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Abstract

Zero-determinant (ZD) strategies are a novel class of strategies in the Repeated
Prisoner’s Dilemma (RPD) game discovered by Press and Dyson. This strategy set
enforces a linear payoff relationship between a focal player and the opponent regardless
of the opponent’s strategy. In the RPD game, a discount factor and observation errors
are both important because they often happen in society. However, they were not
considered in the original discovery of ZD strategies. In some preceding studies, each
of them were considered independently. Here, we analytically study the strategies that
enforce linear payoff relationships in the RPD game considering both a discount factor
and observation errors. As a result, we first revealed that the payoffs of two players
can be represented by the form of determinants as shown by Press and Dyson even
with the two factors. Then, we searched for all possible strategies that enforce linear
payoff relationships and found that both ZD strategies and unconditional strategies
are the only strategy sets to satisfy the condition. Moreover, we numerically derived
minimum discount rates for the one subset of the ZD strategies in which the extortion
factor approaches to infinity. For the ZD strategies whose extortion factor is finite, we
numerically derived the minimum extortion factors above which such strategies exist.
These results contribute to a deep understanding of ZD strategies in society.

Author summary

Repeated games where two players independently select cooperative or
non-cooperative behavior have been used to model interactions of biological
organisms. In a real situation, people sometimes cannot observe the direct behaviors
that other people select. Instead, they receive signals that reflect other people’s
behaviors. Those signals are influenced by the environment. Therefore, people
sometimes receive the wrong signals. As a result, people mistake other people’s
behaviors. Hence, in repeated games, assuming such observation errors is important to
model biological phenomena close to reality. We mathematically derived that, in the
repeated games with observation errors, there are only two types of strategies which
enforce a linear payoff relationship to the opponent irrespective of the opponent’s
strategy. The subsets of the strategies can manipulate the opponent’s payoff or enforce
an unequal payoff relationship to the opponent. We further numerically revealed the
conditions of error rates and a discount factor above which this strategy can exist.
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Introduction 1

Cooperation is a basis for building sustainable societies. In a one-shot interaction, 2

cooperation among individuals is suppressed because cooperation takes costs to the 3

actor while defection does not. This cooperation-defection relationship is well 4

understood by the prisoner’s dilemma (PD) game utilized in game theory. In the 5

one-shot PD game, defection is the only Nash equilibrium. When the game is 6

repeated, the situation drastically changes, which is modeled by the repeated 7

prisoner’s dilemma (RPD) game [1]. In the RPD game, cooperation will be rewarded 8

by the opponent in the future. In such a situation, cooperation becomes a possible 9

equilibrium. This mechanism is called direct reciprocity [2–4] and makes it possible for 10

players to mutually cooperate in the RPD game. 11

Evolutionary game theory (EGT) [5] studies how cooperation evolves in the RPD 12

game. Among various cooperative strategies tested in evolutionary games, generous 13

tit-for-tat [6] and win-stay lose-shift [7, 8] were robust to various kinds of evolutionary 14

opponents under noisy conditions. EGT can find strong strategies against various 15

opponents in evolving populations. One missing point was, what is a strong strategy 16

against a direct opponent which utilizes any kind of strategy? In 2012, Press and 17

Dyson suddenly answered this question from a different point of view. Using linear 18

algebraic manipulations, they found a novel class of strategies which contain such 19

ultimate strategies, called zero-determinant (ZD) strategies [9]. ZD strategies impose a 20

linear relationship between the payoffs for a focal player and his opponent regardless 21

of the strategy that the opponent implements. One of the subclasses of ZD strategies 22

is Extortioner which never loses in a one-to-one competition in the RPD game against 23

any opponents. 24

The discovery of ZD strategies stimulated many researchers. After Stewart and 25

Plotkin raised a question [10], evolution or emergence of ZD strategies became one of 26

the main targets in subsequent studies [11–25]. Then, this research spread in many 27

directions including multiplayer games [19,26–29], continuous action spaces [28–31], 28

alternating games [31], asymmetric games [32], animal contests [33], human reactions 29

to computerized ZD strategies [34,35], and human-human experiments [28,36,37], 30

which promote an understanding of the nature of human cooperation. For further 31

understanding, see the recent elegant classification of strategies, partners (called “good 32

strategies” in Ref. [11, 38]) and rivals, in direct reciprocity [39]. The utilization of ZD 33

strategies has recently expanded to engineering fields, not just for human 34

cooperation [40–42]. 35

In those ZD studies, no errors were assumed. However, errors (or noise) are 36

unavoidable in human interactions and they may lead to the collapse of cooperation 37

due to negative effects. Thus, the effect of errors has been focused on in the RPD 38

game [43–51]. However, only a few studies have concerned the effect of errors for ZD 39

strategies [52,53]. There are typically two types of errors: perception errors [45] and 40

implementation errors [46]. Hao et al. [52] and Mamiya and Ichinose [53] considered 41

the former case of the errors where players may misunderstand their opponent’s action 42

because the players can only rely on their private monitoring [43,47] instead of their 43

opponent’s direct action. Those studies showed that ZD strategies can exist even in 44

the case that such observation errors are incorporated. In those studies, no discount 45

factor is considered. It is natural to assume that future payoffs will be discounted. 46

