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Abstract  
 

Current sequencing methods allow for detailed samples of T cell receptors (TCR) repertoires. To 

determine from a repertoire whether its host had been exposed to a target, computational tools 

that predict TCR-epitope binding are required. Currents tools are based on conserved motifs and 

are applied to peptides with many known binding TCRs.  

 

Given any TCR and peptide, we employ new NLP-based methods to predict whether they bind. 

We combined large-scale TCR-peptide dictionaries with deep learning methods to produce 

ERGO (pEptide tcR matchinG predictiOn), a highly specific and generic TCR-peptide binding 

predictor.   

 

A set of standard tests are defined for the performance of peptide-TCR binding, including the 

detection of TCRs binding to a given peptide/antigen, choosing among a set of candidate 

peptides for a given TCR and determining whether any pair of TCR-peptide bind. ERGO 

significantly outperforms current methods in these tests even when not trained specifically for 

each test. 

The software implementation and data sets are available at  https://github.com/louzounlab/ERGO 
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Introduction 
T lymphocytes (T cells) are pivotal in the cellular immune response1,2. The immense 

diversity of the T-cell receptor (TCR) enables specific antigen recognition3,4. Successful 

recognition of antigenic peptides bound to major histocompatibility complexes (pMHCs) 

requires specific binding of the TCR to these complexes5–7, which in turn modulates the cell's 

fitness, clonal expansion, and acquisition of effector properties7. The affinity of a TCR for a 

given peptide epitope and the specificity of the binding are governed by the heterodimeric αβ T-

cell receptors2. While both chains have been reported to be important to affect binding, we show 

here that the TCR's binding to target MHC-peptide can be determined for many TCR-peptide 

pairs with high accuracy using the β-chain only. 

Within the TCRβ chain, the complementarity-determining region 1 (CDR1) and CDR2 

loops of the TCR contact the MHC alpha-helices while the hypervariable CDR3 regions interact 

mainly with the peptide1,2. In both TCRα and TCRβ chains, CDR3 loops have the highest 

sequence diversity and are the principal determinants of receptor binding specificity.   

Following specific binding of T cell receptors to viral and bacterial-derived peptides 

bound to MHC5, or from neo-antigens8–10, the appropriate T cells expand, resulting in the 

increased frequency of T cells carrying such receptors. Recently, high-throughput DNA 

sequencing has enabled large-scale characterization of TCR sequences, producing detailed T cell 

repertoire (Rep-Seq)11. Expanded clones are more likely to be repeatedly sampled in Rep-Seq 

than non-expanded clones and can serve as biomarkers for previous or current exposures to their 

cognate target, especially if the sample is enriched for mature or activated cells, or if strict 

filtering on sampled clone size is applied. Tools for the precise distinction between TCRs 

binding distinct targets are required to use T cell repertoires as systemic biomarkers (often 

referred to as “reading the repertoire”).  

A direct approach for using TCR Rep-Seq as biomarkers has been proposed by Emerson 

et al.12 and similar approaches13 who detected patients that have CMV based on their full 

repertoire and the choice of TCRs that differ between CMV positive and negative patients. This 

approach is based on the presence of highly specific and repetitively observed public TCR in the 

response of different hosts to the same peptide (often denoted public clones, although the 

definition of such clones varies among authors14). Such an approach requires extensive repertoire 

sequencing for every condition tested. 

  In contrast, many TCR responses are characterized by a high level of cross-reactivity 

with single TCRs binding a large number of MHC-bound peptides, and single peptides binding a 

large number of TCRs15,16. TCRs binding the same MHC-peptide may share similarities but 

possess different CDR3 sequences. Thus, while for public clones the task of deciphering the 

relation between a peptide and the TCR binding is based on tallying the candidate public TCR, 

for most highly cross-reactive TCRs, a probabilistic approach is required.  

