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Abstract: Endogenous genotoxic stress occurs in healthy cells due to competition between DNA 

replication machinery, and transcription and topographic relaxation processes. This causes 

replication fork (RF) stalling and regression, which can further collapse to form single-ended 

double strand breaks (seDSBs). To avoid mutagenesis, these breaks require repair via Homologous 

Recombination (HR). Here we apply multicolor single molecule super resolution microscopy to 

visualize individual RFs under mild stress from the trapping of Topoisomerase I cleavage 

complexes, a damage induction which closely mimics endogenous replicative stress. We identify 

RAD51 and RAD52, alongside RECQ1, as the first responder proteins to stalled but unbroken 

forks, whereas Ku and MRE11 are initially recruited to seDSBs. Ku loads directly onto the DSB 

end whereas MRE11 associates with nascent DNA away from the break, and both proteins 

colocalize contemporaneously with a single seDSB. We are thus able to discern closely related RF 

stress motifs and their repair pathways in vivo, uncovering mechanistic insights into the nature of 

RF damage and repair. 

 

Keywords: replication stress, fork regression, DNA damage, double strand breaks, super 

resolution microscopy  
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Introduction  

DNA DSBs are highly genotoxic lesions caused by both exogenous agents and endogenous events 

related to replication and transcription. Repair of these lesions is predominantly carried out via 

either non-homologous end joining (NHEJ) or homologous recombination (HR), with the latter 

pathway requiring a homologous sequence as a template for repair [1, 2]. Recently, the existence 

and conversion of arrested RFs into either regressed ‘chicken foot’ motifs containing a Holliday 

junction, or single-ended DSBs (seDSBs) (Figure 1A) has been unambiguously demonstrated in 

higher eukaryotic cells [3-5]. Specifically, it has been shown that upon mild replication stress (for 

example, clinically induced by Topoisomerase I (TopI) inhibiting anti-cancer drugs), replication 

forks (RFs) rapidly slow and reverse rather than undergo an inevitable collision with lesions ahead 

of the fork [6]. This contrasts with another common stressed RF model which involves stalling of 

the polymerases with continued unwinding resulting in ssDNA generation[7]. This motif can be 

better mimicked using hydroxyurea [8, 9], which depletes synthesis substrates – 

deoxyribonucleotides. Conversion of polymerase-stalled RF motifs into regressed forks has not 

yet been observed and it is understood that conversion of HU-stalled RFs into DSBs requires 

extended and/or elevated levels of stress [7, 9]. This is in contrast to CPT-stalled RFs, which better 

mimic endogenous DSB-causing lesions[5]. Which is to say that an individual RF colliding with a 

single stranded break or physical blockage, can result in a DSB, whereas, depletion of substrates 

cannot, in and of itself, generate these breaks. For this reason, historically, CPT has been used to 

generate DSBs whereas mild HU treatment has been used to generate fork stalling, although 

more recent work has demonstrated the interconnected complexity of the various RF stress 

motifs [4, 10].  
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With the recent discovery of RF regression in metazoan cells, it is now hypothesized that fork 

reversal occurs as a specific means, in the event of upstream lesions, to avoid DSB induction, a 

type of damage that is fundamentally more complicated to repair than damaged but unbroken RFs. 

In cases of endogenous DSB induction, even in the absence of stress-inducing drugs, lesions ahead 

of the RF, such as those caused by processes involving single strand break induction including 

transcription and topographical relaxation, result in characteristic seDSBs that require specific 

repair by HR [11-14].  

A range of proteins has been identified that regulates and contributes to the HR pathway, and a 

progression of functional interactions has been proposed to describe it [15-17]. Recently, we used 

single molecule super resolution (SR) imaging to visualize several of the key steps of this process 

[18]. Several of the proteins involved in HR are now believed to play protective, reparative, or 

even antagonistic roles at unbroken but stalled/regressed RFs [19-22]. Following generation of a 

DSB, either the HR or NHEJ repair pathway must be selected, and there are clear preferences for 

one or the other depending on cell cycle status, pathway deficiency, and DSB end chemistry [23-

25]. However, the mechanisms of DSB repair pathway choice remain poorly understood [26]. This 

is in part because interactions between, and competition among, the NHEJ protein Ku and initial 

HR proteins such as MRE11 (as part of the MRN complex), BRCA1, CtIP, and others have not 

been definitively characterized in vivo. MRN, comprising MRE11-RAD50-NBS1, is known to be 

critical for HR and has been shown to localize immediately to DSB sites with a high affinity for 

both double stranded DNA and DSBs [27]. This complex is responsible for recruitment of other 

nucleases, helicases, and mediators, which together orchestrate the extensive resection required at 

DSBs to generate long 3’ ssDNA overhangs. This resection is an accepted hallmark of canonical 

HR, and commits the break to HR repair [27, 28]. In contrast, the Ku70/Ku80 ring-motif 
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heterodimer (Ku) is understood to cap the DSB end, blocking exonucleolytic resection and 

stimulating NHEJ repair [29]. How these two responses to DSBs compete and dictate the repair 

pathway remains unclear, particularly as both MRN and Ku interactions with DSBs are 

independent of much of the DNA damage response-signaling cascade and lack clear recruitment 

pathways [2]. MRE11 has also been identified as both an antagonist and a mediator of stalled RF 

protection, with some studies demonstrating BRCA2- and PARP1-dependent RF protection from 

MRE11 degradation [8, 20, 30]. Conversely, others have argued that recruitment of PARP1 by 

MRE11 is required for reparative resection [31]. 

A limiting factor in defining the internal organization and repair progression at stalled/regressed 

and broken RFs in vivo has been the spatial resolution of fluorescence microscopy, a limitation 

imparted by the diffraction of electromagnetic radiation [32]. This has made it exceptionally 

difficult to distinguish between single and clustered repair sites, as well as the many proteins 

involved. Indeed, conventional immunofluorescence imaging routinely requires upwards of 100 

colocalized fluorophores to generate discernable foci within the nucleus [33], often necessitating 

the use of clustered or overly potent damage induction. Single molecule localization SR imaging 

confers a ten-fold improvement in image resolution over conventional fluorescence microscopy 

[32, 34] together with single-molecule sensitivity, and thus affords the possibility of examining 

single DSB sites in vivo [18]. Here we describe assays based on the dSTORM variant of SR [35] 

to achieve this, and their application to determine the specific features and differentiation of early 

repair responses at single stalled RFs and seDSBs in vivo. As a result, we have been able to 

specifically visualize the initial recognition processes of stressed and broken RFs by first responder 

proteins, and differentiate between these distinct damage motifs. We found that, along with the 

repair helicase RECQ1, RAD51 and RAD52 are recruited to stalled but unbroken forks within the 
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first 60 minutes of damage response; this contrasts with the later recruitment of RAD51, RAD52 

and BRCA2 to DSBs which we previously found requires 2-4 hours of resection using SR 

microscopy assays [18]. DSBs recruit both Ku and MRE11 irrespective of their eventual repair 

pathway choice and do so in a spatially distal organization such that Ku interacts with the DSB 

end and MRE11 with nearby double-stranded DNA. PARP-inhibition successfully blocks stalled 

fork protection, converting these damage structures into seDSBs. Our findings represent the first 

observation and differentiation of individual stalled/regressed versus broken RFs in vivo and 

characterizes the behavior of first responder proteins to these sites. 

