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Abstract 
 
Long-read technologies revolutionized genome assembly and enabled resolution of ​bridged repeats (i.e.,            
repeats that are spanned by some reads) in various genomes. However the problem of resolving ​unbridged                
repeats (such as long segmental duplications in the human genome) remains largely unsolved, making it a                
major obstacle towards achieving the goal of complete genome assemblies. Moreover, the challenge of              
resolving unbridged repeats is not limited to eukaryotic genomes but also impairs assemblies of long               
repeats in bacterial genomes and metagenomes. We describe the mosaicFlye algorithm for resolving             
complex unbridged repeats based on differences between various repeat copies and show how it              
improves assemblies of bacterial genomes and metagenomes. 
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Introduction 
Single Molecule Sequencing (SMS) technologies (such as the ones developed by Pacific Biosciences (PB)              
and Oxford Nanopore Technologies (ONT)) opened a new long-read era in genome assembly. Long reads               
often bridge long repeats and resolve many segmental duplications that otherwise were nearly impossible              
to assemble using short-read technologies. As a result, the contiguity of the recently described long-read               
human genome assemblies already exceeds the contiguity of the reference human genome assembled             
using short reads (Jain et. al, 2018, Miga et al., 2019). 

Although long reads greatly improved the contiguity of genome assemblies, resolving long repeats             
remains a challenging task. For example, the state-of-the art long-read assemblers fail to fully assemble               
~50% of bacterial genomes from the NCTC 3000 project aimed at sequencing 3000 bacterial genomes               
from the England’s National Collection of Type Cultures (Kamath et al., 2017). Additionally the base-pair               
accuracy of the long-read assemblies in the repeated regions is reduced (as compared to unique regions)                
since it is often unclear how to align reads to various repeat copies even if the repeat itself was bridged by                     
some but not all reads. 

Long error-prone reads and short accurate reads have their strengths and weaknesses with respect to               
repeat resolution, e.g., short reads may resolve some repeats that are difficult to resolve with long reads.                 
For example, diverged copies of a long repeat (e.g., copies differing by 3%) often don’t share ​k​-mers (for                  
typical values of ​k used in short-read assemblers) and thus are automatically resolved by the ​de Bruijn                 
graph​-based assemblers such as SPAdes (Bankevich et al., 2012). In contrast, long-read assemblers face              
difficulties resolving such repeats since repeat copies with 3% divergence are difficult to distinguish using               
the error-prone reads that have error rates exceeding 10%. Thus, long-read assemblers trade the ability to                
resolve the unbridged but divergent repeat copies for the ability to resolve bridged repeats.  

Since nearly all genomes have long repeats, long-read assemblers (such as Falcon ​(Chin et al., 2016),                
Canu (Koren et al., 2017), Marvel (Nowoshilow et al., 2018), Flye (Kolmogorov et al., 2019a), wtdbg2                
(Ruan and Li, 2019), and others) currently face the same repeat-resolution challenge that short-read              
assemblers faced a decade ago, albeit at a different scale of repeat lengths. To improve the contiguity of                  
assemblies, long read technologies are often complemented by Hi-C ​(Ghurye et al., 2017) and optical               
mapping (Weissensteiner et al., 2017) data. However, these technologies add significant cost to the              
sequencing projects (estimated to be higher than the cost of generating long reads in a typical vertebrate                 
assembly project) and typically fail to accurately reconstruct various repeat copies even if they resolve               
these copies. Moreover, it remains unclear how the inherent errors of data generated by these additional                
technologies affect the accuracy of the final assemblies. Thus, resolving unbridged repeats using long              
reads represents the crucial step towards improving the long-read assembly algorithms and achieving the              
goals of large sequencing programs such as the Earth BioGenome Project (Lewin et al., 2018).  

Repeats in a genome accumulate mutations and result in divergent repeat copies, e.g., most segmental               
duplications in the human genome diverge by more than 1% (Pu et al., 2018). Vollger et al., 2019                  
described how to use the variations between various repeat copies for reconstructing all copies of a                
divergent repeat. This problem is similar to the haplotype assembly problem in the case of high ploidy                 
with several important distinctions. First, the number of copies (edge multiplicity in the assembly graph)               
is often unknown and may vary along a repeat. Second, unlike the haplotype assembly, where all                
haplomes align to a consensus sequence, many repeats have complex mosaic structure (Pevzner et al.,               
2004, Jiang et al., 2007, Pu et al., 2018) that prevents utilization of a single consensus sequence as a                   
template for aligning all copies of a repeat. Such mosaic repeats are also common in cancer genomes,                 
making it difficult to analyze duplications that represent the hallmarks of many cancers (Nattestad, 2018).               
Such difficult cases were not considered in Vollger et al. 2019 that focused on resolving repeat copies                 
with a ​single consensus sequence. However, ​mosaic repeats consist of several smaller sub-repeats that              
appear with varying multiplicities and in different combinations within various copies of a mosaic repeat               
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(Figure 1). Such mosaic repeats are common, e.g., most segmental duplications in the human genome (Pu                
et al., 2018) and many repeats in bacterial genomes (Pevzner et al., 2004) represent mosaic repeats.  

We describe mosaicFlye algorithm and an open source tool for reconstructing individual copies of              
mosaic repeats based on differences between various copies and demonstrate how it contributes to              
improving genome and metagenome assemblies. 

Methods 
De Bruijn graph. ​Given a parameter ​k​, we define the ​genome graph by representing each chromosome of                 
length ​n in the genome as a path on ​n-k+​1 vertices (a position in the chromosome corresponds to a vertex                    
labeled by a ​k​-mer that starts at this position). Let ​DB(Genome, k) be the de Bruijn graph of a genome                    
Genome​, where vertices and edges correspond to ​k​-mers and (​k+1 ​)-mers in ​Genome​, respectively             
(Compeau et al., 2011). Alternatively, the de Bruijn graph can be constructed by “gluing” identical ​k​-mers                
in the genome graph (Pevzner et al., 2004). We will work with the ​condensed de Bruijn graphs ​, where                  
each ​non-branching path is collapsed into a single edge labeled by the corresponding substring of the                
genome. Each chromosome in ​Genome corresponds to a path in this graph and the set of these paths forms                   
the ​genome traversal ​ of the graph.  

Given a read-set ​Reads sampled from ​Genome​, one can view each read as a “mini-chromosome” and                
construct the de Bruijn graph of the resulting genome (Pevzner et al., 2004) that we refer to as ​DB(Reads,                   
k). ​In contrast to ​DB(Genome, k) (where each edge is labeled by a substring of ​Genome​), edges of                  
DB(Reads, k) inherit errors in reads. Since the graph ​DB(Reads, k) encodes all errors in reads, it is much                   
more complex than the graph ​DB(Genome, k). In the case of short reads, various graph-based error                
correction approaches transform the graph ​DB(Reads, k) into the ​assembly graph that approximates             
DB(Genome, k) (Pevzner et al., 2004, Bankevich et al., 2012). However, these error correction approaches               
assume that nearly all ​k​-mers from ​Genome also occur in reads, the condition that holds for short-read                 
datasets but is violated for long reads. As a result, constructing an accurate assembly graph from long                 
error-prone reads remains an open problem.  

Repeat graph. Kolmogorov et al., 2019a developed a Flye assembler that attempts to solve this               
problem by making some concessions. ​Flye constructs the repeat graph of long reads (also known as the                 
A-Bruijn graph ​) with the goal to approximate the de Bruijn graph ​DB(Genome, k) in the case of a large ​k​,                    
e.g., ​k​=1500. Since this task proved to be difficult in the case of error-prone reads, the Flye assembler                  
collapses similar (rather than only identical as in the de Bruijn graph) ​k​-mers in the genome graph into a                   
single vertex in the repeat graph and labels this vertex by the consensus sequence of all collapsed ​k ​-mers.  

Specifically, to construct the repeat graph of a genome, Flye generates all local self-alignments of the                
genome against itself that have divergence below the ​divergence threshold ​d​%. Two positions in the               
genome are defined as ​equivalent if they are aligned against each other in one of these alignments.                 
Kolmogorov et al., 2019a defined the ​repeat graph ​RG(Genome, k, d) ​as the graph obtained from the                 
genome graph by ​collapsing all equivalent positions (vertices) into a single vertex. Note that the graph                
RG(Genome, k, 0) ​=​ DB(Genome, k). 

Kolmogorov et al., 2019 defined the repeat graph ​RG(Reads, k, d) similarly to ​RG(Genome, k, d) ​by                 
applying the same approach to a “genome” formed by all reads (each read is viewed as a                 
“mini-chromosome”). ​They further described how to construct ​RG(Reads, k, d) in the case when ​d is not                 
too small (e.g., exceeds 5%) and demonstrated that ​RG(Reads, k, d) approximates ​RG(Genome, k, d) ​.               
However, although the problem of constructing (approximating) the repeat graph of a genome from long               
error-prone reads has been solved, it remains unclear how to construct the de Bruijn graph from such                 
reads. Solving this problem is arguably one of the most pressing needs in assembly of long error-prone                 
reads since it would result in assemblies of the same quality as assemblies of long ​error-free ​ reads. 