Important steps have been made in this direction by Glanville et al.4 and Dash et al.17, 

who detected the clear signature of short amino acid motifs in the CDR3 region of TCRβ and 

TCRα in response to specific peptides presented by specific MHC molecules. This work was 
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then extended by recent efforts that combined these motifs with machine learning to predict 

peptide-specific TCRs vs. naïve TCRs, using Gaussian Processes18, or predicting TCR-epitope 

binding with Convolutional Neural Networks19,20. These methods significantly outperform 

random classification in the distinction of TCR binding a specific peptide and random TCRs.  

The next required step for using the repertoire to develop specific biomarkers would be to 

distinguish between TCR binding different peptides. An essential step in the development of 

high precision predictors is the standardization of the comparison methods. We propose three 

different tests, each with different outcomes, as the standard method to estimate such predictions 

(Figure 1A): 

• Single Peptide Binding – SPB. Testing whether an unknown TCR binds a 

predefined target, using (as training information) TCRs known to bind to this 

target17,18. The outcome of such a prediction would be the Area Under Curve 

(AUC) for the binding of an unseen TCR to this target.  

• Multi-Peptide Selection – MPS. Given a set of predefined peptides, predict which 

of those will be bound by a new TCR. The outcome of that would be the accuracy 

of the choice as a function of the number of candidate peptides.  

• TCR-Peptide Pairing -TPP. This is the most complex test. Given a large set of 

peptides and TCRs, test whether a randomly chosen TCR binds a randomly 

chosen peptide. This test can be further divided into three possibilities, based on 

the information used in the training stage: Previously observed peptide and TCR 

that are not known to pair (TPP-I), same with a previousely unobserved TCR 

(TPP-II) and finally the same with both a previousely unobserved  peptide and a 

previousely unobserved  TCR (TPP-III).  

We propose these different tests as standard measures for the quality of TCR-peptide binding 

predictions.  The TPP task is often addressed in Natural Language Processing (NLP) using 

recurrent neural networks (RNN)21. Long short-term memory (LSTM) networks are common 

type of RNN22. We employed LSTMs that produce an encoding of the varying TCR and peptide 

into constant length real-valued encodings and created ERGO (pEptide tcR matchinG 

predictiOn). We show that ERGO significantly outperforms existing methods in both single 

peptide binding prediction and multi-peptide selection, although it is only trained for the TPP 

task. 

 

Results 
ERGO outline 

Target peptides and TCRs have different generation mechanisms (TCRs through VDJ 

recombination and junctional diversity11, and peptides through antigen generation, trafficking, 

processing and MHC binding23). Thus, ERGO uses different parallel encoders. At the broad 

level, we encode the CDR3 of each TCR and each peptide into numerical vectors. The encoded 

CDR3 and peptide are concatenated and used as an input to a feed-forward neural network 
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(FFN), which should output 1 if the TCR and peptide bind and 0 otherwise (Figures 1B,1C). All 

models are trained to predict only the TPP-I task but are tested on all tasks. At this stage, the 

MHC was not included, since it did not contribute significantly to prediction accuracy in the 

current formalism.  

For the peptides, we first use an initial random embedding and translated each amino acid 

(AA) into a 10-dimensional Embedding Vector. Changing the encoding dimension did not 

significantly change the obtained accuracy. In order to merge the encoding vectors of each 

position into a single vector representing the peptide, each vector was used as input to a LSTM. 

We used the last output of the LSTM as the encoding of the whole sequence. The embedding 

matrix values, the weights of the LSTM and the weights of the FFN were trained simultaneously. 

For the TCR encoding, we either used a similar approach or an autoencoder (AE) (See Supp. 

Mat. Methods and Figure 1C). 

These models were trained on two large datasets of published TCR binding specific 

peptides24,25. McPAS-TCR24 is a manually curated database of TCR sequences associated with 

various pathologies and antigens based on published literature, with more than 20,000 TCRβ 

sequences matching over 300 unique epitope peptides. These TCRs are associated with various 

pathologic conditions (including pathogen infections, cancer, and autoimmunity) and their 

respective antigens in humans and in mice. VDJdb25 is an open, comprehensive database of over 

40,000 TCR sequences and over 200 cognate epitopes and the restricting MHC allotype acquired 

by manual processing of published studies. For each TCR-peptide pair, a record confidence score 

was computed. 

