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Abstract

The human adult structural connectome has a rich topology composed of nodal hierarchies containing highly
diverse connectivity patterns, aligned to the diverse range of functional specialisations in the brain. The
emergence of this hierarchical complexity in human development is unknown. Here, we substantiate the
hierarchical tiers and complexity of brain networks in the newborn period, assess correspondences with
hierarchical complexity in adulthood, and investigate the effect of preterm birth, a leading cause of neu-
rocognitive impairment and atypical brain development, on hierarchical complexity. We report that the
neonatal and adult structural connectomes are both composed of distinct hierarchical tiers. Consistency of
ROIs is found at both ends of this hierarchy during early life and in adulthood, but significant differences
are evident in intermediate tiers. The neonatal connectome is hierarchically complex in term born neonates,
but hierarchically complexity is altered in association with preterm birth. This is mainly due to diversity of
connectivity patterns in Tier 3, which is comprised of regions that underlie sensorimotor processing and its
integration with cognitive information. For neonates and adults, the highest tier (comprising hub regions)
is ordered, rather than complex, with more homogeneous connectivity patterns in structural hubs. This
suggests that the brain develops first a more rigid hierarchical structure in hub regions allowing for the
development of greater and more diverse functional specialisation in lower level regions, while connectivity
underpinning this diversity is dysmature in infants born preterm.

1. Introduction

The integrity of brain development during pregnancy and the newborn period is critical for life long
cognitive function and brain health. During the second and third trimesters of pregnancy, there is a phase
of rapid brain maturation characterised by volumetric growth, increases in cortical complexity, white matter
organization and myelination [1]. Early exposure to extrauterine life due to preterm birth affects around 11%
of births, and is closely associated with neurodevelopmental, cognitive and psychiatric impairment [2, 3, 4],
and alterations to development [5] that are apparent using in vivo imaging techniques. At the macro scale,
these alterations can be characterised by charting white matter connections between brain regions using
diffusion MRI (dMRI) [6, 7, 8, 9, 10, 11, 12].

Several metrics that are found ubiquitously in real-world networks have been used to model brain con-
nectivity in the neonatal brain, including local and global efficiency, small-worldness, clustering coefficient,
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characteristic path length and rich club coefficient [7, 8, 9, 11, 13], and often they reveal remarkable struc-
tural and functional architectural facsimiles between the newborn and adult brain [13, 14, 15]. Hierarchical
complexity (HC) is a measure of the diversity of connectivity patterns found across hierarchically equivalent
(same degree) network nodes, and it reflects the hierarchical and functionally diverse capacities of the hu-
man brain. HC provides a tractable signature of brain network architecture in the adult connectome [16, 17]:
four hierarchical tiers broadly comprise different categories of functional processing – cognitive, sensorimo-
tor, integrative, and memory and emotion [16]. To investigate the possibility that HC is established in the
perinatal period, and that alterations in HC patterning might characterize atypical brain development in
preterm infants, we have developed an approach to assess HC in the newborn period.

We used the approach to define the hierarchical structure of the connectomes of a cohort of neonates.
We investigated similarities and differences in HC between birth and adulthood, and we explored the effect
of preterm birth on HC in the newborn period. We report that the newborn structural connectome is highly
organised into separable hierarchical tiers; that global HC is larger in adulthood compared to infancy; and
that early exposure to extrauterine life by preterm birth leads to differences in HC that are largely driven
by a single tier, which contains ROIs concerned with the integration of high order cognitive information and
sensorimotor processing.

2. Material and methods

2.1. Participants and data acquisition

For the present work, two datasets were used:
- Theirworld Edinburgh Birth Cohort (TEBC): Participants were recruited as part of a longitudinal