Figure 1 illustrates this problem in the case of a genome where each ​k​-mer is unique. In this case, the                    
de Bruijn graph is a cycle (resulting in a unique genome reconstruction) but the repeat graph is complex                  
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since the genome contains similar ​k​-mers. Moreover, in the realm of genome assembly, the labels of                
complex vertices of the repeat graph are unknown (cryptic repeat graphs).  

 

 
Figure 1. A genome (top left), its repeat graph (top right), its cryptic repeat graph (bottom left), and its                   
partial repeat graph (bottom right). ​Since all 4-mers in the genome are unique, its de Bruijn graph is a cycle.                    
However, its repeat graph is not (two 4-mers are defined as similar if they are at most 1 substitution apart). In the                      
realm of genome assembly (when the genome is unknown), the label of each complex vertex in the cryptic repeat                   
graph represents the consensus of all individual ​k​-mers that were glued into this vertex. Since this consensus ​k​-mers                  
do not reveal information about the individual k-mers, we assume that the labels of complex vertices in the cryptic                   
repeat graph are unknown. The partial repeat graph (a subgraph of the repeat graph formed by its simple vertices),                   
provides even less information than the cryptic repeat graph.  

 
mosaicFlye uses variations between various copies of a mosaic repeat for resolving these copies and               

thus untangling the repeat graph of reads ​RG(Reads,k,d ​) ​constructed by the ​Flye assembler. Kolmogorov              
et al., 2019a first described how Flye constructs the graph ​RG(Genome,k,d) ​and later explained how to                
construct the graph ​RG(Reads,k,d) ​by simply applying the same approach to a “genome” formed by all                
reads. Similarly, we first describe the idea of the mosaicFlye algorithm using ​Genome and later explain                
how it works in the case when ​Genome ​ is unknown and only the read-set ​Reads ​ is given. 

The challenge of transforming the repeat graph into the de Bruijn graph. ​mosaicFlye attempts to               
solve this problem. Although the repeat graph constructed by Flye provides a useful representation of               
repeats in a genome, its main deficiency (compared to the graph ​DB(Genome, k​)) is that sequences of                 
various instances of each repeat edge remain unknown as they are substituted by a consensus sequence of                 
this edge. Flye and other long-read assemblers do not resolve such repeats, resulting in a lower contiguity                 
as compared to the assembly represented by the de Bruijn graph ​DB(Genome, k). 

Figure 2 illustrates the differences between the de Bruijn graph and the repeat graph in the case of a                   
“genome” that contains three instances of a mosaic repeat. Colored segments of the genome represent               
non-diverged parts of the three copies of a mosaic repeat (each triple of colored segments is collapsed in a                   
single colored edge in the de Bruijn graph). In the repeat graph, all three instances of the mosaic repeat                   
are collapsed into a single purple edge, resulting in a simpler graph (as compared to the de Bruijn graph)                   
but making it difficult to reconstruct three different instances of the mosaic repeat.  
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Figure 2: A genome with three copies of a mosaic repeat (left), its de Bruijn graph (middle top), its repeat 
graph (right top), alignment of reads to the de Bruijn graph (middle bottom), and to the repeat graph (right 
bottom), ​The genome contains three instances of a mosaic repeat (marked by purple) formed by four non-diverged 
sub-repeats shown in red, yellow, green, and blue with 3, 2, 2, and 3 copies, respectively. Six unique regions in the 
genome are shown in gray. Reads bridging red, yellow, green, and blue sub-repeats are shown in gray. 

 
Flye classifies edges in the repeat graph ​RG(Reads, k, d) ​into ​unique and ​repeat edges (Kolmogorov                

et al., 2019). A read ​bridges a repeat if its ​read-path in the repeat graph starts at a unique edge, traverses                     
some repeat edges, and ends in a unique edge. Although the repeat-bridging reads enable the ​repeat                
resolution algorithm in the Flye assembler, this algorithm has some limitations. Figure 2 illustrates that, in                
contrast to the de Bruijn graph that has bridging reads (that enable complete genome reconstructions), the                
repeat graph does not have bridging reads since the purple repeat is longer than any read. mosaicFlye                 
addresses this limitation of the repeat graph and enables resolution of unbridged repeats as long as they                 
have some diverged positions.  

Genome polishing challenge. ​Each read ​Read originates from a region in a genome that we refer to                 
as its ​origin ​. A read is ​correctly aligned to a genome if it is aligned against its origin​, and ​incorrectly                    
aligned otherwise. A read-set is called ​correctly aligned ​if all reads in this set are correctly aligned. We                  
define a ​high-coverage read-set as a read-set with coverage depth exceeding the ​coverage threshold (the               
default value is 30x in the case of PB reads).  

Even if a genome is unknown and only its error-prone version is given, ​polishing algorithms correct                
most errors and generate highly accurate genome sequence in the case of high-coverage and correctly               
aligned read-sets (Loman et al., 2015, Lin et al., 2016, Vaser et al., 2017, Lima et al., 2019). However, it                    
is not clear how to construct a draft genome sequence, not to mention correctly align all reads. Although it                   
is easy to do for reads that fit into unique regions of a genome (or overlap these regions), it is not clear                      
what specific copy of a repeat in a draft genome a read correctly aligns to. Incorrect read alignments to                   
wrong copies of a repeat result in a contamination of reads recruited to each copy by “foreign” reads from                   
other copies that mislead the polishing procedure and turn multiple diverged copies of a repeat into a                 
single consensus of all copies. On the other hand, if the entire error-free genome sequence is known,                 
finding correct read alignments turns into an easy problem since the alignment with the maximal score is                 
typically correct (unless the read aligns to identical or nearly identical instances of the repeat which                
makes selection of the correct alignment impossible). Thus, correct read alignments are required to polish               
the draft genome but the polished genome is needed to construct the correct read alignments.  

Transforming the repeat graph into the de Bruijn graph by gradually shrinking the set of               
similar ​k​-mers. We first describe the idea of the mosaicFlye algorithm using ​Genome and later explain                
how it works in the case when ​Genome is unknown and only the read-set ​Reads is given. Flye uses a                    
rather general concept of similarity that takes into account mismatches, insertions and deletions. For the               
sake of simplicity, we will consider a less general notion of similarity (limited to mismatches only) when                 
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similar ​k​-mers are defined as ​k​-mers with at most ​delta mismatches ​. We will thus redefine the repeat                 
graph for this less general notion using the concept of the similarity graph.  

Given a set of ​similar pairs of ​k​-mers ​sim​=​sim(Genome), we define a ​similarity graph with the                
vertex-set formed by all ​k​-mers in ​Genome and the edge set ​sim(Genome). ​We call two ​k​-mers ​similar if                  
they belong to the same connected component of the similarity graph. In difference from the de Bruijn                 
graph (constructed by gluing all ​identical ​k​-mers into a single vertex), the ​repeat graph              
RG(Genome)​=​RG(Genome,sim) is constructed by gluing all ​similar ​k​-mers in the genome graph into a              
single vertex. Note that the de Bruijn graph is the repeat graph with the empty set ​sim(Genome) ​.  

The number of vertices in the repeat graph is equal to the number of connected components in the                  
similarity graph and each vertex ​v is labeled by a set of ​k​-mers (forming a connected component in the                   
similarity graph) that we refer to as ​label(v) ​. A vertex is called ​simple if its label consists of a single                    
k​-mer, and ​complex ​otherwise.  

In the realm of long-read assembly, although ​Genome is unknown, the Flye assembler constructs the               
repeat graph ​RG(Reads)=RG(Reads,sim) from reads that approximates the graph         
RG(Genome)=RG(Genome,sim)​. For the sake of simplicity, in addition to the condition that all ​k​-mers              
with at most ​delta mismatches form the set ​sim(Genome), ​we also assume that every two ​k​-mers in the                  
same connected component of the similarity graph differ by at most ​delta mismatches (​transitivity              
condition ​).  

We will transform the repeat graph ​RG(Reads) (that approximates ​RG(Genome)​) into a graph that              
approximates the de Bruijn graph ​DB(Genome)=DB(Genome,k) ​by gradually shrinking the set ​sim and             
thus resolving more and more repeats. We note that, since ​Genome is unknown, we will perform this                 
transformation using some operations that can be implemented using information about reads.  

Ungluing complex vertices in the repeat graph. ​Each complex vertex ​v in the repeat graph               
corresponds to a connected component in the similarity graph. Removal of all edges of this connected                
component results in a smaller set of pairs of similar ​k​-mer that we refer to as ​sim(v). ​Given a complex                    
vertex ​v in the repeat graph ​RG(Genome,sim​)​, ​the ​ungluing operation on this vertex returns the repeat                
graph ​RG(Genome,sim(v))​. Below we show how to use reads to perform some ungluing operations even               
though, in the realm of genome assembly, the labels of complex vertices are unknown.  

Cryptic repeat graphs. Flye classifies edges of the graph ​RG(Reads ​) into unique and repeated and               
further applies the Flye polishing algorithm (Lin et al., 2016) to derive the consensus of each edge. Since                  
polishing results in an accurate consensus in the case of a unique edge, we assume that these edges are                   
perfectly polished and thus all ​k​-mers on these edges (referred to as ​unique ​k​-mers) are known and                 
represent ​k​-mers from ​Genome​. In contrast, since polishing of repeated edges results in a consensus               
sequence (rather than sequences of individual instances of each repeat), we assume that the labels of                
repeated k-mers ​ (located on repeat edges) are unknown.  

