the correct

alignment of reads to the growing contigs. We already discussed this problem in two settings: selecting
correct alignment of a read to a genome and to an assembly C0. We will combine techniques used in these
two cases to solve a more difficult problem of aligning a read to an assembly C i for i=1, …, m.

Although aligning a read to an assembly C0 is an easy task (since all k-mers in C0 are unique), it is not
clear how align a read to an assembly C1 since some k-mers in C1 are non-unique. Indeed, since a read
may overlap with several contigs in C1, the choice of the correct overlap alignment becomes non-trivial.
Also, it is not clear how to generalize the previously described approach for aligning a read against a
(complete genome) to aligning it against an (incomplete) assembly.

To address this challenge, we will generalize the concept of a unique k-mer. Let C be a correct
assembly of a genome Genome. We say that a sequence S is resolved with respect to the assembly C if all
genomic segments it aligns to are contained within contigs in C, i.e., each segment from
Target(Alignments(S, Genome)) is a segment of Origin(C). Another equivalent definition of a resolved
sequence is as follows: sequence S is resolved if | Fitting(S,C) | = | Fitting(S,Genome) |. Figure A4 shows an
example of a resolved segment S1 (both genomic segments S1 aligns to are contained within contigs in C)
and an unresolved segment S2 (one of two genomic segments it aligns to is not contained within a contigs
in C) .

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure A4. Resolved segments and correct read alignments. A segment S1 is resolved with respect to

assembly C because all genomic segments it aligns to are contained within contigs in C. In contrast, a segment S2 is
not resolved because one of two genomic segments it aligns to is not contained within a contigs in C. A segment of
a read Read 1 aligns to a resolved segment S1 and thus one of its alignments to contigs from assembly C is correct. In
contrast, since Read 2 does not align to a resolved segment, its alignment to assembly C is incorrect.

If a read Read aligns to a resolved segment S in an assembly C, then Origin(Read) is a segment of

Origin(C) since, by the alignment transitivity condition, Origin(Read) aligns to a segment of Origin(C)
and S is resolved. Moreover, even if only a segment S of a read aligns to a resolved segment of C,
Origin(S) is a segment of Origin(C) and Read has either a correct fitting alignment or a correct overlap
alignment with C. Figure A4 shows an example of a read Read 1 that contains a segment that aligns to a
resolved segment S1 in assembly C and thus has a correct overlap with C. In contrast, a read Read 2 does
not have a correct overlap with contigs and none of its segments aligns to any resolved segment. Thus,
finding the highest-scoring alignment among all alignments in Fitting(S, C) would report the correct
alignment of S to C that can be expanded to correct overlap or fitting alignment of Read to C.

Unfortunately, it is not possible to directly check if a read or its segment is resolved when genome is
unknown. Below we show how to find resolved segments of contigs (without knowing the genome
sequence) by keeping track of resolved sequences of length k .

Appendix: Expanding the set of resolved k-mers by traversing mosaic repeats

Flye glues all copies of long repeats (i.e., repeats of length at least k) into a single edge in the repeat

graph, and further classifies all edges of the repeat graph into unique (that represent unglued genomic
regions) and repeat edges. Removing unique edges from the repeat graph reveals the connected
components formed by the repeat edges that we refer to as mosaic repeats . Since the sequence of a repeat
edge represents a consensus sequence of all repeat copies, it typically deviates from sequences of these
copies. We will first describe a simple case of mosaic repeats that do not have cycles (acyclic mosaic
repeats) and later consider mosaic repeats that have cycles (referred to as cyclorepeats)

Flye reconstructs the accurate sequences of unique edges that we use as the initial contigs in the
EACL approach. Each k-mer from a unique edge is unique and thus has only one alignment to the
genome. Therefore, since each such k-mer occurs in one of the contigs, all such k-mers are resolved. We
will initialize the set of resolved k-mers R0(k) as the set of all k-mers occuring in unique edges. Since
reads from long repeats do not contain unique k-mers, we will iteratively expand the collection R0(k) with
each EACL iteration in an attempt to find as many resolved k-mers as possible, thus creating a series of
k-mer sets R0(k) ⊂ R1(k) ⊂ R2(k) ⊂… ⊂ Rm(k), where Ri(k) consists of resolved k-mers in an assembly
Ci for i = 0,...,m. We will find these k -mers as segments of the newly constructed contigs.

We assume that Genome has a strong alignment to a path (referred to as a genome traversal) in the
repeat graph and refer to the number of times this traversal passes an edge Edge in the repeat graph as
Multiplicity(Edge) . Since all repeats of length at least k are glued in the repeat graph, the multiplicity of a
k- mer from an edge Edge is equal to Multiplicity(Edge) . Given an acyclic mosaic repeat, one can infer the
multiplicity of each edge in this graph (Kolmogorov et al., 2019a) and thus the multiplicity of each k-mer.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thus, a k-mer S occurring on the edge Edge is resolved in an assembly C iff Fitting(S, C) =
Multiplicity(Edge) .