Thus, some studies have focused on a discount factor for ZD strategies [30,31,54–56] 47

and mathematically found the minimum discount factor above which the ZD strategies 48

can exist [55]. 49

In this study, we search for ZD strategies under the situations that observation 50

errors and a discount factor are both incorporated. We search for the other possible 51

strategies, not just ZD strategies, that enforce a linear payoff relationship between the 52
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two players. By formalizing the determinants for the expected payoffs in the RPD 53

game, we mathematically found that only ZD strategies [9] and unconditional 54

strategies [14,55] are the two types which enforce a linear payoff relationship. We 55

numerically show that the minimum discount factor and extortion rate above which 56

the ZD strategies can exist in the game. 57

Model 58

RPD with private monitoring 59

We consider the symmetric two-person repeated prisoner’s dilemma (RPD) game with 60

private monitoring based on the literature [47,52]. Each player i ∈ {X,Y } chooses an 61

action ai ∈ {C,D} in each round, where C and D imply cooperation and defection, 62

respectively. After the two players conducted the action, player i observes his own 63

action ai and private signal ωi ∈ {g, b} about the opponent’s action, where g and b 64

imply good and bad, respectively. In perfect monitoring, when the opponent takes the 65

action C(D), the focal player always observes the signal g(b). In private monitoring, 66

this is not always true. σ(ω|a) is the probability that a signal profile ω = (ωX , ωY ) is 67

realized when the action profile is a = (aX , aY ) [47]. Let ϵ be the probability that an 68

error occurs to one particular player but not to the other player while ξ be the 69

probability that an error occurs to both players. Then, the probability that an error 70

occurs to neither player is 1− 2ϵ− ξ. For example, when both players take 71

cooperation, σ((g, g)|(C,C)) = 1− 2ϵ− ξ, σ((g, b)|(C,C)) = σ((b, g)|(C,C)) = ϵ, and 72

σ((b, b)|(C,C)) = ξ are realized. 73

In each round, player i’s realized payoff ui(ai, ωi) is determined by his own action 74

ai and signal ωi, such that ui(C, g) = R, ui(C, b) = S, ui(D, g) = T , and ui(D, b) = P . 75

Hence, his expected payoff is given by 76

fi(a) =
∑
ω

ui(ai, ωi)σ(ω|a). (1)

The expected payoff is determined by only action profile a regardless of signal profile 77

ω. Thus, the expected payoff matrix is given by 78

( C D

C RE SE

D TE PE

)
. (2)

According to Eq. (1), RE , SE , TE , and PE are derived as RE = R(1− ϵ− ξ)+S(ϵ+ ξ), 79

SE = S(1− ϵ− ξ) +R(ϵ+ ξ), TE = T (1− ϵ− ξ) + P (ϵ+ ξ), 80

PE = P (1− ϵ− ξ) + T (ϵ+ ξ), respectively. We assume that 81

TE > RE > PE > SE , (3)

and 82

2RE > TE + SE , (4)

which dictate the RPD condition with observation errors. 83

In this paper, we introduce a discount factor to the RPD game with private 84

monitoring. The game is to be played repeatedly over an infinite time horizon but the 85

payoff will be discounted over rounds. Player i’s discounted payoff of action profiles 86

at, t ∈ {0, 1, ...,∞} is wtfi(a
t) where t is a round. This game can be interpreted as 87

repeated games with a finite but undetermined time horizon. Finally, the average 88

discounted payoff of player i is 89

si = (1− w)
∞∑
t=0

wtfi(a
t). (5)
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Determinant form of expected payoff in the RPG game 90

Here, we proceed to show that Eq. (5) can be represented by a determinant form even 91

for the repeated games with observation errors and a discount factor, as Press and 92

Dyson did for the repeated game without error and no discount factor [9]. The action 93

profiles at in Eq. (5) need to be specified to calculate si. Those profiles are determined 94

after the strategies of two players are given. Consider player i that adopts 95

memory-one strategies, with which they can use only the outcomes of the last round 96

to decide the action to be submitted in the current round. A memory-one strategy is 97

specified by a 5-tuple; X’s strategy is given by a combination of 98

p = (p1, p2, p3, p4; p0), (6)

where 0 ≤ pj ≤ 1, j ∈ {0, 1, 2, 3, 4}. The subscripts 1, 2, 3, and 4 of p mean previous 99

outcome Cg, Cb, Dg and Db, respectively. In Eq. (6), p1 is the conditional probability 100

that X cooperates when X cooperated and observed signal g in the last round, p2 is 101

the conditional probability that X cooperates when X cooperated and observed signal 102

b in the last round, p3 is the conditional probability that X cooperates when X 103

defected and observed signal g in the last round, and p4 is the conditional probability 104

that X cooperates when X defected and observed signal b in the last round. Finally, 105

p0 is the probability that X cooperates in the first round. Similarly, Y ’s strategy is 106

specified by a combination of 107

q = (q1, q2, q3, q4; q0), (7)

where 0 ≤ qj ≤ 1, j ∈ {0, 1, 2, 3, 4}. 108

Define v(t) = (v1(t), v2(t), v3(t), v4(t)) as the stochastic state of two players in 109

round t where the subscripts 1, 2, 3, and 4 of v imply the stochastic states (C,C), 110

(C,D), (D,C), and (D,D), respectively. v1(t) is the probability that both players 111

cooperate in round t, v2(t) is the probability that X cooperates and Y defects in 112

round t, and so forth. Then, the expected payoff to player X in round t is given by 113

v(t)SX , where ST
X = (RE , SE , TE , PE). The expected per-round payoff to player X in 114

the repeated game is given by 115

sX = (1− w)

∞∑
t=0

wtv(t)SX , (8)

where 0 < w < 1. The initial stochastic state is given by 116

v(0) = (p0q0, p0(1− q0), (1− p0)q0, (1− p0)(1− q0)). (9)

The state transition matrix M of these repeated games with observation errors is 117

given by 118

M =




τp1q1
+ϵp1q2
+ϵp2q1
+ξp2q2




τp1(1− q1)
+ϵp1(1− q2)
+ϵp2(1− q1)
+ξp2(1− q2)




τ(1− p1)q1
+ϵ(1− p1)q2
+ϵ(1− p2)q1
+ξ(1− p2)q2




τ(1− p1)(1− q1)
+ϵ(1− p1)(1− q2)
+ϵ(1− p2)(1− q1)
+ξ(1− p2)(1− q2)


