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Abstract 

Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3,073 

genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional 

enhancer activity, we constructed a massively parallel reporter assay (MPRA) library comprising 

12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE 

variant. Transfection into EBV-infected B cells revealed 482 variants with enhancer activity, with 

51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. In-depth 

analysis of allelic transcription factor (TF) binding at and around these 51 variants identified one 

class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second, 

larger class of TFs that also bind allelically but do not have their motifs directly altered by the 

variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation 

at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms 

underlying SLE. 
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Systemic Lupus Erythematosus (SLE) is an autoimmune disease that can affect multiple organs, 

leading to debilitating inflammation and mortality1. Up to 150 cases are found per 100,000 

individuals, and the limited treatment options contribute to considerable economic and social 

burden1,2. Epidemiological studies have established a role for both genetic and environmental 

factors in the development of SLE2. SLE has a relatively high heritability3. The vast majority of 

patients do not have a single disease-causing mutation (such as mutations in complement protein 

1q); instead, genetic risk is accumulated additively through many genetic risk loci with modest 

effect sizes4.  

Genome-wide association studies (GWASs) have identified 91 genetic risk loci that increase 

disease risk of SLE in a largely additive fashion4. Each SLE risk locus is a segment of the genome 

containing a polymorphic “tag” variant (i.e., the variant with the most significant GWAS p-value) 

and the genetic variants in linkage disequilibrium with the tag variant. The majority (68%) of the 

established SLE risk loci do not contain a disease associated coding variant that changes amino 

acid usage5. Instead, variants at these loci are found in non-coding regions of the genome such 

as introns, promoters, enhancers, and other intergenic areas. Enrichment of these variants in 

enhancers and at transcription factor (TF) binding sites6,7 implies that transcriptional perturbation 

may be a key to the development of SLE8. However, given the large number of candidate variants 

identified by GWAS, identification of the particular causal variant(s) remains challenging.  

SLE is a complex disease that involves multiple cell types2. Previous systematic studies 

demonstrate that SLE risk loci are enriched for B cell specific genes9 and regulatory regions10. 

Established biological mechanisms further highlight a key role for B cells in SLE - as the 

autoantibody-secreting cell type, B cells are critical to the pathoetiology of SLE, a disease 

characterized by autoantibody production11. B cells also present self-antigens to T cells in the 

development of an autoantigen-focused (i.e., “self”) inflammatory response12. Meanwhile, 

Epstein-Barr virus (EBV)-infected B cells have been implicated in SLE, with patients having a 
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greater number of EBV-infected B cells and a higher viral load than people without SLE13,14. In 

addition, EBV infection is significantly more prevalent in SLE cases than controls15,16, and EBNA2 

genomic interactions are concentrated at SLE risk loci in EBV-infected B cells10. Accordingly, 

EBV-infected B cells offer an ideal disease-relevant model for studying the effects of SLE risk 

variants at many SLE risk loci. 

To systematically identify the SLE genetic risk variants that contribute to transcriptional 

dysregulation in EBV-infected B cells, we designed and applied a massively parallel reporter 

assay (MPRA)17,18  (Figure 1). MPRA extends standard reporter assays, replacing low-throughput 

luciferase with high-throughput RNA expression detection. In this study, we used MPRA to 

simultaneously screen the full set of genome-wide significant SLE-associated genetic variants for 

effects on gene regulation. Using this experimental approach, we nominate 51 putative causal 

variants that result in genotype-dependent (allelic) transcriptional regulation. Integration of these 

data with TF binding site predictions and functional genomics data reveals two distinct 

mechanisms whereby TFs bind risk variants in an allelic manner - directly impacted by a given 

variant (i.e., the variant directly alters the TF’s DNA-binding site) or indirectly impacted by the 

variant (i.e., the variant alters the DNA binding of the TF’s physical interaction partner or 

modulates chromatin accessibility). Collectively, these results reveal an important role for groups 

of TFs in the mediation of allelic enhancer activity at plausibly causal SLE risk variants in EBV-

infected B cells.  

 

Results 

MPRA library design and quality control 

We first collected all SLE-associated risk loci reaching genome-wide association significance 

(p<5x10-8) published through March 2018 (Supplemental Data Set 1). Studies of all ancestral 
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groups were included, and independent risk loci were defined as loci with lead (tag) variant at 

r2<0.2. For each of these 91 risk loci, we performed linkage disequilibrium (LD) expansion (r2>0.8) 

in each ancestry of the initial genetic association(s), to include all possible disease-relevant 

variants (Supplemental Data Set 2). In total, this procedure identified 3,073 genetic variants. All 

established alleles of these variants were included, with 36 variants having three or more alleles. 

We also included 20 additional genetic variants from a previously published study18 as positive 

and negative controls to assess the library’s performance (Supplemental Data Set 3).  