 

 

 

Results 

Visualization of distinct replication-associated seDSBs and fork stalling events in individual 

cells 

We used multi-color single molecule SR microscopy [32, 34, 36-38] to determine the 

spatiotemporal behavior and crosstalk of key ‘first responder’ proteins at individual damaged RFs 

in human cells (Figure 1A-B). To achieve this, we synchronized U2OS cells in early-mid S-phase 

and induced a low level of replication stress by treating them with 100 nM of camptothecin (CPT) 

for one hour [5, 12]. Concurrently, we pulse-labelled nascent DNA (naDNA) using EdU to detect 

all active RFs [17, 38, 39]. We considered the potential for this simultaneous damage/labelling 

approach to result in a loss of all EdU incorporation in response to damage to all RFs, or complete 
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cell cycle arrest. Comparison of CPT-treated and control cells, however, did not demonstrate any 

loss of EdU signal and we further concluded that only a minor proportion of RFs were affected by 

the low level of CPT damage (Figure 1C). This was in good agreement with previous reports of 

low DSB induction at similar doses [5, 6]. Furthermore, our observations support recent work that 

shows that individual RFs exist within the cell spatially distinct from each other, with only pairs 

of RFs from divergent origin firings forming significant higher order structures during early-mid 

S phase [40, 41]. Importantly, these findings, in agreement with our own observations, have 

contradicted the longstanding model of replication organization which postulated the existence of 

replication factories which contain and coordinate numerous replicons.  By costaining pulsed EdU 

with the replication proteins PCNA and MCM we could well discern individual forks and their 

directionality (Figure S1). However we do note ongoing contention regarding this issue with new 

SR studies that describe replication domains in which RFs can be differentiated, but occur in 

organized structured areas [42]. In light of this ongoing controversy, we again highlight the 

exceptionally low CPT dose, and its minimal effects on EdU incorporation, as well as protein 

recruitments (Figure 1C). Finally, we also established that the information obtained in 2D SR 

projections was representative of, and did not alter conclusions from, flattened 3D SR images 

(Figure S1).   

At low dosages, CPT captures TopI cleavage complexes (TopIcc) ahead of a subpopulation of 

progressing RFs; this causes them to slow, stall and potentially regress or break to form seDSBs 

[5]. Therefore, by labeling naDNA, we established a marker for CPT-damaged RFs as we have 

previously shown [17, 18]. Apart from advantageously positioning DSBs at naDNA foci, CPT is 

an ideal drug for studying the HR process because the resulting seDSB products closely resemble 

those generated by endogenous stress from RF-competitive transcription and topographical 
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modification activity [5, 10]. To provide colocalization information, we also developed and 

validated co-staining assays optimized for SR imaging based on a modified TUNEL assay for 

enzymatically labelling DSBs [43] as well as immunolabeling protocols for visualizing various 

key DNA repair proteins.  

 

 

Figure 1  
Super-resolution visualization of CPT-induced damaged replication foci.  
(A) Experimental scheme used to generate and visualize the two hypothesised damage motifs 
caused by replication stress. 
(B) Representative super-resolution image of a single nucleus damaged with 100 nM CPT and 
labelled for naDNA (using EdU, magenta), Ku (cyan) and RECQ1 (yellow). Representative 
zoomed in images showing either Ku or RECQ1 localized to naDNA foci. Scale bars = 5 μm in 
whole cell image, 500 nm in zoomed sections.  
(C) Quantification of the total percentage of RF foci associated with DSBs (via TUNEL signal), 
Ku, MRE11 and RECQ1 in CPT-damaged cells.  
(D) Three color analysis showing the exclusionary relationship between RECQ1 and Ku at repair 
foci.  
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Complete N values available in Table S1. All graphs show mean ± s.e.m. Student’s t-test results 
shown for comparison with control levels: ns depicts p>0.05, *** depicts p<0.001, **** depicts 
p<0.0001.  
 

We used these assays to generate three-color SR images of z-slices of single nuclei in which 

hundreds of single replication foci could be distinguished and various colocalized proteins 

quantified. To test our assay, we labeled DSB ends using the TUNEL assay and immunolabelled 

several key proteins that have been identified as potential first responders in different fork repair 

pathways, including Ku, MRE11, RAD51, RAD52 and TOPI [44-47]. To specifically detect 

stalled RFs, we immunolabelled RECQ1 helicase, because it has recently been shown to be 

involved in rescue of stalled but unbroken RF motifs but has no defined role in DSB repair [45, 

46]. Immunostaining of Ku and RECQ1 within the same cells immediately revealed an exclusive 

relationship in which these two proteins were observed to minimally colocalize with each other at 

naDNA foci (Figure 1B). Recent literature has demonstrated Ku’s affinity for blunt DSB ends in 

vivo and in vitro [29] and hypothesized Ku loading at DSBs in vivo irrespective of the eventual 

repair pathway [47, 48]. In conjunction with our finding that Ku did not colocalize with RECQ1, 

a known regressed RF repair helicase [46], we identified Ku as a specific marker for seDSBs but 

not stalled RFs.  As a preliminary calculation we quantified the percentage of replication foci 

colocalized with Ku or RECQ1 or with MRE11, a protein with hypothesized roles at both seDSB 

[49] and stalled RFs [20, 30], or with DSBs identified using the modified TUNEL assay. This 

confirmed that only a minority of RFs had been affected by the low dosage of CPT, with between 

10 and 20% of replication foci positive for a damage marker (Figure 1C). Furthermore, by only 

considering naDNA foci that colocalized with either Ku, RECQ1, or both we were able to exclude 

unaffected RFs (~75%) and determine that indeed very few damaged naDNA foci colocalized with 

both Ku and RECQ1 (7.6%) (Figure 1D). This clearly demonstrated the specificity of these two 
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proteins (and their respective antibodies) for the different damage species and showed that naDNA 

labelling and SR imaging could successfully discern individual stalled RFs from seDSBs in vivo, 

something that has not been achieved previously.   

Unexpectedly, the percentage of RFs colocalized with MRE11 was lower than those colocalized 

with Ku, which appeared to contradict the hypothesis that MRE11 would be detected at both stalled 

and broken RFs, whereas the TUNEL assay yielded the highest level of occurrence, seemingly 

indicating that some DSBs had not recruited Ku or MRE11. We considered this an unlikely 

possibility because without Ku/MRE11 recruitment a DSB would be left unrepaired resulting in 

gross genomic instability. We reasoned that this observation was more likely due to limitations of 

the antibody staining, in particular under-staining of individual proteins due to steric hindrance of 

the antigen, and possible under-sampling because of the super-resolution modality. In contrast, the 

TUNEL assay appeared highly specific for DSBs within naDNA foci, possibly due to a longer 

incubation time and the comparatively smaller size (< 3 nm) of the fluorophore conjugate.  

To achieve enhanced quantification of the different naDNA proteins association events and to 

mitigate the potential for over-estimation of colocalization due to the densely populated nuclear 

environment and cell-to-cell differences in total signal densities, we used a recently established 

analytical protocol for normalizing the number of detected overlaps to the number of overlaps due 

to random colocalization [50]. For each single nucleus image, the naDNA and TUNEL/protein 

foci were defined using automated particle analysis and then the foci in one channel were randomly 

redistributed throughout the nuclear region of interest (ROI) using a Monte Carlo simulation. The 

number of overlaps detected in the real nucleus image could then be ratioed to the average number 

of overlaps generated by the random simulation (taken from 20 simulations) to give a value of 1 if 
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the real-image associations were random and a value above 1 if there was more-than-random 

colocalization. Based on this analysis, a value of 2 indicated twice as many colocalizations as 

compared to random, a value of 3 indicated triple, and so on. Importantly, this successfully 

normalizes cell-to-cell differences in nuclear size as well as the number, size and density of 

clusters. Furthermore, even if hundreds of colocalizations are present because of the high density 

of the image, the random simulations will return this same number and the colocalization will be 

determined insignificant. Such analysis also allows comparison of colocalization in CPT-treated 

cells with both control levels detected in healthy replicating cells and random levels in simulated 

data (For details of this and associated analytical protocols for SR data see Figure S2 and [18, 50]).  