ϵp1q3
+ξp1q4
+τp2q3
+ϵp2q4




ϵp1(1− q3)
+ξp1(1− q4)
+τp2(1− q3)
+ϵp2(1− q4)




ϵ(1− p1)q3
+ξ(1− p1)q4
+τ(1− p2)q3
+ϵ(1− p2)q4




ϵ(1− p1)(1− q3)
+ξ(1− p1)(1− q4)
+τ(1− p2)(1− q3)
+ϵ(1− p2)(1− q4)


ϵp3q1
+τp3q2
+ξp4q1
+ϵp4q2




ϵp3(1− q1)
+τp3(1− q2)
+ξp4(1− q1)
+ϵp4(1− q2)




ϵ(1− p3)q1
+τ(1− p3)q2
+ξ(1− p4)q1
+ϵ(1− p4)q2




ϵ(1− p3)(1− q1)
+τ(1− p3)(1− q2)
+ξ(1− p4)(1− q1)
+ϵ(1− p4)(1− q2)


ξp3q3
+ϵp3q4
+ϵp4q3
+τp4q4




ξp3(1− q3)
+ϵp3(1− q4)
+ϵp4(1− q3)
+τp4(1− q4)




ξ(1− p3)q3
+ϵ(1− p3)q4
+ϵ(1− p4)q3
+τ(1− p4)q4




ξ(1− p3)(1− q3)
+ϵ(1− p3)(1− q4)
+ϵ(1− p4)(1− q3)
+τ(1− p4)(1− q4)





, (10)
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where τ = 1− 2ϵ− ξ. Then, we obtain 119

v(t) = v(0)M t. (11)

By substituting Eq. (11) in Eq (8), we obtain 120

sX = (1− w)v(0)
∞∑
t=0

(wM)tSX

= (1− w)v(0)(I − wM)−1SX ,

(12)

where I is the 4× 4 identity matrix. Then, let 121

vT = (v1, v2, v3, v4) = (1− w)v(0)(I − wM)−1 (13)

be the mean distribution of v(t). Additionally, we define 122

M0 =


p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)

 . (14)

Because v1 + v2 + v3 + v4 = 1 (S1 Appendix), the following holds (S2 Appendix) 123

v(0) = vTM0. (15)

By substituting Eq. (15) in Eq. (13) and multiplying both sides of the equation by 124

(I − wM) from the right, we obtain 125

vT (I − wM) = (1− w)vTM0. (16)

Equation (16) and M ′ ≡ wM + (1− w)M0 − I yield 126

vTM ′ = 0. (17)

Applying Cramer’s rule to matrix M ′, we obtain 127

Adj(M ′)M ′ = 0, (18)

where Adj(M ′) is the adjugate matrix of M ′. Eqs. (17) and (18) imply that every row 128

of Adj(M ′) is proportional to v. Therefore, v is solely represented by the components 129

of matrix M ′. Choosing the fourth row of the matrix Adj(M ′), we see that v is 130

composed of the determinant of the 3× 3 matrixes formed from the first three columns 131

of M ′. We add the first column of M ′ into the second and third columns. Even by this 132

manipulation, this determinant is unchanged. The result of these manipulations is a 133

formula for the dot product of an arbitrary vector fT = (f1, f2, f3, f4) with the fourth 134

column vector u of matrix M ′, which can be represented by the form of the 135

determinant 136

u · f =∣∣∣∣∣∣∣∣
w(τp1q1 + ϵp1q2 + ϵp2q1 + ξp2q2)− 1 + p0q0(1− w) w(µp1 + ηp2)− 1 + p0(1− w) w(µq1 + ηq2)− 1 + q0(1− w) f1
w(ϵp1q3 + ξp1q4 + τp2q3 + ϵp2q4) + p0q0(1− w) w(ηp1 + µp2)− 1 + p0(1− w) w(µq3 + ηq4) + q0(1− w) f2
w(ϵp3q1 + τp3q2 + ξp4q1 + ϵp4q2) + p0q0(1− w) w(µp3 + ηp4) + p0(1− w) w(ηq1 + µq2)− 1 + q0(1− w) f3
w(ξp3q3 + ϵp3q4 + ϵp4q3 + τp4q4) + p0q0(1− w) w(ηp3 + µp4) + p0(1− w) w(ηq3 + µq4) + q0(1− w) f4

∣∣∣∣∣∣∣∣
≡ D(p, q,f)

(19)
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where µ = 1− ϵ− ξ and η = ϵ+ ξ. Furthermore, Eq. (19) should be normalized to 137

have its components sum to 1 by u · 1, where 1 = (1, 1, 1, 1). Then, we obtain the dot 138

product of an arbitrary vector f with mean distribution v. Replacing the last column 139

of D(p, q,f) with player X’s and Y ’s expected payoff vector, respectively, we obtain 140

their per-round expected payoffs: 141

sX = v · SX =
u · SX

u · 1
=

D(p, q,SX)

D(p, q,1)
, (20)

142

sY = v · SY =
u · SY

u · 1
=

D(p, q,SY )

D(p, q,1)
. (21)

When we set w = 1, Eq. (19) corresponds to Eq. (2) of [52]. By using Eq. (19), we can 143

calculate players’ per-round expected payoffs when 0 ≤ w ≤ 1 by the form of the 144

determinants. w = 0 can be interpreted as a one-shot game and w = 1 is the case 145

where future payoffs are not discounted. 146

Results 147

Mathematical analysis 148

Since we are interested in the payoff relationship between the two players, we linearly 149

combine those payoffs represented by Eqs. (20) and (21). The linear combination of 150

sX and sY can also be represented by the form of the determinant: 151

αsX + βsY + γ =
D(p, q, αSX + βSY + γ1)