For each variant, we generated a pair of 170 base pair (bp) DNA oligonucleotides (subsequently 

referred to as “oligos”) for each allele, with the variant located in the center and identical flanking 

genomic sequence across the alleles (Supplemental Data Set 4). A total of 12,478 oligos (3,093 

variants with 6,239 alleles) were synthesized. For barcoding, the oligos were ligated to a pool of 

random 20mers. Each uniquely ligated barcode was matched with perfectly synthesized oligos. 

The number of unique barcodes per oligo had an approximately normal distribution with a median 

of 729 barcodes per oligo (Supplemental Figure 1A, Supplemental Data Set 5). Only oligos 

with at least 30 unique barcodes were used for downstream analyses. A fragment containing a 

minimal promoter and an eGFP gene was inserted between the oligo and barcode to generate 

the MPRA transfection library. We note that the use of a minimal promoter allows us to measure 

the ability of alleles to enhance, but not reduce, transcriptional activity. Three aliquots of the library 

were independently transfected into the EBV-infected B cells GM12878. We then used nucleic 

acid capture to enrich for eGFP mRNA and sequenced the barcode region. The normalized 

barcode ratio between the eGFP mRNA and the plasmid DNA was used to quantify the amount 

of enhancer activity driven by each oligo. This mRNA to DNA ratio measures the enhancing effect 

of an allele on eGFP expression under the control of a minimal promoter (Figure 1). We observed 

strong correlation of enhancer activity between experimental replicates (mean pairwise Pearson 

correlation of 0.99) (Supplemental Figure 1B, C, D). Likewise, calibration variants showed high 
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accuracy, with 17 of the 20 variants matching the results of a previous study18 (87.5% sensitivity 

and 75% specificity), collectively demonstrating a robust experimental system (Supplemental 

Data Set 3). 

 

Hundreds of SLE risk variants are located in genomic regions with enhancer activity in 

EBV-infected B cells 

Using the SLE MPRA library, we next identified genetic variants capable of driving enhancer 

activity in EBV-infected B cells GM12878. An SLE risk variant was considered to reside within a 

region with enhancer activity if an oligo corresponding to any allele had significantly increased 

transcriptional regulatory activity compared to controls (see Methods). Not all statistically 

significant changes in transcriptional activity are necessarily biologically relevant – a highly 

consistent, but slight change in expression levels is statistically, but not biologically, meaningful. 

We therefore considered an oligo to have enhancer activity only when (1) the oligo had statistically 

significant enhancer activity (pFDR<0.05) and (2) we observed at least a 50% increase in 

transcriptional activity compared to the corresponding barcode counts in the plasmid control. 

Based on these criteria, 16% of SLE risk variants (482 variants, 853 alleles) demonstrated 

enhancer activity, henceforth referred to as “enhancer variants” (enVars) and “enhancer alleles” 

(enAlleles), respectively (Figure 2A, Supplemental Data Set 6). 

We next explored the potential effects of enVars on gene expression. We connected each enVar 

to one or more genes using an approach that takes into account chromatin looping interactions, 

expression quantitative trait loci (eQTLs), and gene proximity (Supplemental Data Set 2, 

Supplemental Data Set 7) (see Methods). This approach identified 496 genes in total, which are 

enriched for expected SLE-related pathways such as the interferon pathway, antigen processing 
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and presentation pathway, and cytokine-related pathways (Supplemental Figure 2, 

Supplemental Data Set 8), providing functional support for the enVars we identified. 

Next, we searched for functional genomic features enriched within enVars relative to non-enVars 

using the RELI algorithm10. In brief, RELI estimates the significance of the intersection between 

an input set of genomic regions (e.g., enVars) and each member of a collection of functional 

genomics datasets (e.g., ChIP-seq (Chromatin immunoprecipitation with sequencing) for a 

particular histone mark or TF). For this analysis, we identified, curated, and systematically 

processed the 571 GM12878 ChIP-seq datasets available in the NCBI Gene Expression Omnibus 

(GEO) database (see Methods). Using RELI, we observed significant enrichment for overlap 

between enVars and multiple histone modification marks, including H3K4me3 (5.8-fold, pcorrected 

<10-21) and H3K27ac (2.0-fold, pcorrected <10-13) (Figure 2B, Supplemental Data Set 9). As 

expected, we did not identify enrichment for repressive marks such as H3K9me3 or H3K27me3 

(Figure 2B, Supplemental Data Set 9). Altogether, the genomic features present within enVars 

confirm that many SLE genetic risk loci likely alter transcriptional regulation in EBV-infected B 

cells.  