 

Figure 1: A) Illustration of the tests we suggest for evaluating the model performance as 

explained – Single Peptide Binding (SPB), Multi-Peptide Selection (MPS) and TCR-Peptide 

pairing (TPP). B) LSTM based model architecture. C) Autoencoder based model architecture. 

D) ROC curve of autoencoder based model SPB performance on 3 human peptides from Dash et 

al. dataset. E-G) Comparison of amino acids of CDR3 beta sequences of TCRs binding Dash et 

al. peptides vs. TCRs which do not bind these peptides, in McPAS database. (logos were created 

with Two-Sample-Logos); The height of symbols within the stack in each logo indicates the 

relative frequency of each amino acid at that position. Only amino acids whose distribution 

differ significantly between the two sets are shown, and only 13 length TCRs were compared.  
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ERGO can predict TCR binding to specific epitopes or antigens (SPB task) 

 ERGO was trained to solve the TPP-I problem (pairing TCR and peptide) on the two 

datasets above, and then tested on all three mentioned tests. To test the performance of ERGO on 

the SPB task (detecting whether a previousely unseen TCR binds a known peptide), we analyzed 

the five most frequent peptides in each datasets and tested the possibility of detecting whether a 

randomly selected TCR binds the peptide. The AUC for the binary classifications ranged 

between 0.695 and 0.980 (Table 1). The results are not sensitive to the number of TCRs reported 

for the peptides, and all peptides with more than 50 reported TCRs had similar values (Table S4). 
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Table 1: Comparison between the different versions of the ERGO classifier (AE (Autoencoder) 

vs. LSTM and McPAS vs VDJdb) for the SPB task. The five most frequent peptides in each 

database are shown. Other less frequent peptides SPB results are in the Supp. Mat. The values 

are the AUC over the test set of a previousely unseen TCR for this peptide.  

 

Peptide McPAS Peptide VDJdb 

AE LSTM AE LSTM 

LPRRSGAAGA 0.772 0.760 KLGGALQAK 0.695 0.731 

GILGFVFTL 0.843 0.832 GILGFVFTL 0.820 0.817 

NLVPMVATV 0.835 0.821 NLVPMVATV 0.665 0.686 

GLCTLVAML 0.803 0.816 AVFDRKSDAK 0.676 0.695 

SSYRRPVGI 0.969 0.980 RAKFKQLL 0.828 0.825 

 

To compare ERGO to current approaches, we tested its performance on current tools that 

predict TCR-peptide binding. We first compared it to the work of Jokinen et al.18 who compared 

TCRs found by Dash et al.17 to bind three human epitopes and seven mice epitopes with TCRs 

from VDJdb database25, which bind additional 22 epitopes. These peptide-TCR pairs were 

compared with naïve TCRs not expected to recognize the epitopes. Jokinen et al. evaluated the 

TCRGP model using leave-one-subject-out cross-validation (LOSO). The TCRGP model was 

trained with all subjects but one at a time and tested on the last. In the VDJdb data, the authors 

use 5-fold cross-validation instead of LOSO. Other evaluations were reported by using leave-

one-out cross-validation of all unique TCRs (as defined by CDR3 sequence and V-gene). We 

compared ERGO when only the CDR3β sequence is utilized to the published TCRGP results for 

three specific human peptides from Dash et al.17 dataset. ERGO outperforms TCRGP models on 

most peptides, although ERGO was not trained to solve the SPB task for these specific peptides, 

but rather the more generic TPP task (Table 2, Table S5, figure 1D and Supp. Mat. methods for 

details of the training and test procedure for these and all other tests). 

 

We used two-sample-logos26 to compare the CDR3 sequences of cognate TCRs for the three 

human peptides from Dash et al. dataset with TCRs that do not bind these peptides in the McPAS 

database (Figure 1E-G). Only 13 AA long TCRs were compared to avoid any alignment bias. 

