Supplementary Material

Ancestral Haplotype Reconstruction in Endogamous Populations using Identity-By-Descent

Kelly Finke ${ }^{1,2}$, Michael Kourakos ${ }^{1}$, Gabriela Brown ${ }^{1}$, Yuval B. Simons ${ }^{3}$, Alejandro A. Schäffer ${ }^{4}$, Rachel L. Kember ${ }^{5}$, Maja Bućan ${ }^{5}$, Sara Mathieson ${ }^{6, \dagger}$
${ }^{1}$ Department of Computer Science, Swarthmore College, Swarthmore, PA
${ }^{2}$ Department of Biology, Swarthmore College, Swarthmore, PA
${ }^{3}$ Department of Genetics, Stanford University, Stanford, CA
${ }^{4}$ Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
${ }^{5}$ Department of Genetics, University of Pennsylvania, Philadelphia, PA
${ }^{6}$ Department of Computer Science, Haverford College, Haverford, PA
\dagger Corresponding author: Sara Mathieson, smathieson@haverford.edu

Figure S1: Pedigree structure: 1338 individuals over 10 generations. Squares represent males and circles represent females. Dotted lines connect the same individual appearing in two different parts of the pedigree. Filled in symbols represent genotyped individuals.

Figure S2: Position of reconstructed individuals in the pedigree: colors are as follows. Black: genotyped individual, white: no genotyped descendants, yellow-red heatmap: represents number of chromosomes reconstructed, blue: no chromosomes reconstructed. Dotted lines are thinned for clarity, but are the same as in Figure S1.

Figure S3: Unsuccessful reconstruction examples: A) Occasionally we only build one haplotype. B) Sometimes we have a fairly strong reconstruction, but due to the presence of other groups it does not meet our threshold for two strong group. C) Four groups may indicate ambiguity with a spouse or other close relative. D) Sometimes we see many groups and cannot resolve the individual.