We next asked if the genomic binding sites of particular TFs in B cells were enriched within our 

enVars using RELI and the anti-TF ChIP-seq datasets from GM12878. As expected, the enVars 

are highly enriched for ChIP-seq signal of TFs involved in regulation of the immune response19-21, 

relative to variants lacking enhancer activity (Figure 2C, Supplemental Data Set 9). In particular, 

we found significant enrichment for all members of the NFkB TF family: REL/C-Rel (6.4-fold, 

pcorrected <10-26), NFKB1/p50 (3.0-fold, pcorrected <10-18), RELA/p65 (3.1-fold, pcorrected <10-16), RELB 

(2.7-fold, pcorrected <10-10), and NFKB2/p52 (2.2-fold, pcorrected <10-7). These results are consistent 

with our previous findings that altered binding of NFkB TFs is likely an important mechanism 

conferring SLE risk10. We also found significant enrichment for other TFs that have been 

previously implicated in SLE pathogenesis, such as PAX522, MED123, IKZF124, ELF125 and the 
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EBV-encoded EBNA2 transactivator10 (Figure 2C, Supplemental Data Set 9). As a 

complementary approach, we next assessed enrichment for TF binding site motifs in the enAllele 

DNA sequences using HOMER26 and motifs contained in the Cis-BP database27  (see Methods). 

This analysis also revealed enrichment of multiple TF families with known roles in SLE, including 

ETS, NFkB, and IRF3 (Figure 2D, Supplemental Data Set 10). Many of these same TFs also 

have enriched ChIP-seq peaks at SLE risk loci10. Collectively, these results indicate that particular 

TFs tend to not only concentrate at SLE risk loci10, but also concentrate at alleles capable of 

driving gene expression in EBV-infected B cells. 

 

MPRA identifies 51 SLE risk variants with allelic enhancer activity in EBV-infected B cells 

We next used our MPRA library to identify SLE genetic risk variants that drive allele-dependent 

(allelic) enhancer activity. Allelic activity was assessed for each enVar by comparing enhancer 

activity between each pairs of alleles. We considered a SLE variant allelic if (1) at least one of its 

alleles is an enAllele; (2) we observed significant genotype-dependent activity using Student’s t-

test18 ; and (3) the oligos had more than a 25% change between any pair of alleles. Using these 

criteria, we identified 51 SLE risk variants (11% of enVars, 1.7% of all SLE risk variants) as allelic 

enVars in EBV-infected B cells GM12878 (Figure 3A, Supplemental Data Set 11). For 31 of 

these 51 allelic enVars, the risk allele decreased enhancer activity relative to the non-risk allele, 

which is statistically indistinguishable from the 20 variants with increased risk allele activity (p=0.1). 

Three of the allelic enVars can also alter the amino acid sequence of proteins – rs1059702 

(IRAK1), rs1804182 (PLAT), and rs3027878 (HCFC1), consistent with previous studies identifying 

dual-use codons in the human genome28. Collectively, these 51 variants represent causal variant 

candidates for 27 SLE risk loci (30% of all tested loci) (Supplemental Data Set 12). For these 27 

risk loci, our approach reduced the number of potential causal variants in EBV-infected B cells 

from an average of 84 variants to an average of two variants per risk locus (Figure 3B). For 
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example, at 17q12 (marked by rs8079075), we reduce the candidate causal variant set from 249 

to one, with the rs112569955 “G” risk allele showing a 36% increase in enhancer activity 

compared to the “A” non-risk allele. 

 

Particular TFs have altered binding at SLE loci with allelic enhancer activity 

To identify candidate regulatory proteins that might participate in allelic SLE mechanisms, we next 

used RELI to identify GM12878 ChIP-seq datasets that significantly overlap allelic enVars 

(Supplemental Data Set 13). Many of the top results are consistent with our previous study10, 

including the enriched presence of general enhancer features such as the H3K27ac histone mark 

(17 of 51 allelic enVars, 13.6-fold enriched, pcorrected <10-38), mediator complex subunit MED1 (17 

of 51 allelic enVars, 13.0-fold enriched, pcorrected <10-34), and the histone acetyltransferase p300 

(16 of 51 allelic enVars, 12.4-fold enriched, pcorrected <10-32), along with particular regulatory 

proteins that participate in “EBV super enhancers”29 and play key roles in B cells such as ATF7 

(15 of 51 allelic enVars, 11.3-fold enriched, pcorrected <10-26), Ikaros/IKZF1 (19 of 51 allelic enVars, 

9.7-fold enriched, pcorrected <10-25), and the NFkB subunit RELA (13 of 51 allelic enVars, 12.4-fold 

enriched, pcorrected <10-24). Also consistent with our previous study10, we observe strong enrichment 

for the EBV-encoded EBNA2 protein (7 of 51 allelic enVars, 17.7-fold enriched, pcorrected <10-19). 

Collectively, these data reveal particular regulatory proteins that might participate in the 

mechanisms contributing to SLE at multiple risk loci by driving allelic enhancer activity. 