While one can clearly see that different peptides have different signatures, it is interesting to see 

that the signature is not equally positioned among peptides. For the GLCTLVAML peptide, a 

signature is divided equally along the TCR, with a strong bias for initial CSA and not CAS. The 

NLVPMVATV signature is distributed following the standard CAS to the end of the CDR3, 

while the GILGFVFTL binding peptides are characterized by a dominant RS at position 6-7 

 

Table 2: Comparison between the different versions of the ERGO classifier (AE vs. LSTM and 

McPAS vs VDJdb) and existing classifier for the SPB task. Bolded values are the best results. 

The peptides here are the human peptides in Dash et al. dataset proposed by Jokinen et al. The 

other VDJdb peptides tested by the same authors are in the Supp. Mat. The values are the AUC 

over the test set of previousely unseen TCR for this peptide.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 19, 2020. ; https://doi.org/10.1101/650861doi: bioRxiv preprint 

https://doi.org/10.1101/650861


Peptide ERGO ERGO 

best 

TCRGP 

(β,3), 

LOSO 

TCRGP 

(β,3), 

unique 

LOO 

TCRdist 

(β,3) McPAS VDJdb McPAS+ 

VDJdb 

AE LSTM AE LSTM AE LSTM 

GLCTLVAML 0.803 0.816 0.764 0.770 0.708 0.686 0.816 0.782 0.852 0.846 

NLVPMVATV 0.835 0.821 0.665 0.686 0.624 0.632 0.835 0.587 0.651 0.680 

GILGFVFTL 0.843 0.832 0.820 0.817 0.725 0.712 0.843 0.818 0.822 0.828 

 

The single peptide binding task can be extended to the single antigen protein task, where 

we predict whether a TCR would bind any peptide from a protein. Instead of testing whether an 

unseen TCR can bind a specific peptide, we tested whether it can bind any peptide from a target 

protein. The performance on this task varies drastically among target peptides, with AUC 

ranging from 0.71 to 0.97 (Table 3). This difference is not directly related to the number of 

target’s TCRs in the training set, but may rather represent the contribution of other factors not 

incorporated here, such as the alpha chain or the MHC. 

 

Table 3: Comparison between the different versions of the ERGO classifier (AE vs. LSTM and 

McPAS vs VDJdb) for the binding to a specific antigen. There are no previous results on this 

task. 

 

Protein McPAS Protein VDJdb 

AE LSTM AE LSTM 

NP177 0.772 0.767 IE1 0.703 0.738 

M1 0.843 0.832 M 0.825 0.820 

pp65 0.814 0.803 pp65 0.702 0.716 

BMLF1 0.808 0.819 EBNA4 0.711 0.717 

PB1 0.958 0.970 Gag 0.890 0.897 

 

Determining the target of a TCR (MPS task) 

To use a TCR as a useful biomarker, one should be able to predict which specific peptide 

it binds. To test for that, we computed the accuracy (as measured by the sum of the diagonal in 

the confusion matrix) of predicting the proper target, with a different number of possible targets 

(Figure 2A). Again, ERGO was not trained for this task, but for the TPP task. The targets were 

the peptides with the highest number of binding TCR in the databases (Table S6). The AE 

produces better accuracies than the LSTM and the prediction for the AE and VDJdb yields better 

accuracies than McPAS. An important result is that the accuracy plateaus at 0.5 even for 10 

peptides, suggesting that high accuracy can be obtained even when choosing from a large 

number of peptides. 

 

Figure 2: A) AUC per number of TCR-peptide pairs in McPAS-TCR and VDJdb datasets. B) 

ROC curve of TPP-I, II and III AE models performance on McPAS dataset C) AUC for TPP-I as 

a function of sub-sample size. D) AUC of TPP-I per missing amino-acids index. E) Number of 
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TCRs per peptide distribution in McPAS-TCR and VDJdb datasets, logarithmic scale. F) 

AUC per number of TCRs per peptide bins (bins are union of all TCRs that match peptides with 

total number of TCRs in a specific range). 

