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Summary 

Cellular metabolism regulates immune cell activation, differentiation and effector 

functions to the extent that its perturbation can augment immune responses. However, the 

analytical technologies available to study cellular metabolism lack single-cell resolution, 

obscuring metabolic heterogeneity and its connection to immune phenotype and function. To that 

end, we utilized high-dimensional, antibody-based technologies to simultaneously quantify the 

single-cell metabolic regulome in combination with phenotypic identity. Mass cytometry 

(CyTOF)-based application of this approach to early human T cell activation enabled the 

comprehensive reconstruction of the coordinated metabolic remodeling of naïve CD8+ T cells and 

aligned with conventional bulk assays for glycolysis and oxidative phosphorylation. Extending 

this analysis to a variety of tissue-resident immune cells revealed tissue-restricted metabolic states 

of human cytotoxic T cells, including metabolically repressed subsets that expressed CD39 and 

PD1 and that were enriched in colorectal carcinoma versus healthy adjacent tissue. Finally, 

combining this approach with multiplexed ion beam imaging by time-of-flight (MIBI-TOF) 

demonstrated the existence of spatially enriched metabolic neighborhoods, independent of cell 

identity and additionally revealed exclusion of metabolically repressed cytotoxic T cell states from 

the tumor-immune boundary in human colorectal carcinoma. Overall, we provide an approach that 

permits the robust approximation of metabolic states in individual cells along with multimodal 

analysis of cell identity and functional characteristics that can be applied to human clinical samples 

to study cellular metabolism how it may be perturbed to affect immunological outcomes. 

 

Keywords: Metabolism, Single-cell, Immunometabolism, Tumor Immunology, Cytotoxic T cells, 

Mass Cytometry, CyTOF, Multiplexed Ion Beam Imaging, MIBI-TOF  
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Introduction 

Immune cells dynamically execute highly context-dependent functions. During an immune 

reaction, cells rapidly respond to environmental triggers and migrate into affected tissues, expand 

exponentially and secrete large amounts of effector molecules to recruit and instruct other immune 

cells or kill invading pathogens. All of these diverse capacities are enabled and coordinated by 

dynamic changes in cellular metabolism1–3. Besides the generation of energy, metabolic 

intermediates provide critical building blocks for biosynthesis pathways as well as epigenetic and 

post-translational modifications, thus regulating gene expression and the generation of effector 

molecules4,5. Given these context-dependent roles of cellular metabolism, selective 

pharmacological targeting of individual pathways can influence specific aspects of immune cell 

behavior, for example direct the balance between effector and regulatory functionality6,7. Such 

therapeutic targeting has been shown to improve antitumor responses8–10, ameliorate autoimmune 

diseases11,12 and is a promising option for many other diseases13. 

Central to many of these diseases, T cells constitute a heterogeneous population of 

specialized subsets with dedicated effector functions that are subject to metabolic influence14,15. 

Naïve T cells are characterized as metabolically quiescent, satisfying their minimal energy needs 

mostly through oxidative phosphorylation (OXPHOS). However, upon T cell receptor (TCR) 

engagement and appropriate co-stimulatory signaling, T cells drastically remodel their metabolism 

by increasing their engagement of aerobic glycolysis and amino acid metabolism15. Furthermore, 

differentiation and functional diversification of activated T cells are dependent on the engagement 

of specific metabolic programs, for example fatty acid metabolism which is important for the 

establishment of long-term memory T cell development16 and which has been shown to impact the 

balance between inflammatory effector T cells and suppressive regulatory T cells17. Many 
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additional aspects of T cell biology, including T cell dysfunction and exhaustion18, are subject to 

such metabolic influence, together demonstrating the intimate connection between cellular 

metabolism and function which provides a unique opportunity to direct immune responses.  

Approximation of the cellular metabolic state has been mostly based on quantification of 

metabolites and intermediates of specific metabolic pathways. Typically in bulk assays, mass 

spectrometry (MS) can be used to quantify metabolite abundances19,20 which can be further 

extended by introducing and tracing isotopically enriched metabolites, thus providing a method to 

track these compounds through a network of metabolic pathways21. Alternatively, an approach 

termed extracellular flux analysis allows the measurement of oxygen consumption and 

acidification of the extracellular milieu as proxies for OXPHOS and glycolytic activity, 

respectively22,23. Together, these technologies have yielded invaluable insight into cellular 

metabolism and they continue to provide the basis for many studies in the field of 

immunometabolism. 

Still, significant challenges and open questions related to metabolic heterogeneity and its 

relationship with cell identity remain. Firstly, while several metabolic features have been shown 

to influence and direct T cell differentiation24, a more comprehensive and multimodal 

understanding of the timing and coordination within and between various metabolic pathways as 

well as the interplay with other cellular processes would allow to better direct T cell differentiation 

for various therapeutic uses. Furthermore, given the recently highlighted significant metabolic 

differences between physiologically activated cells and in vitro models25, there is a need to validate 

and more directly analyze metabolic states directly ex vivo. Especially analysis of limited samples 

from human clinical material could determine tissue-specific metabolic states as well as their 

potential modulation in human diseases, particularly cancer26,27. Moreover, multimodal analysis 
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of metabolic immune cell states within their physiological microenvironment3,28 or in 

metabolically challenging contexts such as cancer could reveal novel therapeutic targets and guide 

clinical decisions29,30. An ideal technological solution to approach these questions would bridge 

the gap between highly multiplexed, single-cell phenotyping platforms and the bulk determination 

of metabolic state, thus enabling the study of cellular metabolism directly from ex vivo human 

clinical samples with sparse material while determining important metabolic and functional 

relationships14. 

To address this need, we have developed a novel approach, termed single-cell metabolic 

profiling (scMEP), that enables quantification of single-cell metabolic states by capturing the 

composition of the metabolic regulome using antibody-based proteomic platforms such as mass 

cytometry31 and multiplexed ion beam imaging by time-of-flight (MIBI-TOF)32. These 

technologies make use of heavy metal-conjugated antibodies that are quantified by TOF MS, thus 

allowing highly multiplexed, single-cell and imaging assays33. First, we assessed over 110 

antibody clones against metabolite transporters, metabolic enzymes, regulatory modifications (e.g. 

protein phosphorylation), signaling molecules and transcription factors across eight metabolic axes 

and on a variety of sample formats and tissue types. Utilizing these antibodies in multiplexed mass 

cytometry assays showed that heterogeneous populations such as human peripheral blood can be 

metabolically analyzed in a highly robust and repeatable manner and that cell identity is reflected 

in lineage-specific metabolic profiles. Using in vitro-activated human naïve and memory T cells, 

we benchmarked the scMEP approach against conventional extracellular flux analysis, 

demonstrating close agreement of metabolic target expression with glycolytic and respiratory 

activity. Multimodal analysis of a broad range of metabolic pathways and other cellular features 

during the metabolic switch of human naïve CD8+ T cells upon TCR engagement uncovered the 
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coordinated nature of metabolic remodeling and its close connection to cell cycle progression, cell 

division and biogenesis. Furthermore, we investigated the tissue-specificity of metabolic profiles 

of human cytotoxic T cell subsets isolated from clinical samples, including colorectal carcinoma 

and healthy adjacent colon. This analysis revealed the metabolic heterogeneity of physiologically 

activated CD8+ T cell subsets, including subsets expressing the T cell exhaustion-associated 

molecules CD39 and PD1 that have recently been shown to predict therapeutic success34. Finally, 

we adopted the scMEP platform for the multiplexed imaging of human tissue samples by MIBI-

TOF which revealed the spatial organization of metabolic T cell states in relation to the tumor-

immune boundary as well as exclusion of clinically relevant CD8+ T cell subsets from this 

important microenvironment.  

Overall, scMEP enables the study of cellular metabolic states in combination with 

phenotypic identity as well as effector functions. We expect this to deepen our understanding of 

cellular metabolism in homeostatic and dysfunctional settings, across heterogeneous cell 

populations and in situ, together providing a new lens through which to understand and impact 

human disease.  
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Results 

Targeted quantification of the metabolic regulome discriminates human immune populations 

Much like the epigenetic regulome governs transcription by controlling gene accessibility, 

the balance of cellular metabolites, and thus the metabolic state, is influenced by the molecular 

machinery that regulates these pathways. As such, we sought to quantify the abundance of 

metabolite transporters, rate-limiting metabolic enzymes and their regulatory modifications (e.g. 

phosphorylation), modifiers of mitochondrial dynamics35, as well as transcription factors and 

signaling molecules that drive specific metabolic programs36, here collectively referred to as the 

cellular metabolic regulome. Using a targeted, antibody-based approach to study a broad range of 

regulatory determinants enabled multimodal, single-cell analysis of the metabolic state in 

conjunction with other cell features (i.e. cell phenotype, cycling, signaling) that could be adopted 

to a multitude of high-dimensional probe-based technologies such as mass cytometry and MIBI-

TOF (Fig. 1a). 

To accomplish this, we first assessed assay-specific performance of over 110 commercially 

available antibodies (see Supplementary Table 1) following in-house heavy metal-conjugation. 

Tested antibodies targeted a wide range of metabolic pathways, including glycolysis and 

fermentation, amino acid metabolism, fatty acid metabolism as well as components of the 

tricarboxylic acid (TCA) cycle and electron transfer chain (ETC). The performance of individual 

heavy-metal conjugated antibodies was validated through mass cytometry, immunohistochemistry 

(IHC) and MIBI-TOF (Supplementary Fig. 1a,b), based on biological controls (cell lineage-

specific expression patterns37 and induction upon activation38,39) but also inter-assay and inter-

platform reproducibility and subcellular localization of targets. Following this screening, we 

selected a subset of metabolic antibodies (N = 41, Fig. 1a) that were used in varying combinations 
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and in conjunction with antibodies against additional cellular characteristics for the experiments 

in this study. 