We next used the MARIO pipeline10 to search for allelic binding events (i.e., allelic imbalance 

between sequencing read counts) at SLE variants within the 571 GM12878 ChIP-seq datasets.  

By necessity, this approach is limited to the 13 allelic enVars that are heterozygous in GM12878. 

In total, this procedure identified four variants with strong allelic imbalance (MARIO ARS value > 

0.4) in at least one ChIP-seq dataset (Supplemental Data Set 14), revealing groups of TFs and 
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transcriptional regulators that allelically bind SLE risk variants with genotype-dependent MPRA 

enhancer activity. For example, the rs3101018 variant, which is associated with SLE30 and 

rheumatoid arthritis31 in Europeans, shows 1.7-fold stronger enhancer activity for the 

reference/non-risk ‘C’ allele compared to the non-reference/risk ‘T’ allele (Figure 4A). These 

results are consistent with a previously established eQTL obtained from GTEx32, which 

demonstrates higher Complement C4A (C4A) expression in EBV-infected B cells for the 

rs3101018 ‘C’ allele than the ‘T’ allele (Figure 4B). Our MARIO allelic ChIP-seq analysis reveals 

11 regulatory proteins that prefer the ‘C’ allele and 2 that prefer the ‘T’ allele (Figure 4C). Among 

these, particularly robust signal is obtained for ATF7, with one experiment displaying 77 vs. 18 

reads (‘C’ vs. ‘T’) and another showing 66 vs. 23 reads (‘C’ vs. ‘T’) (Supplemental Data Set 14). 

Moreover, CREB1 and CREM strongly favor the ‘C’ allele as well (Supplemental Data Set 14). 

In agreement with these data, computational analysis of the DNA sequences surrounding this 

variant predicts that ATF7, CREB1, and CREM will all bind more strongly to the ‘C’ than the ‘T’ 

allele (Figure 4D).  Intriguingly, seven additional proteins (FOXK2, PKNOX1, ARID3A, ZNF217, 

ARNT, MEF2B, and FOXM1) also bind allelically and have known DNA binding motifs33, but none 

of them have binding sites altered by the variant. Further, we do not observe allelic chromatin 

accessibility in available ATAC-seq datasets (9 vs. 7 reads). Together, these results reveal a 

potentially causative SLE regulatory mechanism involving weaker direct binding of 

ATF7/CREB/CREM to the ‘T’ risk allele, altering the recruitment of additional proteins to the locus 

and lowering the expression of C4A. 

We observe a similar phenomenon for the rs2069235 variant, which is associated with SLE in 

Asian ancestries34 and rheumatoid arthritis in Europeans35.  rs2069235 displays much stronger 

enhancer activity for the ‘A’ (non-reference/risk) allele compared to the ‘G’ (reference/non-risk) 

allele (Figure 4E), consistent with the established synaptogyrin 1 (SYNGR1) eQTL in EBV-

infected B cells32 (Figure 4F). Inspection of our allelic ChIP-seq data reveals a larger number of 
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proteins binding to the ‘A’ than the ‘G’ allele (14 vs. 2) (Figure 4G). Among these 16 proteins, 

only IKZF2 and ELF1 have their binding sites directly altered by the variant (Figure 4H). Together, 

these data are consistent with a potentially causative SLE molecular mechanism involving 

stronger direct binding of IKZF2 to the ‘G’ non-risk allele and stronger ELF1 binding to the ‘A’ risk 

allele, along with indirectly altered binding of multiple TFs to this locus. 

 

Genotype-dependent binding to SLE variants with allelic activity by variant overlapping 

and variant adjacent TFs 

As illustrated by the above examples, a particular TF can be involved in allelic mechanisms that 

are either directly impacted by a given variant (i.e., the variant directly alters the TF’s DNA-binding 

site) or indirectly impacted by the variant (i.e., the variant alters the DNA binding of the TF’s 

physical interaction partner, modulates chromatin accessibility, or affects another mechanism). At 

a given locus, we designate such TFs as variant overlapping and variant adjacent TFs, 

respectively (Figure 5A). We next sought to discover such TFs at the 51 allelic enVars.  At each 

allelic enVar locus, we identified variant overlapping TFs as those TFs predicted to have strong 

binding to one allele and weak binding to the other allele.  Likewise, we identified variant adjacent 

TFs as those TFs with proximal strong predicted binding sites that do not directly overlap the 

variant (see Methods).  We then searched for particular TFs that tend to act as variant overlapping 

TFs or as variant adjacent TFs at the 51 allelic eVars using a proportion test (see Methods) and 

confirmed that their binding site locations are distributed relative to the variant as expected 

(Figure 5B).  Consistent with our results at the C4A and SYNGR1 loci, variant overlapping TFs 

include members of the ETS (e.g., ELF1) and ATF-like (e.g., ATF7) families, along with other TFs 

whose genetic loci are associated with SLE, including IRF536 (Figure 5C, Supplemental Data 

Set 15). Variant adjacent TFs represent a largely distinct class, but also include several TFs with 

SLE genetic associations, including NFkB37, the Ikaros (IKZF) family38, and HMGA family 
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members39 (Figure 5D, Supplemental Data Set 15). Collectively, these analyses reveal two 

distinct classes of TFs at a given SLE-associated locus that both likely play key roles in SLE 

mechanisms, along with particular TFs that tend to participate in one class or the other. 