Figure A5 shows an example of an iterative expansion of contigs and a parallel expansion of the sets
Ri(k) (shown by dashed lines) and assemblies Ci (shown in purple). The initial contigs (top left)
correspond to unique (grey) edges and the initial set R0(k) corresponds to all k-mers in the initial contigs.
In the first step, contigs are extended inside the repeat based on reads that share unique k-mers with
unique edges (top right). The structure of the repeat graph reveals that the multiplicities of edges A and B
are 2 and 3, respectively. Thus, all k-mers from the edge A, that are covered by both contigs that extended
inside A, are resolved. However no k-mers from edge B can be marked as resolved since they are covered
by at most one contig. Thus, at this point, we can only align reads to two of the three contig and continue
extending these contigs inside the edge A. As the two contigs are extended into the repeat edge A, the
collection of k-mers covered by these contigs also expands allowing to align more reads and prolong
contigs further until the entire edge A is resolved (middle left). After all three contigs prolong into the
edge B, we can mark some of the k-mers from B as resolved (middle right), eventually restore all copies
of the repeat edge B, and finally find out how to connect these contigs with outgoing edges (bottom).

Figure A5. An iterative expansion of contigs with a parallel expansion of the k-mer sets Ri(k). Sets Ri(k) are

formed by all k -mers from the dashed edges. All edges in the graph are unique except for edge A with multiplicity 2
and edge B with multiplicity 3.

Appendix: Corrupted mosaic repeats

The described algorithm works well in the case when Flye accurately represents a mosaic repeat but

faces difficulties in the case of corrupted mosaic repeats that inaccurately represent various copies of a
mosaic repeat. Moreover, it requires accurate estimates of multiplicities of edges in a mosaic repeat that
are often difficult to obtain even in the case of non-corrupted mosaic repeats (Kolmogorov et al., 2019).

To deal with errors in long reads, Flye aggressively collapses bulges (pairs of edges connecting the
same vertices) and contracts short edges in the repeat graph. As a result, the genome sequence may not
have a strong alignment to a genome traversal resulting from the Flye repeat graph. Moreover, after bulge
collapsing, some k-mers from repeat copies may become so diverged from the consensus that the
expansion of the sets Ri(k) may fail since reads do not align to any consensus k-mers. Below we describe a
method to expand the k-mer-set set without relying on the repeat graph in such a way that Ri(k) consists
from k-mers in expanding contigs rather than from the k-mers from the repeat edges in the Flye assembly
that represent consensus of multiple repeat copies.

Note that if a segment S is resolved in an assembly C then a segment S’ from this assembly that
contains S as a substring is often also resolved. Indeed, since all alignments of S to the genome are

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

covered by Origin(C) then all alignments of S’ are at least partially covered by Origin(C). Using this
observation, we will show how to (i) construct a set of longer resolved K-mers than the original set of
resolved k -mers, and (ii) find additional resolved k -mers using the set of resolved K -mers.

Specifically, given a set R(k) of resolved k-mers in an assembly, we will construct a set of resolved
K-mers R(K) in a new assembly, where k-prefixes of all K-mers from R(K) belongs to R(k) . Afterwards,
we will find K-mers from R(K) whose k- suffixes represent resolved k-mers that do not belong to R(k) .
Such resolved K-mers connect a resolved k- prefix with a resolved k-suffix, not unlike how a (k+1) -mer
connects its k- prefix and k-suffix to form an edge in the conventional de Bruijn graph. Finally, we will
iteratively expand the set R(k) by adding all such k -suffixes.

Appendix: From a resolved prefix k-mer to a resolved K-mer

We say that a K-mer S extends a k-mer s if s is a prefix of S. Consider a K-mer S in an assembly C that

extends a resolved k-mer s. We will show that if Overlap(S, C) is empty then S is resolved, i.e., any
“strong” alignment of S to contigs is a fitting alignment rather than an alignment of a prefix of S to a
suffix of a contig from C .

Indeed, any alignment A of S to Genome also aligns s to Genome (Figure A6). Since s is resolved,
there is an alignment A’ in Alignments(s, C) that aligns the k- mer s to a contig c such that a segment
Origin(Target(A’)) is a prefix of segment Target(A) . Since Origin(c) contains Origin(Target(A’)) , either
Origin(c) contains Target(A) or Target(A) overlaps Origin(c) . In the latter case prefix of S aligns to a
suffix of c, a contradiction with the initial assumption. Thus Origin(c) contains Target(A) . Consequently,
every alignment of S to Genome is covered by one of the alignments of S to contigs and S is resolved.

Figure A6. From a resolved k-prefix to a resolved K-mer. A resolved k -mer s is prolonged to a resolved

K-mer S using alignments of s to contigs.