To test this analysis, we quantified colocalization of TUNEL-labelled DSBs, the phosphorylated 

histone damage marker γH2AX, and TopI and found that their colocalization increased 

significantly following CPT damage (Figure 2A-D). The above-random overlap of γH2AX in 

control cells was expected, particularly as we used U2-OS cells which are prone to increased 

endogenous replication stress and γH2AX background levels [51]. TopI association with 

undamaged RFs occurs due to its role relaxing DNA supercoiling ahead of progressing forks [6]. 

Furthermore, we hypothesized that the detected control level of TUNEL signal might potentially 

be indicative of non-specificity of the assay at unbroken RFs which called for further experiments 

and analysis.  

In contrast to the TUNEL and γH2AX images, the associations of Ku, MRE11 and RECQ1 with 

naDNA in undamaged control cells were only slightly more than calculated in random simulations, 

and indeed, equivalent to random localization in the case of RECQ1 (Figure 2E-F). The small 

amount of MRE11 and Ku colocalization could be explained by the transient binding of these 
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proteins, both of which have affinities for ssDNA, nicks, and gaps that are not associated with 

DSBs [52, 53].  This result revealed only minimal association between repair proteins and naDNA 

in undamaged cells and demonstrates the sensitivity of our colocalization analysis. Importantly, 

quantification of the association of Ku, MRE11 and RECQ1 in CPT-treated cells demonstrated 

significant recruitment as was expected in response to fork stalling and seDSB induction (Figure 

2).  
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Figure 2  
Both fork protection and HR repair proteins colocalize with replication foci following CPT-
induced damage.  
(A) Quantification of colocalization of EdU labelled replication foci (naDNA) with DSBs (via 
TUNEL labelling), TopI, and γH2AX in undamaged and CPT-damaged cells.  
(B) Representative SR image of a single nucleus damaged with 100 nM CPT and labelled for 
naDNA (magenta) and DSBs (using TUNEL)(yellow). Zoomed in regions show colocalization.  
(C) Representative SR image of a single nucleus damaged with 100 nM CPT and labelled for 
naDNA (magenta) and TopI (yellow). Zoomed in regions show colocalization. 
(D) Representative SR image of a single nucleus damaged with 100 nM CPT and labelled for 
naDNA (magenta) and γH2AX (yellow). Zoomed in regions show colocalization. 
(E) Quantification of colocalization of replication foci (naDNA) with Ku, MRE11, and RECQ1 in 
undamaged and CPT-damaged cells.  
(F) Representative SR image of a single nucleus damaged with 100 nM CPT and labelled for 
naDNA (magenta) and MRE11 (yellow). Zoomed in regions show colocalization. 
Complete N values available in Table S1, number of replicates >3, number of cells imaged 
typically 20-60. All graphs show mean ± s.e.m. Student’s t-test results shown for comparison with 
control levels: *** depicts p<0.001, **** depicts p<0.0001. Scale bars = 3 μm in whole cell 
images, 250 nm in zoomed sections. 
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Ku and MRE11 are contemporaneous and persistent first responders to seDSBs. 

Ku’s comparable level of recruitment with MRE11 to seDSBs was somewhat surprising given 

their opposing and competitive roles in DSB repair and a general acceptance that Ku loading at 

DSBs initiates repair via NHEJ and blocks recruitment of HR proteins [54, 55]. Recent studies 

have found evidence that on short timescales Ku can be loaded to HR-repaired DSBs [48] and, 

specifically, to seDSBs, however given the one hour of CPT-damage and evidence that HR 

nucleases actively remove Ku [47], we expected to detect lower levels of colocalization. 

Importantly, it is well documented that CPT-treatment generates seDSBs that are repaired by HR 

because, as well as generating these breaks specifically in S-phase, the single-ended nature of the 

breaks precludes ligation to an opposing strand. Thus, we concluded that we were observing 

persistent Ku recruitment to DSBs that would, nonetheless, ultimately be repaired by HR.  

In order to focus on the first responder proteins, we confirmed the temporal progression of Ku, 

MRE11, and RAD51 so as to separate the key canonical steps involved in HR – break recognition, 

resection, RAD51 nucleoprotein filament formation, homology search and repair. In doing this we 

aimed to demonstrate that our observations immediately following one hour of CPT-treatment 

were specific for early HR. We found that although Ku was initially present at seDSBs, within 60 

minutes of recovery (and thus potentially 2 hours after break induction) it had been removed (SI 

Figure 3A). In contrast, MRE11, was recruited to repair foci and remained strongly associated for 

the first 2 hours of repair during which time naDNA was resected to generate ssDNA (SI Figure 

3B). This amount of time for resection, as well as recruitment of various other HR mediators, is in 

good agreement with previous reports as well as a recent study from our lab [18, 56]. Coinciding 

with resection, association of RAD51 was detected most strongly at 2-4 hours at which time the 

RAD51/ssDNA nucleofilament was successfully formed prior to homology search (SI Figure 3C). 
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12 hours after damage induction, we observed that RAD51 levels had returned almost to control 

levels, providing an approximate timescale for in vivo HR repair, in agreement with our previous 

observations [18].  

These data confirmed that our observations of Ku and MRE11 localization to RFs immediately 

following CPT treatment were indicative of initial damage recognition processes. Next we sought 

to determine the specificity of the TUNEL assay for seDSBs because, although we detected an 

increase in TUNEL signal following CPT-treatment, we hypothesized that some of this signal 

could be due to stressed RF species, in particular from stalled and regressed replication forks, 

because of the high level of colocalization detected in undamaged cells (Figure 2A) [5, 6]. This 

would present a confounding variable in our use of the TUNEL assay as a seDSB-specific marker 

for probing the spatial and interdependent relationships of proteins at RF-associated DSBs. 

Demonstrating that this assay could differentiate between stalled and broken forks would allow 

further investigation into the key underlying mechanisms of CPT damage – and, indeed, of 

endogenous DSB-inducing replication stress, namely that the cell employs various complex 

mechanisms by which to avoid RF collision resulting in DSBs. Previously, it has been shown that 

this involves slowing, or complete stalling, of the RF, which can traditionally be visualized using 

pulse/chase DNA fiber analysis, and reversal of the fork to generate a four-way junction, as has 

more recently been shown using electron microscopy [3, 6, 44, 45]. These stressed RF motifs do 

not harbor a DSB and so are, presumably, more easily repaired, however, the regressed arm of a 

