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Abstract 17 

Organism abundance is a critical parameter in ecology, but its estimation is often challenging. 18 

Approaches utilizing eDNA to indirectly estimate abundance have recently generated substantial 19 

interest. However, preliminary correlations observed between eDNA concentration and 20 

abundance in nature are typically moderate in strength with significant unexplained variation. 21 

Here we apply a novel approach to integrate allometric scaling coefficients into models of eDNA 22 

concentration and organism abundance. We hypothesize that eDNA particle production scales 23 

non-linearly with mass, with scaling coefficients < 1. Wild populations often exhibit substantial 24 

variation in individual body size distributions; we therefore predict that the distribution of mass 25 

across individuals within a population will influence population-level eDNA production rates. To 26 

test our hypothesis, we collected standardized body size distribution and mark-recapture 27 

abundance data using whole-lake experiments involving nine populations of brook trout. We 28 

correlated eDNA concentration with three metrics of abundance: density (individuals/ha), 29 

biomass (kg/ha), and allometrically scaled mass (ASM) (∑(individual mass0.73)/ha). Density and 30 

biomass were both significantly positively correlated with eDNA concentration (adj. R2 = 0.59 31 

and 0.63, respectively), but ASM exhibited improved model fit (adj. R2 = 0.78). We also 32 

demonstrate how estimates of ASM derived from eDNA samples in ‘unknown’ systems can be 33 

converted to biomass or density estimates with additional size structure data. Future experiments 34 

should empirically validate allometric scaling coefficients for eDNA production, particularly 35 

where substantial intraspecific size distribution variation exists. Incorporating allometric scaling 36 

may improve predictive models to the extent that eDNA concentration may become a reliable 37 

indicator of abundance in nature. 38 

 39 
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Introduction 42 

 Developing methods to estimate animal abundance in nature has attracted the attention of 43 

researchers and managers alike for over a century (Schwarz & Seber, 1999). Abundance is a 44 

fundamental population parameter in ecology, conservation, and natural resource management 45 

(Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010), with direct impacts on ecological 46 

interactions (Krebs, 2009), ecosystem functioning (Schaus et al., 2010), population persistence 47 

and adaptability (Jamieson & Allendorf, 2012), as well as ecosystem services/resources (Immell 48 

& Anthony, 2008; Schwarz & Seber, 1999). Methodologies to estimate animal abundance 49 

represent a well-developed field of empirical research in ecology that has progressed remarkably 50 

(Schwarz & Seber, 1999; Seber, 1986). Yet despite this success, the estimation of abundance in 51 

nature is often challenging; obtaining robust estimates in natural populations using traditional 52 

methods can be time-consuming, costly, labor intensive, or even impossible to obtain for some 53 

populations (Luikart et al., 2010; Ovenden et al., 2016; Yates, Bernos, & Fraser, 2017).  54 

 The recent development of novel molecular tools has renewed interest in utilizing genetic 55 

information to indirectly estimate abundance in difficult-to-sample natural populations 56 

(Goldberg, Strickler, & Pilliod, 2015; Luikart et al., 2010). Molecular techniques that quantify 57 

the concentration of environmental DNA (eDNA) particles represent a promising tool, with 58 

recent studies demonstrating support for a correlation between eDNA concentration and 59 

abundance (Pilliod, Goldberg, Arkle, & Waits, 2013; Takahara, Minamoto, Yamanaka, Doi, & 60 

Kawabata, 2012; Thomsen et al., 2012). For example, laboratory studies have demonstrated a 61 

strong correlation between eDNA concentration and abundance (Eichmiller, Miller, & Sorensen, 62 

2016; Klymus, Richter, Chapman, & Paukert, 2015), exhibiting a mean correlation coefficient of 63 

0.9 (R2 = 0.81) (Yates, Fraser, & Derry, 2019). Studies in nature, however, have generally found 64 
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weaker correlations than laboratory studies, with a mean correlation coefficient  of 0.71-0.75 (R2 65 

= 0.51-0.57) (Yates et al., 2019). Although correlations remain moderately strong in nature, 66 

much of the variation in eDNA particle concentration across environments often remains 67 

unexplained. As a result, the extent to which eDNA could be used to reliably infer abundance in 68 

nature remains limited without significant improvements in modelling or technology. 69 

 In nature, organismal abundance is typically quantified by evaluating individual density 70 

(i.e. individuals/unit area) or biomass density (i.e. kg/unit area). While both metrics of abundance 71 

appear to correlate equally well with species-specific eDNA particle concentration in the wild, 72 

processes involved in the production of eDNA particles in natural environments are unlikely to 73 

scale linearly with either biomass or density. Although eDNA production tends to increase with 74 

individual mass (Maruyama, Nakamura, Yamanaka, Kondoh, & Minamoto, 2014),  individuals 75 

with a large biomass often produce fewer eDNA particles than equivalent biomass of smaller 76 

conspecifics (Maruyama et al., 2014; Mizumoto, Urabe, Kanbe, Fukushima, & Araki, 2017; 77 

Takeuchi, Iijima, Kakuzen, Watanab, & Yamada, 2019). As such, eDNA particle concentration 78 

would be expected to vary, for example, between environments that contain equal densities of 79 

individuals but with varying biomass. Similarly, environments with equal biomass but varying 80 

densities would also be likely to vary in observed eDNA particle concentration. Wild populations 81 

often exhibit substantial inter-population variation in the distribution of individual biomass 82 

(Donald, Anderson, Mayhood, Anderson, & Correlations, 1980; Guernon, Yates, Fraser, & 83 

Derry, 2018; Millien et al., 2006; Sebens, 1987), which may in turn scale to affect overall 84 

population-level rates of eDNA production (Maruyama et al., 2014) and partially account for the 85 

substantial unexplained variation observed between eDNA concentration and traditional metrics 86 

of abundance (e.g. density and biomass) in nature (Yates et al., 2019).   87 
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 Here, we extend models of physiological allometric scaling to organismal eDNA particle 88 

production to provide a framework through which differences in density, total biomass, and the 89 

distribution of individual biomass can be integrated into models of eDNA production in natural 90 

populations. Excretory processes (urine, fecal matter, etc.) and shedding (from scales, skin, 91 

mucous, etc.) are thought to be the two major physiological processes that contribute to the 92 

production of eDNA particles (Jo, Murakami, Yamamoto, Masuda, & Minamoto, 2019; Stewart, 93 

2019). The metabolic theory of ecology (MTE) provides a robust, empirically validated 94 

framework through which allometry in metabolic processes (including excretion) can be 95 

modelled. The MTE posits that metabolic processes scale non-linearly with body size according 96 

to the power function: 97 

I = I0 * Mb 98 

where I = metabolic rate, I0 = a normalization constant, M = organism body mass, and b = an 99 

allometric scaling coefficient (Allegier, Wenger, Rosemond, Schindler, & Layman, 2015; 100 