study designed to investigate the effects of preterm birth on brain structure and long term outcome. The
study was conducted according to the principles of the Declaration of Helsinki, and ethical approval was
obtained from the UK National Research Ethics Service. Parents provided written informed consent. A total
of 136 neonates (77 preterm [with gestational age at birth ¡ 32 weeks] and 59 term) underwent MRI at term
equivalent age at the Edinburgh Imaging Facility: Royal Infirmary of Edinburgh, University of Edinburgh,
UK.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare Erlangen, Germany)
and 16-channel phased-array paediatric head coil were used to acquire the following imagining data: 3D
T2-weighted SPACE (T2w) (voxel size = 1mm isotropic) with TE 409 ms and TR 3200 ms; and axial dMRI.
dMRI data were acquired in two separate acquisitions to reduce the time needed to re-acquire any data lost
to motion artefact: the first acquisition consisted of 8 baseline volumes (b = 0 s/mm2 [b0]) and 64 volumes
with b = 750 s/mm2, the second consisted of 8 b0, 3 volumes with b = 200 s/mm2, 6 volumes with b = 500
s/mm2 and 64 volumes with b = 2500 s/mm2. An optimal angular coverage for the sampling scheme was
applied [18].

In addition, an acquisition of 3 b0 volumes with an inverse phase encoding direction was performed. All
dMRI images were acquired using single-shot spin-echo echo planar imaging (EPI) with 2-fold simultane-
ous multislice and 2-fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all three dMRI
acquisitions had the same parameters (TR/TE 3400/78.0 ms). Images affected by motion artefact were
re-acquired multiple times as required; dMRI acquisitions were repeated if signal loss was seen in 3 or more
volumes.

Infants were fed and wrapped and allowed to sleep naturally in the scanner. Pulse oximetry, electrocardio-
graphy and temperature were monitored. Flexible earplugs and neonatal earmuffs (MiniMuffs, Natus) were
used for acoustic protection. All scans were supervised by a doctor or nurse trained in neonatal resuscitation.

- Human Connectome project (HCP): The HCP test-retest dataset, consisting of T1-weighted and
dMRI data from 45 healthy subjects. The data were acquired with a 1.25 mm isotropic voxel size; three shells
with b = 1,000, 2,000 and 3,000 s/mm2 each shell with 90 DW volumes and six non-weighted images [19].
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2.2. Data preprocessing
2.2.1. Theirworld Edinburgh Birth Cohort

dMRI processing was performed as follows: for each subject the two dMRI acquisitions were first con-
catenated and then denoised using a Marchenko-Pastur-PCA-based algorithm [20]; eddy current, head move-
ment and EPI geometric distortions were corrected using outlier replacement and slice-to-volume registra-
tion [21, 22, 23, 24]; bias field inhomogeneity correction was performed by calculating the bias field of the
mean b0 volume and applying the correction to all the volumes [25].

The T2w images were processed using the minimal processing pipeline of the developing human connec-
tome project (dHCP) to obtain the bias field corrected T2w, the brain masks, the tissue segmentation and
the different tissue probability maps [26, 27]. For the parcellation, the ten manually labelled subjects of the
M-CRIB atlas [28] were registered to the bias field corrected T2w using affine and symmetric normalization
(SyN) [29], and then the registered labels of the ten atlases were merged using joint label fusion [30], resulting
in a parcellation containing 84 regions of interest (ROIs). The 5 tissue type file needed to perform the trac-
tography, was generated by combining the tissue probability maps obtained from the dHCP pipeline with the
subcortical structures derived from the parcellation process (https://git.ecdf.ed.ac.uk/jbrl/neonatal-5TT).
Finally, the mean b0 EPI volume of each subject was co-registered to their structural T2w volume using
boundary-based registration [31], then the inverse transformation was used to propagate ROIs label and the
5 tissue type file to dMRI space.

2.2.2. Human Connectome Project

The HCP dataset was already preprocessed, as described in [32]. Briefly, dMRI data were corrected for
head motion and geometrical distortions arising from eddy currents and susceptibility artifacts [33]. Finally,
the dMRI were aligned to the structural T1 image. The T1w was parcellated using the Desikan-Killany
parcellation [34], resulting in 84 ROIs. Using the T1w, the probability maps of the different tissues were
obtained to create the 5 tissue type file [35, 36].

2.3. Tractography and network creation
Tractography was performed using constrained spherical deconvolution (CSD) [37]. For both datasets,

a multi-tissue response function was calculated [38], the only difference being that for the neonatal cohort
the FA threshold of the algorithm was reduced to 0.1. For each cohort, the average response functions were
calculated. Then, the multi-tissue fiber orientation distribution (FOD) was calculated [39] with the average
response function using a Lmax = 8. For the HCP dataset three FODs were calculated (white matter
(WM)/gray matter (GM)/cerebrospinal fluid (CSF)), while for the TEBC only two (WM/CSF). Finally, a
joint bias field correction and multi-tissue informed log-domain intensity normalisation on the FODs images
was performed [40].