RF presents as a blunt end which could, conceivably, be detected by the TUNEL assay and prove 

difficult to distinguish by SR.  
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Figure 3.  
Ku and MRE11 colocalize to seDSB repair foci in a distally separated arrangement with Ku 
associating with the DSB end and MRE11 with nearby naDNA.  
(A) Quantification of colocalization of DSBs (via TUNEL labelling) with Ku in control cells and 
in cells immediately following treatment with NCS or CPT.  
(B) Quantification of colocalization of DSBs (via TUNEL labelling) with MRE11 in control cells 
and in cells immediately following treatment with NCS or CPT.  
(C) Three color analysis of TopI and DSB (using TUNEL labeling) localization at repair foci 
immediately following 1 hour of CPT damage.  
(D) Three color analysis of Ku and DSB (TUNEL) localization at repair foci immediately 
following 1 hour of CPT damage.  
(E) Three color analysis of MRE11 and DSB (TUNEL) localization at repair foci immediately 
following 1 hour of CPT damage.  
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(F) Three color analysis of MRE11 and Ku localization at repair foci immediately following 1 
hour of CPT damage. 
(G) A histogram (top) and resulting 3D color-contoured distribution (bottom) and accompanying 
model (right) showing quantification of the rendered distance between the centers of mass of the 
same super-resolved RPA foci immunolabeled indirectly with mouse-anti-RPA/Alexa-568-anti-
mouse and directly with Alexa-488 conjugated rabbit anti-RPA. These distributions depict proteins 
closely associated within the foci because of RPA accumulation on ssDNA.  
(H) Color-contoured protein-protein association distribution maps of protein associations 
immediately following CPT damage. The red overlap distribution shows the RPA/RPA modelled 
proximal distribution.  
(I) A model depicting the association of Ku and MRE11 with a seDSB repair foci in which the 
TUNEL signal localizes to the break alongside KU while MRE11 localizes distally to double-
stranded naDNA.  
Representative foci shown, scale bars represent 250 nm. Complete N values available in Tables 
S1-2, number of replicates >3, number of cells imaged typically 20-60, number of individual foci 
manually scored typically 50-70.  
 

Thus, to establish the specificity of the TUNEL assay and to further verify the lesion-specific 

detection of our assays, we induced two distinct types of DNA damage, by treating cells with either 

neocarzinostatin (NCS, 200 ng/ml, 1 hour), which generates two-ended DSBs without inducing 

replication stress [57], or with a low dose of hydroxyurea (HU, 1 mM, 4 hours), a small molecule 

drug that causes replication stalling but minimal DSBs under the conditions used [9, 22]. In the 

case of NCS damage, we were unable to use naDNA as a marker for potential damage sites because 

NCS-induced DSBs are randomly distributed throughout the nucleus, and are not RF specific. 

Instead we quantified the colocalization of TUNEL signal with MRE11 and Ku immediately 

following damage and detected a significant increase demonstrative of NCS-induced DSBs (Figure 

3A-B). In contrast, quantification of TUNEL association with both Ku and MRE11 in HU treated 

cells showed no significant increase which would have indicated off-target TUNEL labelling of 

stalled RFs and their association with Ku/MRE11 (Figure 3A-B). Furthermore, no colocalization 

between TUNEL and RECQ1 was detected in NCS-damaged cells (SI Figure 4A). Interestingly a 
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persistent non-random level of TUNEL and TUNEL-associated MRE11 and Ku existed within 

undamaged cells, possibly due to genuine endogenous levels of genomic stress which are known 

to be elevated in cancer cells [58, 59]. These observations were further confirmed by quantification 

of naDNA association with Ku and MRE11 in HU-treated cells, which did not increase with 

damage because of an absence of DSBs (Figure 3A-B). 

 

Colocalized Ku and MRE11 at seDSBs are distally separated on the DNA.  

Confident that the TUNEL assay specifically labelled DSBs and not stalled or regressed RFs, and 

that by fixing cells immediately after one hour of CPT treatment we were visualizing the initial 

break recognition steps of HR repair, we endeavored to elucidate further spatiotemporal detail. 

Analysis of three-color images in which both DSBs (via TUNEL) and TopI were labeled alongside 

naDNA showed that DSB localization to the RF is dependent on the presence of TopI. This result 

was determined by quantifying the percentage of naDNA foci that were positive for only one or 

both of the two signals, (SI Figure 2).  

Demonstrating the dependence of DSB formation on TopI, we found no colocalization between 

DSBs with replication foci in the absence of a coinciding TopI signal. In contrast, 38.5% of 

naDNA-associated TopI was detected without a colocalized DSB, likely because of TopI either 

trapped or transiently bound ahead of unbroken RFs (Figure 3C). 61.5% of TopI-positive 

replication foci were also positive for a TUNEL signal, showing a strongly dependent 

colocalization. Together, these observations demonstrate successful induction of DSBs due to CPT 

captured TopI complexes colliding with active replication forks.  
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Next, we considered Ku and MRE11 and their interplay at DSBs. While MRE11 is an integral 

resection mediator necessary for HR of DSBs, Ku is a core NHEJ protein and its fast unloading 

and exclusion from HR-fated seDSBs has previously been shown [60, 61]. Nevertheless, we note 

that the unloading of Ku after one hour is in good agreement with its natural dissociation rate [62] 

and with recent observations [63] including the blocking of Ku reloading onto minimally resected 

DNA ends [64]. 

To investigate the crosstalk of MRE11 and Ku at DSBs, we assessed three-color images to discern 

their interplay at repair foci. Both MRE11 and Ku were found to colocalize strongly with naDNA 

associated seDSBs marked by TUNEL, with 66.7% of all Ku positive RFs displaying a DSB signal 

alongside Ku, while 79.2% of the naDNA foci colocalized with either a DSB or MRE11 

demonstrated the coexistence of MRE11 alongside the DSB.  Only 20.8% of all DSBs detected 

lacked a colocalized Ku signal, whereas 19.6% lacked an MRE11 signal. Ku was not detected at 

naDNA foci in the absence of a break, and only 13.7% of MRE11 association was with RFs lacking 

a DSB signal (Figure 3D-E). When MRE11 and Ku were co-stained, they were found to associate 

with repair foci both individually (26.2% and 34.6%, respectively) and together (39.2%), 

convincingly demonstrating that neither MRE11 nor Ku localization at a single DSB precluded 

association with the other (Figure 3F).  

Because of the high degree of colocalization of Ku with MRE11 at repair foci and their contrary 

roles in repair pathway choice, we set out to define the internal spatial arrangement of these key 

proteins within single repair foci by taking advantage of the ten-fold enhanced resolution of our 

images. To do this, we modelled two-color SR images of closely associated proteins by dual-

labelling RPA with Alexa Fluor 568 and 488 in fixed, CPT-damaged cells (Figure 3G) [18]. We 
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then determined the lateral offsets between the two different color signals for more than 50 foci to 

generate a histogram and 2D protein-protein association distribution map. Because the two 

different immunolabels of RPA target the same underlying RPA focus, the detected lateral offsets 

(defined as the protein-protein association distribution) represent protein-protein colocalization 

that is predominantly proximate and potentially interacting. By similarly determining the 

distribution maps of pairs of proteins, or DSBs and proteins, colocalized with repair foci, we were 

able to establish whether they were proximally or distally associated with one another (SI Fig. 2C). 

The DSB-TopI association distribution was found to be narrow and spatially proximal, matching 

closely the distribution determined for dual-stained RPA (Figure 3H, red complexed distribution 

shown from 3G). This confirmed that DSBs occur close to CPT-trapped TopIccs, and that collision 

between RFs and single stranded lesions are the predominant cause of the induced DSBs. 

Similarly, the DSB-Ku spatial distribution demonstrated a close proximal association due to the 

loading of Ku onto the broken DNA end. In contrast, analysis of the association distribution 

between both DSBs and MRE11, and MRE11 and Ku, demonstrated distal arrangements in which 

MRE11 associated with naDNA within the repair foci but away from the seDSB site and Ku 

(Figure 3H-I). Thus, although MRE11 and Ku routinely colocalize at the same DSB focus, Ku 

associates directly with the DSB end, while MRE11 localizes distally to naDNA away from the 

break. This observation is consistent with the endonuclease activity of MRE11, but contradicts 

current models in which MRE11, as part of the MRN complex, interacts with dsDNA close to the 

DSB site [23, 48, 49].  