D(p, q,1)
, (22)

where α, β, and γ, are arbitrary constants. The numerator of the right side of Eq. (22) 152

is expressed in the following: 153

D(p, q, αSX + βSY + γ1) =∣∣∣∣∣∣∣∣
w(τp1q1 + ϵp1q2 + ϵp2q1 + ξp2q2)− 1 + p0q0(1− w) w(µp1 + ηp2)− 1 + p0(1− w) w(µq1 + ηq2)− 1 + q0(1− w) αRE + βRE + γ
w(ϵp1q3 + ξp1q4 + τp2q3 + ϵp2q4) + p0q0(1− w) w(ηp1 + µp2)− 1 + p0(1− w) w(µq3 + ηq4) + q0(1− w) αSE + βTE + γ
w(ϵp3q1 + τp3q2 + ξp4q1 + ϵp4q2) + p0q0(1− w) w(µp3 + ηp4) + p0(1− w) w(ηq1 + µq2)− 1 + q0(1− w) αTE + βSE + γ
w(ξp3q3 + ϵp3q4 + ϵp4q3 + τp4q4) + p0q0(1− w) w(ηp3 + µp4) + p0(1− w) w(ηq3 + µq4) + q0(1− w) αPE + βPE + γ

∣∣∣∣∣∣∣∣,
(23)

If Eq. (23) is zero, the relationship between the two players’ payoffs becomes linear 154

αsX + βsY + γ = 0. (24)

Thus, we search for all of the solutions such that D(p, q, αSX + βSY + γ1) = 0. 155

Press and Dyson [9] (without error) and Hao et al. [52] (with observation errors) 156

searched for the case that second and fourth columns of the determinant take the 157

same value. This makes the determinant zero. Also, Mamiya and Ichinose [53] 158

searched for all the cases, from all possibilities, that make the determinant zero with 159

observation errors. Here, we extend Mamiya and Ichinose [53] to the case with both 160

observation errors and a discount factor. 161

The following determinant theorem gives such a condition. 162

Theorem 1 For n× n matrix A, the following holds: 163

det(A) = 0 ⇔ The columns of matrix A are linearly dependent vectors.
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We define di, i ∈ {1, 2, 3, 4} as i-th column vector of the determinant of Eq. (23). From 164

the above theorem, if the columns of the determinant of Eq. (23) are linearly 165

dependent vectors, there exist real numbers s, t, u, v, α, β, and γ, except for the trivial 166

solution ((s, t, u, v) = (0, 0, 0, 0),(α, β, γ) = (0, 0, 0)), such that 167

sd1 + td2 + ud3 + vd4 = 0, (25)

where vector 0 denotes a zero vector. We give the detailed calculation in S3 Appendix. 168

As a result, we found that, in the RPD game even with observation errors 169

(imperfect monitoring) and a discount factor, the only strategies that impose a linear 170

payoff relationship between the two players’ payoffs are either 171

w(µp1 + ηp2)− 1 + p0(1− w) = αRE + βRE + γ

w(ηp1 + µp2)− 1 + p0(1− w) = αSE + βTE + γ

w(µp3 + ηp4) + p0(1− w) = αTE + βSE + γ

w(ηp3 + µp4) + p0(1− w) = αPE + βPE + γ

(26)

or 172

p0 = p1 = p2 = p3 = p4. (27)

Existence of subsets of ZD strategies 173

Since observation errors and a discount factor are considered, in general, the ranges in 174

which ZD strategies can exist are narrowed. Ichinose and Masuda mathematically 175

showed the minimum discount rates above which Equalizer (a subclass of ZD 176

strategies) can exist [55]. Here, we numerically address threshold values where subsets 177

of ZD strategies can exist. 178

Minimum discount factor for Equalizer 179

Equalizer strategies are a subclass of ZD strategies. We first show minimum discount 180

factor wc for Equalizer when observation errors ϵ and ξ are given. Equalizer can fix 181

the opponent payoff no matter what the opponent takes, which means that 182

βsY + γ = 0. (28)

This is obtained by substituting α = 0 into Eq. (24). We substitute α = 0 into 183

Eq. (26) to obtain Equalizer 184

w(µp1 + ηp2)− 1 + p0(1− w) = βRE + γ

w(ηp1 + µp2)− 1 + p0(1− w) = βTE + γ

w(µp3 + ηp4) + p0(1− w) = βSE + γ

w(ηp3 + µp4) + p0(1− w) = βPE + γ.

(29)

If we solve Eq. (29) for β, γ, p2 and p3, 185

β = − (1− wp1 + wp4)(µ− η)

µ(RE − PE)− η(TE − SE)

γ =
(1− wp1 − p0 + wp0)(µPE − ηSE) + (p0 − wp0 + wp4)(µRE − ηTE)

µ(RE − PE)− η(TE − SE)

p2 =
p1(µ(TE − PE)− η(RE − SE))− ( 1

w + p4)(TE −RE)

µ(RE − PE)− η(TE − SE)

p3 =
( 1
w − p1)(PE − SE) + p4(µ(RE − SE)− η(TE − PE))

µ(RE − PE)− η(TE − SE)

(30)
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are obtained. By substituting β and γ into Eq. (28), player Y ’s payoff is fixed at 186

sY =
(1− wp1 − p0 + wp0)(µPE − ηSE) + (p0 − wp0 + wp4)(µRE − ηTE)

(1− wp1 + wp4)(µ− η)
. (31)

Equations (30) and (31) correspond to Eq. (10) in [52] when w = 1. 187

Equalizer must satisfy the condition 0 ≤ pi ≤ 1 in Eq. (29). The existence of 188

Equalizer strategies also depends on w, ϵ and ξ. We numerically find the minimum 189

discount rate wc and the condition of (ϵ, ξ) that Equalizer exists. w ≥ wc is the 190

condition for w under which Equalizer strategies exist. 191

Figure 1 shows wc when ϵ+ ξ is given. We set (T,R, P, S) = (1.5, 1, 0,−0.5) and 192

excluded the case ϵ+ ξ > 1/3 because TE > RE > PE > SE is not satisfied under the 193

situation. Note that the effects of ϵ and ξ are the same because η = ϵ+ ξ and 194

µ = 1− ϵ− ξ in Eq. (29) includes both ϵ and ξ. When there was no error (ϵ+ ξ = 0), 195

wc was about 0.33. When the errors were ϵ+ ξ = 0.1 and 0.2, wc were about 0.52 and 196

0.93. As a result, we found that w ≥ wc for Equalizer becomes larger as the error is 197

increased. 198

0.00 0.05 0.10 0.15 0.20 0.25 0.30
+

0.0

0.2

0.4

0.6

0.8

1.0

w

Fig 1. Minimum discount rate wc for Equalizer.