 

  

 

Table 4: AUC of TPP task with either known peptide and TCR (but unknown pairing TPP-I), 

known peptide unseen TCR (TPP-II) and unseen peptide and TCR (TPP-III). The results are the 

test AUC using either AE or LSTM on McPAS and VDJdb separately or on the joined dataset. 

The final column is the prediction of tumor antigens TCR binding. Again the AE consistently 

outperforms the LSTM, except for the TPP-III task, where increasing the training set size and the 

complexity of the encoders improves the performance.  

 

Evaluation 

AUC 

McPAS VDJdb McPAS+ 

VDJdb 

Tumor 

AE LSTM AE LSTM AE LSTM AE LSTM 

TPP-I 0.860 0.859 0.840 0.842 0.776 0.761 0.805 0.813 

TPP-II 0.810 0.798 0.792 0.764 0.770 0.745 0.805 0.813 

TPP-III 0.601 0.562 0.669 0.522 0.636 0.674 0.570 0.646 

 

Distinguishing TCRs binding different targets (TPP task)  

A more important task from a diagnostic point of view would be to distinguish between 

TCRs binding different peptides for any set of either known or previousely unseen TCRs and 

peptides. To test the specificity of the prediction, we evaluated ERGO’s AUC on the three TPP 

tasks. The easiest task (TPP-I) is predicting unknown TCR-peptide parings (AE AUC value 

0.86). A more complex task is the prediction of pairs containing a known peptide with an 
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unknown TCR (TPP-II – AE AUC value 0.81). The hardest pairing task is to predict the binding 

of a previousely unseen peptide and a previousely TCR (TPP-III). This task has never been 

tested and reaches an AUC 0.669 (Table 4 and Figure 2B).  

To test if this performance can be improved by enlarging the training set to better learn 

the generic properties, we trained ERGO on McPAS and VDJdb simultaneously, and indeed the 

more complex LSTM encoder reached a higher AUC of 0.674, suggesting that further increasing 

the training set would improve the accuracy.  

To further test the effect of the training set size, we subsampled the training set and tested 

the TPP-I AUC score for different sample sizes. The AUC increased with sample size and did 

not seem to saturate at the current sample size (Figure 2C). Some peptides have many reported 

TCRs binding them, while some have a single reported binding TCR. (Figure 2E) We tested 

whether a larger number of reported binding TCR improves accuracy (Figure 2F). Again, a 

higher number of bound TCRs induces higher prediction AUC, suggesting that larger datasets 

would further improve ERGO’s performance.  

 

Prediction of TCR-neoantigen binding 

ERGO may be essential for the development of future TCR-based diagnostic tools. 

However, it can already be used for the detection of TCRs that bind specific tumor antigens. 

Given a neoantigen extracted from full genome sequencing of tumors27,28 and a target TCR, one 

could estimate the binding probability of the TCR to such a neoantigen. To test for that, we 

applied ERGO to neoantigen binding prediction; We used a positive dataset of cancer neoantigen 

peptides and their matching TCRs, published by Zhang et al.29, and expanded it with TCR-

matching neoantigens in the McPAS-TCR and VDJdb databases. We tested again TPP-I, TPP-II 

and TPP-III. (Table 4), and got a high AUC for TPP-I and II (above 0.8), and 0.65 for the most 

complex TPP-III task. A caveat of this analysis may be that it was performed on a comparison of 

a dataset of TCRs binding neo-antigens and T cells from repertoires of healthy donors. Thus, 

formally this is not a direct measurement of the possibility of detecting neo-antigen specific 

TCRs within a donor.   

 

Comparison of TPP with literature.  