Tractography was then performed with the iFOD2 algorithm [41] using anatomically-constrained trac-
tography [42], generating 10 million of streamlines, with a minimum length of 20 mm and a maximum of
200 mm for the neonatal data and of 250 mm for the HCP dataset and a cutoff of 0.05 (default), using
backtrack [42] and a dynamic seeding [43]. To be able to quantitatively assess the connectivity, SIFT2 was
applied to the resulting tractograms [43].

The connectivity matrix was constructed using a robust approach, a 2 mm radial search at the end of the
streamline was performed to allow the tracts to reach the GM parcellation [44, 45]. Each connectivity matrix
was multiplied by their µ coefficient obtained from the SIFT2 process, because the sum of the streamline
weights needs to be proportional to units of fiber density for each subject [43]. This resulted in:

wij = µ
∑
sεSij

scs (1)

where wij is the total weight of the connection of the node i with the node j, µ is the coefficient obtained
from SIFT2, scs is the SIFT2 weight of the streamline s and s ∈ Sij represents all the streamlines connecting
the nodes i and j.

The resulting matrices were then thresholded to a density of 0.3 (consistent with biological evidence that
the human brain has a connection density of approximately 30% [46]) and binarized.
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2.4. Hierarchical complexity

The neighbourhood of a network node is the set of all nodes to which that node shares links. The
neighbourhood degree sequence of the node is then the ordered sequence of degrees of the nodes neighbours,
which is a particularly useful tool for studying organisational principles of networks [17]. The HC of a network,
then, involves computing the variability of neighbourhood degree sequences of nodes of the same degree.
This provides a measure of the diversity of connectivity patterns within the network degree hierarchy. Let
G = (V,E) be a graph with nodes V = {1, . . . , n} and links E = {(i, j) : i, j ∈ V }, and let K = {k1, . . . , kn}
be the set of degrees of G, where ki is the number edges adjacent to node i. Further, let Kp be the set of
nodes of degree p. For neighbourhood degree sequence spi = {spi (1), . . . , spi (p)} of node i of degree p, the HC
is

R =
1

D
∑

Kp,|Kp|>1

1

p(|Kp| − 1)

 p∑
j=1

∑
i∈Kp

(spi (j)− µ
p(j))2

 (2)

where D is the number of distinct degrees in the network and µp(j) is the mean of the jth entries of all
p length neighbourhood degree sequences [47]. For the tier-based analyses, we used degree specific HC by
averaging it over a given range of degrees, i.e. the degrees within the given tier definitions.

2.4.1. Configuration models

To control for the differences in degree distribution between individual connectomes and the different
populations (term- and preterm-born infants and adult), we used configuration models [48]. The configuration
model fixes the number of links at each node of the null model by providing each node with a number of
‘stubs’, the number of which is the node’s degree in the original network. Then, pairs of stubs are randomly
chosen across all nodes to establish new links. This process is repeated until there are no stubs remaining,
meanwhile the process is started again anytime a link is created which either attaches a node to itself or
attaches two nodes which already have an established link.

2.4.2. Hierarchical tiers

Once the global connectivity patterns were assessed, we then performed a more refined analysis of HC
through different degree strengths in the network. Previous work [16] split each network into four tiers
based on maximum degree magnitudes, where each tier comprised a rounded 25% of degrees. The first
tier comprised nodes in the top 25% of degrees in the network, the second tier comprised of nodes with
the next 25% of largest degrees, and so on. In our study, however, we wished to assess whether the degree
distributions would reveal such tiers directly and so chose tiers based on peaks of the group-aggregated degree
distributions, Fig 1. Once tiers were defined, we implemented tier-based analysis on both the structural
connectomes and their configuration models for comparison. To track the consistency of tiers across groups
(preterm-born, term-born, and adult) we computed the number of times each node appeared in a given tier
across participants. For each tier, Pearson’s correlation coefficients were then computed across these node
proportions between preterm and term, preterm and adult and term and adult.