Brown, Gillooly, Allen, Savage, & West, 2004; Vanni & McIntyre, 2016). The value of b varies 101 

depending on the physiological process; metabolic rates typically scale to the power of 0.75 102 

(Brown et al., 2004; Isaac & Carbone, 2010), whereas values for consumptive or excretory rates 103 

are often lower (Post, Parkinson, & Johnston, 1999; Vanni & McIntyre, 2016). Nevertheless, 104 

metabolic theory predicts that larger organisms tend to exhibit disproportionately lower rates 105 

(relative to their mass) for metabolically linked processes such as excretion (Allen & Gillooly, 106 

2009; Vanni & McIntyre, 2016). While shedding from mucous, scales, or skin may also be 107 

linked to metabolic rates, shedding rates are also likely a function of the surface area of an 108 

organism. In many aquatic organisms (particularly fish) the allometric relationship between body 109 

mass and surface area follows a similar mathematical form as metabolic processes; salmonids, 110 
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for example, exhibit mass-scaling coefficients for surface area between 0.59 and 0.65 (Shea, 111 

Fryer, Pert, & Bricknell, 2006).  112 

 Metabolic rates, excretory rates, and surface area (via shedding) are likely to collectively 113 

impact eDNA production, yet all follow a similar allometric form; as a result, we hypothesize 114 

that eDNA production can also be modelled as a power function of individual mass and an 115 

exponential scaling coefficient with a value less than 1. This hypothesis has important 116 

consequences for ecosystem-level processes; the utility of integrating allometric scaling in 117 

ecosystem-level models of ecological stoichiometry (Allen & Gillooly, 2009), animal excretion 118 

(Vanni & McIntyre, 2016), consumption (Post et al., 1999), and nutrient cycling (Schaus et al., 119 

2010; Schindler & Eby, 1997), for example, has long been acknowledged with broad empirical 120 

support. We therefore further hypothesize that, when scaled to the level of an entire population, 121 

allometric scaling in eDNA production will also have a substantial effect on overall population-122 

level production of eDNA. We consequently predict that the incorporation of mass scaling 123 

coefficients to account for inter-population variation in density, biomass, and the distribution of 124 

biomass across individuals will improve modelling efforts linking eDNA particle concentration 125 

and abundance across natural ecosystems.   126 

 To test our hypothesis, we collected standardized individual biomass data and used 127 

classic mark-recapture experiments to enumerate abundance in nine populations of brook trout in 128 

the Rocky Mountains of Canada while simultaneously collecting eDNA samples in each lake. 129 

Study populations exhibited substantial variation in individual density (63 - 1177 individuals/ha), 130 

biomass density (12.6 - 52.4 kg/ha), and mean body size (43.0 - 405.9 g/individual). We applied 131 

these data to specifically test two key predictions: i) brook trout eDNA particle concentration 132 

will correlate with traditional metrics of abundance (density and biomass) across the nine study 133 
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lakes; and ii) incorporating allometric scaling coefficients to estimates of brook trout abundance 134 

(e.g. ∑(individual biomass0.73)/ha, or “allometrically scaled mass” (ASM)) will substantially 135 

improve models of abundance and eDNA particle concentration.  136 

 ASM estimates derived from known eDNA concentrations in novel systems lacking 137 

abundance data cannot be directly converted to traditional metrics of abundance (e.g. density and 138 

biomass) because multiple density/biomass configurations (e.g. many small fish or a small 139 

number of large fish) can produce equivalent ASM values. However, using a real-world 140 

example, we also demonstrate how ASM estimates derived from known eDNA concentrations 141 

for systems that lack abundance data on a target species can be converted into traditional 142 

estimates of abundance with additional size structure data. 143 
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Materials and Methods 144 

Study species and system 145 

 Nine brook trout populations introduced in the early 20th century to lakes located in 146 

Kootenay, Banff, and Yoho national parks (Figure S1) were monitored to determine population 147 

size (number of individuals > 80mm) and individual biomass distributions. Study populations 148 

experience little recreational fishing pressure due to no-take policies implemented within the 149 

National Parks.  150 

 151 

Mark-recapture surveys and size structure estimates 152 

 Mark-recapture studies were conducted in 2018 between May 27th and June 30th, except 153 

for Cobb lake where isolated marking events occurred until September 12th (Figure S2). Fish 154 

were captured using a combination of fyke nets, angling, and backpack electrofishing (Table 1). 155 

Large (1 m hoop diameter, 2 cm mesh) and small (0.7 m hoop diameter and 0.8 cm mesh) fyke 156 

nets were distributed around the perimeter of lakes with the lead attached to shore and the end of 157 

the trap facing the center of the lake. Nets were checked daily to reduce stress to fish and 158 

possible cannibalism. Angling was used to supplement fish capture efforts at sites where fyke 159 

catchability was low (predominantly Cobb).  Marks were also assigned to fish captured by 160 

electrofishing the shore and inlets/outlets of lakes with a backpack electrofisher (Smith-Root, 161 

Vancouver, Washington, USA) 162 

 Captured fish were anesthetized using clove oil and measured for fork length (± 1mm) 163 

and mass (± 0.1g). Any unmarked fish were gastrically tagged with a BioMark HPT8 pre-loaded 164 

Passive Integrated Transponder (PIT) tag (Boise, Idaho, USA). Only fish greater than or equal to 165 

80 mm were tagged to reduce tagging mortality. The tag number of any recaptured fish was 166 
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recorded. All fish were processed in the shade with aerators to avoid unnecessary stress. 167 

Recovered fish were released in the center of the lake to standardize release location and 168 

promote mixing (e.g. if released near shore, fish may have been recaptured in an adjacent net, 169 

biasing mark recapture data). Marking ceased once recapture ratios approached twenty five 170 

percent for several consecutive days. 171 

 Size structure estimates aimed to obtain a representative snapshot of the size structure of 172 

each population and was conducted between July 27th and September 1st, with the exception of 173 

Cobb where size structure assessments continued to October 12th (Figure S2). Fish were captured 174 

in large and small sinking mixed mesh gillnets with clear monofilament. Large mixed-mesh 175 

gillnets were 15.6 m long, 1.8 m deep and had an equal area of 64-51-89-38-76 mm mesh panels. 176 