 

 

Stalled RFs recruit RAD51 and RAD52 for protection and repair. 
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Although the expected temporal progression of break recognition, resection, and RAD51/ssDNA 

nucleofilament formation was largely reflected in our data (SI Figure 3), we were surprised to 

detect small, yet statistically significant, accumulations of RAD51 with replication foci within 60 

minutes of CPT treatment (Figure 4A). Even more surprisingly, the observed low levels of 

RAD51-naDNA association returned to control levels after a further 60 minutes of recovery, but 

was observed to return to significantly high levels at two hours recovery. This latter time-point is 

indicative of resection having occurred allowing for construction of the RAD51-ssDNA 

nueclofilament prior to homology search [18]. While RAD51 is a key protein in HR, 

nucleofilament formation and recombinase activity have been shown to occur only after extensive 

resection and RPA coating [28]. Because of this, RAD51 foci formation is usually detected 2-8 

hours following DSB induction [65-68]. Moreover, despite a significant increase in colocalization 

with RF foci immediately following CPT treatment, this could not have represented nucleofilament 

formation because of its return to control levels after 60 minutes of recovery. In light of recent 

reports on the interplay of RAD52 with RAD51, we also quantified RAD52 localization to naDNA 

foci and found that it followed a similar pattern to RAD51 of immediate recruitment before 

dissipating after one hour. (Figure 4A).  

To further elucidate the role of the rapidly recruited RAD51 and RAD52, we analyzed three-color 

images in which RAD51 was co-stained with naDNA and TUNEL-labeled seDSBs. This revealed 

that RAD51 was excluded from DSB positive naDNA, with a greater number of RAD51-positive 

RF foci (54.3%) than DSB-positive foci (40.4%), but minimal colocalization of RAD51 and DSBs 

(5.3%) (Figure 4B). Similarly, co-staining of RAD51 with either Ku or MRE11 revealed either 

minimal (7.9%) or no colocalization at replication foci, respectively (Figure 4C-D). We interpret 

these observations to mean that while Ku and MRE11 colocalize strongly with replication foci 
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harboring seDSBs, the early RAD51 and RAD52 association with replication foci immediately 

following CPT treatment entails recruitment independent of break formation and canonical HR 

repair. Strikingly, we found significant colocalization between RAD51 and RECQ1, implicating 

that the detected early RAD51 recruitment occurs at stalled RFs (Figure 4E).  

Despite a lack of well-established role in HR, mammalian RAD52 forms foci during repair and 

colocalizes with RAD51 foci during late recombinase activity [68, 69]. More recently, we 

demonstrated that in vivo RAD52 acts as the key mediator of early ssDNA/RAD51 interaction, but 

that it can be replaced by BRCA2 without functional consequence [18]. We therefore considered 

the possibility of a similar RAD51/RAD52 association and function independent of HR. To test 

this hypothesis we quantified the change in colocalization between RAD51 and RAD52 

immediately following damage and after one hour of recovery, and detected an increase in 

colocalization at the 0 hour time point but not after 1 hour of recovery, at which time it was found 

to be at the same level as in control, undamaged cells. This was in agreement with the trends of 

both proteins’ independent associations with naDNA (Figure 4F). Three-color analysis of these 

foci confirmed that RAD51/RAD52 colocalized together at naDNA foci immediately following 

CPT damage (Figure 4G). Based on these observations, we determined that RAD51/RAD52 

recruitment to replication foci, while still a consequence of CPT-induced replication stress, 

occurred specifically at unbroken forks that have stalled or regressed [6, 9, 19, 45]. 

To further demonstrate this unexpected differentiation in first responder proteins between stalled 

and broken RFs we again treated cells with HU and assessed colocalization of RAD51, RAD52, 

RPA and BRCA1 with naDNA [70]. Cell were treated with 1 mM of HU for 4 hours, resulting in 

replication stress and fork stalling, but minimal fork breakage [9]. Under these conditions we found 
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that RAD51, RAD52 and BRCA1 all localized to RFs (Figure 4H), but upon HU removal, this 

association diminished within 90 minutes, demonstrating a much faster repair process than 

canonical HR, which takes several hours. Importantly, we did not detect increased RPA at these 

foci at either 0 or 90 minutes of recovery following HU treatment, showing the lack of extensive 

resection required for repair of stalled but unbroken RFs. Thus, notwithstanding questions 

concerning the role of RAD52 [71-74], these observations supported our hypothesis that both 

RAD51 and RAD52 are recruited to stalled/regressed RFs.  

To contrast HU treated cells, we also assessed cells treated with NCS to generate DSBs in the 

absence of RF stress. In these cells we found no increased association between DSBs and either 

RAD51 or RAD52 immediately following one hour of NCS damage (Figure 4I) further 

demonstrating the early RAD51/RAD52 recruitment to DSBs is uniquely associated with RF 

stalled/regression. Finally, we assessed early MRE11 association with RAD51 across all drug 

treatments used here and found no evidence of colocalization, once again revealing their mutually 

exclusive roles at seDSBs and stalled RFs immediately after low levels of damage induction (SI 

Figure 4B).  
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Figure 4  
RAD51 and RAD52 are first responders to stalled/regressed RFs.  
(A) Quantification of RAD51 and RAD52 colocalization with RF foci immediately after CPT 
damage and following 1 hour of recovery. -C) Analysis of the localization of RAD51 and DSBs, 
Ku, and MRE11 at RFs following 1 hour of CPT damage. Representative foci shown, scale bars 
represent 250 nm.   
(B) Three color analysis of RAD51 and DSB (TUNEL) localization at RF foci immediately 
following 1 hour of CPT damage.  
(C) Three color analysis of RAD51 and Ku localization at RF foci immediately following 1 hour 
of CPT damage. 
(D) Three color analysis of RAD51 and MRE11 localization at RF foci immediately following 1 
hour of CPT damage.  
(E) Three color analysis of RAD51 and RECQ1 localization at RF foci immediately following 1 
hour of CPT damage.  
(F) Quantification of colocalization of RAD51/RAD52 immediately following 1 hour of CPT 
treatment and after 1 hour of recovery in normal medium, normalized to control levels.  
(G) Three color analysis of RAD52 and RAD51 localization at RF foci immediately following 1 
hour of CPT damage.  
(H) Quantification of protein colocalization with naDNA RF foci at unbroken HU-stressed RFs 
immediately following 4 hours of HU treatment and after 90 minutes of recovery in normal 
medium from HU treatment, normalized to control levels.  
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(I) Quantification of RAD51 and RAD52 colocalization with DSBs (TUNEL signal) in control 
and NCS-damaged cells. 
Representative foci shown, scale bars represent 250 nm. Complete N values available in Tables 
S1-2, number of replicates >3, number of cells imaged typically 20-60, number of individual foci 
manually scored typically 50-70. All graphs show mean ± s.e.m. Student’s t-test results shown for 
comparison with control levels: ns depicts p>0.05, * depicts p<0.05, ** depicts p<0.01, **** 
depicts p<0.0001. 
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CPT treatment combined with PARP-inhibition synergistically converts stressed RFs into 

seDSBs.  