Minimum extortion factor for ZD strategies with 1 ≤ χ < ∞ 199

Next we focus on other types of ZD strategies which include Extortion [9] and 200

Generous [23]. In Eq. (26), we substitute α = ϕχ, β = −ϕ, and γ = ϕ(1−χ)κ to obtain 201

w(µp1 + ηp2)− 1 + p0(1− w) = ϕ[(RE − κ)− χ(RE − κ)]

w(ηp1 + µp2)− 1 + p0(1− w) = ϕ[(SE − κ)− χ(TE − κ)]

w(µp3 + ηp4) + p0(1− w) = ϕ[(TE − κ)− χ(SE − κ)]

w(ηp3 + µp4) + p0(1− w) = ϕ[(PE − κ)− χ(PE − κ)].

(32)

In Eq. (32), we obtain Extortion when κ = P and Generous when κ = R with 202

1 ≤ χ < ∞ when there are no errors (ϵ+ ξ = 0) and no discount factor (w = 1). Note 203

that χ → ∞ in Eq. (32) corresponds to Equalizer [52]. When there are no errors 204

(ϵ, ξ) = (0, 0) and no discount factor (w = 1), Eq. (32) corresponds to Extortion in 205

Press and Dyson [9] when κ = P and Generous in Stewart and Plotkin [23] when 206

κ = R. 207

We numerically calculated the minimum extortion factor χc for subsets of ZD 208

strategies with 1 ≤ χ < ∞ to exist (Fig. 2). Each curve corresponds to each w as 209

shown in the legend. The area surrounded by each curve and the vertical axis is the 210

region of χ which can be utilized by the ZD strategies when ϵ+ ξ is fixed. As the error 211

ϵ+ ξ becomes larger and the discount factor w becomes smaller, the minimum 212

extortion factor χc becomes larger. 213
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Fig 2. Minimum extortion factor χc for subsets of ZD strategies with 1 ≤ χ < ∞.
(T,R, P, S) = (1.5, 1, 0,−0.5). We adopted p0 and κ so that χc was minimized.

Numerical examples of representative ZD and unconditional 214

strategies under errors in repeated games 215

We numerically demonstrate that ZD and unconditional strategies can impose a linear 216

relationship between the two players’ payoffs while others cannot in the RPD game 217

under errors. We take up Extortion and Equalizer as the representative of ZD 218

strategies, ALLD as the representative of unconditional strategies, and 219

Win-Stay-Lose-Shift (WSLS) as neither ZD nor unconditional strategies. 220

Figure 3 shows the relationship between the two players’ expected payoffs per game 221

with payoff vector (T,R, P, S) = (1.5, 1, 0,−0.5). The gray quadrangle in each panel 222

represents the feasible set of payoffs. We fixed one particular strategy for player X 223

(vertical line) and randomly generated 1,000 strategies that satisfy 224

0 ≤ q0, q1, q2, q3, q4 ≤ 1 for player Y (horizontal axis). Thus, each black dot represents 225

the payoff relationship between two players. In addition, the blue and red are the 226

particular cases for player Y . Red is the case that player Y is ALLD and blue is the 227

case that player Y is ALLC. We set w = 1 for Figs. 3A–D and w = 0.9 for Figs. 3E–H. 228

In each figure, we used three error rates ϵ+ ξ = 0, 0.1 and 0.2. 229

Figures 3A and E show the case with a WSLS strategy vs. 1000 + 2 strategies. In 230

the case, ξ = 0 is fixed and ϵ is caried to 0, 0.1, 0.2. As WSLS strategies are neither 231

ZD nor unconditional strategies, the payoff relationships are not linear irrespective of 232

errors and a discount factor. 233

Figures 3B and F show the case with an Extortioner strategy vs. 1000 + 2 234

strategies. If there are no errors, Extortioner is unbeatable against any opponent as 235

shown by black dots. For instance, when w = 1 and ϵ+ ξ = 0, Extortioner 236

p = (0.86, 0.77, 0.09, 0) which passes over (PE , PE) can impose a linear payoff 237

relationship to the opponent, with the slope χ = 15 (black dots in Fig. 3B). Even if 238

w = 0.9 and ϵ+ ξ = 0, Extortioner p = (0.955556, 0.855556, 0.1, 0; 0) which passes over 239

(PE , PE) can impose a linear payoff relationship to the opponent, with the slope 240

χ = 15 (black dots in Fig. 3F). 241

However, as shown in Hao et. al [52] and Mamiya and Ichinose [53], when there are 242

errors, there exists the region that the expected payoff of the Extortioner is lower than 243

the opponent’s payoff near (PE , PE) even though the increase of the Extortioner is still 244

larger than the opponent due to χ > 1 when the opponent tries to increase his payoff. 245

Hao et. al called it contingent extortion [52]. When w = 1 and ϵ+ ξ = 0.1, Extortioner 246

p = (0.926875, 0.818125, 0.111875, 003125) which passes over (PE + 0.1, PE + 0.1) can 247

impose a linear payoff relationship to the opponent, with the slope χ = 15 248

(yellow-green dots in Fig. 3B). Even if w = 0.9 and ϵ+ ξ = 0.1, Extortioner 249

p = (0.941667, 0.7, 0.241667, 0; 0) which has the same slope χ = 15 can still exist 250
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Fig 3. The payoff relationships between two players in the RPD game under
observation errors. Payoff vector: (T,R, P, S) = (1.5, 1, 0,−0.5). (A,E) WSLS strategy
vs. 1000 + 2 strategies. (B,F) Extortioner strategy vs. 1000 + 2 strategies. (C,G)
Equalizer strategy vs. 1000 + 2 strategies. (D,H) ALLD strategy vs. 1000 + 2
strategies. (A)–(D) are the case of w = 1 (no discount factor), and (E)–(H) correspond
to (A)–(D) when w = 0.9, respectively.