In summary, through the application of an allelic MPRA library to the EBV-infected B cells 

GM12878, we identified global transcriptional enhancer activity at 16% of SLE-associated genetic 

variants (enVars), with particular transcriptional regulatory proteins concentrated at these 

genomic locations. We further identified 51 SLE risk variants with allelic enhancer activity (allelic 

enVars) that we now nominate as plausibly causal by acting through genotype-dependent 

changes in enhancer activity in EBV-infected B cells. Using experimental TF ChIP-seq data and 

TF binding site motif scanning, we propose a model where the collective action of the genotype-

dependent binding of particular variant overlapping and variant adjacent TFs leads to genotype-

dependent transcriptional activity at SLE risk loci.  

 

Discussion 

Genome-wide association studies identify genetic loci with statistical disease associations. 

However, each risk locus often contains many plausible variants due to linkage disequilibrium. 

This study is the first direct genome-wide measurement of enhancer activity of the ~3000 known 

SLE genetic risk variants in any context. Unbiased experimental approaches such as MPRA are 

vital for resolving causal variants and their molecular mechanisms of action.  

Our results indicate that 16% of the SLE risk variants examined in this study have enhancer 

activity in the EBV-infected B cells GM12878. Furthermore, 51 of these enhancer variants at 27 

loci have allelic enhancer activity. These findings are consistent with the theory that a large 

proportion of the genetic risk of SLE is mediated through transcriptional perturbation of critical B 
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cell genes. SLE risk loci that lack allelic enVars in GM12878 might act in other cell types (e.g., T 

cells) and/or under different conditions (e.g., subsequent to interferon stimulation).  

A critical finding of this study is that SLE risk variants with allelic enhancer activity can alter the 

binding of many TFs. Although variants can directly affect the binding of variant overlapping TFs 

via disruption of a DNA-binding site, they can also simultaneously alter the binding of other variant 

adjacent TFs, presumably via genomic mechanisms such as altered chromatin accessibility, 

altered histone marks, indirect TF recruitment through physical interactions, changes in DNA 

shape, or changes to protein interaction partner DNA binding.  In general, a given TF can be 

variant overlapping at one locus and variant adjacent at another, as exemplified by ATF7 (Figure 

4C, G).  Nonetheless, particular TF families tend to act as variant overlapping TFs at SLE loci 

(such as Ets, E-box, and ATF), whereas others tend to act as variant adjacent TFs (such as 

HMGA, Hox, and NFkB).  Notably, many of these variant overlapping and variant adjacent TFs 

are themselves encoded by genetic risk loci associated with SLE (e.g., IRF536, NFkB37, and 

ETS140), suggesting that there are multiple means through which a particular TF can contribute 

to disease-based genetic mechanisms. For example, IRF5 targets might be mis-regulated in an 

SLE patient due to genetic associations in the promoter of IRF5 that result in altered IRF5 protein 

levels36, or by genetic variants located within or adjacent to IRF5 binding sites at other genomic 

loci. It is currently unknown if these TF attributes are shared with other human diseases. 

This study reveals possible causal genetic mechanisms involving altered binding of particular TFs 

at two important SLE risk loci.  C4A is a component of the inflammatory complement pathway that 

is critical for the appropriate clearance of apoptotic cells41. People without C4A due to rare, 

protein-changing mutations are at a greatly increased risk for autoimmune diseases, including 

type I diabetes and SLE42. Further, the risk of developing SLE is 2.62 times higher in subjects 

with low total C4A41. Consistent with this observation, the SLE risk allele at this genetic locus 

identified in our MPRA is associated with lower C4A expression (Figure 4B). Additionally, the 
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SLE risk locus encoding SYNGR1 was recently identified in a high-density genotyping study of 

subjects with Asian ancestry34 and also increases disease risk for schizophrenia43, primary biliary 

cirrhosis44, and rheumatoid arthritis45. SYNGR1 is an integral membrane protein that is most 

robustly expressed in neurons of the central nervous system; however, there is measurable 

transcription and translation of SYNGR1 in other tissues,  including developing B cells46. eQTL 

data from EBV-transformed B cell lines (Figure 4F) further support our MPRA-based findings of 

SLE risk genotype-dependent enhancer activity and gene expression at this locus.  