Given the importance of metabolic networks to immune cell function, we first asked 

whether functional specialization within the human immune system might be reflected in lineage-

specific metabolic profiles. We obtained whole blood from five healthy individuals 

(Supplementary Table 2) and, employing the outlined approach, simultaneously analyzed their 

single-cell metabolic profiles in combination with a range of lineage markers (Fig. 1b-d). Immune 

cell lineages were identified through FlowSOM clustering40 using their high-dimensional lineage 

marker expression patterns (CD45, CD3, CD4, CD8, CD45RA, CD66, CD14, CD19, CD20, HLA-

DR, CD56, CD57, CD11c, CD123, FceRI, CD235ab; Supplementary Fig. 2a,b), thus enabling in 

silico subset selection and comparison of metabolic profiles of all identified human immune cell 

lineages without the need for prior isolation or enrichment which can influence metabolic 

states41,42. 
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Fig. 1: Single-cell metabolic profiles organize the human immune system. a, Conceptual overview of the employed scMEP 

approach. Important determinants and modifiers of metabolic activity were identified and respective probes (mostly, but not 

exclusively antibodies) were conjugated to heavy-metal isotopes for their use in mass cytometry (CyTOF) and MIBI-TOF. Various 

combinations of metabolic probes and antibodies against other cellular features of interest were employed across the different 

experiments in this study. For a full account of all probes tested in this study see Supplementary Table 1. Scale bar = 100 µm. b, 
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Whole blood of healthy individuals (N = 5, for donor characteristics see Supplementary Table 2) was fixed and stained with an 

antibody panel of 23 metabolic and 22 immunological antibodies. Cell populations were identified through FlowSOM clustering 

and annotated into the major immune cell lineages. Shown are examples of (arcsinh transformed) expression values across 

identified peripheral immune cell lineages. Black dots represent population medians. c, Normalized (99.9th percentile) mean 

expression of all assessed metabolic targets across immune cell lineages. d, Examples of metabolic target expression across immune 

cell lineages. Shown are live, single, CD45+ cells of one representative individual. e, Cells from all five donors were subsampled 

for equal representation of all immune cell lineages and all donors. Only metabolic profiles (23 targets) were used as input data to 

the UMAP-based dimensionality reduction. Cells are colored by their lineage identity determined as in b. f, L1 regularized linear 

regression (using only metabolic profiles) was trained on a subset of donor (N = 3) and tested on a separate set of donors (N = 2). 

Stated numbers report balanced accuracy for the indicated population. 

 

We observed specific, lineage-associated metabolic profiles that were in agreement with 

previously established critical roles of these metabolic pathways in specialized immune cell 

functions (Fig. 1c,d). For example, plasmacytoid dendritic cells (pDCs) expressed the highest 

levels of the glucose transporter GLUT1 (also SLC2A1), high levels of the fatty acid translocase 

(FAT also CD36) and several other targets with glycolytic and fatty acid metabolism pathways. 

Both pathways have been shown to impact important aspects of pDC functionality, including 

hallmark interferon production upon TLR stimulation43. Further, neutrophils displayed high levels 

of glucose-6-phosphate dehydrogenase (G6PD), an integral part of the pentose phosphate pathway 

(PPP). G6PD deficiency has been shown to severely impact neutrophil functionality, resulting in 

increased susceptibility to infections44. In line with their metabolic quiescence in the absence of 

antigenic stimulation, lymphocytic immune cell populations expressed lower levels of many 

metabolic targets including those in the glycolytic pathway while expressing intermediate levels 

of proteins within the TCA and ETC, crucial for basal respiration.  

Using these metabolic profiles, we calculated total metabolic distances (defined as 

Euclidean distance in the high-dimensional metabolic space) between human immune cell 
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lineages, underlining the division of lymphocytic and myeloid cell lineages and their functional 

specialization (Supplementary Fig. 2c). Further, lineage-specific expression profiles were found 

to be reproducible across different donors as evident by metabolic profile-based principle 

component analysis (PCA) and hierarchical clustering (Supplementary Fig. 2d,e). Technical 

variability of our approach was assessed by performing an independent experiment with cells from 

the same five healthy donors, demonstrating high levels of inter-experiment agreement across 

metabolic targets (r2 = 0.99, Supplementary Fig. 2f,g). Furthermore, we analyzed longitudinal 

changes in metabolic profiles of peripheral blood immune cell lineages which were stored for 0-

48 h at 4 °C before processing. Metabolic profiles were highly stable during this time-period, 

reflecting the suitability of the scMEP approach under common experimental settings 

(Supplementary Fig. 2h). 

Given these robust and lineage-specific profiles, we hypothesized that scMEPs could be 

used to directly infer cell identity without the use of cell surface markers. We made use of the 

unsupervised UMAP dimensionality reduction approach45, using only metabolic profiles as input 

dimensions and disregarding typically employed surface/lineage markers (Fig. 1e). Metabolic 

profiles were largely able to separate immune cell lineages, with expected overlap between CD4+ 

and CD8+ T cells and to a lesser extent NK cells. Further, an L1 regularized classifier46 trained on 

cells from three of these donors (training data) and subsequently used to predict immune cell 

identity of cells from two separate donors (test data) based only on their metabolic profiles was 

able to correctly assign lineage identity to a large fraction of cells (95% average across populations 

in both, training and test data), with minor misclassifications between CD4+ and CD8+ T cells (Fig. 

1f). Together, this demonstrates the suitability and robustness of the scMEP approach to study 
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metabolic regulation and its relationship to single-cell specialization and it revealed remarkable 

cell type-specific metabolic diversification within the human immune system. 

 

Benchmarking single-cell metabolic profiles with metabolic flux during T cell activation 

Assessing bulk metabolic enzyme abundances has been shown to provide important insight 

into the regulation of cellular metabolism in many scenarios38,39,47 and multiple studies have 

identified specific enzymes that determine metabolic pathway activity across many cell types48,49. 

To establish the relationship between antibody-based, single-cell metabolic profiles and pathway 

activity, we chose in vitro activation of human T cells as a model system to assess the predictive 

capacity of protein expression levels on glycolytic and respiratory activity (Fig. 2a). Human naïve 

and memory T cells (including CD4+ and CD8+) were isolated using negative magnetic selection 

and activated for 0 to 5 days with anti-CD3/anti-CD28 beads. Cells from all conditions were 

divided and analyzed by mass cytometry and extracellular flux analysis (Seahorse analysis 

system). Focusing on glycolytic and TCA/ETC components, mass cytometry-based scMEP 

analysis recapitulated several established hallmarks of metabolic remodeling upon TCR 

engagement36,50,51, including upregulation of surface expression of the glucose transporter GLUT1, 

as well as intracellular levels of several key glycolytic enzymes including hexokinase 2 (HK2), 

phosphofructokinase 2 (PFK2) and critical downstream enzymes such as lactate dehydrogenase A 

(LDHA) and the monocarboxylate transporter 1 (MCT1, Fig. 2b,c). Likewise, proteins within the 

TCA and the ETC such as citrate synthase (CS), oxoglutarate dehydrogenase (OGDH), the 

cytochrome complex (CytC) and ATP synthase (ATP5A) were upregulated upon TCR engagement 

(Fig. 2b,d).  
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Fig. 2: Single-cell metabolic profiles of T cell activation dynamics. a, PBMCs were isolated from healthy individuals (N = 4). 

Naïve or memory T cells (containing CD4+ and CD8+ cells) were purified by negative isolation with magnetic beads. Purified T 

cell populations (naïve or memory) were then activated using anti-CD3/anti-CD28 beads for 0-5 days. Cells from all conditions 

were divided into two samples: one sample was fixed and prepared for mass cytometry analysis while remaining cells were used 

for extracellular flux analysis in a Seahorse analyzer. Data from both modalities was then computationally integrated and compared. 
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b, Examples of mass cytometry-quantified expression levels of important glycolytic (top) and TCA/ETC (bottom) components 

following no (resting, left) and 3 days (right) of anti-CD3/anti-CD28 activation on naïve T cells. Examples are gated on single, 

live, DNA+CD45+CD3+CD8+ cells, showing data of one representative experiment. c, Expression levels of important determinants 

of glycolysis/fermentation on naïve CD8+ T cells stimulated for 0-5 days. Black dots indicate population medians. d, Expression 

levels of ETC/TCA components on naïve CD8+ T cells as in c. e, Extracellular flux analysis of cells from the same experiments as 

in a-c. 100’000 naïve or memory T cells activated for 0-5 days were seeded into multiple wells. Extracellular acidification rate 

(ECAR; top) and oxygen consumption rate (OCR; bottom) for each measurement following injections of mitochondrial modifiers 

to determine basal pathway activity (right). FCCP = fluoro-carbonyl cynade phenylhydrazon, Rot = Rotenone, AA = antimycin A. 

Basal glycolysis = mean of the three baseline ECAR readings before injection. Basal respiration = mean baseline OCR – mean 

OCR post Rot/AA injection. Circles and error bars represent mean±s.d. f, Correlation between an exemplative (left panel) glycolytic 

and oxidative metabolic target and basal glycolysis (top row) and basal respiration (bottom row). Flux analysis values were arcsinh 

transformed (cofactor 5) for this analysis. Black lines and r2 values represent results of a linear regression model, with black shading 

representing the 95% CI. Log10 of (Benjamini-Hochberg) false discovery rate (FDR)-adjusted P-values (to control for multiple 

hypothesis testing) and r2 values from linear regression models (middle panel). Black line indicates a BH-corrected P-value of 0.05. 