Small mixed-mesh gillnets were 12.5 meters long, 1.8 meters deep, and consisted of an equal 177 

area of 32-19-38-13-25 mm mesh panels. Index nets are widely used in North America for size 178 

structure assessments (Bonar, Hubert, & Willis, 2009; Hubert, Pope, & Dettmers, 2012; Johnson, 179 

1983; Post et al., 1999; Ward, Askey, Post, Varkey, & Mcallister, 2012) as these attempt to 180 

capture a representative size/age structure of the population (Morgan, 2002).  Nets were checked 181 

daily and moved if they were being reset. Sampling ceased when approximately five to ten 182 

percent of the population was captured, apart from Cobb lake where size structure assessment 183 

captured approximately 71% of individuals (Table 1). Captured fish were euthanized with clove 184 

oil, PIT tags were recorded, and length/mass data were collected as described for the marking 185 

period.  186 

 187 
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Population size estimation 188 

 Schnabel population size estimates, which utilize sequential marking/recapture events, 189 

were used to determine the number of fish in a lake (Schnabel, 1938). All size structure 190 

assessment removals were pooled together into one final sampling event for the population 191 

estimates which controlled for the removal of marks at large (M). Note that population estimates 192 

only account for fish greater the minimum tagging size (80 mm fork length). All population 193 

estimates were conducted in R (R Development Core Team, 2017) with the mrClosed function 194 

from the Fisheries Stock Assessment package FSA (Ogle, 2016). Confidence intervals for 195 

Schnabel population estimates followed recommendations from (Seber, 2002) as implemented in 196 

the FSA package.  197 

Density calculation 198 

 To link eDNA particle concentration with fish abundance, three metrics of density were 199 

calculated: (i) individual density (individuals/ha); (ii) biomass density (biomass/ha); (iii) and 200 

allometrically scaled mass (ASM/ha). Individual density was estimated by dividing the 201 

population size estimate by lake size (ha). Biomass density was calculated according to the 202 

following formula:  203 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 ℎ𝑎 =

∑ 𝑚𝑎𝑠𝑠𝑆𝐴
𝑁𝑆𝐴
𝑖=1

𝑁𝑆𝐴
∙ �̂�

𝑎𝑟𝑒𝑎 (ℎ𝑎. )
 204 

Where ∑ 𝑀𝑎𝑠𝑠𝑆𝐴
𝑁𝑆𝐴
𝑖=1  is the sum of the masses captured in the index net during size structure 205 

assessment, 𝑁𝑆𝐴 is the number of fish captured in the index nets, �̂� is the estimated population 206 

size. This methodology assumes that the size structure assessment was representative of the 207 

population. 208 

 ASM was calculated by replacing the mass measure with mass0.73 according to the 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

formula: 210 

𝐴𝑆𝑀 𝑝𝑒𝑟 ℎ𝑎 =

∑ (𝑚𝑎𝑠𝑠𝑆𝐴
0.73𝑁𝑆𝐴

𝑖=1 )
𝑁𝑆𝐴

∙ �̂�

𝑎𝑟𝑒𝑎 (ℎ𝑎. )
 211 

 212 

This density metric was included to account for the relative decline in mass-specific eDNA 213 

production or excretion rates typically observed as individual organismal mass increases 214 

(Maruyama et al., 2014; Takeuchi et al., 2019; Vanni & McIntyre, 2016). Scaling coefficients 215 

can vary substantially depending on the physiological process, taxonomy or environment 216 

(Allegier et al., 2015; Glazier, 2005). In the absence of data on allometric scaling in eDNA 217 

production, data on allometric scaling in metabolic or excretory rates for the same study species 218 

can represent useful starting points. Data on allometry in excretory rates were unavailable for 219 

brook trout, so the metabolic scaling coefficient obtained from (Hartman & Cox, 2008) was 220 

used: data extracted using the R package digitizer (Poisot, 2011) and back-transformed from 221 

figure one in (Hartman & Cox, 2008) indicate an allometric metabolic scaling factor of 222 

approximately 0.73 (0.03 SE).  223 

 In difficult to sample populations, estimates of relative abundance are often obtained 224 

using CPUE metrics. As a result, most previous studies examining eDNA particle concentration 225 

and abundance utilize similar metrics (Yates et al., 2019). To evaluate the utility of CPUE as a 226 

‘proxy’ metric of abundance in our study system, CPUE for each lake was quantified as the 227 

mean catch per-unit effort of a large and small index gillnet.  228 

   229 
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eDNA sample collection  230 

 eDNA samples were collected between June 30 and July 13th, 2018. Sampling was 231 

equidistantly distributed around each lake and included four littoral and four pelagic samples. 232 

Littoral samples were collected approximately 1-3 m from shore at a depth of least 12 inches but 233 

six inches above the bottom to avoid the unintentional collection of sediments. Pelagic samples 234 

were collected from each lake by drawing a line through the center of the lake along its longest 235 

axis; samples were collected along this axis at equidistant intervals at a depth of approximately 236 

0.5m. To avoid between-lake contamination all eDNA samples were collected either from an 237 

inflatable kayak that was decontaminated 48h prior in a 2% bleach solution for 15 minutes 238 

(including paddle and life-jacket) or from a canoe assigned to sample a single specific lake. 239 

Water samples were collected using sterile Whirl-PakTM bags (Uline, Ontario, Canada). 240 

 Samples were immediately filtered on the lakeshore using two chlorophyll filtering 241 

manifolds bleached in a 30% household bleach solution for ten minutes 2-12h prior to collection. 242 

All samples were stored in the shade prior to filtration in plastic washbasins bleached with a 30% 243 

solution for ten minutes, and all filtering was conducted in the shade under a tarp. Manifolds 244 

were transported in a Polar BearTM backpack cooler (Polar Bear Coolers, Georgia, USA) whose 245 

interior was wiped with a 30% bleach solution for ten minutes. Manifold components were 246 

stored after bleaching and transported individually in sealed plastic zippered bags to limit 247 

contamination. Pencils and markers were also wiped with a 30% bleach solution. 248 

 One L of sample water from each site was filtered through a 0.7µm-pore glass fibre filter 249 

(GE Healthcare Life Sciences, Ontario, Canada) using a vacuum hand pump (Soil Moisture, 250 

California, USA); each vacuum pump was decontaminated between lakes by wiping with a 30% 251 

bleach solution and resting for ten minutes. All littoral samples were filtered on one manifold 252 
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and all pelagic samples were filtered on the other. Prior to filtering lake water samples, 1 L of 253 

distilled water was filtered through each manifold as a negative control. Filters were handled 254 

using two metal forceps bleached in a 30% solution for ten minutes and transported in individual 255 

bags; one forceps was used for littoral samples and another forceps was used for pelagic samples. 256 