Figure S4: Source and path distributions for chromosome 21. (left) Distribution of the number of potential sources per IBD segment. (right) Number of paths per source (truncated at 1000, but there is an extremely long tail).

```
Algorithm 1: Overview
    Input: \(G=\) genotyped individuals, \(N G=\) non-genotyped individuals, \(\mathcal{P}=\) pedigree tree
            relating all individuals in \(G\) and \(N G\)
    Output: \(R=\) reconstructed individuals, \(\mathcal{G}_{p}=\) groups for each individual \(p \in R\)
    find IBDs shared between \(G\) using GERMLINE
    for \(I_{k} \in I B D s\) do
        \(C_{k}=\) cohort of individuals from \(G\) sharing \(I_{k}\)
        \(S_{k}=\) sources of \(C_{k}\) (Algorithm 2)
        \(d_{k}(s)=\) number of descendance paths for each \(s \in S_{k}\) (Algorithm 2)
    end
    \(R=G\)
    \(I S=\) list of IBDs to source
    while \(R\) not changing and IS not empty do
        for \(I_{k} \in I S\) do
            while assignment unsuccessful and \(S_{k}\) is not empty do
            selected source \(s^{*}=\arg \min _{s} d_{k}(s)\)
            if \(d_{k}\left(s^{*}\right)>\) path threshold then
                    ignore \(I_{k}\)
            end
            else
                    individuals \(D_{k}\left(s^{*}\right)=\) all individuals lying on each path from \(s^{*}\) to \(C_{k}\)
                    assign \(I_{k}\) to all individuals in \(D_{k}\left(s^{*}\right)\)
                    if \(I_{k}\) conflicts with reconstructed individual in \(D_{k}\left(s^{*}\right)\) then
                    remove \(I_{k}\) from all \(D_{k}\left(s^{*}\right)\)
                        remove \(s^{*}\) from \(S_{k}\)
                    assignment round is unsuccessful
                end
            end
            end
        end
        reset \(I S\) to empty list
        for individual \(p \in N G\) do
            \(\mathcal{G}_{p}=\) reconstructed haplotype groups (Algorithm 3)
            if exactly 2 strong groups in \(\mathcal{G}_{p}\) then
                add \(p\) to \(R\)
            end
            if 2 strong groups and one or more weak groups in \(\mathcal{G}_{p}\) then
                remove weak groups from \(\mathcal{G}_{p}\)
                add all IBDs from weak groups to \(I S\)
                add \(p\) to \(R\)
            end
        end
    end
    return \(R\), \(\mathcal{G}_{p}\) for each \(p \in R\)
```

```
Algorithm 2: Source and Descendance Path Finding
    Input: \(C=\) a cohort of individuals sharing a single IBD, \(\mathcal{P}=\) pedigree tree containing
        relationships between individuals
    Output: \(S=\) a list of possible non-redundant sources for cohort \(C\)
    queue \(Q=\operatorname{list}(C)\)
    for cohort member \(p \in C\) do
        multiset \(M_{p}=\{p\}\)
    end
    while \(Q\) is not empty do
        individual \(p=Q\).pop
        if \(p\) is married-in then
            skip the following (married-in have no known ancestors)
        end
        if \(p^{(f)}\) has not been processed then
            father's multiset \(M_{f}=M_{p}\)
            father's children set \(C h_{f}=p\)
            add father to \(Q\)
        end
        else
            extend father's multiset \(M_{f}\) by \(M_{p}\)
            add \(p\) to father's children set \(C H_{f}\)
            add \(M_{p}\) and \(p\) to \(M\) and \(C H\) of any processed ancestors of father
        end
        repeat process for \(p^{(m)}\)
    end
    sources \(S=\) all individuals \(p\) s.t. \(M_{p}\) contains all \(c \in C\)
    for source \(s \in S\) do
        \(M_{\text {chmax }}=\) largest \(M_{c h}\) for \(c h \in C H_{s}\)
        if length of \(M_{s}=M_{\text {chmax }}\) then
            remove redundant source \(s\) from \(S\)
        end
    end
    for source \(s \in S\) do
        if s.spouse in \(S\) and \(M_{s}=M_{s}\).spouse then
            remove \(s\) and s.spouse from \(S\)
            add couple \(s \& s . s p o u s e ~ t o ~ S\), s.t. \(M=M_{s}\) and \(C H=C H_{s}\)
        end
    end
    for source \(s \in S\) do
        number of descendance paths \(d(s)=\prod_{c \in C} m_{s}(c)\), where \(m_{s}(c)=\) multiplicity of \(c\) in \(M_{s}\)
    end
    return \(S\) and \(d(s)\) for all \(s \in S\)
```

```
Algorithm 3: Grouping
    Input: \(R=\) genotyped or reconstructed individuals, \(A=\) non-reconstructed individuals,
                ungrouped IBDs \(\mathcal{I}_{p}\) have been placed in each individual \(p\)
    Output: \(\mathcal{G}_{p}=\) groups for each individual \(p\)
    for individual \(p \in R\) do
        for \(I B D I \in \mathcal{I}_{p}\) do
            add \(I\) to one or both groups in \(\mathcal{G}_{p}\) depending on zygosity
        end
    end
    for individual \(p \in A\) do
        find any homozygous groups \(\mathcal{G}_{p}^{(o)}\)
        use overlapping IBDs in \(\mathcal{I}_{p}\) to build heterozygous groups \(\mathcal{G}_{p}^{(e)}\)
        duplicate groups in \(\mathcal{G}_{p}^{(o)}\) and create \(\mathcal{G}_{p}=\mathcal{G}_{p}^{(o)} \cup \mathcal{G}_{p}^{(e)}\)
        remove all IBDs from \(\mathcal{S}_{p}\) that were used to build groups in \(\mathcal{G}_{p}\)
        for pairs of groups \(G_{i}, G_{j} \in \mathcal{G}_{p}\) and remaining \(I B D I \in \mathcal{I}_{p}\) do
            if \(I\) overlaps \(G_{i}\) and \(G_{j}\) sufficently then
            merge \(G_{j}\) into \(G_{i}\) and delete \(G_{j}\)
        end
        end
        for pairs of groups \(G_{i}, G_{j} \in \mathcal{G}_{p}\) do
            if \(G_{i}\) and \(G_{j}\) overlap or "line up" then
                merge \(G_{j}\) into \(G_{i}\) and delete \(G_{j}\)
            end
        end
    end
```