Protein-based scMEP scores (right) represent the mean expression of all metabolic targets within a given pathway. Each dot 

represents the mean scMEP score of a T cell population (naïve or memory). g, Linear correlation of mean (left) and single-cell 

(right) OXPHOS and glycolytic scMEP scores of naïve CD8+ T cell populations, calculated as in f. h, scMEP scores as in g, 

visualized for each day of anti-CD3/anti-CD28 stimulation. 

 

In order to benchmark these mass cytometry-based observations, we took the remaining T 

cells from the same experimental conditions and assessed their glycolytic and OXPHOS activity 

through extracellular flux analysis. As expected, levels of basal glycolysis and OXPHOS increased 

upon TCR engagement, peaking after 3-4 days of activation (Fig. 2e and Supplementary Fig. 3a). 

We used both bulk metabolic activities and single cell-derived mean metabolic target expression 

values for data integration and regression analysis (Fig. 2f). Glycolytic protein expression of all 

targets (GLUT1, HK2, PFK2, GAPDH, LDHA, MCT1) was robustly correlated with glycolytic 

flux values across several donors and independent experiments (linear regression mean r2 = 0.77) 

and a similarly strong correlation was observed between expression of TCA/ETC components (CS, 
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OGDH, CytC, ATP5A) and OXPHOS activity (linear regression mean r2 = 0.72). We observed 

the highest r2 values for surface nutrient transporters (e.g. GLUT1, r2 = 0.89), potentially reflecting 

their previously demonstrated regulation through surface trafficking or internalization52. 

Downstream metabolic enzymes, whose enzymatic activity can additionally be modulated through 

post-translational modifications and feedback-inhibition53, nevertheless displayed substantial 

correlation values (e.g. PFK2 r2 = 0.80, HK2 r2 = 0.58).  

Given this robust correlation of individual metabolic protein expression and pathway 

activity, we hypothesized that it would be possible to utilize scMEP-based high-dimensional co-

expression patterns of multiple metabolic targets to derive in silico scores representing glycolytic 

and OXPHOS activity (Fig. 2f). We defined scores as the mean of (asinh-transformed and 

percentile-normalized) metabolic enzyme expression levels within a given pathway. Importantly, 

these scMEP-based glycolytic and OXHPOS scores strongly and robustly predicted respective 

metabolic activity across multiple donors, activation time points, and independent experiments as 

determined by linear regression (r2 = 0.88 and 0.82, respectively. Fig. 2f). Considering variability 

between different donors and experiments relevant to both mass cytometry and extracellular flux 

analysis, linear correlations of scMEP scores and pathway activity within each experiment 

displayed even stronger agreement (mean r2 = 0.92 and 0.86, respectively; Supplementary Fig. 

3b). 

Extracellular flux analysis suggested that upon TCR engagement, naïve T cell populations 

increase their glycolytic as well as their respiratory activity (r2 = 0.98; Fig. 2g). However, given 

the nature of bulk measurements, it remained unclear whether there is metabolic heterogeneity and 

specialization of a subset of cells towards a glycolytic or oxidative phenotype. Mass cytometry-

based scMEP scores calculated for each cell independently indicated that, even on a single-cell 
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level, cells simultaneously upregulate their glycolytic as well as oxidative machinery (r2 = 0.68; 

Fig. 2g), together supporting the notion that these cells simultaneously engage multiple metabolic 

pathways to support their wide-ranging bioenergetic demands54.  

Furthermore, our single-cell analysis revealed previously obscured metabolic 

heterogeneity within each timepoint, with T cells activated for two days spanning almost the entire 

range of possible glycolytic and respiratory scMEP scores (Fig. 2h). Cells activated for three days 

displayed a more homogeneous upregulation of glycolytic and TCA/ETC enzymes, suggesting 

eventual convergence of metabolic remodeling and potentially indicating the presence of a series 

of metabolic and cellular checkpoints55. Together, this data validates the close relation of scMEP-

based quantification of the cellular metabolic regulome with pathway activity assessed through a 

well-established orthogonal method and demonstrates the ability of scMEP to enable the discovery 

of metabolic heterogeneity at the single-cell level. 

 

Integrative modeling of T cell activation identifies checkpoints of metabolic switching 

In order to more comprehensively study the metabolic remodeling of human T cells and its 

relation to cell activation, differentiation, and proliferation, we expanded our analysis to 

incorporate a broader set of metabolic pathways and other cellular features. In addition to 

glycolysis and OXPHOS (see Fig. 2), we included antibodies to analyze fatty acid and amino acid 

metabolism, both of which have been shown to impact T cell differentiation36,56, signaling 

molecules and transcription factors controlling metabolic networks, molecules regulating 

mitochondrial dynamics35, as well as anabolic metabolic activities spanning DNA, RNA and 

protein synthesis, monitored through the addition of the tagged substrates IdU, BrU and 

puromycin57. Importantly, we combined these metabolic measurements with analysis of critical 
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cellular checkpoints, including immune cell activation, maturation and differentiation/exhaustion, 

cell cycle phase as well as cell division58. In total, we simultaneously analyzed 48 non-redundant, 

biological (non-technical) parameters across millions of single cells, allowing us to 

comprehensively study metabolic rewiring and its relationship to crucial cellular states (Fig. 3a).  

As before, naïve human T cells were isolated using magnetic beads and activated for 0-5 

days in vitro using anti-CD3/anti-CD28 beads. Indicating the initiation of metabolic remodeling, 

we observed early (within 24 h of activation) phosphorylation of signaling molecules (e.g. 

ribosomal protein S6) and induction of transcription factors (e.g. Hypoxia-inducible factor 1-alpha 

HIF1A). Upregulation of transcription factors and metabolite transporters was closely followed by 

upregulation of metabolic enzymes (e.g. sequential induction of S6 phosphorylation, HIF1A, 

GLUT1, HK2 and LDHA, Fig. 3a), together reminiscent of previously described temporal 

optimization patterns in which expression hierarchy matches enzyme order in metabolic 

pathways59. Indicating broader between-pathway coordination, other metabolic pathways were 

induced simultaneously, e.g. cells rapidly upregulated amino acid transporters ASCT2 and 

CD98/LAT1 as well as downstream glutaminase (GLS, Fig. 3a) which has been shown to be an 

important determinant for T cell differentiation60. 

We next integrated the high-dimensional information from all metabolic and cellular 

features to calculate a two-dimensional UMAP projection of the metabolic and phenotypic 

progression of naïve CD8+ T cells upon TCR stimulation (Fig. 3b). This visualization indicated a 

continuous progression of immune activation and metabolic rewiring across multiple days with 

cells from early activation timepoints (24 and 48 h) spanning larger areas of the phenotypic and 

metabolic space compared to cells from later days (day 3 and 5). Indeed, activated naïve CD8+ T 

cells displayed the greatest metabolic heterogeneity (average metabolic cosine distance58) during 
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early activation (days 0-2 average cosine distance = 0.07), converging during later days (days 3-5 

average cosine distance = 0.038; Supplementary Fig. 4a). Consistent with previous reports58, these 

observations indicates that, like cell phenotype and cellular transcriptional profile, naïve CD8+ T 

cell metabolism is likely most plastic in the earliest phases of antigen experience. 

 

 

Fig. 3: Integrative modeling of metabolic rewiring reveals determinants of human T cell activation. PBMCs were isolated 

from healthy individuals (N = 3). Naïve T cells (CD45RO-, containing CD4+ and CD8+ cells) were purified by negative isolation 

with magnetic beads. Purified T cell populations were then activated using anti-CD3/anti-CD28 beads for 0-5 days. a, Normalized 

(99.9th percentile) expression of metabolic and phenotypic proteins by naïve CD8+ T cells across different days of activation. Shown 

are cells from one representative donor. Black dots indicate population medians. b, Cells were subsampled for equal representation 
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of the indicated days of activation. Metabolic and other markers (with the exception of IdU and H3 phosphorylation) were used as 

input to UMAP dimensionality reduction and visualization. Cells are colored by their day of activation (top) and shown separately 

for each day of activation (bottom). c, Cells as in b were used as input to SCORPIUS trajectory inference using the same markers 

as in b. Data was grouped into 100 bins based on pseudotime. Heatmap depicts mean (scaled) expression levels of the indicated 

marker in the according pseudotime bin. Density (top) shows cell distribution along the pseudotime axis. d, Examples of continuous 

(smoothed) marker expression along pseudotime, calculated as in c and grouped by metabolic pathway. Vertical lines indicate 

important inflection points in the trajectory. Inflection points were chosen based on coordinated changes in the slope (see e) across 

the indicated metabolic markers and divide T cell metabolic remodeling into distinct stages. e, Slope (first derivative) of marker 

expression across pseudotime as in c. f, A multivariate regression model was used to quantify the variance explained (r2) by each 

of the indicated categories on metabolic marker expression. Shown are mean values from all four experiments. 

 

To explore the temporal coordination of metabolic remodeling within and across metabolic 

pathways and in conjunction with cell phenotype, we made use of the SCORPIUS algorithm61,62 

to infer a pseudotime axis representing progression of cellular differentiation and metabolic 

remodeling (Fig. 3c). Pseudotime correlated well with time of activation and was robust across 

different trajectory algorithms (SCORPIUS and Slingshot63) as well as independent biological 

replicates from healthy individuals (Supplementary Fig. 4b-e). We found metabolic protein 

expression within a given pathway to be highly coordinated (average within-pathway Spearman’s 

correlation r = 0.73, Supplementary Fig. 4f,g). Coordination was especially pronounced during 

early remodeling (pseudotime < 0.65; glycolysis r = 0.8, TCA/ETC r = 0.97, Amino acid r = 0.77). 