After filtering, filters were folded and placed directly in a sterile 2 ml microcentrifuge tube filled 257 

with 700µl AL buffer (Qiagen, Maryland, USA) which was then labelled and individually sealed 258 

in a plastic zippered bag and placed in a 2nd cooler that was decontaminated by wiping with a 259 

30% bleach solution and resting for ten minutes. This cooler contained two frozen freezer-gel 260 

packs decontaminated in a 30% bleach solution for ten minutes. If a filter became clogged (i.e. < 261 

1 L of water was filtered) the final volume of water filtered was recorded and the sample was 262 

stored in buffer. Filters were immediately transported to and stored in a -20 ℃ freezer (wiped 263 

with 30% bleach and soaked for ten minutes) at Kootenay Crossing. Filters were stored on dry 264 

ice for transportation to Montreal where they were stored in a -80 ℃ freezer. 265 

eDNA extraction and analysis 266 

 Each filter was extracted using a Qiagen DNeasy Blood and Tissue TM kit and 267 

QiashdredderTM spin column following a modified extraction protocol (see Appendix S1 for 268 

details). Final DNA product was eluted into 130 µl of AE buffer and stored in a clean -20 ℃ 269 

freezer dedicated to the sole storage of eDNA samples. To avoid cross-contamination between 270 

lakes extractions were conducted on batches from a single lake, with a single extraction blank of 271 

700 µL AL buffer included as an extraction control. Decontamination procedures were identical 272 

for both manifolds, so only a single negative control was extracted per lake. All extractions were 273 

conducted in an extraction room dedicated to the handling of sensitive eDNA samples. This 274 

room receives weekly cleaning with a 10% bleach solution and is free of PCR products or high-275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.908251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.908251
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

concentration DNA. All individuals entering the extraction room were required to wear nitrile 276 

gloves, hair nets, shoe covers, and dedicated, clean lab coats. All lab surfaces were soaked with a 277 

20% bleach solution for ten minutes before and after extractions. PCR Clean WipesTM (Thermo 278 

Scientific, Massachusetts, USA) were also used to decontaminate all lab surfaces and pipettes 279 

prior to and after extracting or handling eDNA samples.   280 

 The concentration of brook trout eDNA was quantified using the TaqMan minor groove 281 

assay published in (Wilcox et al., 2013), which targets a region of the brook trout cytochrome b 282 

mitochondrial gene. All samples were run in triplicate at a 20 µl final reaction volume on a 283 

Stratagene MX 3000P thermal cycler using Environmental Master Mix 2.0 and 5 µl of template 284 

DNA. Forward and reverse primers were included at a final concentration of 900 nM, with the 285 

probe at a final concentration of 250 nM. Each replicate was spiked with an internal positive 286 

control to test for inhibition; any replicate that exhibited inhibition (Ct > 1 in the internal positive 287 

control) was reanalyzed with diluted template DNA at 60% concentration (3 µl template + 2 µl 288 

of ultrapure water); this was sufficient to relieve inhibition in all cases. Standard curve template 289 

DNA was composed of a synthetic GblockTM gene fragment (IDT, Iowa, USA) of the targeted 290 

sequence. A triplicate no template control and triplicate five-point standard curve (1250 291 

copies/µl, 250 copies/µl, 50 copies/µl, 5 copies/µl, 2 copies/µl template concentration) were 292 

included on each 96-well plate. All qPCR reaction reagents were aliquoted into single-use 293 

volumes adequate for a single plate and reactions were prepared in the dedicated eDNA room, 294 

with the exception of the standard curve replicates due to the presence of high concentration 295 

synthetic DNA fragments. Reactions were cycled with an initial hold at 95 ℃ for ten minutes 296 

followed by 45 cycles of 30 seconds at 95 ℃ and 1 min at 60 ℃. eDNA particle concentration at 297 

each site was determined by averaging site-specific replicates. Final mean copy number values 298 
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were converted (based on total volume of water filtered per sample) to total eDNA particle 299 

concentration per 1 L of sampled water (copies/L). 300 

Data Analysis 301 

 Mean eDNA particle concentration (copies/L) for each lake was calculated by first 302 

averaging eDNA particle concentrations of the four littoral and four pelagic samples to obtain 303 

mean littoral eDNA concentration and mean pelagic eDNA concentration. The surface area of a 304 

(roughly) circular object increases non-linearly in relation to perimeter and, as a result, the area 305 

of the pelagic zone expressed as a fraction of the total area of a lake tends to increase with lake 306 

size. The relative contribution of the littoral and pelagic zones to the overall mean concentration 307 

of eDNA per lake should therefore be increasingly weighted towards the pelagic eDNA 308 

concentration as lake surface area increases. Our study lakes varied substantially in size (1.7 to 309 

18.5 ha); total pelagic and littoral areas were calculated for each lake using polygons on Google 310 

Earth. In the absence of detailed bathymetry data, the total area of the littoral zone was calculated 311 

by including all lake surface area up to 20m from the shore, with the remaining area assigned to 312 

the pelagic zone. A weighted-mean eDNA concentration for each lake was then calculated by 313 

weighing the littoral and pelagic eDNA concentrations based on the fraction of total lake area 314 

each zone represented. 315 

 Mean lake eDNA particle concentration (copies/L) was modelled separately as a function 316 

of the three metrics of brook trout density calculated above: individual density (individuals/ha); 317 

biomass density (kg/ha); and allometrically scaled mass (ASM) (∑(individual mass0.73)/ha). 318 

eDNA particle concentration was included as a dependent variable in a linear regression and a 319 

separate model for each abundance metric was fitted to the observed data. Wald F–tests were 320 

used to evaluate the significance of fixed-effect terms, with AIC (Akaike, 1974) values used to 321 
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compare model fit as in (Lacoursière-Roussel, Côté, Leclerc, Bernatchez, & Cadotte, 2016). All 322 

analyses were conducted in R (v.3.3.3) (R Development Core Team, 2017). To assess the 323 

performance of CPUE as a ‘proxy’ metric of abundance, we also examined the relationship 324 

between density and CPUE, as well as eDNA particle concentration and CPUE, using linear 325 

regression. 326 

 327 

Estimating density and biomass from predicted allometrically scaled mass: a case study for 328 

population management 329 

 Most researchers/managers would be primarily interested in predicting traditional metrics 330 

of abundance (i.e. density and biomass) from estimated eDNA particle concentrations in similar 331 

ecosystems that lack abundance data. Predicting abundance in unknown systems from known 332 

eDNA particle concentrations would require an inversion of the modelling relationship described 333 

above: abundance would be modelled as a function of eDNA particle concentration. Predicted 334 

estimates of ASM obtained from eDNA samples collected for systems lacking abundance data 335 

cannot be directly converted to traditional metrics of abundance (e.g. individual density or 336 

biomass density) because multiple density/biomass configurations (e.g. many small fish or a 337 

small number of large fish) can produce equivalent ASM values. However, predicted ASM 338 

point-estimates for a system with unknown abundance can be converted to traditional metrics 339 

with additional individual mass distribution data from standardized size structure data.  Size 340 

structure data from the unknown system could be scaled allometrically and the resulting scaled 341 

mass values nonparametrically bootstrapped (with replacement) until the cumulative sum of the 342 

bootstrapped values equals the predicted ASM. Individual density could be estimated by totalling 343 

the number of bootstrap “samples” summed to achieve the predicted ASM; biomass density 344 
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could then be estimated by multiplying the predicted density value by the untransformed mean of 345 

the individual biomass distribution. 346 

 As a case study, this technique was applied to data collected from Hidden Lake (Banff, 347 