It has previously been reported that RF protection by stalling/regression is PARP-dependent [6] 

and more recently, it was discovered that PARP inhibition causes DNA lesions to go unrecognized, 

blocking the consequent RF stalling/regression that enables repair, instead causing an increase in 

seDSBs induction [75] . In light of these findings we reasoned that inhibiting PARP in cells that 

are treated with low dosage CPT would cause the resulting RAD51/RAD52-positive stalled RFs 

to be bypassed to generate more TopI-induced seDSBs.  

To test this hypothesis, we pre-treated cells with the PARP1/2 inhibitor Veliparib for 24 hours 

before addition of CPT. We used comet assays to determine the level of DSB induction to assess 

the degree of RF stalling/regression bypass resulting in increased seDSBs in the Veliparib+CPT-

treated cells. While both these drugs generated increased levels of DSB induction individually, a 

synergistic effect was detected upon combination, showing that Veliparib was indeed causing 

CPT-induced replication stress to result in seDSBs (Figure 5A). This further confirmed the 

existence of a substantial number of stalled but unbroken RFs in CPT-treated cells. We also 

assessed Veliparib+CPT-induced DSB induction using SR and found increased levels of DSBs 

(via TUNEL), MRE11, and Ku association with naDNA foci (Figure 5B).  
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Figure 5.  
PARP inhibition converts RAD52/RAD51 protected RFs into seDSBs.  
(A) Comet assays of cells damaged with CPT, Veliparib or both demonstrating synergistic DSB 
induction upon TopI-induced RF stress combined with PARP inhibition. Representative cells 
shown. 
(B) Quantification of DSB (TUNEL), Ku and MRE11 association with naDNA upon PARP 
inhibition using a combined Veliparib/CPT treatment. 
(C) A model of the two predominant stress pathways induced by TopIcc: RF stalling/regression, 
which is protected and repaired quickly and colocalizes with RAD51 and RAD52, and osDSBs, 
which colocalize with Ku and MRE11 and are repaired via HR. 
Representative comet assayed cells shown, scale bars represent 15 μm. Complete N values 
available in Tables S1-2, number of replicates >3, number of cells imaged typically 20-60, number 
of individual foci manually scored typically 50-70. All graphs show mean ± s.e.m. Student’s t-test 
results shown for comparison with control levels in (A) and with CPT-only (B): ns depicts p>0.05, 
* depicts p<0.05, ** depicts p<0.01, **** depicts p<0.0001. 
 

Discussion  

In this study we described powerful single-molecule localization-based assays for differentiating 

and analyzing distinct RF repair pathways. Using the enhanced spatial resolution and single 

molecule sensitivity achieved in these assays, we have been able to examine the organization of 

repair proteins within repair foci consisting of individual seDSBs or stalled/regressed RFs at a 

comparatively low level of damage induction. This enabled identification of specific, mutually 

exclusive first responder proteins: RAD51, RAD52, and RECQ1 at stalled forks, and MRE11 and 

Ku at seDSBs (Figure 5C). Together, these data constitute a direct visualization of closely linked 
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damage motifs in vivo revealing hitherto unknown aspects of the specific roles of response 

proteins. Our observations also contrast findings based on higher damage inductions and 

biochemical methods which rely on ensemble averaging of cellular data.  

The two canonical DSB repair pathways, NHEJ and HR, are both active in the repair of 

chromosomal breaks during S phase [76]. The cellular abundance of Ku in human cells and its 

remarkably high affinity for a variety of DSB lesions results in its immediate recruitment to break 

sites [48]. Despite this, existing models of DSB repair in cells depict two exclusive pathways, each 

of which proceeds via a set of sequential steps. The data presented here demonstrate the existence 

of a more refined repair process in which Ku initially loads onto seDSBs generated at collapsed 

RFs despite their eventual repair via HR. Moreover, we show that MRE11 loads 

contemporaneously with Ku association, but in a distal position (Figure 3). This contradicts models 

in which MRE11 initially associates much closer to the DSB and progresses towards the break, 

suggesting not only that resection is initiated away from the DSB site but that MRE11 remains 

distal to the break and does not seem to simply execute 5’ to 3’ nucleolytic degradation as 

previously thought [16, 27]. Instead our findings elucidate the in vivo reality of recent in vitro 

studies that showed MRE11 conducting long-range one-dimensional diffusion along dsDNA 

associated with a DSB [77]. These observations highlight the fact that all cellular DSBs are first 

bound by Ku, an event that is then followed by repair either via NHEJ or removal of Ku and 

progression of HR. 

A noteworthy strength of our analysis rests on our ability to distinguish specific DDR variability 

associated with different fork repair processes [17, 78, 79]. This led us to the observation that a 

subset of RFs colocalized with the HR proteins RAD51 and RAD52 immediately following CPT 
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damage, but did not colocalize with TUNEL signal, Ku or MRE11 (Figure 4). These data are 

consistent with the notion that these forks do not form seDSBs. This distinctive DDR signature 

was also observed at forks subjected to replication stress via HU treatment, which specifically 

causes RF stalling and regression, whereas Ku and MRE11 were not detected in HU-treated cells 

(Figure 3A-B). Accordingly, we conclude that while low grade CPT treatment results in seDSB 

formation, it also yields unbroken but arrested RFs that require RAD51/RAD52 to mediate fork 

protection and regression processes [6]. This conclusion was further strengthened by detection of 

RECQ1, a helicase known to process stalled RFs (Figure 2E). Importantly, we showed that the 

activity of RAD51/RAD52 fork protection is PARP1 dependent, with combined Veliparib+CPT 

treatment resulting in conversion of regressed forks into seDSBs (Figure 5) [6]. This result further 

shows that endogenous stress caused by transcriptional activity and topographic remodeling ahead 

of RFs results in both stalled/regressed and broken RFs, and that these are repaired by distinct 

pathways, each making use of canonical HR proteins.  

The novel combination of discriminatory labeling and analytical approaches with state-of-the-art 

super resolution imaging detailed here has enabled visualization and characterization of key 

endogenous damage species and subsequent cellular responses in vivo. We unequivocally 

demonstrate the coexistence of both arrested and broken RFs in cells under mild replication stress 

conditions. We further show recruitment of RECQ1, RAD51 and RAD52 to arrested RFs allowing 

for expeditious repair, and the loading of Ku and MRE11 specifically onto seDSBs, which are 

more slowly repaired via HR. The temporal and structural insights derived highlight the 

capabilities of the assays we describe and identify RAD52 and Ku as having previously unknown 

roles at stalled RFs and seDSB damage sites, respectively. Our analysis also shows that MRE11 

loads and interacts with seDSB DNA away from the break, contrary to current models. Taken 
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together, our observations offer new insights into the roles of various DNA damage species and 

the response pathways associated with the pathogenesis of cancer, autoimmune diseases, and a 

range of other genetic disorders.  

Material & Methods 

Cell Synchronization and Drug Treatment 

Female human bone osteosarcoma U-2 OS cells (ATCC HTB-96) were routinely cultured in 

McCoy’s 5A (Modified) medium (ThermoFisher 16600) with 10% FBS (Gemini Bio. 100-106) 

and 100 U/mL Penicillin-Streptomycin (ThermoFisher 15140) at 37°C and 5% CO2.  