In addition to intra-pathway coordination, we found remarkable synchronization of metabolic 

protein expression trajectories across various metabolic and other cellular pathways (Fig. 3d,e). At 

later stages (pseudotime > 0.65), we observed several instances of divergent expression patterns 

(glycolysis r = -0.1, TCA/ETC r = 0.0, Amino acid r = -0.2, Supplementary Fig. 4f,g), potentially 

indicating redirection of metabolic intermediates into different metabolic pathways. For example, 

cells maintained high expression of the glutamine transporter ASCT2 but downregulated the 
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glutamine-to-glutamate converting enzyme GLS, possibly increasing glutamine availability for 

nucleotide biosynthesis64. 

Utilizing the change of metabolic protein expression over pseudotime (first derivative), we 

defined three inflection points during metabolic remodeling of naïve human CD8+ T cells, based 

on changes of the derivative of a broad range of metabolic markers (Fig. 3e). The first inflection 

point (pseudotime 0.2) was marked by a coordinated and accelerated upregulation of the cellular 

metabolic machinery in various pathways (e.g. concerted induction of GLUT1, ASCT2, OGDH, 

VDAC1 upregulation; Fig. 3e) leading up to the second inflection point (pseudotime 0.45) which 

was characterized by strong initiation of RNA synthesis (BrU incorporation), activation of the 

cellular stress response, including increased phosphorylation of the antioxidant transcription factor 

NRF2 [ref: 65] as well as upregulation of XBP1 which is part of the unfolded protein response and 

has been shown to control T cell function and mitochondrial activity66. Further, we observed 

reduced expression of carnitine palmitoyltransferase (CPT1A), a rate-limiting enzyme of fatty acid 

oxidation. Interestingly, this second inflection point coincides with cells exiting the G0/G1 cell 

cycle phase as evidenced by strong upregulation of DNA synthesis (IdU incorporation) and cyclin 

B1 expression (Fig. 3d,e). The third metabolic inflection point (pseudotime 0.6) was defined by 

stabilized or decreasing expression levels of various metabolic transporters and enzymes (e.g. 

GLUT1 and ASCT2) as well as peak translational activity (puromycin incorporation). Of note, this 

inflection point coincided with the first cell division (determined through reduction in CFSE 

signal). Interestingly, VDAC1 (also porin, located in the outer mitochondrial membrane) peaked 

at this point, suggesting an increase in mitochondrial mass prior to the first cell division, followed 

by cell division-dependent dilution67 and again underlining the crucial interplay between cell cycle 

progression, cell division and metabolic activity68. 
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Given this coordination of metabolic remodeling with cell activation, cell cycle progression 

and cell division, we sought to quantify their effects on metabolic protein expression using a 

multivariate regression model (Fig. 3f). We used time of activation (0-5 days), cell cycle phase 

(G0/G1, S, G2, M phase), number of cell divisions (0-5), T cell lineage (CD4/CD8) and maturation 

status (naïve/memory) as potential predictors of metabolic protein expression levels. Together, 

these determinants were able to account for 63% of the variance (mean r2) in metabolic marker 

expression. Activation was the single biggest determinant (r2 = 0.27), again demonstrating the 

extent of metabolic remodeling of T cells induced by TCR engagement. Activation was closely 

followed by cell cycle phase (r2 = 0.25) which, as expected had especially pronounced effects on 

biosynthesis pathways, but also on other metabolic pathways (e.g. cell cycle r2 = 0.22 for OGDH).  

Naïve and memory T cells have previously been shown to differentially engage metabolic 

pathways15,69,70 with memory T cells displaying increased basal glycolysis and respiration 

compared to naïve T cells (Supplementary Fig. 5a). Using scMEP, we confirmed memory CD8+ 

T cells to express higher levels of glycolytic (GLUT1 0.49 vs 0.14 median of memory vs. naïve, 

respectively) and TCA/ETC proteins (e.g. CS 0.66 vs. 0.54), increased levels of CPT1A (0.57 vs. 

0.39) indicating increased fatty acid oxidation as well as elevated VDAC1 (0.52 vs. 0.38, 

Supplementary Fig. 5b) suggesting higher mitochondrial mass71. Integrating information from all 

metabolic markers further underlined differential metabolic profiles of resting memory and naïve 

T cells as shown by their distinct location on a two-dimensional UMAP projection (Supplementary 

Fig. 5c). Lastly, high-dimensional metabolic marker expression could be used to predict the 

cellular maturation state of resting CD8+ T cells (naïve vs memory, accuracy 97%; Supplementary 

Fig. 5d). Taken together, scMEP facilitated in-depth and multimodal analysis of early T cell 

activation which allowed us to reveal regulatory pathway coordination and to identify distinct 
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phases of T cell metabolic remodeling as well as their relationship to transitions between cellular 

states. 

 

Tissue-specific metabolic profiles define human T cell subsets 

In addition to cell-intrinsic factors, metabolic states are influenced by tissue-dependent 

factors such as nutrient availability25 and by microenvironmental modulations through malignantly 

transformed tumor cells72, further underlining the importance of studying metabolic states directly 

ex vivo from human biopsies and other clinical samples. To investigate these influences on 

cytotoxic T cells in the context of human cancer, we prepared single-cell suspensions from tissue 

resections of colorectal carcinoma patients, including sections from within the tumor (N = 6) but 

also adjacent healthy sections from the same patients (N = 6, see Supplementary Table 2). In 

addition, we included healthy donor PBMCs (N = 5) as well as lymph node biopsies (N = 3). All 

20 samples were barcoded, combined into a single sample and stained with a panel of 18 

phenotypic, as well as 27 metabolic antibodies (see Supplementary Table 1). We identified the 

main cell lineages and again confirmed their lineage-specific metabolic profiles (Supplementary 

Fig. 6a-e; see also Fig. 1).  

Given their importance for anti-tumor immunity, we focused our downstream analysis on 

cytotoxic CD8+ T cells. We used FlowSOM and its meta-clustering functionality to group these 

cells based only on their high-dimensional co-expression patterns of metabolic markers, resulting 

in the definition of ten distinct metabolic scMEP states (Fig. 4a-c). Identified metabolic CD8+ T 

cell states included subsets characterized by low overall metabolic marker expression (scMEP 

1&2) suggesting low metabolic activity, subsets with elevated expression of a broad range of 

targets (including CD98, GLUT1, PFK2, MCT1, CytC; scMEP 9&10), indicating increased 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.909796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.909796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

metabolic demands, as well as subsets with characteristic expression patterns, e.g. increased 

ACADM/HIF1A (scMEP 4&7) or CD98 (scMEP 3&8; Fig. 4b,c) which might point to more 

specific, context-dependent metabolic adaptions. 

 

 

Fig. 4: Cytotoxic T cell metabolic reflect tissue of residence. Healthy donor PBMC (N = 5), lymph node biopsies (N = 3) as well 

as single-cell suspensions from colorectal carcinoma (N = 6) and matched adjacent healthy sections (N = 6, see Supplementary 

Table 2) were barcoded, stained and acquired on a mass cytometer. a, Major cell lineages from all samples and tissues were 

identified through FlowSOM-based clustering. UMAP-dimensionality reduction was calculated using subsampled data from all 

lineages and all available markers. Cells are colored by their FlowSOM-based lineage definition (left). Next, total CD8+ T cells 

from all samples were selected and metabolic markers were used to define 10 scMEP states, based on FlowSOM clustering. UMAP-

dimensionality reduction was calculated using subsampled data and only metabolic markers. Cells are colored by their scMEP state 
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(right). b, UMAP visualization of CD8+ T cell scMEP states as in a colored by normalized (99.9th percentile) expression of the 

indicated metabolic proteins. c, Marker enrichment modeling (MEM; ref73) was used to visualize enrichment (purple) or depletion 

(yellow) of metabolic target expression across CD8+ T cell scMEP states. d, Frequencies of scMEP state across individual samples. 

e, Statistical comparison of scMEP state frequencies (see also Supplementary Fig. 4f). P-values were calculated using a paired t-

test between healthy and malignant sections from the same patient. Effect size is represented as Cohen’s d. f, MEM of 

immunological markers (not used for metabolic clustering) across scMEP states (left). UMAP visualization as in a,b with cells 

colored by their normalized expression value of the indicated immunological markers. g, Biaxial representation of cells from 

scMEP 3 pooled from all colorectal carcinoma samples (left). Frequencies of cells within scMEP 3, gated as PD1+ and CD39+ 

across all colorectal carcinoma samples (right). 

 

Determining the tissue distribution of these phenotypes, we found that peripheral T cells 

primarily consisted of the metabolically low scMEP 1 (mean 76.6% of peripheral CD8+ T cells) 

with smaller numbers of scMEP 5 (19.7%) and negligible frequencies of all other metabolic states 

(all < 3%; Fig. 4d). Compared to peripheral blood, tissue infiltrating CD8+ T cells displayed higher 

metabolic heterogeneity with a more diverse range of phenotypes not found amongst peripheral 

blood cells, highlighting the importance of directly studying these cells using ex vivo assays. 