Thus, to model the reality of genome assembly, we will work with ​cryptic repeat graphs with known                 
labels of simple vertices but hidden labels of complex vertices (Figure 1). Our goal is to transform a                  
cryptic repeat graph into the de Bruijn graph, an easy task if we were able to perform a series of ungluing                     
operations on all vertices of the cryptic repeat graph. Although it is not clear how to perform ungluing                  
operations in the realm of genome assembly, mosaicFlye uses reads to identify some vertices in the                
cryptic repeat graph that enable ungluing operations.  

Transforming a cryptic repeat graph into a de Bruijn graph. A complex vertex is called               
semi-complex if either all its predecessors are simple or all its successors are simple. An ungluing                
operation on a semi-complex vertex is called a ​legal ungluing operation ​. mosaicFlye iteratively identifies              
semi-complex vertices in the repeat graph, performs legal ungluing operation on these vertices, and              
returns the resulting graph that we refer to as ​mosaic(Genome). ​For now, we treat a legal ungluing                 
operation as a black-box function (without explaining how it works) but the subsection “Implementing              
legal ungluing” explains how mosaicFlye uses reads to implement this black-box.  
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Legal ungluing operation contribute to repeats resolution by reducing the number of complex vertices              
in the repeat graph. However, although the graph ​mosaic(Genome) has no semi-complex vertices             
(otherwise, we would be able to perform additional ungluing operations) it may still have complex               
vertices. We refer to the subgraph on the set of remaining complex vertices in ​mosaic(Genome) as the                 
complex subgraph ​. Since there are no sources and sinks in the complex subgraph (otherwise, a source or a                  
sink vertex would be semi-complex), each connected component of the complex subgraph contains a              
directed cycle. Such connected components represents the most complex mosaic repeats (referred to as              
cyclorepeats ​) such as long tandem repeats or cyclic segmental duplications analyzed in Pu et al., 2018.                
With the exception of the recently proposed algorithm for assembling centromeres (Bzikadze and             
Pevzner, 2019), existing repeat resolution tools (including mosaicFlye) are unable to resolve cyclorepeats.  

From ​mosaic(Genome) to ​mosaic(Reads). Above we explained how to construct the graph            
mosaic(Genome) but did not explain what various concepts introduced above (e.g., the “legal ungluing”              
black-box) mean in the realm of genome assembly. In the next section, we explain how mosaicFlye                
constructs the graph ​mosaic(Reads).  

To construct the repeat graph of a genome, Flye generates a ​genomic dot-plot representing all local                
self-alignments within a genome (analog of the similarity graph) and uses this dot-pot to construct the                
graph ​RG(Genome) ​(analog of the graph ​RG(Genome, sim)​). Similarly, to construct the repeat graph of               
reads, it generates all local alignments between reads (analog of the similarity graph) and constructs the                
graph ​RG(Reads) ( ​an analog of the graph ​RG(Genome,sim)) ​by considering each ​disjointig (Kolmogorov             
et al., 2019a) as a mini-chromosome. mosaicFlye iteratively performs legal ungluing operations on the              
graph ​RG(Reads) ​as described below.  

Implementing legal ungluing: from ​k​-mers to ​K​-mers. mosaicFlye sets two parameters: the            
k-mer-size (typical value ​k​=1500) and a much larger K-mer size (typical value ​K​=2500). The parameters ​k                
and ​K in mosaicFlye are not unlike parameters ​k and ​k​+1 in the de Bruijn graph construction. In the case                    
of the de Bruijn graph, each vertex ​a is labeled by a ​k​-mer and outgoing edges from ​a are labeled by                     
(​k+1 ​)-mers. Each such (​k ​+1)-mer reveals information about a vertex ​b that follows ​a (lays in the                
immediate vicinity of a vertex ​a​). However, information about this (​k ​+1)-mer is not sufficient to unglue                
the vertex ​b since it lacks information about the outgoing edges from ​b​. mosaicFlye takes a step further by                   
considering a larger ​K ​-mer that follows ​a ​ (for ​K​ > ​k​+1) and thus speeding up the ungluing process.  

Let ​a ​be a unique k​-mer from ​Genome and ​extension ​K​(a) be the (unknown) ​K​-mer in ​Genome with                 
prefix ​a (for ​K > k+ ​1). We define ​similar(a) ​as the set of all ​k​-mers from ​Genome ​that are similar to ​a and                       
align all reads to ​a in a hope to find ​extension ​K​(a)​. However, in the case of error-prone reads, this                   
alignment will return reads spanning ​all ​k​-mers that are similar to ​a rather than all reads spanning a ​single                   
k​-mer ​a​, making it impossible to reconstruct ​extension ​K​(a)​. However, below we show that the situation is                
not hopeless if all ​k ​-mers from ​similar(a)={a ​1​, …, a​t​}​ represent simple and unique vertices in ​RG(Reads ​).  

Indeed, if one aligns a read to all ​k​-mers in ​similar(a), ​a highest-scoring alignment among these ​t                 
alignments almost always detects a specific ​k​-mer ​in ​similar(a) ​spanned by this read. This observation               
results in partitioning of all reads that align to ​a into ​t clusters such that reads from the ​i​-th cluster span                     
the ​k​-mer ​a​i​. ​Thus, given a semi-complex vertex ​v in ​RG(Reads ​), one can consider all its predecessors (or                  
successors) and align reads to each of ​t ​predecessors, thus resulting in ​t ​clusters of reads. Performing                 
polishing on each of these clusters reveals the set of ​K​-mers {​extension ​K​(a​1​), … ,extension ​K​(a​t​)​} for ​K >                 
k+​1​. ​mosaicFlye uses these​ K ​-mers ​ ​to unglue the vertex ​v.  

Partial repeat graphs. Above we assumed that the repeat graph is given (even though the labels of                 
its complex vertices are unknown) and described how to transform it into the de Bruijn graph using legal                  
ungluing operations. However, since Flye may distort the structure of complex mosaic repeats in the               
repeat graph and miscalculate multiplicities of its subrepeats, the repeat graph constructed by Flye is not                
necessarily 100% correct. Below we assume that we are only given the subgraph of the repeat graph                 
formed by its unique edges (referred to as the ​partial repeat graph ​that is illustrated in Figure 1). We use                    
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reads to iteratively transform the partial repeat graph (that is reliably reconstructed by Flye) into the de                 
Bruijn graph of the entire genome.  

Transforming a partial repeat graph into a de Bruijn graph. ​At each iteration, we find the                
best-scoring alignment of each read to the partial repeat graph. Given a ​k​-mer (vertex) ​a in a partial                  
repeat graph, the reads aligned to ​a reveal a ​K​-mer ​extension ​K​(​a​). The ​k​-mer that starts in the 2​nd position                   
of the ​K​-mer ​extension ​K​(​a​) (i.e., the ​k​-mer that follows ​a​) may represent a still unexplored complex vertex                 
of the repeat graph. If this vertex (referred to as ​next(a) ​) is semi-complex, it can be unglued as described                   
above, thus adding new simple vertices to the partial repeat graph. The repeated application of this                
procedure has a potential to eventually reconstruct the entire de Bruijn graph.  

However, this procedure faces the challenge of verifying whether a still unexplored complex vertex              
next(a) of the repeat graph is semi-complex. Although this test is easy to conduct when the entire repeat                  
graph is given, it requires additional analysis in the case of the partial repeat graph. Specifically, we align                  
all reads to ​next(a) and use these reads to find all ​k​-mers that precede ​next(a) ​. If all these ​k​-mers represent                    
simple and unique vertices in the partial repeat graph, we classify a vertex ​next(a) as semi-complete and                 
unglue it as described above.  

mosaicFlye meets the realities of genome assembly. ​The description above leaves many questions             
about constructing the graph ​mosaic(Reads) unanswered, e.g., “How do we know accurate labels of              
simple vertices in the repeat graph?”, “How do we align all reads to a given ​k​-mer ​a to find                   
extension ​K​(a)​”, etc. These questions are answered in Appendices that we briefly summarize below.  

Appendix “Fitting and overlap alignments of reads” explains how mosaicFlye aligns reads against an              
assembly and generates accurate labels of simple vertices in the repeat graph. Although reads originating               
from a unique region in an assembly are easy to align, it is not clear how to align reads originating from                     
the repeated regions (Li, 2018). mosaicFlye generates the sets ​Fitting(Read, C) ​and Overlap(Read, C) ​of               
all high-scoring fitting and overlap alignments between a read ​Read and a contig-set ​C​. This procedure                
results in generating accurate (polished) sequences of simple vertices.  

Appendix “Alignment tournament” explains how mosaicFlye selects the correct alignment of a read             
out of many alignments in ​Fitting(Read, C) ​and Overlap(Read, C). ​Since repeats in a genome accumulate                
mutations, the correct alignment of a read (to a repeat copy that it originated from) typically has a larger                   
percent identity than the alignment of the same read to an incorrect repeat copy. However, this difference                 
is often small compared to the percent identity between the read and its origin and, in the case of highly                    
similar repeat copies, errors in a read sometimes result in cases when the percent identity of the correct                  
read alignment is lower as compared to the incorrect one. To avoid selecting false alignments, mosaicFlye                
uses a probabilistic model for comparing alignments described in Lin et al., 2016 and specifies the                
tournament between different repeat copies “competing” for a given read.  