The equation of HC required nodes to have the same degree. This was problematic in Tier 1 and Tier
2 of neonates particularly, because these generally consisted of only a few nodes tending to have different
degrees. To overcome this problem, for each participant we defined mi as the minimum degree of Tier i nodes
(where i = 1, 2), and implemented a random sample of mi entries of the neighbourhood degree sequences of
all nodes in Tier i, enabling us to compute HC across all Tier i nodes. For each participant, this random
sampling was done 100 times and the median HC was taken as the HC of that participant.

2.4.3. Hemispheric symmetry in network neighbourhoods and common connections

As a post-hoc analysis, and to characterise better the network topology and understand the results
showed by HC, we investigated the effect of cross-hemisphere neighbourhood symmetry within tiers to probe
deeper into the complex organisation underlying the neonatal connectomes, following the insight that higher
symmetry is associated with higher order and thus lower complexity [17] (Supplementary Materials). We
also studied the percentage of common and uncommon connections within tiers, following the hypothesis
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than adults have more well established network architecture and have more common connections within tiers
than neonates (Supplementary Materials).

2.5. Statistical analysis

Wilcoxon rank sum tests were carried out to assess the significance of the differences of distributions
of network index values between the structural connectomes and configuration models. The Benjamini-
Hochberg false detection rate procedure was carried out across all reported p-values at the strict level of
q = 0.05. The cut-off of the false detection rate in this study was 0.0264 (i.e. maximum acceptable p-
value), which reflects the large proportion of differences found here. The effect sizes were also computed
with Cohen’s d.

3. Results

3.1. Hierarchical tiers organization

First, we inspected the existence of tiers in the structural connectomes of both term-born and preterm-
born neonate groups and adults by considering their group-aggregated degree distributions (i.e. all degrees
appearing in all connectomes of the group), Fig 1. The analysis revealed four distinct peaks in the neonatal
groups, that were also reflected in the adult connectomes. Further analysis of ROIs in these tiers showed
that consistency between neonates and adults was better achieved by consolidating Tier 1 and Tier 2 in
neonates as Tier A (incidentally, Tier A corresponds to the rich club community for each population [see
Supplementary Materials]), comparable to Tier 1 in adults, and by consolidating Tier 2 and Tier 3 in adults
as Tier B, comparable to Tier 3 in neonates. Tier 4 showed high consistency and was relabelled as Tier C.
See Supplementary Materials for full details.

We can see the 1 to 4 Tier distributions over the brain for each population in Fig 2 [49]. For this figure,
an ROI was generally assigned to a tier if it was included in that tier in at least two thirds of the population.
For the A-C Tier distribution see Supplementary Materials.

3.2. Hierarchical complexity

We first assessed the global HC between term-born and preterm-born neonates and adults and the
complexity within tiers of the term-born and preterm-born neonates, Fig. 3. HC was significantly larger in
term-born neonates than preterm-born neonates (p = 0.0148, d = 0.3946). Tier B showed a corresponding
significant difference in HC with a stronger effect size (p = 2.63× 10−4, d = 0.6230), while no difference was
evident in any other tier, and thus Tier B could be discerned as the main cause of the global effect.

Global HC of adults was in turn larger than term-born neonates, with over three times the effect size
as between preterm- and term-born neonates (p = 2.63 × 10−11, d = 1.2859). To account for the large
differences in degree distributions which may impact this finding, we compared each complexity value against
those obtained for their corresponding configuration models (networks with the same degree distributions
but randomised connections). We conducted this analysis for the adapted tier system to compare similar
tiers across neonates and adults. The results are shown in Fig 4. The findings of global HC were confirmed
in comparisons with configuration models with term-born connectomes having significantly greater HC than
their configuration models, an effect which was not seen in preterm-born connectomes after False Discovery
Rate correction FDR). Again an even larger significant difference was seen in adults.