Further, this analysis allowed us to assess microenvironmental influences on T cell metabolism, 

specifically in malignant compared to healthy tissue. By comparing the relative frequency of each 

scMEP state between tissues (Supplementary Fig. 6f), we found a specific metabolic phenotype 

(scMEP 3) to be markedly enriched in cells isolated from colorectal carcinoma (mean 14.6% of 

total CD8+ T cells) versus cells from healthy adjacent sections (mean 0.8%) and all other tissues 

(PBMCs 0.1%, lymph nodes 2.4%; P = 0.04, Fig. 4e). Compared to other phenotypes, scMEP 3 

was characterized by enriched expression of the amino acid transporter CD98 and lower levels of 

several metabolic enzymes (GLS, GOT2, PFK2, ATP5A, CS, S6_p, CPT1A, PGC1a_p), spanning 

a broad range of different pathways.  
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Since all CD8+ T cell scMEP states were defined using exclusively metabolic antibodies 

(all markers shown in the heatmap in Fig. 4c), we next investigated the relationship between 

metabolic profiles and immunological characteristics such as expression of activation/maturation 

markers, transcription factors and exhaustion-associated proteins (Fig. 4f). Importantly, scMEP 

metabolic states associated clearly with distinct immunological phenotypes. Metabolically low 

states (scMEP 1 & 5) displayed markers of resting cells (i.e. CD69, CD38 and Ki-67 low) with 

either a naïve (CD45RA and T cell factor 1 (TCF1) enriched, scMEP 1) or memory phenotype 

(CD45RA and TCF1 low, scMEP 5). Furthermore, the CD8+ T cell subpopulation with the highest 

expression of metabolic proteins (scMEP 9) showed indicators of recent activation and 

proliferation (i.e. CD69, CD38 and Ki-67 high), recapitulating the increased metabolic demands 

of actively cycling cells as also identified through our in vitro analysis of T cell differentiation (see 

Fig. 3).  

Of note, the tumor-associated metabolic T cell state (scMEP 3) was significantly enriched 

in cells expressing the exhaustion-associated molecules programmed death 1 (PD1) and CD39 

(both not used for the initial definition of scMEP states). Besides scMEP 3, we also observed 

enrichment of CD39+ and/or PD1+ cells (termed CD39/PD1 cells) in scMEP 8. With the exception 

of increased CD98 and minor enrichments in GLUT1 and GAPDH, cells from scMEP 3 but not 

scMEP 8, presented with decreased metabolic target expression (i.e. reduced ATP5A, CS, CytC 

and PGC1a phosphorylation) and were thus termed metalow CD39/PD1 cells. Interestingly, lower 

mitochondrial capacity as indicated here has been shown to be characteristic of T cell 

exhaustion8,74. Furthermore, these metalow CD39/PD1 cells (scMEP 3) displayed downregulated 

levels of TCF1 which has been proposed to be a hallmark feature of terminal exhaustion75. In 

comparison, cells from scMEP 8 retained TCF1 expression and were characterized by higher levels 
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of many metabolic targets (termed metahigh CD39/PD1 cells), which might be indicative of 

different functional capacities of these subsets. Lastly, while the metalow subset of tumor-

infiltrating CD8+ T cells (scMEP 3) was strongly enriched in cells expressing CD39 and/or PD1 

(mean 72% either CD39+ or PD1+), it also included a fraction of cells negative for both markers 

(28%, Fig. 4g), together suggesting that integration of the metabolic state could be employed as 

an additional dimension to functionally define T cell capacities. In summary, these analyses 

demonstrate the unique capability of scMEP to identify metabolic states of low abundance cell 

populations directly from sparse clinical samples, revealing important relationships between 

cellular phenotype and metabolism in human disease. 

 

 

Cellular metabolism is related to spatial organization in human tissue compartments 

In addition to lineage intrinsic factors, cell activation and tissue of residence, a cell’s 

metabolism is influenced by its location within a specific tissue microenvironment and its 

interactions with neighboring cells3,28, together critically shaping immune responses against 

cancer26,27. The antibody-based nature of scMEP enabled us to directly transfer this approach to 

the recently-developed multiplexed ion beam imaging (MIBI-TOF) platform32, thus allowing 

multimodal, high-dimensional, image-based analysis of the cellular metabolic regulome, 

phenotypic state, and importantly, cellular interactions and localizations within the tissue 

microenvironment. In MIBI-TOF, a tissue section (e.g. FFPE tissue) is stained with heavy metal-

conjugated antibodies and subsequently rastered with a primary ion beam, resulting in the release 

of secondary ions (including heavy-metals from target-bound antibodies). For each pixel, 
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secondary ions are quantified by a TOF-MS system, thus allowing the reconstruction of high-

dimensional images33.  

To approach this, we first assessed the performance of all metabolic antibodies in 

traditional immunohistochemistry (IHC) versus MIBI-TOF (Supplementary Figs. 7 and 8). Next, 

we obtained human clinical tissue samples (i.e. archival FFPE blocks), including sections from 

colorectal carcinoma patients (N = 4) and non-matched non-malignant control sections (N = 3, 

different to patients analyzed in Fig. 4, see Supplementary Table 2). Tissue sections were stained 

with a combination of lineage markers76 and a broad range of metabolic antibodies (Fig. 5a and 

Supplementary Table 1). In total, we acquired 58 fields of view (FOV; 400 µm by 400 µm, 

resolution ~400 nm), each comprised of 36 antibody-dimensions, thus allowing us to determine 

cell lineage, subset, and activation status, as well as metabolic state (Fig. 5b). Following pre-

processing, deepcell77 was used to identify single cells within these images. Segmented cells were 

subsequently clustered into the main cell lineages (FlowSOM using vimentin, SMA, CD45, CD3, 

CD4, CD8, CD14, CD31, CD11c, CD68, CK, E-cadherin; Fig. 5c and Supplementary Fig. 8b,c). 

Importantly, throughout this process, the spatial location of each cell is retained, and cellular 

phenotypes can be investigated in their original tissue context (Supplementary Fig. 8d).  

To determine the metabolic influence of the local microenvironment and to reveal the 

spatial organization of metabolic states in colorectal carcinoma, we first used image-derived 

single-cell data to analyze cellular metabolic profiles (Fig. 5d). In agreement with our mass 

cytometry-based findings in peripheral blood and tissue-derived single-cell suspensions, distinct 

cell lineages displayed lineage-specific metabolic protein expression patterns with potentially 

activation-induced glycolytic expression in T cells and high metabolic protein levels in epithelial 

cells from colorectal carcinoma tissue. 
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Fig. 5: Imaging-based scMEP analysis reveals spatial influences on the organization of metabolic profiles in human 

colorectal carcinoma. a, FFPE colon-sections from colorectal carcinoma patients and healthy controls were stained with the 

indicated antibody panel (N = 36). A total of 58 fields of view (FOV), each 400 µm by 400 µm, were acquired by MIBI. b, 
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Exemplary grayscale images of markers used for lineage identification (top), immune activation and subsets (middle) and their 

metabolic infrastructure (bottom). See also Supplementary Fig. 8. Scale bar = 100 µm. c, A pixel-based classifier was applied to 

automatically identify single-cells within these images (left, scale bar = 25 µm.). FlowSOM was used to identify the main cell 

lineages based on their lineage marker expression values. Single-cell data was projected onto two-dimensions using UMAP and 

colored by their cell lineage identity (middle). Clustered single-cell data can be mapped back onto the original segmented images 

to investigate spatial influences (right, scale bar = 100 µm). d, Metabolic profiles of cell lineages as identified in c are represented 

as MEM scores. e, Cellular microenvironments were defined as cells present within a 20 µm radius (based on cell centroids) of any 

given index cell. Colors indicate cell lineage as in d (left, scale bar = 25 µm). Within all such groups, spatial enrichments were 

calculated by comparing the distributions of metabolic marker expressions with a random subsampling of the same cell lineage 

composition. Enrichments (red) and avoidances (blue) are visualized as average z-scores across all FOVs. Black outlines indicate 

proteins within the same metabolic pathway (right). f, Spatial scMEP scores for a given metabolic pathway were calculated by 

averaging (and blurring) pixel-based expression values of all metabolic markers within a pathway. Areas of immune cell infiltration 

were outlined manually based on CD45 staining (left and middle, scale bar = 100 µm). Average glycolytic scMEP scores for all 

CD45+ cells within a FOV (right). g, The tumor-immune border was computationally defined using clustered and annotated single-

cell data. Immune cells within a 20 µm radius of malignant epithelial cells were classified as located within the tumor-immune 

border (left, scale bar = 100 µm). Wilcoxon-rank sum test (adjusted for multiple hypothesis testing) were used to compare cells 

close to the border with cells further from the border in each FOV that contained cells of both categories. Heatmap shows Wilcoxon 

rank sum test-based estimates (representing the median of the difference between a samples from the two groups) of enrichment 

for enriched (magenta) and decreased (cyan) expression on immune cells within the border. Non-significant (BH-adjusted P-value 

> 0.05) estimates were colored white (right). h, CD8+ T cells expressing high levels of CD39 and/or PD1 were clustered into two 

subsets based on their metabolic target expression (see Supplementary Fig. 8). The two subsets (metahigh and metalow) were 

visualized in the original images (left, scale bar = 100 µm). Distance to closest malignant epithelial cell for CD39/PD1 cells 

stratified by metabolic phenotype. Numbers indicate median distance (top right). Linear regression of between normalized asinh 

expression of metabolic markers (e.g. CPT1A) and distance to closest tumor cell (bottom right). Red line and values indicate linear 

regression model. 

 

Having established single-cell metabolic profiles consistent with our mass cytometry 

analysis, we next interrogated the spatial organization of metabolic profiles. For any given cell, 

we defined a cellular neighborhood consisting of cells found within a 20 µm distance to the center 
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of the index cell (Fig. 5e) and then used context-dependent spatial enrichment (CDSE) analysis to 

determine if metabolic profiles are enriched in these neighborhoods76. CDSE compares the 

frequency of cells (within a certain radius) that express a given metabolic marker against random 

samplings of cells from the same lineage composition (for example same frequency of immune 

and epithelial cells), thus accounting for differential tissue structure, varying cell numbers and 

composition. We found that cells expressing high levels of specific metabolic targets were spatially 

enriched with cells displaying elevated levels of the same target. For example, GLUT1high cells 

were highly enriched around other GLUT1high cells, but also around cells with high levels other 

targets within the same metabolic pathway (e.g. GLUT1high cells enriched around PKM2high cells), 

thus suggesting the existence of environmental niches that enable or drive certain cellular 

metabolic behaviors irrespective of cell type and spanning healthy and colorectal carcinoma 

samples. We found such spatial enrichment for glycolysis, respiratory and amino acid pathways. 