Alberta, Canada). The brook trout population of Hidden Lake was targeted as part of rotenone-348 

based removal program by Parks Canada. eDNA samples from Hidden lake were collected in 349 

July 2018 and extracted/analyzed using the same methodology as described above. The 350 

estimated “ASM/unit area” of the lake (including 95% prediction intervals) was calculated from 351 

the linear relationship obtained from our nine study lakes. Unfortunately, standardized size 352 

structure data were unavailable; rotenone removal efforts began in August 2018 and no brook 353 

trout remain in the system. However, prior to the use of rotenone mechanical gill netting efforts 354 

were employed during brook trout removal efforts between 2011 and August 2017 (Stitt, perse. 355 

comm.). By 2016 netting efforts had removed most large fish from the population. Most netted 356 

fish older than age 0+ in Hidden lake were therefore between 90-140mm in length (Sullivan, 357 

Sierra, 2017), although it should be noted that size distribution data obtained from these netting 358 

efforts were not directly comparable to our standardized size structure assessments due to 359 

different netting methodology/gear. The size distribution of fish removed by Parks Canada in 360 

2016 most closely resembles the size distribution of fish in Olive lake, so the Olive size 361 

distribution was utilized as a “proxy” to calculate an approximate pre-rotenone individual density 362 

and biomass density of brook trout inhabiting Hidden lake in 2018. The size distribution of fish 363 

from Olive lake is slightly larger (mean = 149mm) than the 2016 Hidden lake distribution; as a 364 

result, population size estimates derived from this distribution will likely slightly underestimate 365 

the ‘true’ number of individuals present in Hidden Lake. Bootstrap simulations to quantify 366 

individual density and biomass density utilizing the Olive size distribution and predicted ASM of 367 
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Hidden lake were run for 1000 iterations. Parks Canada estimated the 2018 pre-rotenone 368 

population of Hidden Lake to be between 3300 and 5000 individuals based on the retrieval of 369 

fish corpses post-rotenone, providing some degree of external validation for our predictive model 370 

(Stitt, B, 2018).   371 

Predicting allometric scaling coefficient for eDNA production in brook trout 372 

 Allometric scaling coefficients are likely to fall between a value of 0.0 and 1.0; notably, 373 

(∑ individual mass0.0)/ha is equivalent to individual density (fish/ha) and (∑individual 374 

mass1.0)/ha is equivalent to biomass density (kg/ha). Although we employed an allometric scaling 375 

coefficient of 0.73 in our model (based on metabolic data from brook trout), the “true” allometric 376 

scaling coefficient for eDNA production in our system was unknown. We used our data to 377 

predict the optimal value for the scaling coefficient given the observed eDNA particle 378 

concentration and biomass distribution data observed across our study lakes. To achieve this, we 379 

iteratively generated ASM values from our data using scaling coefficients ranging from 0.00 to 380 

1.00 (increasing by intervals of 0.01) and sequentially modelled eDNA particle concentration 381 

data as a function of each ASM value. AIC values for each model were then used to evaluate 382 

model fit. If eDNA production scales allometrically according to a power function, we predict 383 

that the AIC values across models with scaling coefficients between 0.0 and 1.00 will exhibit an 384 

approximately upward parabolic distribution with a minimum best-fit value that corresponds to 385 

an “optimal” allometric scaling coefficient. According to the general rule described in (Burnham 386 

& Anderson, 2002), models with AIC values within 2 units of the best-fit model AIC (e.g. ΔAIC 387 

< 2) also exhibit substantial support; we predict that the ‘true’ allometric scaling coefficient for 388 

brook trout eDNA production in nature will fall between the range of scaling coefficients that 389 
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produce models within 2 AIC of the ‘best-fit’ scaling coefficient, although future experiments 390 

will be necessary to validate our predictions.391 
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Results 392 

Population size estimates and density 393 

 Population size estimates ranged from 145 to 3266 individuals, individual density ranged 394 

from 63 to 1131 fish/ha, biomass density ranged from 12.6 to 52.5 kg/ha, and ASM ranged from 395 

3707 to 18600 ASM/ha (Table 2, see Figure 1 for population size structure). Estimates of catch-396 

per-unit-effort (CPUE) did not exhibit a significant correlation with individual density (F1,7 = 397 

0.53, p = 0.491, Figure S3).  398 

 399 

eDNA concentrations and correlations with density metrics among lakes 400 

 Brook trout eDNA was successfully amplified from all samples in all lakes. No 401 

amplification was observed in any negative controls or extraction blanks. The R2 values for 402 

standard curves ranged from 0.984 to 0.995, with an estimated efficiency ranging from 84.2 to 403 

95.1%. Littoral and pelagic eDNA concentrations varied substantially by lake (Table 3). After 404 

weighing for lake zone area, mean eDNA concentrations ranged from 592 copies/L in Cobb to 405 

7805 copies/L in Olive.  406 

 Linear models for each density metric demonstrated positive and significant correlations 407 

with eDNA particle concentration (Table 4, Figure 2). Individual density, biomass density, and 408 

ASM accounted for 59%, 63%, and 78% of the variation in observed eDNA particle 409 

concentration (adjusted R2), respectively. AIC values indicated that individual density and 410 

biomass density metrics provided roughly equivalent model fit; however, the ASM metric 411 

provided substantially improved model fit relative to individual density and biomass density 412 

(ΔAIC of 5.7 and 4.6, respectively).  CPUE did not exhibit a significant correlation with eDNA 413 

particle concentration (Table 4, Figure S4). 414 
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Estimating density and biomass from predicted allometrically scaled mass: a case study for 415 

population management 416 

 The eDNA concentration of Hidden lake littoral and pelagic eDNA samples averaged 417 