Extending ​k​-mers into ​K​-mers is a key step of mosaicFlye that requires correct read alignments.               
Section “Genome polishing challenge” explained that correct read alignments are required to polish the              
draft genome but the polished genome is needed to construct the correct read alignments. To resolve this                 
catch-22, mosaicFlye uses the ​expanding alignment-consensus loop (EACL) and applies it for genome             
polishing (appendix “Alignment-consensus loop”) and for transforming the repeat graph into the de             
Bruijn graph (appendices “Expanding alignment-consensus loop” and “Expanding alignment-consensus         
loop for transforming the repeat graph into the de Bruijn graph”).  

Figure 3 illustrates an iterative transformation of the repeat graph into the de Bruijn graph using                
EACL. In the first iteration, mosaicFlye finds all reads (referred to as ​incoming reads) that align to the                  
three incoming unique edges and “enter” into the purple repeat (Figure 3, upper left). Since the incoming                 
reads extend into the repeat edge, they cover the neighbourhoods of the three incoming repeat edges in the                  
genome traversal and thus provide information about three different instances of the repeat edge, at least                
for their initial segments that are well covered by the incoming reads. Since these segments are covered                 
by correctly-aligned reads, they can be accurately polished, thus revealing the sequences of each such               
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segment. mosaicFlye replaces the beginning of the purple edge representing these segments by the part of                
the de Bruijn graph constructed from these segments. As a result, two repeats (blue and orange) and three                  
unique (grey) edges, that are missing in the initial repeat graph, are revealed (Figure 3, upper right). In the                   
second iteration, mosaicFlye generates new incoming reads by aligning reads to the new unique edges               
constructed at the previous iteration (Figure 3, middle left) and reveals the remaining structure of de                
Bruijn graph (Figure 3, middle right). Finally, after one more EACL iteration, it generates accurate               
consensus sequences of all edges within a mosaic repeat and concludes the transformation of the repeat                
graph into the de Bruijn graph. The length of each repeat edge in the resulting graph has reduced                  
(compared to the length of the initial purple edge), leading to emergence of bridging reads and thus a                  
possibility to resolve repeats in the resulting de Bruijn graph.  

 
Figure 3: Transforming the repeat graph (top left) into the de Bruijn graph (bottom right). ​Resolved edges are 
shown as dashed and unique edges are shown as grey. Paths highlighted by solid lines show the alignment of the 
consensus of reads that align to unique edges. Note that these paths represent the consensus of reads rather than 
individual reads as in Figure 2.  

 
The EACL approach faces the challenge of selecting the correct alignment of reads to the growing                

contigs. Although aligning a read to an initial assembly ​is an easy task ​(since all ​k​-mers in the initial                   
assembly ​are unique), it is not clear how to align a read to each intermediate assembly since some ​k​-mers                   
in intermediate assemblies are not unique. Indeed, since a read may overlap with several contigs in an                 
intermediate assembly, the choice of the correct overlap alignment becomes non-trivial. Appendix “The             
challenge of aligning reads to the growing assembly ” explains how mosaicFlye addresses this challenge.  

Flye reconstructs the accurate sequences of unique edges that mosaicFlye uses as the initial contigs in                
the EACL approach. It initializes the set of ​resolved ​k-mers as the set of all ​k​-mers occuring in unique                   
edges and iteratively expands it with each EACL iteration in an attempt to find as many resolved ​k​-mers                  
as possible. Appendix “Expanding the set of resolved ​k​-mers by traversing mosaic repeats” describes how               
mosaicFlye expands the set of resolved ​k ​-mers.  

mosaicFlye faces difficulties in the case of corrupted mosaic repeats that inaccurately represent             
various subrepeats of a mosaic repeat. Appendices: “Corrupted mosaic repeats”, “From a resolved prefix              
k​-mer to a resolved ​K​-mer” and “From a resolved ​K​-mer to a resolved suffix ​k​-mer” explain how                 
mosaicFlye addresses this challenge. Appendix “Merging contigs and bridging repeats” describes how            
mosaicFlye merges contigs and bridges repeats.  

Results 
Benchmarking mosaicFlye. Long-read genome assemblers often generate highly contiguous         

assemblies (as compared to short-read assemblies) that consists of a few contigs. Since mosaicFlye aims               
to resolve the remaining few unbridged repeats and accurately reconstruct the sequence of each repeat               
copy, the traditional genome assembly metrics (such as N50 or assembly size) sometimes do not               
adequately reflect the improvements in the mosaicFlye assembly as compared to the Flye assembly. Thus,               
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the key advantage of mosaicFlye over existing assembly tools lies in reconstructing the accurate              
sequences of repeat copies and a relatively small reduction in the number of contigs. However, these                
improvements are important, for example, long bacterial repeats often correspond to important sequences             
such as 16s rRNAs (Yuan et al., Bioinformatics 2015) or antibiotic resistance genes (Antipov et al.,                
2019). To benchmark mosaicFlye, we applied it to multiple datasets with complex repeats that the               
state-of-the art long-read genome assemblers failed to resolve.  

Wick and Holt, 2019 recently benchmarked various long-read assemblers and demonstrated that Flye             
improves on other long-read assemblers in the case of bacterial genomes. Since this conclusion was               
further confirmed in recent bacterial studies (Ring et al., 2018, Schmid et al., 2018, Somerville et al.,                 
2019), we only analyzed how mosaicFlye improves on the Flye and metaFlye (Kolmogorov et al., 2019b)                
assemblies in the case of bacterial genomes and metagenomes.  

Datasets. ​We benchmarked mosaicFlye on isolate bacterial datasets using datasets from the NCTC             
3000 project. We randomly selected 20 datasets which were not assembled into a single circular               
chromosome by Flye. We also benchmarked mosaicFlye on metagenomic datasets using the            
ZymoBIOMICS Microbial Community Standards dataset generated using ONT reads (Nicholls et al.,            
2019). The ZymoEven mock community consists of eight bacteria with abundance ≅12% and two yeast               
species with abundance ≅2%. ZymoBIOMICS community was sequenced using GridION (total read            
lengths 14 Gb) and PromethION (total read lengths 146 Gb).  

Resolving repeats in bacterial isolates with mosaicFlye. ​Table 1 illustrates that mosaicFlye            
improved assembly of 14 out of the 20 bacterial datasets. Note that some repeats that are not resolved by                   
mosaicFlye have a very low divergence and thus cannot be resolved even in theory. Figure 4 presents                 
examples of mosaic repeats resolved by mosaicFlye.  

 
dataset 

 
# contigs in  

the Flye assembly 
# contigs in  

the mosaicFlye assembly 
# resolved repeat 

copies 
total length of all repeat copies resolved by 

mosaicFlye (kb) 
4450 35 29 8 66 
7921 8 5 3 12 
8294 6 4 2 60 
8333 18 8 10 136 
8359 16 8 8 54 
8603 6 4 2 43 
8684 10 10 0 0 
9002 3 3 2 96 
9006 8 3 5 71 
9007 4 4 0 0 
9012 6 4 2 40 
9016 8 8 0 0 
9024 4 4 0 0 
9028 15 10 5 51 
9657 9 7 4 53 

10864 14 9 5 73 
11658 6 6 0 0 
11692 10 4 6 20 
11962 5 3 2 15 
12158 5 5 0 0 

Table 1 ​. ​Results of mosaicFlye on 15 selected datasets from the NCTC 3000 project. The column “# resolved repeat copies”                    
shows the number of pairs of unique edges from the initial repeat graph that were connected into a single contig by mosaicFlye.                      
This value roughly corresponds to the reduction of the number of contigs in the assembly with the difference that a contigs that                      
becomes circular as the result of the mosaicFlye repeat resolution contributes one additional point to this score. 

Resolving repeats in metagenomes with mosaicFlye. metaFlye (Kolmogorov et al., 2019b)           
assembled all but two bacterial genomes in the ZymoEven PromethION dataset into a single              
chromosome. However the remaining two genomes (​L. monocytogenes and ​E. faecalis ​) share a 35.5 kb               
long unbridged repeat. mosaicFlye resolved this repeat even though the average divergence between its              
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copies is only 0.3 %. Moreover, mosaicFlye was able to resolve this repeat using only reads from the                  
smaller GridION dataset (rather than a much larger set of reads from the PromethION dataset). 

 
Figure 4. Mosaic repeats in the assembly graphs for the NCTC dataset 10864 (a), the NCTC dataset 9012 (b)                   
and the ZymoEven GridION dataset (c) that were resolved by mosaicFlye. Purple edges represent repeat edges                
that form mosaic repeats. The unique edges that are adjacent to unique edges are shown in grey. Each repeat edge                    
has two labels showing its length and divergence. The lengths of the longest copies of a mosaic repeat is 25 kb for                      
the NCTC dataset 10864 and 18 kb for the NCTC dataset 9012. The multiplicity of different subrepeats within these                   
repeats varies from 2 to 5 and the divergence between repeat copies varies between 0.4% and 2%. The mosaic repeat                    
in the ZymoEven GridION dataset consists of five subrepeats that are incident to 28 unique regions (shown as black                   
edges). Five subrepeats have lengths 28 kb, 5 kb, 17 kb, 5 kb, and 23 kb. 
 