However, FAT/CD36 and CPT1A, two targets involved in fatty acid metabolism were not spatially 

enriched. FAT/CD36 was specifically expressed on endothelial cells, potentially indicating their 

role in facilitating tissue uptake but not direct downstream oxidation of fatty acids78. 

In analogy to single-cell mass cytometry scMEP scores (see Fig. 2), we calculated spatial 

scMEP scores from multiplexed images by averaging (and blurring) all images of markers within 

a given metabolic pathway, thus allowing visualization of their relative abundance related to 

spatial distributions (Fig. 5f and Supplementary Fig. 8e). Imaging several regions within a single 

tissue section, we found that average scMEP scores of total immune cells not only varied across 

donors but also within individual patients themselves (patient 21d7: 0.56±0.11, patient 90de: 

0.46±0.13, mean±s.d.). At the same time, within a given immune cell infiltrate, we found 
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indications of locally enriched metabolic scores (Fig. 5f, middle), altogether reinforcing the local, 

microenvironment-driven influence on metabolic polarization. 

We hypothesized that malignant epithelial cells, known to be in metabolic competition with 

the immune system49, could constitute one such polarizing factor, locally influencing immune cell 

metabolism. To investigate this aspect, we identified immune cells close to the tumor-immune 

border (presence of epithelial cells within a 20 µm radius) and compared their metabolic state to 

immune cells located further away from the boundary76 (Fig. 5g). Here, a large fraction of FOVs 

(17 of 24 FOVs containing a tumor-immune boundary) displayed metabolic polarization towards 

the tumor region, dominated by increased expression of the amino acid transporters CD98 and 

ASCT2 (Fig. 5g, black arrows). Both of these transporters have been shown to be of prognostic 

value in various human cancers79–81 and it will be of great interest to see whether relation to tissue 

features such as the tumor border or multidimensional co-expression with other metabolic proteins 

will further improve their diagnostic power. Importantly, the observed metabolic polarization 

towards the tumor-immune border was not explained by variations in border immune cell lineage 

markers which were not significantly enriched across sampled regions (Fig. 5g, right panel of 

heatmap). 

Finally, as suspension-based analysis of T cell metabolic diversity in colorectal carcinoma 

(see Fig. 4) had indicated, CD98 can be upregulated across various CD8+ T cell subsets, including 

two populations of CD39 and/or PD1 expressing cells (termed CD39/PD1) that differed in their 

metabolic profiles (metahigh and metalow). FlowSOM-based clustering of CD8+ CD39/PD1 cells 

within the imaging dataset using only their metabolic protein expression patterns again indicated 

the presence of two metabolically divergent subsets (metahigh and metalow, Fig. 5h and 

Supplementary Fig. 8g,h), akin to previously defined subsets. Investigating their spatial 
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distribution, we found that CD39/PD1 metalow cells were significantly further away from the 

tumor-border than their metahigh counterpart (metalow 256 µm, metahigh 152 µm, P = 2.2e-16; Fig. 

5h). In addition, we found a direct correlation (r = 0.42) between the distance to closest tumor cell 

and decreased expression of metabolic markers (most pronounced for CPT1A) in CD39/PD1 cells 

(Fig. 5h). Together, this analysis indicates that only CD39/PD1 cells that were distal and 

unengaged with the tumor appeared metabolically suppressed as opposed to the more 

metabolically active cells at the tumor-immune interface.  These observations potentially reconcile 

the ambivalent nature of CD39 and PD1 surface expression, which is associated with exhaustion 

and dysfunction but at the same time T cell activation82–84. In summary, these spatial analyses 

revealed specific exclusion of metabolic immune cell subsets from the tumor-immune boundary, 

demonstrating the influence of tissue architecture on metabolic state that goes beyond what can be 

observed using conventional deep phenotyping of cell identity alone. Incorporating this new lens 

of single-cell metabolism into translational research promises better control of cellular alterations 

and dysfunction in human disease. 
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Discussion 
 

Biological tissues possess great functional and compositional heterogeneity, thus 

necessitating the use of single-cell platforms for their in-depth study85,86. Technological advances 

are pushing the frontier of such single-cell analyses on multiple cellular levels, including the 

genome87,88, transcriptome89 as well as aspects of the epigenome90 and proteome31. Here, we 

presented a novel approach termed single-cell metabolic profiling (scMEP) to investigate the 

cellular metabolic state that utilizes multiplexed, antibody-based assays to analyze metabolism-

determining cellular features (Fig. 1). Focusing on the metabolic regulome allowed us to define 

single-cell metabolic states directly from limited, ex vivo human material. For example, we 

performed robust metabolic analyses of fewer than 1000 (median n=842) human tumor-infiltrating 

CD8+ T cells per sample (Fig. 4). Recent studies have highlighted significant metabolic differences 

between such physiologically activated cells and in vitro models25. Importantly, the scMEP 

approach is applicable to fixed cells and FFPE tissues, offering the opportunity to analyze 

metabolic states from existing clinical cohorts and thus enabling the identification of features 

associated with clinical outcome or therapeutic success.  

Instead of individual metabolites, this scMEP approach quantifies the abundance of 

metabolic regulators such as metabolite transporters, rate-limiting metabolic enzymes as well as 

the activity of signaling pathways and transcription factors. In addition, we determined the 

biosynthesis rates of cellular macromolecules (RNA, DNA, protein) by quantifying the 

incorporation of BrU, IdU and puromycin, respectively57. Many of these factors have been 

previously shown to either directly drive or correlate with metabolic flux36,39,48 and we showed 

that scMEP metabolic profiles correlate robustly with metabolic activity as determined by 

extracellular flux analysis (Fig. 2). Nevertheless, scenarios might exist in which external factors 
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(e.g. synthetic inhibitors) drive a divergence between the cellular need to activate metabolic 

programs and momentary pathway activity. Such inherently interesting exceptions would however 

be easily identified by subsequent validation of scMEP-based analyses with bulk MS or 

extracellular flux analysis.  

Mass cytometry and MIBI-TOF both allow the quantification of >40 simultaneous features, 

allowing us to simultaneously analyze multiple major metabolic pathways. To do so, we validated 

a large number of commercially available antibodies (Supplementary Table 1) which provides 

resource for the implementation and potential future adjustments of scMEP, for example 

incorporation of additional metabolic pathways or comprehensive analysis of all components 

within a more restricted set of pathways. In addition, a large fraction (~70%) of the tested 

metabolic antibodies are reactive with mouse and/or rat epitopes, thus facilitating straightforward 

transfer of this approach to analyze cells obtained from animal models. Of note, all antibodies were 

validated post cysteine-based heavy-metal conjugation which can potentially affect antibody-

binding affinity. Presented antibody performances are therefore assay-specific and might reflect 

the impact of the employed conjugation chemistry.  

Given the antibody-based nature of scMEP, this approach can be transferred to other high-

dimensional probe-based platforms and could (with some limitations) also be employed in e.g. 

flow cytometry33. Furthermore, analysis of metabolic aspects using single-cell RNA sequencing 

in combination with novel analytical approaches could offer additional insights91. Especially once 

challenges related to RNA stability following cell fixation and permeabilization are resolved, the 

use of antibody-sequencing hybrid technologies92,93 would present an exciting platform to 

implement the scMEP approach, combining the unbiased nature of RNA sequencing with the large 

dynamic range of protein expression and the ability to assess post-transcriptional and post-
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translational regulation offered by antibody-based technologies94. In addition, metabolic profiling 

could be further extended by combining single-cell analysis of metabolic infrastructure and 

cellular phenotype with determination of epigenetic features90. Chromatin modification profiling 

has recently been demonstrated by mass cytometry95 and could be integrated with scMEP to further 

elucidate the reciprocal interplay of metabolism and epigenetic remodeling and it relation to human 

disease. 

We demonstrated how employing scMEP can drive the discovery of biologically and 

relevant findings directly in clinical isolates. For example, comprehensive reconstruction of 

metabolic remodeling of T cells upon TCR engagement as demonstrated above (Fig. 3) could serve 

as a framework to design metabolic interventions in a phase-specific manner to direct in vitro 

differentiation of chimeric antigen receptor (CAR) T cells96 or cells used in adoptive cell transfer 

(ACT) therapy97,98. Furthermore, applying this approach to human clinical material revealed the 

presence of tissue-specific metabolic T cell subsets (Fig. 4). Here, we identified two metabolically 

diverging cytotoxic T cell subsets characterized by elevated expression of CD39 and PD1 and 

expanded in human colorectal carcinoma. CD39 and PD1 expression on immune cells has been 

shown to be clinically relevant in multiple tumor types34,99. Subsequent imaging analysis using the 

MIBI-TOF (Fig. 5) revealed that the metabolically-repressed CD39/PD1 cells were excluded from 

the tumor-immune boundary, a complex multicellular structure known to regulate immune 

function76. Importantly, while surface expression of CD39 and PD1 indicate T cell 

exhaustion/dysfunction, they can be expressed more broadly, driving the recent identification and 

integration of molecular regulators such as TOX100–104, NR4A105,106 and TCF175,107 as more 

definitive indicators of immune cell dysfunction. Taken together, the here identified association of 

metabolic phenotype with CD39/PD1 expression and TCF1 downregulation, as well as the tumor-
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specific expansion of this metabolic subset in combination with its exclusion from the tumor-

immune boundary suggest that incorporation of metabolic profiling to identify functionally diverse 

T cell states could further improve clinical stratification, e.g. to better predict response to 

immunotherapy.  