2653 and 342 copies/L, respectively, with a weighted mean average eDNA particle concentration 418 

of 847 copies/L (Table 3). Based on a linear model using data from the nine study lakes, Hidden 419 

lake had an estimated ASM/ha of 4279.6 (Figure 3). The predicted ASM estimate for Hidden 420 

Lake was converted to traditional metrics of abundance (individual density and biomass density) 421 

by bootstrap sampling allometrically scaled mass values (with replacement) from the Olive lake 422 

size structure distribution (which was closest to the likely size structure of the Hidden lake 423 

population) until the cumulative sum of all bootstrap sampled values equalled the predicted 424 

ASM/ha from the linear model. After 1000 iterations, the mean number of individual mass 425 

values sampled from the Olive size distribution was 278.4, which represents the individual 426 

density (ind/ha) point-estimate for Hidden Lake; this corresponds to a total population size 427 

estimate of 3286 individuals. This point estimate was similar to the 2018 pre-rotenone population 428 

size estimate from Parks Canada of 3300-5000 individuals (Stitt, B, 2018), given the use of the 429 

slightly larger Olive size distribution during the bootstrap procedure. Predicted total biomass was 430 

143.0 kg, with a biomass density of 12.1 kg/ha. Notably, point estimates of biomass density rank 431 

Hidden lower than all nine study lakes, likely as a result of previous fish removal efforts between 432 

2011 and 2017 in Hidden Lake. Upper 95% prediction intervals for population size, total 433 

biomass, density, and biomass were 7629 individuals, 332.0 kg, 646.5 fish/ha, and 28.1 kg/ha, 434 

respectively. Due to the overall low concentration of eDNA present in the lake lower 95% 435 

prediction intervals overlapped with zero for all four parameters. 436 

 437 
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Predicting the allometric scaling coefficient for eDNA production in brook trout 438 

 Based on model AIC values, a scaling coefficient of 0.72 best explained patterns of 439 

eDNA particle concentration across the nine study lakes; models with scaling coefficients 440 

between 0.47 and 0.89 generated ΔAIC values < 2 (Figure 4).    441 
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Discussion 442 

 Our study provides strong support for the hypothesis that eDNA production scales non-443 

linearly with mass according to a power function. Incorporating allometric scaling coefficients to 444 

account for the distribution of biomass across individuals substantially improved predictive 445 

models, indicating that the distribution of biomass across individuals within a population may 446 

have an important effect when scaling individual eDNA production rates to the population-level. 447 

Incorporating metabolic scaling coefficients for mass into models of eDNA particle 448 

concentration and organismal abundance may therefore be particularly important in species that 449 

exhibit substantial inter-population variation in size distributions. Our findings contribute to a 450 

broader understanding of the ecology of eDNA production and have important implications for 451 

many eDNA applications. While the focus of this study was on the relationship between eDNA 452 

particle concentration and abundance using qPCR techniques, allometry in species with variable 453 

size structure could, for example, partially account for the variation observed in species-specific 454 

read number across environments in metabarcoding studies. 455 

 This study also reaffirms previous findings that metrics of population abundance 456 

correlate with species-specific eDNA particle concentration in natural environments (Klobucar, 457 

Rodgers, & Budy, 2017; Nevers et al., 2018; Pilliod et al., 2013; Schmelzle & Kinziger, 2016; 458 

Thomsen et al., 2012). Previous research has demonstrated a moderate correlation between 459 

density and/or biomass and eDNA particle concentration in lotic systems for brook trout 460 

(Baldigo, Sporn, George, & Ball, 2017; Wilcox et al., 2016). We found similar relationships 461 

within lentic systems, but also demonstrate that they can be considerably improved by 462 

integrating allometric scaling coefficients into estimates of organismal abundance.  463 
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 Notably, the correlation coefficients we observed between eDNA concentration and all 464 

three metrics of abundance were greater than most previous studies conducted in nature (Yates et 465 

al., 2019). The relatively strong correlations we observed between our abundance metrics and 466 

eDNA concentration could also be due to the methodology with which we assessed population 467 

size. Our estimates of population size were obtained using mark-recapture studies and unbiased 468 

measures of size-structuring, which provided precise and standardized estimates of individual 469 

density, biomass density, and ASM. However, such estimates are rare in published 470 

eDNA/abundance studies; conducting mark-recapture studies to estimate population size are time 471 

consuming and require a substantial commitment of labour and resources. To date only a handful 472 

of eDNA studies in nature have specifically enumerated population size (Klobucar et al., 2017; 473 

Levi et al., 2019; Tillotson et al., 2018) rather than proxies for abundance, such as CPUE (Yates 474 

et al., 2019). CPUE may be appropriate if it exhibits a strong correlation with abundance, but in 475 

some systems CPUE can perform poorly as a proxy for abundance (Hubert et al., 2012; Rose & 476 

Kulka, 1999). In our study systems CPUE did not exhibit a significant correlation with individual 477 

density and, as a result, eDNA concentration. Some of the substantial unexplained variation in 478 

nature between eDNA concentration and abundance observed in other systems could result from 479 

reliance on CPUE as a ‘proxy’ for abundance, although we acknowledge that for many species it 480 

may often be impractical or impossible to directly estimate population size.  481 

 It is important to note, however, that our abundance estimates may miss a small fraction 482 

of the adult population and do not account for juvenile (age 0+) abundance because fish were not 483 

included in the mark-recapture study until they were at least 80mm (to avoid excessive tagging 484 

mortality). Population size estimates therefore represent underestimates of true population census 485 

size. Discrepancies in juvenile abundance/density across lakes could account for some of the 486 
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remaining unexplained variation present in our model, particularly since smaller fish would be 487 

expected to exhibit higher mass-specific eDNA production rates. Similarly, temperature is 488 

known to have a strong effect on metabolic rates (Brown et al., 2004) and eDNA production (Jo 489 

et al., 2019). Notably, Temple lake exhibited a substantially lower concentration of eDNA than 490 

expected from its ASM estimate; at 3.5 ℃, Temple lake was also substantially colder than the 491 

other eight study lakes during eDNA sampling (8.9-17.2 ℃). Although we lacked the replication 492 

to do so, integrating other important environmental variables (e.g. temperature, pH, etc.) into 493 

models of eDNA particle concentration across environments could further improve predictive 494 

models.  495 

 Despite these caveats, we demonstrate that it is possible to predict estimates of abundance 496 

with eDNA samples and population size structure data in similar ecosystems that lack abundance 497 

data. The population size point estimate for Hidden Lake from our ASM/eDNA model (and 498 

based on the Olive “proxy” size distribution) was similar to the pre-rotenone population size 499 

based on Parks Canada estimates. Although predicted density metrics for Hidden lake exhibited 500 

wide upper 95% prediction intervals, they still provided enough information to facilitate relative 501 

comparisons to the nine study lakes; we can predict with some certainty, for example, that 502 