Since the GridION dataset has a lower coverage than the PromethION dataset, the metaFlye assembly               
graph of the ZymoEven GridION dataset is more complex than the assembly graph of the ZymoEven                
PromethION dataset. To further challenge mosaicFlye we applied it to a complex unbridged repeat in the                
assembly graph of the ZymoEven GridION dataset. Since this repeat was bridged by some reads in the                 
PromethION dataset, we used these bridging reads for checking the accuracy of the mosaicFlye repeat               
resolution. Using these PromethION reads we verified that mosaicFlye correctly resolved this repeat             
(Figure 4c) using only reads from the GridION dataset. 

Discussion 
The ongoing large-scale sequencing projects, such as the Earth Biogenome Project (Lewin et al.,              

2018) and Telomere-2-Telomere project (Miga et al., 2019), use long-read technologies to generate             
complete genomes. At the same time, large bacterial sequencing projects (such as NCTC 3000) and               
metagenomic projects (Bertrand et al., 2019) use long reads to dramatically improve bacterial assemblies.              
However, since two algorithmic problems (assembling long mosaic repeats and long tandem repeats)             
remain unsolved, these projects have to complement long read generation by rather expensive             
complementary technologies such as optical maps, synthetic long reads, and Hi-C. Since all these              
technologies have their inherent error rates (that are still poorly understood), genome assembly is often               
accompanied by manual analysis that may generate errors. Thus, improving the contiguity of long-read              
assemblies by resolving mosaic and tandem repeats represent an important goal that will benefit the               
ongoing genome sequencing projects. We demonstrated that mosaicFlye represent a step in this direction              
that addresses the key bottleneck in improving the state-of-the-art long-read assemblers. However, it is              
only the first step since it does not resolve cyclorepeats representing the most complex type of mosaic                 
repeats. Our next goal is to complement the ideas from mosaicFlye with the algorithm from Bzikadze and                 
Pevzner, 2019 that succeeded in resolved some specific cyclorepeats (centromeres) but has not been              
generalized yet for arbitrary cyclorepeats.  
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Appendix: Fitting and overlap alignments of reads 
 
Given sequences ​S​1 and ​S​2​, we define their maximum-scoring global alignment as ​A​=​A​(​S​1​,​S​2​). We              

also define ​Query(A) = S ​1 and ​Target(A) = S ​2​. The ​percent identity ​PI(A) is defined as the percentage of                   
matching positions in the alignment ​A among all positions in the alignment. For the sake of simplicity, we                  
ignore chimeric reads that do not align to the genome over their entire length 

Given an integer ​k (​k-mer size​), we define ​PI ​k​(A) as the minimum of the percent identity among all                  
segments of length at least ​k in the alignment ​A (the default value ​k​=1500). Given sequences ​S​1 and ​S​2​, we                    
define their ​percent identity as ​PI ​(​S​1​,​S​2​)=​PI ​(​A​(​S​1​,​S​2​)), and their ​divergence as ​Div(S ​1​, S​2​)=100-PI ​(​S​1​,​S​2​).            
The concepts ​PI ​k​(​S​1​,​S​2​) and ​Div​k​(S​1​, S​2​) are defined similarly. Below we use the term “alignment” only for                 
“strong” alignments with sufficiently large percent identity ​PI ​k​(​S​1​,​S​2​) and ignore all other alignments.             
Specifically, given a ​percent identity threshold ​PI ​min (the default value 85%), we say that the sequences ​S​1                 
and ​S ​2​ align ​ if ​PI ​k​(​S​1​,​S​2​) > ​PI ​min​.  

Given a read and a genome assembly, various read mapping algorithms (Li, 2018) align this read                
against all contigs in the assembly. Although reads originating from the unique regions in an assembly are                 
easy to align, it is unclear how to align reads originating from the repeated regions, i.e., to decide which                   
specific copy of a repeat in an assembly a read should be aligned to. To find all such copies, the mapping                     
algorithms usually align such reads to all copies of a repeat (with varying scores) resulting in a set of                   
non-overlapping fitting alignments for each read.  

Specifically, given a sequence ​S ​(a read) and a sequence-set C ​(a set of contigs in an assembly), a                   
“strong” ​fitting alignment of ​S against ​C ​defines a substring ​S’ ​of one of sequences in ​C ​that aligns against                    
S. ​i.e., PI ​k​(​S​,​S’​) > ​PI ​min​. Given a sequence ​S ​and a sequence-set C​, we describe how mosaicFlye generates                   
the set of all strong non-overlapping fitting alignments ​Fitting(S, C). ​It first finds a highest-scoring fitting                
alignment of ​S against ​C​. If this alignment aligns S against a substring ​S’ of a sequence ​S* in ​C​, we                     
represent ​S* ​as the concatenate of three sequences prefix(S*), S’, ​and ​suffix(S*) ​. We further remove S*                
from the sequence-set ​C, ​substitute it by sequences prefix(S*) ​and ​suffix(S*), ​and iteratively repeat the               
process of finding the strong fitting alignments until it stops, i.e., no strong fitting alignment is found. We                  
refer to the resulting set of fitting alignments as ​Fitting(S, C). ​In practice, given a read ​S and an                   
sequence-set C​, we use minimap2 (Li et al., 2018) to generate an approximation of the set ​Fitting(S, C) ​.                  
We assume that alignments between reads and genome segments are ​transitive in the following sense:               
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given a read (or a genome segment ​S​), if its alignments ​A​1 and ​A​2 belong to Fitting(S, Genome) then                   
Target(A​1​)​ strongly aligns to​ Target(A ​2​)​. 

Given a read ​Read ​and a sequence-set ​C​, an ​overlap alignment of ​Read against ​C ​defines a suffix ​S’                   
of one of sequences in ​C ​with the maximum scoring global alignment against a prefix ​S of ​Read ​among all                    
prefixes of all sequences in C​. We classify an overlap alignment as ​strong if ​S ​and ​S’ ​have strong                   
alignment and the length of this alignment is at least ​k​. If the overlap alignment is strong, we remove the                    
sequence in ​C that has suffix ​S’ ​and iteratively repeat the process of finding the strong overlap alignments                  
until it stops. We refer to the resulting set of overlap alignments as ​Overlap(Read, C) ​and further combine                  
the sets ​Fitting(Read, C) ​and ​Overlap(Read, C) ​into a single set Alignments(Read,C). ​A local alignment               
between a read ​Read and a contig c ​that aligns a segment ​S​1 of ​Read to a segment ​S​2 of ​c is ​correct if                        
Origin(S​1​) = Origin(S ​2​)​.  

Appendix “Optimal genome assembly” describes the goal of mosaicFlye with respect to analyzing all              
fitting and overlap alignments.     

 
Appendix: Alignment tournament  

 
Below we assume that each read ​Read was generated from a genome segment ​Origin(Read) and               

Fittings ​(Read, Genome) ​contains an alignment from ​Read to ​Origin(Read) that we refer to as the ​correct                
alignment. Our goal is to find the correct alignment among all alignments in ​Fitting(Read, Genome)                
between a read ​Read and genome ​Genome. ​We will first consider the case when the ​set ​Fitting(Read,                 
Genome) ​includes only two alignments ​A ​1​ ​and​ A​2​.  

Repeats in a genome accumulate mutations and result in divergent repeat copies, e.g., most segmental               
duplications in the human genome diverge by more than 1% (Pu et al., 2018). As a result, the correct                   
alignment of a read (to a repeat copy that it originated from) typically has a larger percent identity than                   
the alignment of the same read to an incorrect repeat copy. Moreover, our analysis revealed that, in most                  
cases, the divergence between the repeat copies (defined as ​Div(Target(A​1​), Target(A​2​))) is approximately             
equal to the difference in percent identity ​PI(A​1​) - PI(A​2​) between correct alignment ​A​1 and incorrect                
alignment ​A​2 ​two alignments (Figure A1, left). However, this difference is often low compared to the                
percent identity between the read and its origin and, in the case of highly similar repeat copies, errors in a                    
read sometimes result in cases when the percent identity of the correct read alignment is even lower as                  
compared to the incorrect one (Figure A1).  

To avoid selecting false alignments, we use a probabilistic model for comparing alignments described              
in Lin et al., 2016. Given an alignment ​A​, we compute the likelihood that the sequence ​Query(A) is                  
generated from a genome segment ​Target(A) as a read (for a specific sequencing technology). We further                
consider the likelihood-ratio ​LikelihoodRatio ​(​A​1​,​A​2​) to distinguish between two hypotheses:         
Origin(Read)=Target(A ​1​) and ​Origin(Read)=Target(A ​2​)​. If ​LikelihoodRatio ​(​A​1​,​A​2​) ​exceeds ​a threshold        
minLikelihoodRatio, ​we report ​A​1 as the correct alignment and if falls below ​1/minLikelihoodRatio, ​we              
report ​A​2 as the correct alignment. Otherwise, we report no alignment for this read - this usually happens                  
when ​Target(A​1​) and ​Target(A​2​) have very few diverged positions, making it difficult to infer the correct                
alignment.  