In summary, we here presented a novel and robust approach to study single-cell metabolic 

states using antibody-based multiplex technologies. The application of scMEP should enable a 

better understanding of human immune cell biology and benefit the identification of disease-

associated metabolic alterations that could serve as potential biomarkers and therapeutic targets 

for a variety of human diseases. 
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Methods 

 

Human samples 

De-identified peripheral blood samples from healthy human subjects (see Supplementary 

Table 2) were obtained and experimental procedures were carried out in accordance with the 

guidelines of the Stanford Institutional Review Board (IRB). Written informed consent was 

obtained from all subjects. Fresh whole human blood in heparin collection tubes or leukoreduction 

system chamber contents (Terumo BCT) were obtained via the Stanford Blood Center. PBMCs 

were isolated via Ficoll (GE Healthcare) density gradient centrifugation.  

FFPE tissue samples of colorectal carcinoma patients and healthy controls were obtained 

from the tissue repository of the Stanford Department of Pathology. Colorectal carcinoma and 

healthy adjacent tissue samples for mass cytometry (see Supplementary Table 2) were collected 

fresh after resection and transported for processing on ice in cell culture medium (CCM: RPMI-

1640 (life technologies), 10% FBS, 1x L-glutamine, 1x penicillin/streptomycin (Thermo Fisher)). 

Samples were minced and processed using the MACS tumor dissociation kit (Miltenyi Biotec) as 

recommended. All viable single-cell suspensions were frozen in FBS supplemented with 10% 

DMSO and stored in liquid nitrogen. 

 

In vitro cell activation 

Cryopreserved PBMC samples where thawed into 10 ml of cold CCM supplemented with 

0.025 U/ml benzonase (Sigma) and washed once (250 g, 4 ºC). Pan T cells were enriched through 

negative selection using magnetic beads (Pan T cell Isolation Kit, Miltenyi Biotec) as suggested 

by the supplier. Isolated T cells (including CD4+ and CD8+) were CFSE labeled by incubating 
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them with 80 µm CSFE (Thermo Fisher) in CCM for 5 min at RT as described previously58. 

Labeled cells were quenched with warm CCM and washed three times by centrifuging for 5 min 

at 250 g. After washing, samples were divided for naïve and memory T cell isolation. Naïve T 

cells were enriched by depleting CD45RO expressing T cells using magnetic beads and memory 

T cells were isolated by depleting CD45RA expressing T cells. Using this approach, all cells used 

in in subsequent assays were negatively isolated. Cells were counted using an automated cell 

counting system and distributed into a 24-well plate in CCM at 1x106 cells/well. For naïve T cells, 

5 ng/ml of IL-2 was added to the culture and memory T cells were supplemented with 5 ng/ml IL-

7 and IL-15 (all Peprotech). Cells were activated in a reverse time-course so that their total time 

in culture was identical and so that all cells would finish their indicated activation period at the 

same day to enable extracellular flux analysis. To do so, anti-CD3/anti-CD28 beads (Dynabeads, 

Thermo Fisher) were added in a 1:1 cell-to-bead ratio on the respective day and cells were 

incubated at 37 ºC, 5% CO2 for up to 5 days. At the end of the activation period, cells from the 

same condition (same wells) were divided up and entered into the mass cytometry and extracellular 

flux analysis workflows. 

 

Live/dead discrimination and cell fixation 

Cryopreserved single-cell suspensions (viable PBMC, lymph node and tumor biopsy 

samples) where thawed into 10 ml of cold CCM supplemented with 0.025 U/ml benzonase (Sigma) 

and washed once (250 g, 4 ºC). In vitro activated T cell cultures (not cyropreserved) were washed 

once in CCM and directly processed further. For live / dead cell discrimination, monoisotopic 

cisplatin-194 (Fluidigm) was pre-conditioned for 48 h at 37 ºC, aliquoted and stored at -20 ºC. 

Viability staining was performed by resuspending cells in 1 ml of low-barium PBS and adding 
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cisplatin-194 to a final concentration of 500 nM, followed by incubation for 5 min at RT and 

washing with cell staining medium (CSM: low-barium PBS with 0.5 % BSA and 0.02 % sodium 

azide (all Sigma)). Cells were fixed with 1.6% PFA in PBS for 10 min at RT and washed twice 

with CSM. Fixed cells were either entered directly into the staining workflow or cryopreserved by 

resuspending them in CSM supplemented with 10% DMSO and storing them at -80 ºC.  

 

Heavy-metal conjugation of antibodies 

Antibodies were conjugated to heavy-metal ions with MaxPar (Fluidigm) or MIBItag 

(Ionpath) reagents using an optimized conjugation protocol108. In short, antibodies were reduced 

with 4 mM TCEP (Thermo Fisher) for 30 min at 37 ºC and washed two times. For conjugations 

using MaxPar reagents, metal chelation was performed by adding metal solutions (final 0.05 M) 

to chelating polymers and incubating for 40 min at RT. Metal-loaded polymers were washed twice 

with using a 3 kDa MWCO microfilter (Millipore) by centrifuging for 30 min, 12’000 g at RT. 

For conjugations using MIBItag reagents, pre-loaded polymers were obtained, and no loading 

reactions needed to be performed. For both approaches, antibody buffer exchange was performed 

by washing purified antibody through a 50 kDa MWCO microfilter (Millipore) and centrifuging 

for 10 min, 12’000 g at RT. Partially-reduced antibodies and metal-loaded polymers were 

incubated together for 90 min at 37 ºC. Conjugated antibodies were washed four times and 

collected by two centrifugations (2 min, 1’000 g, RT) into an inverted column in a fresh 1.6 ml 

collection tube. Protein content was assessed by NanoDrop (Thermo Fisher) measurement, 

antibody stabilization buffer (Candor Bioscience) was added to a final volume of at least 50 v/v % 

and antibodies were stored at 4 ºC.  
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Palladium barcoding and staining with heavy-metal conjugated antibodies 

To eliminate technical variability during staining or acquisition, individual samples within 

one experiment were palladium-barcoded as described previously109 and combined into a 

composite sample before further processing and staining. Cell-surface antibody master-mix in 

CSM was filtered through a pre-wetted 0.1 µm spin-column (Millipore) to remove antibody 

aggregates and added to the samples. After incubation for 30 min at RT, cells were washed once 

with CSM. To enable intracellular staining, cells were permeabilized by incubating with ice-cold 

MeOH for 10 min on ice and washed to times with CSM to remove any residual MeOH. 

Intracellular antibody master-mix in CSM was added to the samples and incubated for 1 h at RT. 

Cells were washed once with CSM and resuspended in intercalation solution (1.6% PFA in PBS 

and 0.5 µM rhodium-intercalator (Fluidigm)) for 20 min at RT or overnight at 4 °C.  

Before acquisition, samples were washed once in CSM and twice in ddH2O and filtered 

through a cell strainer (Falcon). Cells were then resuspended at 1 x 106 cells/mL in ddH2O 

supplemented with 1x EQ four element calibration beads (Fluidigm) and acquired on a CyTOF2 

mass cytometer (Fluidigm).  

 

Antibody validation workflow 

To validate metabolic antibodies as broadly as possible, a range of different cell types, 

tissues and technologies were used in combination. Mass cytometry-based antibody validation was 

performed on a range of cell lines, immune populations found in whole blood and T cells with or 

without TCR activation. First, various leukemic, embryonic and carcinoma cell lines were cultured 

in standard conditions110, fixed, palladium-barcoded and subsequently stained with heavy-metal 

conjugated antibodies as described (see above). Whole blood was processed as before (see above) 
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and stained with a combination of metabolic antibodies and cell lineage markers (CD45, CD3, 

CD4, CD8, CD45RA, CD66, CD14, CD19, CD20, HLA-DR, CD56, CD57, CD11c, CD123, 

FceRI, CD235ab [ref: 111]) to identify the major immune cell types through manual gating. Human 

T cells were either rested or activated with anti-CD3/anti-CD38-beads for 72 h (see above), fixed 

and palladium-barcoded before staining with metabolic antibodies. Metabolic antibodies were 

initially used at a concentration of 2 µg/ml. For all populations, median arsinh values were 

calculated and positive staining was defined as a median of at least 10 ion counts (asinh 

transformed value >1.5) of any subpopulation. Where available, cell-lineage specific expression 

and induction upon activation were compared to previously determined values for the given cell 

population37–39.  

To validate antibodies on tissues, control tonsil and liver FFPE tissues were stained with 

the indicated metal-conjugated antibodies as described below and their performance was validated 

through traditional IHC and MIBI-TOF. Detectable staining was determined through visual 

inspection of both IHC and grayscale MIBI-TOF images. For intra-assay quality control, IHC and 

MIBI-TOF images were visually compared and in addition, related to previously determined 

staining patterns37. 

 

Extracellular flux analysis 

Extracellular flux analysis was performed by adopting previously outlined protocols112. In 

short, in vitro activated T cells were spun onto a Cell-Tak (Thermo Fisher) coated XF96 cell 

culture microplate (Agilent) with a density of 100’000 or 150’000 cells/well and rested in Seahorse 

XF RMPI 1640 medium supplemented with 2 mM L-glutamine, 2 mM sodium pyruvate and 25 

mM glucose (all Agilent) for 1 h in a non-CO2 incubator at 37 ºC. ECAR and OCR were measured 
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using a Seahorse XF96 extracellular flux analyzer (Agilent). Oligomycin (1 µM), fluoro-carbonyl 

cyanide phenylhydrazone (FCCP; 1.5 µM) and rotenone (0.5 µM) together with antimycin A (0.5 

µM) were sequentially injected to establish baseline parameters. Raw data was imported into the 

R environment113 in order to calculate basal glycolysis respiration rates as described previously22. 