While TPP-III was never previously tested, TPP-II was recently tested by Jurtz et al.19, 

who used a convolutional neural network (CNN) based model, NetTCR, for predicting binding-

probabilities of TCR-HLA-A*02:01 restricted peptide pairs. An IEDB dataset was used to train 

the model. The MIRA assay provided by Klinger et al.30 was used for evaluating the model by 

testing the model performance on shared IEDB and MIRA peptides and new TCRs. Jurtz et al. 

used two models in their experiments. One was trained with positive IEDB examples and only 

negative examples made from the IEDB dataset itself (no additional sources) while another 

model had also additional naïve negatives31. We used the united IEDB and MIRA dataset 

provided by Jurtz et al. and created also negative examples from that dataset. We trained ERGO 

models with 80% of the united data (positive and negative examples) and evaluated the model 
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performance on the rest of the data (20%). Again, ERGO significantly outperformed the current 

results, 0.88 vs 0.73 (Table S3). 

CDR3 sequence characteristics  

To test which position along the CDR3 has the strongest effect on the binding prediction, 

we trained ERGO ignoring one TCR amino-acid position at a time, by nullifying the position in 

the autoencoder based model or by skipping that position input in the LSTM based model  

(Figure 2D). Omitting each one of the central amino-acids of the TCR's CDR3 beta (positions 7 

to 15) impairs the model's performance, especially in the LSTM-based model. The autoencoder-

based model is more stable than the LSTM based model, perhaps due to exposure to a variety of 

TCRs in the TCR autoencoder pre-training. 

 

Discussion 
We propose a set of standard tests to evaluate the accuracy of TCR-peptide binding and 

show that training a model using a combination of deep learning methods and curated datasets on 

the complex task of pairing random peptides and TCR can lead to high accuracy on all other 

tests. The main element affecting prediction accuracy is the training size. Enlarging the database 

improves the prediction accuracy for unseen peptides. In addition, when subsampling the 

existing datasets, the accuracy increases with sample size and does not seem to saturate at current 

sample size (Figure 2C).  
Several other elements can affect the results, such as the V and J gene used and the alpha 

chain. In general, TCR-sequencing has often been limited to the TCR β chain due to its greater 

combinatorial and junctional diversity10 and to the fact that a single TCRβ chain can be paired 

with multiple TCRα chains32. Pogorelyy et al.33 have shown concordance between TCRα and 

TCRβ chain frequencies specific for a given epitope and suggested this justifies the exclusive use 

of TCRβ sequences in analyzing the antigen-specific landscape of heterodimeric TCRs. 

Currently, most proposed classifiers have used only CDR3 beta chains4,34 but some attempts 

have been made to include alpha chains17. Only recently, with single-cell techniques that enable 

pairing of α and β chains sequences, more data on alpha-beta TCRs is accumulating35. Once 

large-scale curated alpha-beta TCR-peptide datasets are available, their integration into the 

current method is straight forward. 

ERGO is based on LSTM networks to encode sequential data. Previous models by Jurtz 

et al.19 used convolutional neural networks (CNN) for a similar task. While CNN are good at 

extracting position-invariant features, RNN (in particular LSTM) can catch a global 

representation of a sequence, in various NLP tasks36. Similarly, we did not use attention-based 

models37 since the TCR can bind the peptide MHC at different angles and specific TCR positions 

are not well correlated with specific peptide positions38. 
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ERGO randomly initializes our amino-acid embeddings and trains the embeddings with 

the model parameters. Using word-embedding algorithms such as Word2Vec39 or GloVe40 can 

give a good starting point to the embeddings. Special options for amino-acids pre-trained 

embeddings include the use of BLOSUM matrix41 or Kidera-factors-based manipulations42. As 

pre-trained embedding usually provides better model results, we plan to further test such 

encodings. 

The prediction method presented here can serve as a first step in identifying neoantigen-

reactive T cells for adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILs) 

targeting neoantigens43. The ERGO algorithm can accelerate the preliminary selection of valid 

target epitopes and corresponding TCRs for adoptive cell transfer. Finally, an important future 

implication would be to predict TCR-MHC binding, such prediction can be crucial for improving 

mismatched bone marrow transplants44. 
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