To select the value of ​minLikelihoodRatio we constructed a histogram of the likelihood ratios between               
the correct alignment ​A​1 and an incorrect alignment ​A​2 ​for reads from NCTC dataset 10864 (Figure 1A,                 
right). As the histogram illustrates, some incorrect alignments have higher likelihood ratios than the              
correct alignments. However it hardly ever falls below 10​-5 which roughly corresponds to the probability               
of 2-3 mismatches. Based on this observation we chose ​minLikelihoodRatio = 10 ​5​.  
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Figure A1. The scatter-plot of the divergence between alignment targets and the difference between percent 
identities of these alignments (left) and the histogram of the ratio ​LikelihoodRatio(A ​1 ​, A​2​)​ (right). The read 
alignments were generated for the NCTC dataset 10864.  
 

In the case when the set ​Fitting(Read, Genome) contains more than two alignments, mosaicFlye              
setups an ​alignment tournament to test each pair of alignments ​A​1 ​and A​2 ​from ​Fitting(Read, Genome) as                 
described above. An alignment that “won” each pairwise comparison is reported as correct.  

We will make the following simplifying assumption about the results of the alignment procedure: if               
an alignment ​A was selected for a read ​Read then for any segment ​S of ​Read this procedure would either                    
select a reduction of ​A to ​S or return no alignment. We further assume that correct alignments selected by                   
this procedure provide the coverage of the genome with aligned reads that is sufficient for polishing the                 
entire genome and thus ​Genome is a stable point of alignment-consensus loop described in the next                
appendix. We will use these assumptions in the mosaicFlye algorithm.  

 
Appendix: Optimal genome assembly 

 
Given a read-set ​Reads and a sequence-set ​C we define ​fitting of ​Reads to ​C as a collection of fitting                    

alignments of reads from ​Reads to ​C (at most one fitting alignment for each read). A target-set of a fitting                    
is a collection of targets of all alignments from this fitting. Given an integer ​K​, a fitting is called ​covering                    
if each ​K​-mer in ​C ​is contained within at least ​minCover segments from the origin-set (the default value                  
minCover ​=10). Note that the collection of alignments between reads and their origins in ​Genome forms a                
fitting from ​Reads to ​Genome that we refer to as ​origin fitting ​. Given a read-set and a ​K​-mer from                   
Genome, ​we define its coverage as the number of read origins that contain this ​K​-mer. The ​K​-mer                 
coverage of a genome is defined as the average coverage of its ​K​-mers. mosaicFlye sets the value of ​K in                    
such a way that the ​K​-mer coverage is equal to ​minCover (for a typical bacterial genome, ​K ​= ​2500 for a                     
read-set with coverage depth 50x and average read length 6 kb).  

A sequence ​S is a ​genome candidate for a read-set ​Reads if there exists a covering fitting of reads                   
from this read-set to ​S​. We assume that the origin of each read ​coincides with one of the target sequences                    
in ​Fitting(Read, Genome) ​and that the read coverage of the genome is uniform. Thus, ​Genome is also a                  
genome candidate as long as the coverage depth of the read-set exceeds a threshold.  

A set of strings is called ​free if no string in the set contains another string as a substring. We define a                      
genome assembly as an arbitrary free set of strings and say that an assembly ​C​1 ​covers an assembly ​C​2                   
(written as ​C​1 > ​C​2​) if each sequence from ​C​2 ​is a substring of a sequence from ​C​1​. An assembly ​C is                      
called ​correct for a read-set ​Reads if for any genome candidate ​G satisfying a condition ​AC(G, Reads) ​=​G,                 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908285doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.908285
http://creativecommons.org/licenses/by-nc-nd/4.0/


we have ​C < G ​. Strings from a correct assembly are referred to as ​contigs ​. We will assume that each                    
contig ​c matches to only one segment of the genome and denote this segment as ​Origin(c) ​. An ​optimal                  
assembly for a given read-set is defined as a correct assembly that covers all other correct assemblies for                  
this read-set. Our goal is to find an optimal assembly.  

 
Appendix: Alignment-consensus loop  

 
As described in the main text, correct read alignments are required to polish the draft genome but the                  

polished genome is needed to construct the correct read alignments. To resolve this catch-22, mosaicFlye               
uses the ​alignment-consensus loop described below. It selects a highest-scoring alignment of each read to               
the draft assembly and uses the aligned reads for polishing. Given a sequence ​S (a draft genome) and a                   
read-set ​Reads generated from an unknown genome​, ​we refer to a ​single application of this procedure as                 
the ​alignment-consensus ​ (​AC) ​ step and denote its result as ​AC(S,Reads) ​.  

One can apply the AC step iteratively to a draft error-prone sequence of a genome in a hope that it                    
will converge (Figure A2). We refer to such iterative application of this procedure as the               
alignment-consensus loop (​ACL). Although ACL does not necessarily converge, it is not always              
necessary to find the correct alignment for each read as we only need to align enough reads to provide a                    
sufficient read coverage to polish the genome sequence. As described in Appendix: “Alignment             
tournament”, the alignment tournament procedure has a low false alignment rate but reports “no              
alignment” decision in the case of difficult-to-align reads.  

 
Figure A2. The alignment-consensus loop. ​Single nucleotide variations between two copies of the “purple”              

repeat are shown in green (in the first copy) and in orange (in the second copy). Reads originating from the first                     
(second) copy of this repeat “inherit” green and orange variations. Errors in the draft assembly and reads are shown                   
in red. Four reads that have incorrect alignments to the draft assembly at the first round of polishing are shown in                     
solid boxes. The same four reads that have correct alignments to the draft assembly at the second round of polishing                    
are shown in solid boxes.  

 
Appendix: Expanding alignment-consensus loop 

 
Instead of considering a complete genome, we will now consider a genome assembly and apply the                

ACL for genome assembly rather than for polishing as before.  
We define the ​multiplicity ​of a string ​S in a genome ​Genome as the size of ​Fitting(S, Genome) and                   

refer to sequences of multiplicity one as ​unique ​. The Flye assembler uses reads to construct the ​repeat                 
graph of the genome and further uses ​bridging ​reads to resolve the ​repeat edges in this graph                 
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(Kolmogorov et al., 2019). mosaicFLye starts from the Flye repeat graph (before the repeat resolution               
step that uses the bridging reads) and selects sequences of all unique edges in this graph as the contigs in                    
the initial mosaicFlye assembly ​C​0 (shown in grey in Figure A3). Since Flye collapses all repeats of                 
length ​k ​and longer​, ​the unique edges in the Flye repeat graph contain only unique ​k​-mers, i.e., ​k​-mers                  
that do not align to other regions in ​C ​0​. 

  
Figure A3. The expanded alignment-consensus loop reconstructs two instances of a repeat. 
 
mosaicFlye uses parameters ​k ​and K ​(​k < K ​) ​and assumes that all reads have length at least ​k​. Since                    

all ​k​-mers in assembly ​C​0 are unique, all alignments of reads to sequences from ​C​0 are correct. Thus, we                   
can assume that sequences in ​C​0 are polished and ​C​0 is a correct assembly. mosaicFlye constructs a series                  
of correct assemblies ​C​0 < C ​1 < C ​2 … < C​m = C ​m+1 until this process converges, i.e., until ​C​m = C ​m+1 (​C​m                        
is reported as an approximation of an optimal assembly). At each step, mosaicFlye constructs correct               
alignments of reads to sequences in an assembly (​contigs ​) and uses these reads to construct even longer                 
contigs as illustrated in Figure A3. We refer to this procedure as the ​expanding alignment-consensus loop                
(​EACL ​)​.  

We start by explaining how EACL constructs ​C​1 from ​C​0​. Given a contig ​c ​from ​C​0 and a read ​Read                    
mapped to this contig, all alignments from ​Overlap(Read, c) are correct since all ​k​-mers from ​C​0 are                 
unique. Since any ​K​-mer in the genome is covered by at least ​minCover reads then at least ​minCover                  
reads that cover the last ​k​-mer of ​c also cover the next ​K - k ​nucleotides in ​Genome after ​Origin(c) ​. Thus,                     
the contig ​c ​in C​0 can be prolonged by at least ​K - k nucleotides using one these reads. Since the resulting                      
expanded contig has sufficient coverage (for at least ​K - k nucleotides), it can be polished over its entire                   
length resulting in a longer polished contigs as compared to ​c​. Applying this procedure to all contigs in ​C​0                   
results in the set of elongated contigs ​C​1​. The consequent assemblies ​C​2​, C​3​,... are constructed in a similar                  
way by selecting the correct alignment for reads that overlap with contigs and using new reads to prolong                  
these contigs.  
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Appendix: Expanding alignment-consensus loop for transforming the repeat graph into the de            

Bruijn graph 
 
The alignment-consensus loop can be applied to a draft assembly resulting from a traversal of the                

repeat graph. If we knew which reads originated from each copy of a repeat edge (for each repeat edge in                    
the repeat graph), we would be able to accurately polish sequences of each copy of each repeat and thus                   
reconstruct the de Bruijn graph as described in the previous sub-section. After constructing the de Bruijn                
graph, one can find the top-scoring alignment of reads to paths in the de Bruijn graph using an approach                   
similar to the hybridSPAdes algorithm (Antipov et al., 2016). Similarly to the top-scoring alignment of a                
read against the genome, the top-scoring alignment of a read against the de Bruijn graph is likely to be                   
correct (it is still impossible to find the correct alignment for reads that align to several identical or nearly                   
identical copies of a repeat). 

mosaicFlye applies the EACL to gradually transform the repeat graph into the de Bruijn graph and                
thus to resolve repeats by revealing unique edges in the de Bruijn graph that were collapsed by the Flye                   
algorithm for the repeat graph construction. We classify an edge of a graph as ​resolved if its sequence is a                    
substring of a genome and as ​unique if it is resolved and occurs only once in the genome. In the de Bruijn                      
graph all edges are resolved. In the repeat graph, unique edges are resolved and unique (since they can be                   
polished using correct alignments) but repeat edges are not resolved. mosaicFlye constructs a sequence of               
graphs ​G​0 = RG(Reads, k), G ​1​, G​2​,... ​where each graph contains all resolved edges of the previous graph                  
as substrings of its resolved edges. At each step, mosaicFlye constructs correct alignments of reads on                
resolved edges and uses these reads to prolong the perfectly polished sequence and create more resolved                
edges (Figure 3 in the main text).  