Data was normalized by cell number. For linear regression between extracellular flux analysis 

values and mass cytometry values, both were arcsinh transformed with a cofactor of 5.  

 

Mass cytometry data preprocessing 

Raw mass cytometry data was first bead-normalized to remove acquisition-related 

influences on marker expression using the premessa R package. Next, barcoded cells were 

assigned back to their initial samples using their unique palladium barcode combination. 

Normalized data was then uploaded onto cytobank.org114 or cellengine.com to identify single, live 

cells by manually gating on DNA (103Rh) and viability (194Pt) channels. Data was subsequently 

imported into the R environment, arcsinh transformed (cofactor 5) and normalized to the 99.9th 

percentile of each respective channel before downstream analysis. 

 

Clustering and data visualization 

Pre-processed single-cell (mass cytometry and MIBI-TOF) data was clustered using the 

FlowSOM R package40 and the indicated input channels. Resulting clusters were either manually 

annotated with the main cell lineages based on their lineage marker profiles or, if the underlying 

number and identity of clusters was unknown (e.g. for clustering on metabolic profiles) the 

metaclustering function of the FlowSOM package was used. Given their widespread expression 

across cell lineages, differences in metabolic target expression between different populations and 
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clusters were visualized by marker enrichment modeling73. UMAP embeddings were calculated 

using the R uwot implementation with the following parameters: n_neighbors = 15, min_dist = 

0.02. 

 

Calculation of metabolic scMEP scores 

To calculate single-cell scMEP scores, expression values (debarcoded, bead-normalized, 

arcsinh transformed and percentile-normalized as described above) from all metabolic enzymes 

within a given pathway (glycolysis, respiration, amino acid metabolism and fatty acid metabolism) 

were summed and divided by the number of channels within the pathway. 

To calculate image-based scMEP scores, pixel-based expression values from pre-processed 

data were blurred with a gaussian filter (sigma = 6) and arcsinh transformed. Next, pixel values 

from images within a given pathway were summed and finally percentile normalized to the 99th 

percentile. 

 

Trajectory analysis of metabolic remodeling 

Pre-processed data was randomly subsampled to represent all indicated days of activation 

equally. Pseudotime was calculated using the SCORPIUS61 and Slingshot63 algorithms, given their 

documented robustness across different datasets62, making use of the dynverse R implementation. 

All indicated channels were used as input dimensions to both algorithms and we did not define 

priors. Mitotic (M phase) cells and were excluded from this analysis given their drastically 

different metabolic profile. Strongly cell phase-dependent markers (IdU incorporation and H3 

phosphorylation115) were not used as input dimensions for the trajectory calculation. Resulting 

pseudotime was scaled from 0-1. While resting cells (day 0) and cells from day 5 were included 
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in the trajectory calculation to allow identification of starting and end points, we were mostly 

interested in early T cell activation (pseudotime 0.1-0.8), thus focusing downstream analysis on 

this period which additionally constitutes the most robust part of the trajectory as determined by 

comparison between SCORPIUS and Slingshot trajectories. 

 

Multivariate regression model 

In order to assess the influence of different cellular and experimental conditions on 

metabolic profile expression, we designed a multivariate regression model using the relaimpo R 

implementation116. As input data, we used mean population expression values of all metabolic 

markers. Potential predictors were time of activation (0-5 days), cell cycle phase (G0/G1, S, G2, 

M phase, identified through manual gating115), number of cell divisions (0-5, identified through 

CFSE dilution), T cell lineage (CD4, CD8, identified through manual gating) and T cell maturation 

status (naïve, memory, separated through magnetic enrichment). Data from different donors was 

analyzed separately and displayed as averages across experiments. 

 

Analysis of scMEP repeatability and robustness 

To determine the robustness of the scMEP approach, metabolic marker expression values 

of samples from the same healthy donors were stained and analyzed in two separate experiments 

and compared by linear regression using the lm() function. Hierarchical clustering using the R 

function hclust() was performed using the same input data. For the training phase of immune cell 

lineage prediction from metabolic profiles, 20’000 cells were randomly subsampled from three 

healthy donors to create an L1 regularized linear regression model as described before95 using the 

glmnet R package46. For the test phase, data was derived from two independent healthy donors not 
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included in the training data. Prediction of T cell maturation status from metabolic profiles was 

performed similarly by randomly subsampling cells from both conditions into separate training 

and test data. Metabolic heterogeneity was defined as the cellular Euclidean distance to the average 

expression levels of the given population58. Only (pre-processed) metabolic profile expression 

values were used for this calculation. 

 

Staining for multiplexed ion beam imaging 

Tissue sections (4 µm) were cut from colorectal carcinoma and control colon FFPE tissue 

blocks using a microtome and mounted on silanized gold-coated slides (IONpath) for MIBI-TOF 

analysis. Mounted tissue sections were incubated at 70°C for 20 min and deparaffinized with three 

washes of fresh xylene followed by rehydration with successive washes of ethanol 100% (2x), 

95% (2x), 80% (1x), 70% (1x), and distilled water. Washes were performed using a Leica ST4020 

Linear Stainer (Leica Bio- systems) programmed to three dips per wash for 30 s each. Rehydrated 

sections were immersed in epitope retrieval buffer (Target Retrieval Solution, pH 9, DAKO 

Agilent), incubated at 97 °C for 40 min and cooled down to 65 °C using Lab vision PT module 

(Thermofisher Scientific). Slides were washed with MIBI wash buffer (low-barium PBS IHC 

Tween buffer (Cell Marque) containing 0.1% (w/v) BSA (Thermofisher Scientific)). Slides were 

then placed into a Sequenza staining rack (Thermofisher Scientific) and sections were blocked for 

1 h with BBDG blocking buffer (1X TBS IHC Wash Buffer with Tween 20 (Cell Marque) + 2% 

donkey serum, 0.1% cold fish skin gelatin (Sigma), 0.1% Triton X-100, and 0.05% sodium azide). 

Metal-conjugated antibody mix was prepared in 3% (v/v) donkey serum TBS IHC wash buffer 

and filtered using a centrifugal filter with a 0.1 mm PVDF membrane (Ultrafree-MC, Merck 

Millipore). Sections were stained with the antibody mix, incubating overnight at 4°C in the 
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Sequenza staining rack. After overnight incubation, slides were washed twice with MIBI wash 

buffer and fixed for 5 min in 2% glutaraldehyde solution (Electron Microscopy Sciences) in low-

barium PBS. Slides were then rinsed briefly in low-barium PBS and then dehydrated with 

successive washes of Tris 0.1 M (pH 8.5) (3x), distilled water (2x), and ethanol 70% (1x), 80%(1x), 

95% (2x), 100% (2x). Slides were immediately dried in a vacuum chamber for at least 1 h prior to 

imaging. 

 

Immunohistochemistry 

All MIBI-TOF antibodies were validated by DAB chromogenic IHC. The protocol for IHC 

closely followed the MIBI-TOF staining protocol, with minor changes. Before assembly of slides 

into the Sequenza staining rack and blocking, endogenous peroxidase activity was quenched by 

incubation in 3% H2O2 for 30 min and sections were washed with H2O on an orbital shaker for 5 

min. Sections were stained with MIBI antibodies individually, and detected with ImmPRESS 

universal (Anti-Mouse/Anti-Rabbit) secondary antibody kit (Vector labs) and ImmPACT DAB 

Substrate kit (Vector Labs), according to the manufacturer’s guidelines. 

 

Multiplexed ion beam imaging acquisition 

Quantitative imaging was performed using a custom designed MIBI-TOF mass 

spectrometer (IONpath), as previously described32,76, with an image size of 400 µm2 and 1024 x 

1024 pixels. The entire cohort of 58 FOVs was acquired over a 24 h period of continuous imaging, 

yielding a total of 2088 images. 

 

Imaging data pre-processing and single-cell segmentation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.909796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.909796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

Multiplexed imaging data was preprocessed as described before76. In short, for each pixel, 

MS spectra were converted into pixel counts by extracting a mass range from atomic mass unit 

amu-0.25 to amu±0. Background (due to absence of tissue or high gold signal) was removed, and 

noise was filtered out using a k-nearest-neighbor approach. To segment single cells from images, 

we trained a convolutional neural network76,117 using annotated training data from a variety of 

different cancer types. The network output was fed into the watershed algorithm to produce 

individual cells. This mask was used to extract per-cell counts for each marker in each image. 

Counts were normalized by cell size to account for different sampling of cells in the given plane. 

Normalized data was imported into the R environment and transformed using an inverse 

hyperbolic sine (arcsinh) cofactor of 0.05 (adjusted due to cell size normalization).  

 

Context-dependent spatial enrichment analysis 

The context-dependent spatial enrichment (CDSE) approach76 was used to identify 

structured patterns of metabolic protein expression in the tissue. For each pair of metabolic 

markers, X and Y, the number of times cells positive for protein X was within a 50 pixel (~20 um) 

radius of cells positive for protein Y was counted. Thresholds for positivity were customized to 

each marker individually. A null distribution was produced by performing 1000 bootstrap 

permutations where the locations of cells positive for protein Y were randomized. Randomizations 

retained the distribution of cells positive for protein Y across major lineage categories: immune, 

endothelial, epithelial, and fibroblast. A z-score was calculated comparing the number of true 

cooccurrences of cells positive for protein X and Y relative to the null distribution. For each pair 

of metabolic proteins X and Y the average z-score was calculated across malignant and control 

tissues separately. 
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Visualization 

Plots were created using the ggplot2 R package118. Schematic representations were created 

with biorender (https://biorender.io/). Figures were prepared in Illustrator (Adobe). 

 

Data availability 

Mass cytometry: All data will be made available through flowrepository.org  

Multiplexed ion beam imaging: All data will be made available through ionpath.com  
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