GWAS provides important insight into the genetic origins of disease.  In conjunction with other 

genome-scale assays such as ATAC-seq, ChIP-seq, and HiChIP-seq, MPRA reveals causal 

variants and genes, and enables the assembly of causal mechanisms affecting gene expression.  

In this study, we used MPRA to uncover specific genetic variants within the risk haplotypes of a 

complex disease in a specific cell type. Our integrative analyses reveal specific molecular 

mechanisms underlying genotype-dependent transcriptional regulation and SLE disease risk. We 

conclude that MRPA is a robust tool for the nomination of causal genetic risk variants for any 

phenotype or disease with risk loci that act through genotype-dependent gene regulatory 

mechanisms, with this study providing a blueprint for dissecting the genetic etiology of the many 

complex human diseases.  

 

Online Methods 

Variant selection and DNA sequence generation 

All SLE-associated genetic risk loci reaching genome-wide significance published through March 

2018 were included in this study24,30,36,40,47-56. A total of 91 genetic risk loci were used for linkage 

disequilibrium (LD) expansion (r2>0.8) based on 1000 Genomes Data57 in the ancestry(ies) of the 

initial genetic association using PLINK58 (Supplemental Data Set 1). All expanded variants were 
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updated to the dbSNP 151 table59 from the UCSC table browser60 based on either variant name 

or genomic location. Unmappable variants were discarded. We also included 20 genetic variants 

from the Tewhey et al.18 study as positive and negative controls. 

For single nucleotide polymorphisms, we pulled 170 base pairs (bps) of hg19-flanking DNA 

sequences for every allele, with the variant located in the center (84 bps upstream and 85 bps 

downstream of the variant). For the other types of variants (indels), we designed the flanking 

sequences to ensure that the longest allele has 170 bps. Adapters (15bps) were added to each 

sequence at either end (5’-ACTGGCCGCTTGACG - [170 bp oligo] - CACTGCGGCTCCTGC-3’) 

to make a 200 bp DNA sequence (Supplemental Data Set 4). For all resulting sequences, we 

created a forward and reverse complement sequence to compensate for possible DNA synthesis 

errors. A total of 12,478 oligos (3,093 variants, 6,239 alleles) were obtained from Twist Bioscience.  

MPRA experiments 

Library Assembly 

For assembly of the MPRA library, we followed the procedure described by Tewhey et al. 18 with 

minor modifications. In brief, we first created the empty vector pGL4.23∆xba∆luc from 

pGL4.23[luc2/minP] using primer Q5_deletion_rev and Q5_deletion_fwd, following the 

manufacturer’s instruction of the Q5 Site-Directed Mutagenesis Kit. Then, 20bps barcodes were 

added to the synthesized oligos through 24X PCR with 50 µL system, each containing 1.86ng 

oligo, 25 µL NEBNext® Ultra™ II Q5® Master Mix, 1µM MPRA_v3_F and MPRA_v3_201_R. 

PCR was performed under the following conditions: 98°C for 2 mins, 12 cycles of (98°C for 10 

sec, 60°C for 15 sec, 72°C for 45 sec), 72°C for 5 mins. Amplified product was purified and cloned 

into SfiI digested pGL4.23∆xba∆luc by Gibson assembly at 50°C for 1 hr. The assembled 

backbone library was purified and then transformed into Escherichia coli (E.coli) through 

electroporation (2kV, 200 ohm, 25 µF). Electroporated E.coli was expanded in 200 mL of LB Broth 
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buffer supplemented with 100 µg/mL of carbenicillin at 37°C for 12 to 16 hrs. Plasmid was then 

extracted using the QIAGEN Plasmid Maxi Kit. 

We next created the pGL4.23[eGFP/miniP] plasmid. An eGFP fragment was amplified from MS2-

P65-HSF1_GFP (Addgene 61423) through PCR with a 50µl system containing 1 ng plasmid, 25 

µL NEBNext® Ultra™ II Q5® Master Mix, 0.5 µM GFP seq MS2-P65-HSF1_GFP FWD and GFP 

seq MS2-P65-HSF1_GFP REV. PCR was performed under the following conditions: 98°C for 2 

mins, 20 cycles of (98°C for 10 sec, 60°C for 15 sec, 72°C for 30 sec), 72°C for 5 mins. The 

amplified fragment was purified and then inserted into XbaI and NcoI digested pGL4.23[luc2/minP] 

through Gibson assembly at 50°C for 1 hr. The assembled plasmid was purified and then 

transformed into E.coli through chemical transformation. Transformed E.coli was expanded in 100 

mL of LB Broth buffer supplemented with 100 µg/mL of carbenicillin at 37°C for 12 to 16 hrs. 

Plasmid was then extracted using the QIAGEN Plasmid Maxi Kit. 