Hidden Lake had a lower biomass density relative to two of the nine study lakes (Dog and 503 

Olive). Furthermore, 95% prediction intervals represent a relatively stringent criteria of certainty; 504 

75% or 80% prediction intervals might still represent “good enough” information to help guide 505 

managerial or research decisions.  506 

 Most significantly, our results highlight the need for further empirical studies exploring 507 

and validating allometric scaling via power functions as a framework for modelling eDNA 508 

particle production rates. While we demonstrate that incorporating allometric scaling coefficients 509 
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substantially improves models predicting abundance and eDNA concentration at the population 510 

level, we have not directly quantified how eDNA production scales allometrically in brook trout 511 

at the level of individual organisms. Nevertheless, recent experiments demonstrate that mass-512 

specific eDNA production rates tend to decline as individual mass increases (Maruyama et al., 513 

2014; Mizumoto et al., 2017; Takeuchi et al., 2019). We found that a scaling coefficient of 0.72 514 

best described patterns of eDNA concentration for our study species across our nine study lakes; 515 

this value closely aligned with the metabolic scaling coefficient for brook trout from (Hartman & 516 

Cox, 2008). Scaling coefficients between 0.51 and 0.87 produced models with ΔAIC values < 2; 517 

we therefore predict that the ‘true’ allometric scaling coefficient for eDNA production in brook 518 

trout will likely fall within this interval. To validate our findings and test our subsequent 519 

predictions, further experiments to quantify allometric scaling of eDNA production at the 520 

individual level in brook trout are necessary.  521 

 As a well-supported general theory in ecology, experimental designs developed to test 522 

MTE hypotheses (e.g. (Allegier et al., 2015; Hartman & Cox, 2008)) can inform future 523 

experiments examining the effect of allometry on eDNA production rates. Notably, previous 524 

experiments investigating allometric scaling in excretion or metabolic rates quantified rates at the 525 

level of individual organisms (Allegier et al., 2015; Hartman & Cox, 2008; Vanni & McIntyre, 526 

2016). Previous laboratory experiments quantifying the effect of biomass on eDNA 527 

production/shedding rates typically pooled organisms to create different biomass treatments 528 

(Doi, Uchii, Takahara, & Matsuhashi, 2015; Klymus et al., 2015; Lacoursière-Roussel, Rosabal, 529 

& Bernatchez, 2016; Mizumoto et al., 2017; Takahara et al., 2012). At best, such experiments 530 

pool organisms from similar size-classes, in which case eDNA production/abundance 531 

relationships across ‘treatments’ only reflect changes in abundance within a specific age- or size-532 
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class. Such experimental designs are likely to produce a strong relationship between eDNA 533 

concentration and biomass, as has been found in a meta-analytic review (Yates et al., 2019). 534 

While such studies were necessary to empirically quantify a preliminary correlation between 535 

eDNA particle concentration and metrics of abundance, they might obscure critical differences in 536 

mass-specific eDNA production rates across size classes that could have important consequences 537 

for population-level rates. Natural populations often exhibit substantial variation in the 538 

distribution of body size across individuals; the failure to account for allometric scaling in the 539 

relationship between biomass and eDNA production might partially explain the failure to 540 

translate the strong relationships observed in laboratory experiments to nature (Sebens, 1987). 541 

Notably, our eDNA/abundance models utilizing ASM exhibited correlation coefficients 542 

comparable to those typically observed in laboratory environments (Yates et al., 2019). 543 

 It may be possible to investigate allometry in eDNA production by pooling individuals 544 

that are the same size within replicates. However, we would advise against this because 545 

behavioural interactions between fish at high density in confined spaces may impact eDNA 546 

production; some studies have demonstrated that eDNA production per fish increases at high 547 

densities (Id et al., 2019). Brook trout, for example, are known to exhibit aggressive behaviour 548 

towards conspecifics (McNicol, Scherer, & Murkin, 1985), which could increase eDNA particle 549 

concentration at high densities due to increased activity and/or injuries inflicted upon each other. 550 

If size classes exhibit different behaviour at high densities, this could further affect estimates of 551 

allometric scaling. Future studies examining allometric scaling in eDNA production should 552 

therefore incorporate individuals from a gradient of age/size classes and quantify organismal 553 

eDNA production at the individual-level, as in (Takeuchi et al., 2019). Notably, the two studies 554 

to examine eDNA production rates at an individual level across age/size classes found that 555 
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larger, older individuals exhibited lower mass-specific eDNA production rates (Maruyama et al., 556 

2014; Takeuchi et al., 2019). There is also a critical need to conduct such experiments in situ at 557 

field study sites on wild organisms, as in (Pilliod, Goldberg, Arkle, & Waits, 2014). Laboratory 558 

experiments, while important from a validation perspective, may not reflect natural excretion 559 

processes because study organisms are housed in artificial conditions, fed artificial diets, and are 560 

often subject to fasting regimes (Vanni & McIntyre, 2016). Furthermore, size-scaling 561 

coefficients for metabolic processes such as nutrient excretion exhibit substantial interspecific 562 

variation and can even include values greater than 1 (Allegier et al., 2015; Vanni & McIntyre, 563 

2016). Allometric scaling in eDNA production may therefore exhibit similar variability across 564 

species and should be investigated on a case-by-case basis. 565 

 566 

Conclusions 567 

 Our results provide evidence supporting the hypothesis that eDNA production scales 568 

allometrically with organism mass and can be modelled according to the power function: 569 

I = I0 * Mb 570 

We have demonstrated that the incorporation of additional (but straightforward to collect) size 571 

structure data to integrate key allometric scaling predications resulted in substantial improvement 572 

in models of eDNA concentration across environments. Future studies on eDNA/abundance 573 

relationships in nature should consider incorporating allometry, particularly when study species 574 

exhibit substantial inter-population variation in size distributions. However, there is also a need 575 

to validate this hypothesis in controlled experimental contexts at the level of individual 576 

organisms. As a well-developed ecological theory validated by numerous empirical studies 577 

(Vanni & McIntyre, 2016), the literature on the MTE represents a robust methodological 578 
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foundation that future studies can utilize to explore relationships between a variety of 579 

environmental and ecological factors that might influence organismal production of eDNA. Such 580 

studies could further improve predictive models estimating abundance from eDNA particle 581 

concentration to the extent that, in some circumstances, species-specific eDNA particle 582 

concentration might be a reliable ecological indicator of abundance.  583 

 Predictive models would need to be calibrated on a system- and species-specific basis.  584 