(yellow-green dots in Fig. 3F). Nevertheless, these two Extortioners’ expected payoffs 251

are lower than the opponents near (PE , PE). When w = 1 and ϵ+ ξ = 0.2, Extortioner 252

p = (1, 0.86, 0.14, 0) which passes over (PE + 0.2, PE + 0.2) can impose a linear payoff 253

relationship to the opponent, with the slope χ = 15 (cyan dots in Fig. 3F). However, 254

this Extortioner’s payoff is lower than the opponent near (PE , PE), too. When w = 0.9 255

and ϵ+ ξ = 0.2, there is no Extortioner as shown in Fig. 2 256

Figures 3C and G show the case with an Equalizer strategy vs. 1000 + 2 strategies. 257

In those figures, we replaced the axes where the horizontal axis corresponds to 258

Equalizer and the vertical axis corresponds to the opponent. When w = 1 and 259

ϵ+ ξ = 0, 0.1 and 0.2, Equalizers p = (2/3, 1/3, 2/3, 1/3), 260

p = (0.8, 0.365217, 0.634783, 0.2), and p = (0.99, 0.74, 0.26, 0.01) can fix the opponents’ 261

(player Y ) expected payoffs at sY = 0.5 irrespective of Y ’s strategies, respectively 262

(black, yellow-green, and cyan dots in Fig. 3C). Also, when w = 0.9 and ϵ+ ξ = 0 and 263

0.1, Equalizers p = (2/3, 0.277778, 0.722222, 1/3; 1/2), and 264

p = (0.833333, 0.350242, 0.649758, 1/6; 1/2) can fix the opponents’ (player Y ) expected 265

payoffs at sY = 0.5 irrespective of Y ’s strategies, respectively (black and yellow-green 266

dots in Fig. 3G). When w = 0.9 and ϵ+ ξ = 0.2, there exists no Equalizer as shown in 267

Fig. 1. 268

Lastly, we show the case of ALLD (Figs. 3D and H). ALLD strategy is one of the 269

unconditional strategies where we set r = 0 in p = (r, r, r, r; r), 0 ≤ r ≤ 1. As shown in 270

Eq. (43) and Figs. 3D and H, w does not affect the expected payoff between both 271

players. When ϵ+ ξ = 0, 0.1, and 0.2, those linear equations are sX + 3sY = 0 (black), 272

sX + 2.4sY − 0.51 = 0 (yellow-green), and sX + 1.8sY − 0.84 = 0 (cyan), 273

respectively [53]. 274

Conclusion 275

We considered both a discount factor and observation errors in the RPD game and 276

analytically studied the strategies that enforce linear payoff relationships in the game. 277
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First, we successfully derived the determinant form of the two players’ expected 278

payoffs even though a discount factor and observation errors are incorporated. Then, 279

we searched for all possible strategies that enforce linear payoff relationships in the 280

RPD game. As a result, we found both ZD strategies and unconditional strategies are 281

the only strategy sets to enforce the relationship to the opponent. Moreover, we 282

numerically showed that minimum discount rates for Equalizer (χ → ∞) and 283

minimum extortion factors for other subsets of ZD strategies (1 ≤ χ ≤ ∞) above 284

which those ZD strategies exist. 285

Our results are limited to the two player RPD games. Other studies have focused 286

on n-player games [19,26,27,56]. It is worth investigating games including observation 287

errors and a discount factor for n-player games . On the other hand, regarding 288

memory, our study only used memory-1 strategies. A recent study revealed the role of 289

longer memories for the evolution of cooperation, which is another direction to 290

investigate [51]. 291

When spatial structures are included, the different role of the Extortioner is 292

known [16–18,21]. Extortioners are tied with ALLDs. Thus, Extortioners can 293

neutrally invade the sea of ALLDs in a spatial structure. On the other hand, the best 294

response to Extortioners is ALLC. Once ALLC happens, the clusters of ALLC are 295

better than those of the Extortioner. Then, cooperation is promoted. In this way, it 296

has been demonstrated that Extortion acts as a catalyst for cooperation. Another 297

interest is how observation errors and a discount factor affect the evolution of 298

cooperation in a spatial setting. Our study contributes to open various new research 299

directions of ZD strategies. 300

Supporting information 301

S1 Appendix. Proof of v1 + v2 + v3 + v4 = 1. 302

We show the sum of elements in the mean distribution v = (v1, v2, v3, v4) is equal 303

to one. We define 304

v = (1− w)v(0)
∞∑
t=0

(wM)t. (33)

This is another form of Eq (13). Because the sum of every row in the transition 305

matrix M is equal to one, the sum of every row of
∑∞

t=0(wM)t is equal to 1/(1− w). 306

The sum of vector elements in v(0) is unchanged from 1 even if the vector is 307

multiplied by (1− w)
∑∞

t=0(wM)t. Therefore, v1 + v2 + v3 + v4 = 1 holds. 308

S2 Appendix. Calculation of v(0) = vTM0. 309

We show that v(0) and vTM0 are equal. v and M0 are defined by Eq. (13) and 310

Eq. (14), respectively. We calculate the matrix multiplication vTM0. 311

vTM0 = (v1, v2, v3, v4)


p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)
p0q0 p0(1− q0) (1− p0)q0 (1− p0)(1− q0)