The result of greater complexity in Tier B of term-born neonates was also confirmed in comparisons with
configuration models (Tier B in Fig 4). Tier B showed a clear increase of complexity compared to config-
uration models from preterm- to term-born babies. Interestingly there was also a clearly larger significant
difference in adults. Surprisingly, Tier A exhibited lower HC compared to configuration models in all of the
groups. This difference was evidently greater for adults compared to neonates. While the effect size was
seemingly larger in preterm- to term-born neonates in Tier A, the non-parametric Wilcoxon’s rank sum test
had a smaller p-value in term-born neonates. This suggested that the clearly visible outliers in the term-
born group were behind this discrepancy. Again, this suggested that the trend in term-born neonates moved
away from preterm-born neonate connectomes towards adult connectomes. Since configuration models are
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Figure 1: Aggregated degree distributions of neonatal groups, top, and the adult group, bottom. Four distinct peaks are noted
in the degree distributions of neonatal connectomes and corresponding peaks are also seen in the adult connectomes. These
are taken as the natural tiers and black lines indicating the minima between peaks are taken as the thresholds between tiers.
Greater consistency between neonates and adults is found by consolidating the tiers as indicated by Tier A, B and C.

the random case, these results indicate that Tier A is more ordered than expected by random chance and
becomes more ordered with maturation, while Tier B is more complex than random chance and becomes
more complex with maturation.

3.3. Symmetry and common connections

We hypothesised that the decreasing complexity in Tier A and increasing complexity in Tier B from
neonates to adults reflected a systemic change whereby hub nodes create an ordered core structure integrating
information from lower order nodes able to specialise into specific functional roles. In this light, we tested two
possible contributors to the observed trends of HC: i) the hemispheric symmetry of connectivity patterns,
and ii) commonality of ROIs connected to a given tier.

To measure symmetry we analysed the ratio of the average hemispheric symmetry of connections within
each tier to the uniformly random expected value. For full details see Supplementary Materials. Table 1
reports the computed symmetry scores comparing the neighbourhoods of homotopic brain regions, averaged
by group and by tiers. We observed a consistent behavior across groups of subjects, with Tier A being the
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Figure 2: Cortical and sub-cortical representations colored by tiers. N/A means non assigned. Due to the display plane used,
two areas are not shown, the accumbens area, that was assigned (in both hemispheres) to Tier 4 in all three populations; and
the cerebellum, that was assigned (in both hemispheres) to Tier 3 in all three populations.

most symmetric, and decreasing symmetry from top to bottom tiers. Because it can be expected that nodes
with greater degree will have a larger overlap of symmetric connections, just due to having many connections
and a limited number of nodes with which to make those connections, we were cautious of interpreting these
results as a general pattern. However, in almost all cases the distributions were significantly different between
groups. The results suggested that adults in general had less hemispherical symmetry across the connectome.
From this, we concluded that hemispheric symmetry was not a strong contributing factor to HC, particularly
increased symmetry in Tier A was not evident and not contributing to the observed increased order of Tier
A nodes.

Another possible contributing factor to the increased order seen in Tier A and increased complexity seen
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Figure 3: Distribution of the global HC (R) for the three populations as rain cloud plots (top) and HC of the three tiers in
neonatal populations (bottom). Wilcoxon rank sum p-values and Cohen’s d values are shown for preterm vs term infants (all)
and term infants vs adult (top). * denotes significant difference after FDR correction.
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Figure 4: Distributions of HC globally (top) and for the different tiers of the three populations. Grey, yellow and orange colours
represent values for adults, term- and preterm-born neonates, respectively, while blue represents the values of HC for their
corresponding configuration models. Wilcoxon rank sum p-values and Cohen’s d values are shown in top right corner of each
plot. Axes as in top left plot. * denotes significant difference after FDR correction.