 
 
Appendix: The challenge of aligning reads to the growing assembly  
 
The EACL approach, while conceptually simple, faces the challenge of selecting the correct             

alignment of reads to the growing contigs. We already discussed this problem in two settings: selecting                
correct alignment of a read to a genome and to an assembly ​C​0​. We will combine techniques used in these                    
two cases to solve a more difficult problem of aligning a read to an assembly​ C ​i​  for​ i=1, …, m.  

Although aligning a read to an assembly ​C​0 ​is an easy task ​(since all ​k​-mers in ​C​0 ​are unique), it is not                      
clear how align a read to an assembly ​C​1 since some ​k​-mers in ​C​1 ​are non-unique. Indeed, since a read                    
may overlap with several contigs in ​C​1​, the choice of the correct overlap alignment becomes non-trivial.                
Also, it is not clear how to generalize the previously described approach for aligning a read against a                  
(complete genome) to aligning it against an (incomplete) assembly.  

To address this challenge, we will generalize the concept of a unique ​k​-mer. Let ​C be a correct                  
assembly of a genome ​Genome​. We say that a sequence S is ​resolved with respect to the assembly ​C if all                     
genomic segments it aligns to are contained within contigs in ​C​, i.e., each segment from               
Target(Alignments(S, Genome)) is a segment of ​Origin(C)​. Another equivalent definition of a resolved             
sequence is as follows: sequence ​S is resolved if | ​Fitting(S,C) ​| = ​| ​Fitting(S,Genome) ​|. Figure A4 shows an                
example of a resolved segment ​S​1 (both genomic segments ​S​1 aligns to are contained within contigs in ​C​)                  
and an unresolved segment ​S​2 (one of two genomic segments it aligns to is not contained within a contigs                   
in ​C) ​.  
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Figure A4. Resolved segments and correct read alignments. ​A ​segment ​S​1 is resolved with respect to                

assembly ​C because all genomic segments it aligns to are contained within contigs in ​C​. In contrast, a segment ​S​2 is                     
not resolved because one of two genomic segments it aligns to is not contained within a contigs in ​C​. A segment of                      
a read ​Read ​1 aligns to a resolved segment ​S​1 and thus one of its alignments to contigs from assembly ​C is correct. In                       
contrast, since ​Read ​2​ does not align to a resolved segment, its alignment to assembly ​C ​is incorrect.  

  
If a read ​Read aligns to a resolved segment ​S in an assembly ​C, then ​Origin(Read) is a segment of                    

Origin(C) since, by the alignment transitivity condition, ​Origin(Read) ​aligns to a segment of ​Origin(C)              
and ​S is resolved. Moreover, even if only a segment ​S of a read aligns to a resolved segment of ​C​,                     
Origin(S) is a segment of ​Origin(C) and ​Read has either a correct fitting alignment or a correct overlap                  
alignment with ​C​. Figure A4 shows an example of a read ​Read ​1 that contains a segment that aligns to a                    
resolved segment ​S​1 in assembly ​C and thus has a correct overlap with ​C​. In contrast, a read ​Read ​2 does                    
not have a correct overlap with contigs and none of its segments aligns to any resolved segment. Thus,                  
finding the highest-scoring alignment among all alignments in ​Fitting(S, C) would report the correct              
alignment of ​S ​ to ​C​ that can be expanded to correct overlap or fitting alignment of ​Read ​ to ​C​.  

Unfortunately, it is not possible to directly check if a read or its segment is resolved when genome is                   
unknown. Below we show how to find resolved segments of contigs (without knowing the genome               
sequence) by keeping track of resolved sequences of length ​k ​.  

 
Appendix: Expanding the set of resolved ​k​-mers by traversing mosaic repeats 

 
Flye glues all copies of ​long repeats (i.e., repeats of length at least ​k​) into a single edge in the repeat                     

graph, and further classifies all edges of the repeat graph into unique (that represent unglued genomic                
regions) and repeat edges. Removing unique edges from the repeat graph reveals the connected              
components formed by the repeat edges that we refer to as ​mosaic repeats ​. Since the sequence of a repeat                   
edge represents a consensus sequence of all repeat copies, it typically deviates from sequences of these                
copies. We will first describe a simple case of mosaic repeats that do not have cycles (​acyclic mosaic                  
repeats ​) and later consider mosaic repeats that have cycles (referred to as ​cyclorepeats ​) 

Flye reconstructs the accurate sequences of unique edges that we use as the initial contigs in the                 
EACL approach. Each ​k​-mer from a unique edge is unique and thus has only one alignment to the                  
genome. Therefore, since each such ​k​-mer occurs in one of the contigs, all such ​k​-mers are resolved. We                  
will initialize the set of ​resolved ​k-mers ​R​0​(k) as the set of all ​k​-mers occuring in unique edges. Since                   
reads from long repeats do not contain unique ​k​-mers, we will iteratively expand the collection ​R​0​(k) with                 
each EACL iteration in an attempt to find as many resolved ​k​-mers as possible, thus creating a series of                   
k​-mer sets ​R​0​(k) ⊂ R​1​(k) ⊂ R​2​(k) ⊂… ⊂ R​m​(k), where ​R​i​(k) consists of resolved ​k​-mers in an assembly                   
C​i​ for ​i ​= 0,...,​m​. We will find these ​k ​-mers as segments of the newly constructed contigs.  

We assume that ​Genome has a strong alignment to a path (referred to as a ​genome traversal ​) in the                   
repeat graph and refer to the number of times this traversal passes an edge ​Edge in the repeat graph as                    
Multiplicity(Edge) ​. Since all repeats of length at least ​k are glued in the repeat graph, the multiplicity of a                   
k- ​mer from an edge ​Edge ​is equal to ​Multiplicity(Edge) ​. Given an acyclic mosaic repeat, one can infer the                  
multiplicity of each edge in this graph (Kolmogorov et al., 2019a) and thus the multiplicity of each ​k​-mer.                  
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Thus, a ​k​-mer ​S ​occurring on the edge ​Edge is resolved in an assembly ​C iff ​Fitting(S, C) =                   
Multiplicity(Edge) ​.  

Figure A5 shows an example of an iterative expansion of contigs and a parallel expansion of the sets                  
R​i​(k) (shown by dashed lines) and assemblies ​C​i (shown in purple). The initial contigs (top left)                
correspond to unique (grey) edges and the initial set ​R​0​(k) ​corresponds to all ​k​-mers in the initial contigs.                  
In the first step, contigs are extended inside the repeat based on reads that share unique ​k​-mers with                  
unique edges (top right). The structure of the repeat graph reveals that the multiplicities of edges A and B                   
are 2 and 3, respectively. Thus, all ​k​-mers from the edge A, that are covered by both contigs that extended                    
inside A, are resolved. However no ​k​-mers from edge B can be marked as resolved since they are covered                   
by at most one contig. Thus, at this point, we can only align reads to two of the three contig and continue                      
extending these contigs inside the edge A. As the two contigs are extended into the repeat edge A, the                   
collection of ​k​-mers covered by these contigs also expands allowing to align more reads and prolong                
contigs further until the entire edge A is resolved (middle left). After all three contigs prolong into the                  
edge B, we can mark some of the ​k​-mers from B as resolved (middle right), eventually restore all copies                   
of the repeat edge B, and finally find out how to connect these contigs with outgoing edges (bottom). 

 
Figure A5. An iterative expansion of contigs with a parallel expansion of the ​k​-mer sets ​R​i​(k)​. ​Sets ​ R​i​(k) ​ are 

formed by all ​k ​-mers from the dashed edges. All edges in the graph are unique except for edge A with multiplicity 2 
and edge B with multiplicity 3.  

 
Appendix: Corrupted mosaic repeats  
 
The described algorithm works well in the case when Flye accurately represents a mosaic repeat but                

faces difficulties in the case of ​corrupted mosaic repeats that inaccurately represent various copies of a                
mosaic repeat. Moreover, it requires accurate estimates of multiplicities of edges in a mosaic repeat that                
are often difficult to obtain even in the case of non-corrupted mosaic repeats (Kolmogorov et al., 2019).  