= (p0q0(v1 + v2 + v3 + v4), p0(1− q0)(v1 + v2 + v3 + v4),

(1− p0)q0(v1 + v2 + v3 + v4), (1− p0)(1− q0)(v1 + v2 + v3 + v4))

= (p0q0, p0(1− q0), (1− p0)q0, (1− p0)(1− q0)) = v(0)

(34)

Therefore, the following holds: 312

v(0) = vTM0. (35)
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S3 Appendix. Strategies that enforce D(p, q, αSX + βSY + γ1) = 0. 313

To search for all possible strategies that make D(p, q, αSX + βSY + γ1) = 0, we 314

express Eq. (25) in component form: 315

s


w(τp1q1 + ϵp1q2 + ϵp2q1 + ξp2q2)− 1 + p0q0(1− w)
w(ϵp1q3 + ξp1q4 + τp2q3 + ϵp2q4) + p0q0(1− w)
w(ϵp3q1 + τp3q2 + ξp4q1 + ϵp4q2) + p0q0(1− w)
w(ξp3q3 + ϵp3q4 + ϵp4q3 + τp4q4) + p0q0(1− w)

+ t


w(µp1 + ηp2)− 1 + p0(1− w)
w(ηp1 + µp2)− 1 + p0(1− w)
w(µp3 + ηp4) + p0(1− w)
w(ηp3 + µp4) + p0(1− w)



+u


w(µq1 + ηq2)− 1 + q0(1− w)
w(µq3 + ηq4) + q0(1− w)

w(ηq1 + µq2)− 1 + q0(1− w)
w(ηq3 + µq4) + q0(1− w)

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0

(36)
By taking out q from Eq. (36), we obtain 316

w((s(τp1 + ϵp2) + uµ)q1 + (s(ϵp1 + ξp2) + uη)q2) + (sp0 + u)(1− w)q0
w((s(ϵp1 + τp2) + uµ)q3 + (s(ξp1 + ϵp2) + uη)q4) + (sp0 + u)(1− w)q0
w((s(ϵp3 + ξp4) + uη)q1 + (s(τp3 + ϵp4) + uµ)q2) + (sp0 + u)(1− w)q0
w((s(ξp3 + ϵp4) + uη)q3 + (s(ϵp3 + τp4) + uµ)q4) + (sp0 + u)(1− w)q0



+t


w(µp1 + ηp2)− 1 + p0(1− w)
w(ηp1 + µp2)− 1 + p0(1− w)
w(µp3 + ηp4) + p0(1− w)
w(ηp3 + µp4) + p0(1− w)

+


−s− u

0
−u
0

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0.

(37)

Here, we search for strategies which satisfy D(p, q, αSX + βSY + γ1) = 0 irrespective 317

of Y ’s strategy q, meaning that Eq. (37) must hold true irrespective of q. Therefore, 318

the coefficients of each element q in Eq. (37) must equal zero, that is, the following 319

conditions are necessary: 320

w(s(ϵp1 + ξp2) + uη) = 0

w(s(ϵp3 + ξp4) + uη) = 0

w(s(τp1 + ϵp2) + uµ) = 0

w(s(τp3 + ϵp4) + uµ) = 0

w(s(ϵp1 + τp2) + uµ) = 0

w(s(ξp1 + ϵp2) + uη) = 0

w(s(ξp3 + ϵp4) + uη) = 0

w(s(ϵp3 + τp4) + uµ) = 0

(sp0 + u)(1− w) = 0.

(38)

When Eq. (38) holds, the first terms of Eq. (37) are eliminated and we obtain 321

t


w(µp1 + ηp2)− 1 + p0(1− w)
w(ηp1 + µp2)− 1 + p0(1− w)
w(µp3 + ηp4) + p0(1− w)
w(ηp3 + µp4) + p0(1− w)

+


−s− u

0
−u
0

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0.

(39)

If there exist real numbers, s, t, u, v, α, β, and γ such that Eq. (38) and Eq. (39) are 322

satisfied simultaneously, D(p, q, αSX + βSY + γ1) = 0 holds irrespective of q. We first 323
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solve Eq. (38). After some calculations, Eq. (38) becomes 324

ws(ϵ− ξ)(p1 − p2) = 0

ws(ϵ− ξ)(p3 − p4) = 0

ws(1− 3ϵ− ξ)(p1 − p2) = 0

ws(1− 3ϵ− ξ)(p3 − p4) = 0

w(s(ϵp1 + τp2) + uµ) = 0

w(s(ξp1 + ϵp2) + uη) = 0

w(s(ξp3 + ϵp4) + uη) = 0

w(s(ϵp3 + τp4) + uµ) = 0

(sp0 + u)(1− w) = 0.

(40)

When we solve the first four equations, we obtain (1)w = 0, (2) s = 0, (3) ϵ− ξ = 0 325

and 1− 3ϵ− ξ = 0, (4) p1 − p2 = 0 and p3 − p4 = 0. We further analyze whether these 326

solutions satisfy the last four equations and Eq. (39) by dividing them into four cases 327

as follows. 328

Case (1) w = 0: 329

In this case, we substitute w = 0 into Eq. (40) to obtain 330

sp0 + u = 0. (41)

Therefore one of the solutions of Eq. (40) is w = 0 and u = −sp0. Next, we check 331

whether this solution satisfies Eq. (39). We substitute w = 0 and u = −sp0 into 332

Eq. (39) to obtain 333

s


p0 − 1

0
p0
0

+ t


p0 − 1
p0 − 1
p0
p0

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0. (42)

There exist real numbers s, t, u, v, α, β, and γ which satisfies Eq. (42) as follows: 334

s =
vα(SE(−PE −RE + SE) + TE(PE +RE − TE))