Table 1: Symmetry scores by tier (mean ± standard deviation) and p-values of group differences from Wilcoxon rank-sum tests.
* denotes significant difference after FDR correction.

symmetry p-value

adult term preterm adult vs term adult vs preterm term vs preterm

Tier A 1.81 ± 0.03 1.83 ± 0.03 1.83 ± 0.04 7.01× 10−5* 0.0031* 0.2464
Tier B 1.64 ± 0.02 1.70 ± 0.02 1.70 ± 0.02 3.33× 10−18* 5.80× 10−20* 0.0029*
Tier C 1.24 ± 0.01 1.32 ± 0.02 1.31 ± 0.02 3.14× 10−18* 3.91× 10−20* 0.0222*
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in Tier B would be if all Tier A ROIs tended to connect more to the same ROIs across the connectome while
Tier B ROIs tended to exhibit less common connections in adults. To study this, we measured the number of
common and uncommon connections made by nodes in each tier. See Table 2 for results (and Supplementary
Materials for full details). It was found that Tier A had significantly more common connections for adults
than for term born neonates (p = 3.98 × 10−4) who in turn had significantly more common connections
than preterm-born neonates (p = 0.0023). At the same time, Tier B had significantly more uncommon
connections in adults than in neonates (p = 3.86× 10−16 vs term and p = 2.62× 10−19 vs preterm) with no
statistical difference found between neonate groups (p = 0.1321). Tier C showed no differences in uncommon
connections between the three groups. These results aligned well with results of HC indicating that common
and uncommon connections were a contributing factor.

Table 2: The p-values of group differences from Wilcoxon rank-sum tests between numbers of common and uncommon neighbours
of each tier. * denotes significant difference after FDR correction.

p-value

adult vs term adult vs preterm term vs preterm

Tier A common 3.98× 10−4* 6.48× 10−11* 0.0023*
Tier B uncommon 3.86× 10−16* 2.62× 10−19* 0.1321
Tier C uncommon 0.8850 0.5782 0.6439

4. Discussion

4.1. Tier analysis

Group-aggregated degree distributions revealed the neonatal and adult connectomes comprised of four
tiers of connectivity, with a heavy-tailed distribution on the right tail, meaning that there are a few nodes
(hubs) that are more densely connected compared to others [7]. The original definition of hierarchical tiers
was based on quartiles of the maximum degree, which were defined strictly for purposes of a more fine-grained
analysis without any particular hypothesis of functionality [16]. These current findings illuminate why that
choice turned out to have evident biological meaning. The four tiers identified by the group-aggregated
degree distributions of the adults were of roughly equal-width, thereby coinciding with the quartiles in the
original tier definition.

The preterm- and term-born neonates showed an almost identical tier composition although connectivity
within tiers indicated a shift to a more unequal degree distribution in term-born neonates with connectivity
(indicated by average degree) shifting from Tier 3 to Tiers 4 and 1 from the preterm- to term-born neonate
group (see Supplementary Materials), agreeing with previous evidence of decreased ‘hub’ and ‘peripheral’
node connections in preterm infants [13]. A very substantial difference in tier composition was noted in the
adult connectomes. The regions comprising Tiers 1 and 2 in the neonates were now grouped together in the
highest tier of the adults connectome, while the regions comprising Tier 3 in the neonates were broadly split
into two distinct tiers in the adult brain. Further, this split was not found to be consistent with the within-
tier degree strengths between the neonates and adults. Correlations substantially dropped when comparing
the top and bottom halves of Tier 3 in neonates with the split into two tiers in adults (see Supplementary
Materials). This indicates a significant rearrangement of these medium degree ROIs in the developing brain.

Tier 1 in neonates was consistently composed solely of the thalamus. The thalamus forms a series of
densely-connected processing loops with connectivity that covers large portions of the cortex and with the
hippocampus [50, 51, 52]. Among the subcortical regions, the thalamus and its connections are most strongly
linked with supporting complex cognitive processes in adults, and appears most strongly susceptible to age-
ing, partly via vascular risk [53, 54, 55]. In early life, prior work indicates that thalamo-cortical pathways
are important for the regulation of area-specific differentiation of the developing brain [6]. The early wave
of migrating neurons relay thamalo-cortical projections during late fetal and early preterm development,
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the thalamic nuclei may exhibit different maturational trajectories: the posterior limb of the internal cap-
sule (which include the posterior thalamic radiations) appears to develop earlier than the anterior limb
(including anterior thalamic pathways [56, 57]). Given that prenatal development of thalamo-cortical con-
nectivity appears to be the time during which the most significant macroscopic changes occur, as observed
using dMRI [58], and that preterm infants exhibit reduced corticothalamic connectivity [59], this may partly
explain the preterm-term differences in thalamic tier membership (i.e. preterm conditions impact the later-
developing pathways and thus a higher degree of connectivity – later maturation – for the thalamus in terms
than preterms, where the phases of thalamocortical connectivity may be impeded by interruption of the
developmental environment).