A miniP + eGFP fragment was amplified from pGL4.23[eGFP/miniP] through 8X PCR with 50 µL 

system, each containing 1 ng plasmid, 25 µL NEBNext® Ultra™ II Q5® Master Mix, 0.5µM 200-

MPRA_v3_GFP_Fusion_v2_F and 201-MPRA_v3_GFP_Fusion_v2_R. PCR was performed 

under the following conditions: 98°C for 2 mins, 20 cycles of (98°C for 10 sec, 60°C for 15 sec, 

72°C for 45 sec), 72°C for 5 mins. The amplified product was purified and then inserted into AsiSI 

digested backbone library through Gibson assembly at 50°C for 1.5 hrs to create the transfection 

library. The resulting library was re-digested by RecBCD and AsiSI, purified and then transformed 

into E.coli through electroporation (2kV, 200 ohm, 25 µF). Transformed E.coli was cultured in 5L 

of LB Broth buffer supplemented with 100 µg/mL of carbenicillin at 37 °C for 12 to 16 hrs. The 

plasmid was then extracted using the QIAGEN Endo-free Plasmid Giga Kit. 

Oligo and barcode association  
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The oligo and barcode regions were amplified from the backbone library through 4X PCR with a 

100 µL system containing 200 ng plasmid, 50 µL NEBNext® Ultra™ II Q5® Master Mix, 0.5 µM 

TruSeq_Universal_Adapter_P5 and MPRA_v3_TruSeq_Amp2Sa_F_P7. PCR was performed 

under the following conditions: 95°C for 20 sec, 6 cycles of (95°C for 20 sec, 62°C for 15 sec, 

72°C for 30 sec), 72°C for 2 mins. The product was then purified, and indices were added through 

a 100µl system containing all purified product, 50µl NEBNext® Ultra™ II Q5® Master Mix, 0.5 µM 

TruSeq_Universal_Adapter_P5 and index primer. PCR was performed as above, except for only 

5 cycles. Samples were purified, molar pooled, and sequenced using 2x125bp on Illumina 

NextSeq 500. 

Transfection 

The GM12878 cell line was grown in RPMI medium supplemented with 10% FBS, 100 units/mL 

of penicillin, and 100 µg/mL of streptomycin. Cells were seeded at a density of 5 x 105 cells/mL 

the day before transfection. For triplicate transfections, we collected a total of 5 x 107 cells per 

replicate. Cells were then suspended with 50 µg transfection library plasmid in 400 µL Buffer R. 

Electroporation was performed with the Neon transfection system in 100µl needles with 3 pulses 

of 1200V, 20 ms each. After transfection, cells were recovered in 50 mL pre-warmed RPMI 

medium supplemented only with 10% FBS for 24 hrs. Cells were then collected for preparation of 

the sequencing library for barcode counting. 

Sequencing library for barcode counting 

Total RNA of transfected cells was extracted by the RNeasy Midi Kit following the manufacturer’s 

instruction. Extracted RNA was subjected to DNase treatment in a 375 µL system with 2.5 µL 

Turbo DNase and 37.5 µL Turbo DNase Buffer at 37°C for 1 hr.  3.75 µL 10% SDS and 37.5 µL 

0.5M EDTA were added to stop DNase with 5 mins of incubation at 75°C. The whole volume was 

used for eGFP probe hybridization in an 1800 µL system, with 450 µl 20X SSC Buffer, 900 µL 
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Formamide and 1 µL of each 100 µM Biotin-labeled GFP probe One to Three. The probe 

hybridization was performed through incubation at 65°C for 2.5 hrs. 200 µL Dynabeads™ 

MyOne™ Streptavidin C1 was prepared according to the manufacturer’s instruction. The beads 

were suspended in 250 µL 20X SSC Buffer and incubated with the above probe hybridization 

reaction at room temperature for 15 mins. Beads were then collected on a magnet and washed 

with 1X SSC Buffer once, and 0.1X SSC Buffer twice. eGFP mRNA was eluted first through 

adding 12.5 µL ddH2O, heating at 70°C for 2 mins and collecting on a magnet, then adding 

another 12.5 µL ddH2O, heating at 80°C for 2 mins and collecting on a magnet. All collected 

elution was performed with another DNase treatment in a 30 µL system containing 0.5 µL Turbo 

DNase and 3 µL Turbo DNase Buffer at 37°C for 1 hr.  0.5 µL 10% SDS was added to halt DNase 

reaction. Eluted mRNA was purified through RNA Clean SPRI Beads. mRNA was reverse 

transcribed to cDNA using SuperScript™ IV First-Strand Synthesis System with gene specific 

primer MPRA_v3_Amp2Sc_R, following the manufacturer’s instruction. cDNA and plasmid 

control were then used for building sequencing libraries following the Tag-seq Library 

Construction section in the paper of Tewhey et al.18. A total of two PCR were needed for building 

the sequencing library. The first PCR was performed with TruSeq_Universal_Adapter_P5 and 

MPRA_V3_Illumina_GFP_F. The second PCR was performed with 

TruSeq_Universal_Adapter_P5 and index primer. Samples were purified, molar pooled, and 

sequenced using 1x75bp on Illumina NextSeq 500. 