The extent to which models for a particular species can be extended to different ecosystems or 585 

geographical regions also remains unknow. Future studies employing the methodology 586 

developed herein will likely need to construct models from population size/abundance estimates 587 

combined with standardized size distribution data on an individual species/system basis. These 588 

studies will also need to collect size distribution data, in addition to eDNA samples, to predict 589 

the density or biomass of organisms in similar ecosystems that lack abundance data. Direct 590 

estimates of allometric scaling coefficients for study species would also likely improve 591 

predictive models, although metabolic or excretory allometric scaling coefficients estimated in 592 

other empirical studies on the same (or closely related) species may represent useful starting 593 

points. In the absence of any other empirical data, the general scaling coefficient predicted by the 594 

MTE (0.75) may also suffice.  595 

 Depending on the species studied, obtaining robust population size estimates and 596 

individual size distribution data to calibrate initial models can often be difficult, labour intensive, 597 

and come with a substantial monetary cost. However, the benefits might be substantial – the idea 598 

that future researchers or managers might be able to obtain reasonable estimates of abundance 599 

from eight water samples and a small number of gill net sets is, from an ecologist’s perspective, 600 

exhilarating.601 
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Tables 807 

Table 1: Size structure gill net effort and fyking (mark-recapture) effort. SS refers to size 808 

structure assessment, percent SS refers to the proportion of population harvested during size 809 

structure assessment. 810 

 811 

Site SS 

Samples 

Percent 

SS 

SS 

CPUE 

Mark/Recapture 

days 

Total Marks 

Applied 

Cobb 104 0.72 7 20 24 

Mud 84 0.10 42 20 364 

Olive 160 0.09 53 21 307 

Ross 128 0.09 64 19 571 

Temple 165 0.10 41 25 409 

Dog 187 0.06 94 30 617 

Helen 41 0.07 41 12 172 

Margaret 171 0.08 43 23 414 

McNair 27 0.13 27 14 118 

  812 

  813 
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Table 2: Density metric estimates for each population. N = population size, ASM = 814 

allometrically scaled mass. 95% confidence intervals for ‘N’ are given in brackets. 815 

 816 

Site N Ha Mean Ind. Mass (g) Fish/ha Kg/ha ASM/ha eDNA (copies/L) 

Cobb 145 (94, 237) 2.3 404.8 63 25.7 5663 592.2 

Dog 3266 (2715, 4097 11.5 184.8 284 52.5 13962 5131.1 

Helen 557 (420, 755) 2.5 83.9 225 18.8 6187 2445.9 

Margaret 2017 (1638, 2623) 18.0 112.3 112 12.6 3707 1240.4 

McNair 201 (158, 276) 1.7 137.3 121 16.6 4736 3050.5 

Mud 860 (733, 1040) 7.2 141.9 119 17.0 4587 1138.7 

Olive 1877 (1459, 2628) 1.7 43.1 1131 48.8 18601 7805.1 

Ross 1392 (1211, 1635) 6.6 82.5 211 17.4 5559 917.4 

Temple 1655 (1369, 2090) 3.3 51.1 509 26.1 9587 2076.5 

 817 
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Table 3: Lake zone area and corresponding eDNA concentrations. 819 

Site 

Pelagic 

area (ha) 

Littoral 

area (ha) 

Pelagic eDNA 

(copies/L) 

Littoral eDNA 

(Copies/L) 

Weighted Mean 

eDNA (Copies/L) 

Cobb 1.0 1.3 253.8 854.6 592.2 

Dog 8.5 3.1 3447.1 9796.7 5131.1 

Helen 1.2 1.3 1342.4 3514.4 2445.9 

Margaret 14.4 3.6 791.9 3034.1 1240.4 

McNair 0.7 1.0 2395.4 3505.0 3050.5 

Mud 4.7 2.6 621.3 2280.1 1138.7 

Olive 0.5 1.2 8084.6 7684.7 7805.1 

Ross 4.6 2.0 790.5 1209.8 917.4 

Temple 1.6 1.7 1940.8 2200.2 2076.5 

Hidden 11.8 2.6 342.0 2652.9 847.2 

 820 
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Table 4: Model results evaluating the relationship between eDNA particle concentration and 822 

density (fish/ha), biomass (kg/ha), allometrically scaled mass (ASM/ha), and CPUE. 823 

 824 

Model F-value P-value Adj. R2 Log Likelihood AIC ΔAIC 

Density 12.37(1,7) 0.010 0.59 -77.78 161.6 5.7 

Biomass 14.76(1,7) 0.006 0.63 -77.26 160.5 4.6 

ASM 29.4(1,7) 0.001 0.78 -74.95 155.9 - 

CPUE 1.92(1,7) 0.208 0.10 -81.27 168.5 12.6 

 825 
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Figure Captions 827 

 828 

Figure 1: Lake size structure distributions (g) obtained from standardized gill net sets for the nine 829 

study lakes. 830 

 831 

Figure 2: Correlation between weighted mean lake brook trout eDNA particle concentration and 832 

three metrics of abundance in the nine study lakes: (a) individual density (individuals/ha, R2 = 833 

0.59), (b) biomass density (kg/ha, R2 = 0.63), and (c) allometrically scaled mass (ASM/ha, R2 = 834 

0.78) (n = 9). 835 

 836 

Figure 3: Predicting allometrically scaled mass (ASM/ha) for Hidden Lake based on eDNA 837 

particle concentration. Black dots represent values for the nine study lakes, gray circle represents 838 

the ASM/ha point estimate for Hidden Lake. Error bars represent 95% prediction intervals (n = 839 

9). 840 

 841 

Figure 4: AIC values for models correlating brook trout eDNA and allometrically scaled mass 842 

(ASM), utilizing allometric scaling coefficients ranging from 0.00 (corresponding to individual 843 

density) to 1.0 (corresponding to biomass density). Horizontal black bars and dotted lines denote 844 

range of models with ΔAIC < 2 relative to the ‘optimal’ scaling coefficient (0.72). 845 

 846 

Figure S1: Map of the nine study lakes located in Alberta and British Columbia, Canada. 847 

 848 

Figure S2: Timing of sampling activities in 2018. 849 

 850 

Figure S3: Relationship between catch-per-unit-effort (CPUE) of a large and small gill net and 851 

individual density (fish/ha) for the nine study lakes (adjusted R2 < 0) (n = 9). 852 

 853 

Figure S4: Relationship between brook trout eDNA particle concentration and catch-per-unit-854 

effort (CPUE) of a large and small gill net for the nine study lakes (R2 = 0.10). 855 
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