Tier 1 in adults, on the other hand, also contained the superior frontal gyrus and putamen (Tier 2 in
neonates) as well as the precuneus (Tier 3 in neonates). In general, and as above, the pattern of regional
asynchrony in the developmental pattern of WM fiber organisation and myelination may partly explain the
differences between neonatal and adult brain hierarchical organisation. WM pathway growth and maturation
spans a large time period, from the second half of pregnancy through to late adolescence; during develop-
ment frontal and temporal WM appears to show the most delayed developmental trajectories in fractional
anysotropy (FA) [60], though the authors make it clear that, given FA is likely to be differentially sensitive
to the ‘local fiber architectural millieu’ in neonatal versus adult brains (due to the differential presence of
myelin), one should be cautious about directly attributing FA changes to any specific WM characteristic.
Given that subcortico-cortical and association fibres (cortico-cortical) especially in the frontal lobes exhibit
later maturation [61], it is likely that the shift from Tier 2 to Tier 1 of these regions represents more protracted
course of hodological maturation in these areas.

Tier 2 in adults consistently contained the post central, precentral, rostral middle frontal gyrii, and the
insulate, caudate and hippocampus. As in previous findings [16], some of these can be broadly classified as
lower order sensory processing regions. As above, the fact that there is poorer differentiation between HC
tiers in neonates at this stage reflects the fact that there is a huge amount of development still to come. For
example, one could conjecture that the developmental period that ensues post-birth, for the next few years
in particular, is the time during which there is hierarchical differentiation between these sensory processing
regions (Tier 2) and the heteromodal integration regions (Tier 3) that we see in the adult brain. Longitudinal
research will be central to testing this hypothesis, and characterising the changes in Tier membership that
occur with ongoing early life development.

4.2. Hierarchical complexity

The results on global complexity (Fig. 3) indicate greater HC in the term born brain than the preterm
born brain (scanned at term equivalent age). Also, it was found that HC in adults was much greater than
in neonates.

From this we can draw two main conclusions. Firstly, HC is affected by prematurity and/or the external
stimuli that the preterm babies receive during the first weeks of life. Secondly, HC of the structural con-
nectome develops during childhood and adolescence until reaching the expected values of an adult healthy
population. Comparing each population against their configuration model (first row of figure 4), we can see
how in preterm connectomes the structure is not yet strongly distinguishable from random, whereas in term
born babies, a more complex hierarchical structure is already present. As expected from previous results,
this structure is clearly established in the adults [16].

The tier-based analysis revealed that this global difference between term and preterm HC was due to
the complexity evident in Tier B regions (figure 3). It is important to notice that Tier B has the largest
number of ROIs in term and preterm infants (see Supplementary Materials). At this age, the network
segregation/integration balance is still experiencing many changes, including in the transformation of the
connectomic architecture from a relatively randomized configuration to a well-organized one [62].

When we compared the Tier against the configuration models, we found that Tier A was less complex
than their respective configuration models in all three populations while Tier B was more complex (no
differences were found for Tier C), Fig 3. It is interesting to note that there were no differences in Tier A
between term and preterm infants. Tier A corresponds to the hubs of the brain, and the lack of difference
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indicates that this “core network” is resilient to prematurity. Taken together, these findings are consistent
with the hypothesis that term-born infants have a greater cerebral maturation than preterm-born infants,
with topological properties going in the direction of the properties displayed by the adult connectomes.

4.3. Symmetry and common connections

We found that connectivity patterns in the adult brain were generally less symmetric than neonates.
This is generally consistent with recent findings on cortical metrics that show that most genetic effects on
structural variation are shared bilaterally and that asymmetry increases with age [63]. It is reasonable to
infer that the same is true of connectivity.

Surprisingly, we found that connectivity patterns in hub regions become more homogeneous with age
and consistently more homogeneous than expected due to random chance. The fronto-parietal network has
long been associated with higher cognitive processes such as general intelligence [64, 55]. As such, it may be
that postnatal development is important for establishing the emergent association fibre development that
facilitates this networks’ putative support for higher order cognitive abilities.