Appendix: From a resolved K-mer to a resolved suffix k-mer

Let RightExpansion(s, K, C) (LeftExpansion(s, K, C)) be the set of all K-mers from an assembly C

which have a k-prefix (k -suffix) that aligns to a k-mer s from contigs. We classify a resolved k-mer s in an
assembly C as strongly resolved if each K-mer S from RightExpansion(s, K, C) satisfies the condition that
Overlap(S, C) is empty. We have shown that if a k-mer s is strongly resolved in an assembly C, then all
K-mers from RightExpansion(s, K, C) are resolved.

The statement above describes how strongly resolved k-mers allow one to identify resolved K-mers.
We will now formulate an “opposite” statement that describes how resolved K-mers allow one to find
resolved k-mers, at least in the case the genome Genome is known. Specifically, if LeftExpansion(s, K,
Genome) contains only resolved K-mers with respect to an assembly C then s is resolved. Indeed each
segment from Target(Alignments(s, Genome)) is covered by the origin of one of the resolved K-mers from
LeftExpansion(s, K, Genome) and thus it is also covered by Origin(C) .

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

Unfortunately, it is unclear how to check the condition “if LeftExpansion(s, K, Genome) contains only
resolved K-mers with respect to an assembly C” when Genome unknown. Indeed, we only know which
K-mers from C are resolved but do not know which K-mers from Genome are resolved. To address this
complication, we describe a criterion that uses read alignments to check whether LeftExpansion(s, K, C) =
LeftExpansion(s, K, Genome) in the case when LeftExpansion(s, K, C) contains only resolved K -mers.

Let Reads(s, K) be the set of all reads whose origin covers one of the K-mers from LeftExpansion(s,
K, Genome). These reads can be detected even without Genome as all reads that have a fitting alignment
with s that starts at or after the position K - k in the read (Figure A7). Since all K-mers in the genome are
covered by at least minCover reads, segments from Origin(Reads(s, K)) cover each K-mer from
LeftExpansion(s, K, Genome) at least minCover times.

Consider a K-mer S in LeftExpansion(s, K, Genome) that does not belong to LeftExpansion(s, K, C)
and a Read such that Origin(Read) contains S. We will show that in this case Read does not have a fitting
or an overlap alignment with C. If Read aligns or overlaps with a contig c from C then, by the transitivity
condition, a K-mer S’ from c aligns to S. This alignment can be reduced to a strong alignment of the suffix
of S’ of length k to the suffix of S that aligns to s, implying that the suffix of S’ aligns to s and S’ belongs
to LeftExpansion(s, K, C) . We assumed that all K-mers from LeftExpansion(s, K, C) are resolved,
implying that S’ is also resolved. Since S’ aligns to S, S is covered by contigs, a contradiction to the
assumption that S does not belong to LeftExpansion(s, K, C) . Thus, Read can not have a fitting or an
overlap alignment with C. This conclusion leads to the following test for deciding whether s is resolved: if
all K-mers from LeftExpansion(s, K, C) are resolved and Alignments(Read, C) is empty for each read
Read in Reads(s, K), then s is resolved.

Figure A7. From a resolved K-mer to a resolved k-mer. LeftExtensions(s, K, C) for the k -mer s=AGCG

consists of two resolved K -mers: CTGCAGCG and CCGCAGCTC. Reads(S, k) consists of 6 reads each of which
aligns to one of the left expansions of s . In this case we can conclude that k -mer s is resolved.

Appendix: Merging contigs and bridging repeats

As we extend contigs using the EACL, origins of previously non-overlapping contigs may eventually

overlap, creating an opportunity to merge these contigs in an assembly. We say that a read Read connects
contigs c1 and c2 if (i) there exists an overlap alignment A(c1,Read) of contig c1 with Read , (ii) there exists
an overlap alignment A(Read,c 2) of Read with contig c2, and (iii) the corresponding overlap alignments
satisfies the condition that Query(A(c1,Read)) overlaps with Query(A(Read,c 2)). We say that a read Read
scaffolds contigs c 1 and c 2 if conditions (i) and (ii) hold but the condition (iii) does not hold.

Since a connecting read is an indication that the origins of contigs c1 and c2 overlap (note that EACL
constructs reliable alignments), mosaicFlye merges these contigs into a single one. A scaffolding read
provides evidence that two contigs are separated by a gap sequence in the genome even though it does not
provide sufficient information to accurately infer this sequence in the case there are few scaffolding reads
between a pair of contigs. Nevertheless, mosaicFlye utilizes information about scaffolding reads by
performing an additional scaffolding step after the EACL converges. The (potentially error-prone) gap

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

sequence between the scaffolded contigs is computed as the consensus derived from gap sequences of all
scaffolding reads for these contigs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/