Cells were seeded on No 1.5 glass coverslips and allowed to adhere in complete medium for 18-

24 hours before being switched to FBS free medium for a further 48-72 hours in order to 

synchronize cells in G0/G1 phase [80]. Cells were subsequently released in complete medium for 

a further 16 hours to produce an early-mid S phase cell population. To induce RF stress and seDSB 

generation cells were treated with 100 nM CPT (Abcam 120115) [5] alongside pulse labeling with 

10 μM EdU, a thymidine analogue, for one hour so that it would be incorporated into naDNA 

during replication (Click-iT kit, ThermoFisher C10340) [18]. Cells were fixed immediately 

following damage or released back into drug-free complete medium for 1-12 hours before later 

fixation. This allowed for spatiotemporal mapping of slower HR processesControl cells were 

treated with 0.1% DMSO in place of CPT.  

To further perturb and probe the HR process of DSBs, U2OS cells were treated with 100 μM of 

the PARP 1/2 inhibitor Veliparib (Santa Cruz, 202901) for 24 hours prior to recovery from CPT 

treatment [81]. To do this, cells seeded on coverslips were administered Veliparib during the final 
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seven hours of serum starvation as well as during release in complete medium and in the CPT/EdU 

medium. Hydroxyurea experiments were conducted for 1-4 hours at a final concentration of 1 mM, 

whereas Neocarzinostatin was applied for 1 hour at 200 ng/ml.  

Extraction and Fixation 

For clear visualization of chromatin and chromatin-bound nuclear fraction of cells, optimization 

of fixation and immunolabeling protocols was of paramount importance[82]. In particular, the 

methods presented here were specifically optimized to achieve a high degree of soluble component 

extraction while maintaining the ultrastructure of the nucleus and are in good agreement with 

similar protocols[48]. Pre-extraction of the cells was achieved using room temperature CSK buffer 

(10 mM Hepes, 300 mM Sucrose, 100 mM NaCl, 3 mM MgCl2, and 0.5% Triton X-100, pH = 

7.4) for 2-3 minutes with gentle agitation. This was a key step as it removed the majority of the 

unbound fraction of HR proteins, which decreased the density of proteins within the nucleus and 

increased the proportion of detected proteins that were directly involved in HR (ie. associated with 

naDNA at DSB sites). This step also removed much of the cytosolic component, which minimized 

non-specific binding sites and sources of background and auto-fluorescence. After extraction, cells 

were fixed in paraformaldehyde (3.7% from 32% EM grade, Electron Microscopy Sciences, 

15714) and glutaraldehyde (0.3% from 70% EM grade, Sigma-Aldrich, G7776) in PBS for 15 

minutes. The cells were then washed three times with PBS and, if required, stored overnight at 

4°C. For fluorescent tagging of the pulse labeled nascent DNA, the copper catalyzed ‘Click’ 

reaction was used as described in the Click-iT (ThermoFisher, C10640) protocol in conjunction 

with Alexa Fluor 647 [18]. The cells were blocked with blocking buffer (2% glycine, 2% BSA, 
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0.2% gelatin, and 50 mM NH4Cl in PBS) for 1 hour at room temperature (RT) or overnight at 4°C 

prior to further staining. 

TUNEL and immunofluorescence labeling 

To visualize DSBs, the Click-iT TUNEL kit (ThermoFisher, C10247) was combined with 

ChromaTide Alexa Fluor 568-5-dUTP (ThermoFisher, C11399) and a modified protocol 

standardized against established ‘Click’ and Digoxigenin (digoxigenin-11-dUTP: Sigma, 

11093088910, anti-digoxigenin: Novus, 31191) protocols [37]. The optimized protocol made use 

of conjugated AF568-5-dUTP (ThermoFisher, C11399) to label DSBs in conjunction with AF647 

‘Click’ labeled naDNA demonstrating high specificity of TUNEL labels as shown by high levels 

of overlap with naDNA foci in damaged cells. To achieve this, AF568-5-dUTP was diluted to 50 

μM in the EdUTP mix and allowed to react as directed for 12 hours at 37°C. Samples were washed 

three times in PBS and blocked for a further 30 minutes with blocking buffer.  

Antibody labeling of all other proteins was achieved via a combination of direct and indirect 

labeling with Alexa Fluor 488 and 568 fluorophore labeled antibodies that have previously been 

validated by as and others for IF experiments. For a complete list, including validating references 

see SI Table 3.  

Super Resolution Imaging 

For SR imaging, coverslips were stored for up to one week at 4°C before being mounted onto a 

microscope microfluidics chamber just prior to imaging. SR imaging buffer comprising an oxygen 

scavenging system (1 mg/mL glucose oxidase (SigmaAldrich, G2133), 0.02 mg/mL catalase 

(SigmaAldrich, C3155), and 10% glucose (SigmaAldrich, G8270)) and 100 mM 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.19.912014doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.19.912014
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

mercaptoethylamine (Fisher Scientific, BP2664100) in PBS was then prepared fresh and added to 

the imaging chamber.  

A custom-built SR microscope based on a Leica DMI 3000 inverted microscope was used to 

acquire all the raw data as has been described previously[18]. Briefly, 473 nm (Opto Engine LLC, 

MBL-473-300 mW), 532 nm (OEM Laser Systems, MLL-III 200 mW) or 556 nm (UltraLasers, 

MGL-FN-556 200 mW) and 640 nm (OEM Laser Systems, MLL-III 150 mW) laser lines were 

combined using appropriate dichroics and focused onto the back aperture of a HCX PL APO 100X 

NA = 1.47 TIRF (Leica) objective via a multi-band dichroic (Chroma, zt405/488/532/640/730rpc, 

UF1C165837). The incident excitation beam could be translated laterally across the back of the 

objective to achieve a Highly Inclined and Laminated Optical (HILO) illumination configuration 

producing better signal-to-noise images. Fluorescence emission was collected through the same 

objective and dichroic and imaged on either an electron multiplying charge coupled device (EM-

CCD) camera (Andor iXon+ 897) or scientific complementary metal-oxide semiconductor 

(sCMOS) camera (Photometrics, Prime 95B). Fluorescence signal from AF568 and AF647 could 

be collected simultaneously using a dual-band bandpass filter (Chroma, CY3/CY5, 59007m), and 

split into two channels on the EMCCD using a dichroic mirror (Semrock, FF660-Di02) in 

conjugation within a dual-view cube (Photometrics, DV2). AF488 signal was collected 

subsequently using a narrow single-band filter (Semrock, FF01-531/40). A 405 nm laser line 

(Applied Scientific Pro., SL-405 nm-300 mW) was introduced to enhance recovery of dark state 

fluorophores when required. Alternatively, channels were imaged sequentially. S phase nuclei 

were identified by positive AF647 naDNA signal and 2000 frames at 33 Hz were acquired for each 

color. Accumulation of more frames increased total signal only marginally (10-20%) and did not 

affect the overall analysis because immuno-, TUNEL, and naDNA labelling inherently involves 
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multiple fluorophores targeted to the same underlying feature, and because complex structural 

determinations were not useful to the study. Representative images showing the blinking density 

and photobleaching can be seen in SI Figure S5. Fitting uncertainty was determined based on 

photon number, PSF approximation, and the camera noise to be <10 nm in the red and blue 

channels, and <20 nm in the green channel. Mapping errors based on transformation of bead 

images and were found to be ~10 nm for both mapping of the blue channel to the red channel and 

the green channel to the red channel.  

A polynomial morph-type mapping algorithm achieved offset and chromatic correctional mapping 

of the three channels. To generate the correctional map, each day, prior to imaging, diffraction-

limited images of spatially separated broad-range emitting fluorescent beads were acquired across 

all three colors (Tetraspecks, 100 nm, Life Technologies, T7279). The precise localizations of the 

beads were obtained by independently fitting their diffraction-limited Point Spread Functions 

(PSF) with Gaussian functions. The three-color sub-diffraction localizations could then be 

matched and an elastic mapping matrix generated based on the polynomial morph-type mapping 

function using an IDL (Exelis Visual Information Solutions) custom mapping script. Three-color 

raw image stacks of cellular images were then corrected before SR analysis. 