(1− p0)(PE − SE) + p0(TE −RE)

t =
vα(SE(2PE − SE + p0(−PE −RE + SE)) + TE(−2PE + TE + p0(PE +RE − TE)))

(1− p0)(PE − SE) + p0(TE −RE)

u = −sp0

β =
α((1− p0)(TE − PE) + p0(RE − SE))

(1− p0)(PE − SE) + p0(TE −RE)

γ =
α(SE − TE)((−1 + p0)

2PE + p0(1− p0)(TE + SE) + p20RE)

(1− p0)(PE − SE) + p0(TE −RE)

∀v, α.
(43)

Thus, when w = 0 (one-shot game), two player’s payoffs always become linear 335

irrespective of p0. 336
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Case (2) s = 0: 337

In this case, we substitute s = 0 into Eq. (40) to obtain 338
uµ = 0

uη = 0

u(1− w) = 0.

(44)

The equations µ = 0 and η = 0 do not hold at the same time due to µ = 1− ϵ− ξ and 339

η = ϵ+ ξ. Therefore, one of the solutions of Eq. (40) is s = 0 and u = 0. Next, we 340

check whether this solution satisfies Eq. (39). We substitute s = 0 and u = 0 into 341

Eq. (39) to obtain 342

t


w(µp1 + ηp2)− 1 + p0(1− w)
w(ηp1 + µp2)− 1 + p0(1− w)
w(µp3 + ηp4) + p0(1− w)
w(ηp3 + µp4) + p0(1− w)

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0. (45)

Here, when we set t = 0, either equation 343

v = 0 (46)

or 344
αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0 (47)

must hold. When we set v = 0, we obtain the trivial solution (s, t, u, v) = (0, 0, 0, 0). 345

Also, when we solve Eq. (47), we obtain the trivial solution (α, β, γ) = (0, 0, 0). Hence, 346

we do not have to consider the case of t = 0. Therefore, in the following, we only 347

consider t ̸= 0. Replacing constants −αv/t, −βv/t, and −γv/t with α, β, and γ, we 348

obtain, 349

w(µp1 + ηp2)− 1 + p0(1− w) = αRE + βRE + γ

w(ηp1 + µp2)− 1 + p0(1− w) = αSE + βTE + γ

w(µp3 + ηp4) + p0(1− w) = αTE + βSE + γ

w(ηp3 + µp4) + p0(1− w) = αPE + βPE + γ.

(48)

If there exist α, β, and γ satisfying Eq. (48), there must be solutions that Eq. (25) 350

holds. This solution corresponds to ZD strategies with observation errors and a 351

discount factor. This is consistent with Eq. (6) in [52] when w = 1. 352

Case (3) ϵ− ξ = 0 and 1− 3ϵ− ξ = 0: 353

In this case, the equations ϵ− ξ = 0 and 1− 3ϵ− ξ = 0 lead to ϵ = 1/4 and ξ = 1/4. 354

When ϵ = 1/4 and ξ = 1/4, the expected payoffs 355

RE = 1/2(R+ S), SE = 1/2(R+ S), TE = 1/2(T + P ), and PE = 1/2(T + P ) hold, 356

which do not satisfy the condition of the prisoner’s dilemma game: 357

TE > RE > PE > SE . Hence, we can exclude this solution. 358
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Case (4) p1 − p2 = 0 and p3 − p4 = 0: 359

In this case, we substitute p1 − p2 = 0 and p3 − p4 = 0 into Eq. (40) to obtain 360

wµ(sp1 + u) = 0

wη(sp1 + u) = 0

wη(sp3 + u) = 0

wµ(sp3 + u) = 0

(sp0 + u)(1− w) = 0.

(49)

Because the equations µ = 0 and η = 0 do not hold at the same time and w ̸= 0, we 361

obtain 362
sp1 + u = 0

sp3 + u = 0

(sp0 + u)(1− w) = 0.

(50)

Therefore, we obtain two solutions p0 = p1 = p2 = p3 = p4 = −u/s or 363

p1 = p2 = p3 = p4 = −u/s and w = 1. Both solutions are called unconditional 364

strategies [14,55]. The former represents unconditional strategies in the case of w ̸= 1. 365

The latter represents unconditional strategies in the case of w = 1. Next, we check 366

whether this solution satisfies Eq. (39). We substitute the former solution 367

p0 = p1 = p2 = p3 = p4 and u = −sp0 into Eq. (39) to obtain 368

s


p0 − 1

0
p0
0

+ t


w(µp0 + ηp0)− 1 + p0(1− w)
w(ηp0 + µp0)− 1 + p0(1− w)
w(µp0 + ηp0) + p0(1− w)
w(ηp0 + µp0) + p0(1− w)

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0.

(51)

According to µ+ η = 1, we obtain 369

s


p0 − 1

0
p0
0

+ t


p0 − 1
p0 − 1
p0
p0

+ v


αRE + βRE + γ
αSE + βTE + γ
αTE + βSE + γ
αPE + βPE + γ

 = 0. (52)

Eq. (52) corresponds to Eq. (42). Therefore, there exist real numbers s, t, u, v, α, β, 370

and γ which satisfies Eq. (52) as Eq. (43). Finally, we substitute the latter solution 371

p1 = p2 = p3 = p4 = −u/s and w = 1 into Eq (39), we obtain the same real numbers 372

s, t, u, v, α, β, and γ in the case of the former solution. 373

This strategy set corresponds to unconditional strategies p = (r, r, r, r; r), 0 ≤ r ≤ 1. 374

Therefore, the unconditional strategies enforce a linear payoff relationship in the RPD 375

game with both observation errors and a discount factor because there exist real 376

numbers s, t, u, v, α, β, and γ such that Eq. (39) and Eq. (40) are satisfied. 377
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