To deal with errors in long reads, Flye aggressively collapses bulges (pairs of edges connecting the                
same vertices) and contracts short edges in the repeat graph. As a result, the genome sequence may not                  
have a strong alignment to a genome traversal resulting from the Flye repeat graph. Moreover, after bulge                 
collapsing, some ​k​-mers from repeat copies may become so diverged from the consensus that the               
expansion of the sets ​R​i​(k) may fail since reads do not align to any consensus ​k​-mers. Below we describe a                    
method to expand the ​k​-mer-set set without relying on the repeat graph in such a way that ​R​i​(k) consists                   
from ​k​-mers in expanding contigs rather than from the ​k​-mers from the repeat edges in the Flye assembly                  
that represent consensus of multiple repeat copies.  

Note that if a segment ​S is resolved in an assembly ​C then a segment ​S’ from this assembly that                    
contains ​S as a substring is often also resolved. Indeed, since all alignments of ​S to the genome are                   
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covered by ​Origin(C) then all alignments of ​S’ are at least partially covered by ​Origin(C)​. Using this                 
observation, we will show how to (i) construct a set of longer resolved ​K​-mers than the original set of                   
resolved ​k ​-mers, and (ii) find additional resolved ​k ​-mers using the set of resolved ​K ​-mers.  

Specifically, given a set ​R(k) of resolved ​k​-mers in an assembly, we will construct a set of resolved                  
K​-mers ​R(K) in a new assembly​, where ​k​-prefixes of all ​K​-mers from ​R(K) belongs to ​R(k) ​. Afterwards,                 
we will find ​K​-mers from ​R(K) whose ​k- ​suffixes represent resolved ​k​-mers that do not belong to ​R(k) ​.                 
Such resolved ​K​-mers connect a resolved ​k- ​prefix with a resolved ​k​-suffix, not unlike how a ​(k+1) ​-mer                
connects its ​k- ​prefix and ​k​-suffix to form an edge in the conventional de Bruijn graph. Finally, we will                  
iteratively expand the set ​R(k) ​ by adding all such ​k ​-suffixes. 

 
Appendix: From a resolved prefix ​k​-mer to a resolved ​K​-mer 
 
We say that a ​K​-mer ​S ​extends a ​k​-mer ​s if ​s is a prefix of ​S​. Consider a ​K​-mer ​S in an assembly ​C that                          

extends a resolved ​k​-mer ​s​. We will show that if ​Overlap(S, C) ​is empty then ​S is resolved, i.e., any                    
“strong” alignment of ​S to contigs is a fitting alignment rather than an alignment of a prefix of ​S to a                     
suffix of a contig from ​C ​.  

Indeed, any alignment ​A of ​S to ​Genome also aligns ​s to ​Genome (Figure A6). Since ​s is resolved,                   
there is an alignment ​A’ ​in Alignments(s, C) that aligns the ​k- ​mer ​s to a contig ​c such that a segment                     
Origin(Target(A’)) ​is a prefix of segment ​Target(A) ​. Since ​Origin(c) contains ​Origin(Target(A’)) ​, either            
Origin(c) contains ​Target(A) or ​Target(A) overlaps ​Origin(c) ​. In the latter case prefix of ​S aligns to a                 
suffix of ​c​, a contradiction with the initial assumption. Thus ​Origin(c) contains ​Target(A) ​. Consequently,              
every alignment of ​S ​ to ​Genome​ is covered by one of the alignments of ​S ​ to contigs and ​S ​ is resolved. 

 

 
Figure A6. From a resolved ​k​-prefix to a resolved ​K​-mer. ​A resolved ​k ​-mer ​s ​ is prolonged to a resolved 

K​-mer ​S ​ using alignments of ​s ​ to contigs. 
 
Appendix: From a resolved ​K​-mer to a resolved suffix ​k​-mer 
 
Let ​RightExpansion(s, K, C) (​LeftExpansion(s, K, C)) ​be the set of all ​K​-mers from an assembly ​C                 

which have a ​k​-prefix (​k ​-suffix) that aligns to a ​k​-mer ​s from contigs. We classify a resolved ​k​-mer ​s in an                     
assembly ​C as ​strongly resolved if each ​K​-mer ​S ​from RightExpansion(s, K, C) satisfies the condition that                 
Overlap(S, C) ​is empty. We have shown that if a ​k​-mer ​s is strongly resolved in an assembly ​C​, then all                     
K​-mers from ​RightExpansion(s, K, C) ​are resolved.  

The statement above describes how strongly resolved ​k​-mers allow one to identify resolved ​K​-mers.              
We will now formulate an “opposite” statement that describes how resolved ​K​-mers allow one to find                
resolved ​k​-mers, at least in the case the genome ​Genome ​is known. Specifically, if ​LeftExpansion(s, K,                
Genome) contains only resolved ​K​-mers with respect to an assembly ​C then ​s is resolved. Indeed each                 
segment from ​Target(Alignments(s, Genome)) is covered by the origin of one of the resolved ​K-​mers from                
LeftExpansion(s, K, Genome) ​ and thus it is also covered by ​Origin(C) ​.  
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Unfortunately, it is unclear how to check the condition “if ​LeftExpansion(s, K, Genome) contains only               
resolved ​K​-mers with respect to an assembly ​C” when ​Genome unknown. Indeed, we only know which                
K​-mers from ​C are resolved but do not know which ​K​-mers from ​Genome are resolved. To address this                  
complication, we describe a criterion that uses read alignments to check whether ​LeftExpansion(s, K, C) =                
LeftExpansion(s, K, Genome) ​ in the case when ​LeftExpansion(s, K, C) ​ contains only resolved ​K ​-mers. 

Let ​Reads(s, K) ​be the set of all reads whose origin covers one of the ​K​-mers from ​LeftExpansion(s,                  
K, Genome)​. These reads can be detected even without ​Genome as all reads that have a fitting alignment                  
with ​s that starts at or after the position ​K - k in the read (Figure A7). Since all ​K​-mers in the genome are                        
covered by at least ​minCover reads, segments from ​Origin(Reads(s, K)) cover each ​K​-mer from              
LeftExpansion(s, K, Genome) ​ at least ​minCover ​ times.  

Consider a ​K​-mer ​S ​in ​LeftExpansion(s, K, Genome) that does not belong to ​LeftExpansion(s, K, C)                
and a ​Read such that ​Origin(Read) contains ​S​. We will show that in this case ​Read does not have a fitting                     
or an overlap alignment with ​C​. If ​Read aligns or overlaps with a contig ​c ​from C ​then, by the transitivity                     
condition, a ​K​-mer ​S’ from ​c aligns to ​S​. This alignment can be reduced to a strong alignment of the suffix                     
of ​S’ of length ​k to the suffix of ​S that aligns to ​s​, implying that the suffix of ​S’ aligns to ​s and ​S’ ​belongs                          
to ​LeftExpansion(s, K, C) ​. We assumed that all ​K​-mers from ​LeftExpansion(s, K, C) are resolved,               
implying that ​S’ is also resolved. Since ​S’ aligns to ​S​, ​S is covered by contigs, a contradiction to the                    
assumption that ​S does not belong to ​LeftExpansion(s, K, C) ​. Thus, ​Read can not have a fitting or an                   
overlap alignment with ​C​. This conclusion leads to the following test for deciding whether ​s is resolved: if                  
all ​K​-mers from ​LeftExpansion(s, K, C) are resolved and ​Alignments(Read, C) ​is empty for each read                
Read ​ in ​Reads(s, K), ​ then ​s ​ is resolved. 

 

 
Figure A7. From a resolved ​K​-mer to a resolved ​k​-mer. ​LeftExtensions(s, K, C) ​ for the ​k ​-mer ​s=AGCG 

consists of two resolved ​K ​-mers: CTGCAGCG and CCGCAGCTC. ​Reads(S, k)​ consists of 6 reads each of which 
aligns to one of the left expansions of ​s ​. In this case we can conclude that ​k ​-mer ​s ​ is resolved. 

 
Appendix: Merging contigs and bridging repeats 
 
As we extend contigs using the EACL, origins of previously non-overlapping contigs may eventually              

overlap, creating an opportunity to merge these contigs in an assembly. We say that a read ​Read connects                  
contigs ​c​1 and ​c​2 if (i) there exists an overlap alignment ​A​(​c​1​,Read ​) of contig ​c​1 with ​Read ​, (ii) there exists                    
an overlap alignment ​A​(​Read,c ​2​) of ​Read with contig ​c​2​, and (iii) the corresponding overlap alignments               
satisfies the condition that ​Query(A​(​c​1​,Read ​)​) overlaps with ​Query(A​(​Read,c ​2​)​)​. We say that a read ​Read              
scaffolds ​ contigs ​c ​1​ and ​c ​2​ if conditions (i) and (ii) hold but the condition (iii) does not hold.  

Since a connecting read is an indication that the origins of contigs ​c​1 and ​c​2 overlap (note that EACL                   
constructs reliable alignments), mosaicFlye merges these contigs into a single one. A scaffolding read              
provides evidence that two contigs are separated by a gap sequence in the genome even though it does not                   
provide sufficient information to accurately infer this sequence in the case there are few scaffolding reads                
between a pair of contigs. Nevertheless, mosaicFlye utilizes information about scaffolding reads by             
performing an additional ​scaffolding ​step after the EACL converges. The (potentially error-prone) gap             
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sequence between the scaffolded contigs is computed as the consensus derived from gap sequences of all                
scaffolding reads for these contigs.  
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