The symmetry analysis and the comparison of common and uncommon connections lead us to one
conclusion: hub regions become less symmetric in adults, while at the same time the connectivity patterns
over all hub regions become more homogeneous.

4.4. Previous work

Comparing neonatal structural connectivity studies is very difficult, due to the lack of a standarized
protocol for dMRI processing, parcellation or network analysis (for a review on the topic please see Zhao
et al. [65]). In the literature, an increased clustering coefficient, modularity, local and global efficiency and
reduced characteristic shortest path length have been found when comparing term-born against preterm-born
infants [66, 13, 8, 67, 9]. This results in the network becoming more efficiently connected with development in
terms of both network integration and segregation [65]. However, all these studies were performed scanning
the preterm children when they are born. From our knowledge, only two studies compare term- with
preterm-born infants scanned at term equivalent age: Ball et al. [13] and Lee et al. [11]. Their findings were
consistent: an increased small-worldness in Lee et al. [11] and an increased clustering coefficient in Ball et
al. [13] in preterm infants at term equivalent age. This suggests that the structural brain network after
preterm birth is reorganized in maximizing integrated and segregated processing, implying resilience against
prematurity associated pathology [11]. Our findings also point to this direction, there is at least a part of
the network – the main core/hubs (Tier A) – that is resilient to prematurity and at term equivalent age is
not different between term and preterm infants.

Early life adversity (such as preterm birth) can impact the development of brain networks by modulating
synaptic maturation and pruning among other effects. Although the general framework of brain circuits is
dictated by genes and is in place by the time of birth [68], the emerging brain networks are still immature,
and chaotic unpredictable patterns of experiential signals from the environment can disrupt normal matura-
tion [69]. Accumulating evidence from imaging studies supports the theory that preterm birth affects brain
growth and cortical maturation: reduced WM and GM volumes, altered microstructure and atypical connec-
tivity patterns [1], both at the global level and in specific networks such as the thalamocortical system [70, 6]
and regions supporting neurocognitive and primary motor/sensory functions [71], all suggest a delayed or
atypical maturation associated with prematurity. Our results, showing a reduced HC in preterm- compared
with term-born infants, corroborate this hypothesis and move towards providing a framework within which
to observe and understand the developing brain as a complex hierarchical system.

5. Conclusion

This study provides a new systems-level paradigm to understand the macro-scale developing brain. It
is the first to consider the existence and implications of hierarchical tiers and their contingent connectivity
patterns in the neonatal brain. We found that HC was greater in term-born neonates than in preterm
infants, the latter of which, indeed, could not be statistically distinguished from randomised configuration
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models. Natural tiers were discovered in the group-aggregated connectome degree distributions, with clear
reconfigurations occurring between neonates and adults in high level and intermediate tiers. The difference
in complexity between neonatal groups was found to be driven by neonatal Tier B, comprising regions –which
later split into two distinct tiers in adults – involving sensorimotor processing and regions integrating high
order cognitive and lower order sensorimotor processing. Comparisons with configuration models revealed a
hierarchical structure where top tier hub regions were less complex (thus more ordered) than expected by
random chance while Tier 3 regions were more complex than expected by random chance with statistical
results indicating these patterns were dysmature in preterm-born neonates. The former result was at least
partly due to common ROIs to which hub regions connected, with the superior frontal gyrus, putamen and
precuneus joining the thalamus as hubs in adults. The latter on the other hand, indicated the beginnings of
specialisation of multifarious cortical regions in neonates, with greater specialisation observed in term-born
neonates. We have demonstrated the potential of this approach in a study of preterm birth, but these
concepts can be applied in more general settings to understand the neural bases of cognition in health and
disease. A natural extension of this work would be analysis of the developmental trajectory of HC across
childhood and adolescence, and its variability in older age. This would allow the investigation of deviations
from normal progression associated with cognitive impairment, and any brain disorder in early or later life
that is characterised by alterations in network topology and global connectivity patterns.

Data availability

The HC code can be found in [72]. Reasonable requests for original image data will be considered through
the BRAINS governance process (www.brainsimagebank.ac.uk) [73].
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