Super Resolution Image Rendering and Analysis 

To generate a table of molecular localizations and render SR images for colocalization analysis, 

the three acquired colors were processed independently using the ImageJ [83] plugin QuickPALM 

[84] with point spread function fitting constrained to spots with full-width half-maximum of 4-5 

pixels (~264-535 nm) and signal-to-noise ratios better than 3. Images were rendered using 20 nm 
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pixels and recombined to generate three-color micrographs over which masks were manually 

drawn identifying the nucleus based on the naDNA signal.  

To determine the degree of colcoalization, Monte Carlo simulations depicting random distribution 

of the clusters relative to each other were used as a normalization approach. To achieve this, a 

random simulation was generated for each experimental image by creating grayscale images of 

two colors at a time from the image of a nucleus (ie. color-1 and color-2). The two greyscale 

images were then segmented by automatically applying an Otsu thresholding algorithm to the gray-

scale pixels that belonged to the masked nuclear ROI. After cluster segmentation, a random 

redistribution of one of the colors was simulated by redrawing all of the clusters that belonged to 

the color-2 experimental image over the static color-1 image. From this ‘randomized’ simulation, 

both the number and the area of overlap between the two colors were determined.  

Using this approach, 20 simulations of random rearrangements were generated for each nucleus in 

a pairwise fashion, examining Red/Green, Red/Blue, and Green/Blue overlap. The total number or 

area of overlaps detected in each nucleus (typically 15-100) could then be normalized to the 

determined random level of overlap expected by dividing the number or area of real overlaps by 

the average number or area of overlaps in the same simulated nucleus. An average normalized 

colocalization factor was thus calculated for each pairwise interaction between proteins, seDSB, 

ssDNA, and naDNA (N typically 30-50 total cells, each comprising 100s of foci, all N values 

available in Table S1). A colocalization factor of 1 indicated completely random colocalization, 

while higher factors indicated association and interaction. Colocalization factors were also 

calculated for undamaged cells to establish control levels. Number of overlaps was used for 

TUNEL, TopI, Ku, MRE11, and BRCA1 whereas area of overlap was used for γH2AX, RPA, 
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RAD51 and RAD52 due to the expected accumulation of these proteins over multiple time points. 

In general the trends observed in number of overlaps were comparable to those observed in area 

but were more striking in the latter case for accumulating proteins. Change in colocalization was 

further normalized against the degree of overlap detected in undamaged control cells fixed 

immediately following EdU pulse labeling. For this reason several overlaps show a negative 

change due to a decrease in protein association when the averaged damage foci is compared to the 

averaged replicating fork foci. For further explanation see [18, 50].  

To assess the prevalence of colocalization, dependence or exclusionary relationships between 

proteins at DSBs, all foci within a nucleus containing both naDNA and at least one of the two 

proteins stained were identified and quantified to determine the percentage of foci with colocalized 

proteins, as opposed to those positive only for one or the other. The average proportions were 

calculated and depicted in cumulative bar graphs.  

To assess the intrafoci organization of proteins at DSBs, the distance between centers-of-mass of 

colocalized proteins at naDNA was determined. These distances were used to generate a 

histogram, which could be approximated with a single or double Gaussian. To standardize intrafoci 

two-color distances descriptive of closely associated proteins, RPA was double labeled with 

AF568 and AF488 and intrafoci distance histograms generated. In both cases, these histograms 

could be approximated with a Gaussian centered at an intrafoci distance of 135 nm with a width 

at half height of 70-80 nm. In cases where protein intrafoci distance histograms could similarly be 

fit with a Gaussian centered with the range 135 ± 37.5 nm, the relationship was considered 

intimate. In contrast, intrafoci distances which were approximated with a single Gaussian centered 

further than 180 nm described proteins occupying the same DSB but spatially separated. 
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Histograms not easily described by a single Gaussian were well approximated by fitting one 

Gaussian at 135 nm distance and 75 nm full width at half height with free fitting of the total area 

of the Gaussian, and then free fitting a second Gaussian to describe the remaining intrafoci 

distances. Fitting two Gaussians described arrangements where in some foci the proteins were 

closely associated while in others they were spatially separated. To further visualize the spread of 

intrafoci distances observed, the fitted Gaussians were extrapolated into 3D contoured heat maps 

by fitting a second Gaussian perpendicular to the 2D Gaussian distance/intensity coordinates with 

the area of the perpendicular Gaussian proportional to the intensity value of the fitted Gaussians. 

These contoured heatmaps, shown throughout in blue, describe the likelihood of particular 

intrafoci distances being observed for different protein combinations at naDNA.  

All experiments were carried out in duplicate or more with repeats performed to generate 

approximately normal data distributions with N sizes not predetermined. Unequal variances, 

particularly across temporal series, are expected. Manual ROI selection of nuclei for all 

quantification, including data assessment for pairwise interdependency assessment and intrafoci 

association distribution was carried out blinded to the drug condition, protein species and time 

point being quantified. The representative images of cell nuclei and foci shown throughout were 

rendered at 10 nm, smoothed, dilated, and brightened to make them easily assessable after resizing 

for inclusion in figures. Importantly, all quantitative analysis used here was applied to images that 

had not been manually processed, removing any user bias. For examples of SR data processing 

and rendering for both analysis and user-friendly presentation within the paper see SI Figure S5.   

Comet Assays 
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A neutral comet assay was used to specifically assess the amount of DNA DSBs in cells treated 

with Veliparib, CPT, or both. In individual wells of a six-well plate, cells were incubated with 0.4 

mL of Trypsin for 10 minutes. 1 mL of medium was added to the trypsin and the cells centrifuged 

at 1000 g for 5 minutes. The supernatant was removed, and the cell pellet was resuspended in 500 

μL of PBS. The suspended cells were added to prewarmed low-melting agarose at 37°C (10 μL of 

cells to 90 μL of agarose). The mix was pipetted onto a CometSlide (4250, Trevigen) and spread 

equally across the slide before being allowed to set for 30 minutes at 4°C. Following this, the slides 

were submerged in cold Lysis Buffer (4250, Trevigen) for 30 minutes on a shaker, and then in cold 

Tris/Borate/EDTA buffer. Electrophoresis was run for 15 minutes at 21V in a Mini-Sub Cell GT 

electrophoresis tray (Bio-Rad). Subsequently, cells were fixed in 70% ethanol and allowed to dry 

overnight. DNA was stained with Cygreen (GEN-105, ENZO) for 30 minutes, and slides were 

imaged on an EVOS fluorescence microscope (AMG) with appropriate filters for GFP imaging. 

Images acquired were processed using Open Comet software and the olive moment for each group 

of cells was calculated [85].  

Statistics 

Statistical analysis was carried out in OriginLab (8.5). All naDNA/protein overlap colocalization 

factors calculated for controls and CPT-treated cells were tested against control samples (Student's 

two sample t-test). Combined Veliparib and CPT treatment was compared with controls, and with 

CPT-only samples, again using t-tests where appropriate.  

 

Code and data availability 
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The custom-written IDL mapping code, SR localization and rendering code, and the overlap 

analysis and Monte Carlo randomized simulation macros are available upon request. The data that 

support the findings of this study are available from the authors on reasonable request. 

Supplementary data statement 

Supplementary data are available.  
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