All primers used in this study are provided in Supplemental Table 1. 

MPRA data analysis 

Oligo and barcode association 

Paired-end, 125 bp reads were first quality filtered using Trimmomatic-0.3861 (flags: PE -phred33, 

LEADING:25, TRAILING:25, MINLEN:80). Read 1 was then separated into the 20bp barcode 
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region and the oligo-matching region. The trimmed oligo-matching regions of Read 1 and Read 2 

were mapped back to the synthesized oligo sequences using Bowtie262 (flags: -X 250, --very-

sensitive, -p 16). Barcodes were then associated with the oligo sequences using the read ID. Only 

uniquely mapped barcodes were used for downstream analysis. 

Barcode counting 

Single end 75 bp reads were first quality filtered using Trimmomatic-0.3861 (flags: PE -phred33, 

LEADING:3, TRAILING:3, MINLEN:70). Each read was then separated into the 20bp barcode 

region and the constant region. The trimmed constant regions of the reads were mapped back to 

the constant region within the eGFP 3’ UTR using Bowtie262 (flags: --very-sensitive, -p 16). Only 

reads with Levenshtein distance of 4 or less within the constant region and perfect matches to 

the two bases directly adjacent to the barcode were kept. Barcodes were then associated with 

the retained reads using the read ID. Only barcodes that met our quality threshold requirements 

described above in the methods section “Oligo and barcode association” were used for 

downstream analysis. 

Enhancer variant (EnVar) identification 

We followed the procedures described in the “Identification of Regulatory Oligos” section of 

Tewhey et al.18 with minor modifications. In brief, oligos (alleles) with 30 or more unique barcodes 

from the plasmid control were included for analysis. Barcode count totals for each oligo, including 

all SLE variants and the 20 control variants, were passed into DESeq263 (R version 3.5.364) to 

estimate the fold change and significance between plasmid controls and the triplicate experiments. 

A Benjamini-Hochberg FDR adjusted p-value of less than 0.05 was required for significance. Only 

significant alleles with greater than or equal to a 1.5x fold change were identified as enhancer 

alleles (enAlleles). A variant was identified as an enhancer variant (enVar) if any allele of this 
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variant was an enAllele. Results for the 20 control variants were compared to data from Tewhey 

et al.18 to estimate accuracy, sensitivity, and specificity. 

Allelic enVar identification 

Only enVars were considered for allelic analysis. The barcode counts from every allele of each 

enVar were used for calculating p-values by comparing the log2 ratios of the non-reference allele 

vs the reference allele, normalized by plasmid controls, using Student’s t-test18. P-values were 

adjusted with the Benjamini-Hochberg FDR-based procedure. A corrected p-value of less than 

0.05 was required for significance. Only significant alleles with 25%-fold changes or greater were 

identified as allelic enVars. We have created an R package (mpraprofiler) for performing this 

analysis, which is available on the Weirauch lab GitHub page (https://github.com/WeirauchLab/). 

Downstream MPRA analysis 

Gene annotation 

We annotated each SLE genetic variant with its nearest gene using the NCBI RefSeq table65 

downloaded from the UCSC table browser60. enVars were annotated using a combination of DNA 

looping interactions (GM12878 Capture Hi-C data66,67) and eQTL data obtained from EBV-

infected B cell lines (GTEx Analysis V7 (dbGaP Accession phs000424.v7.p2)32 and other 

individual studies68-71). For all variants, the target genes were annotated (Supplemental Data Set 

2) using the union of promoter interacting genes and eQTL genes, when available. Otherwise, 

target genes were annotated as the nearest gene. Allelic enVars gene targets were classified into 

four tiers: a Tier 1) variant is both an eQTL and also loops to the promoter of the same gene; a 

Tier 2) variant has an eQTL for at least one gene; a Tier 3) variant only loops to the promoter of 

at least one gene; a Tier 4) variant is neither an eQTL nor loops to the promoter of any gene. 

TF binding site motif enrichment analysis 
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To identify specific TFs whose binding might contribute to the enhancer activity observed in our 

MPRA experiments, we performed HOMER26 TF binding site motif enrichment analysis. 

Specifically, we used HOMER to calculate the enrichment of each motif in the sequence of 

enAlleles compared to the sequences of non-enAlleles. HOMER was modified to use the large 

library of human position weight matrix (PWM) binding site models contained in build 2.0 of the 

CisBP database27 and a log base 2 log likelihood scoring system. 

GO enrichment analysis 

Enrichr72,73 was used for GO enrichment analysis. In short, the target genes of enVars were 

passed to Enrichr for analysis. Results from the GO biological process (2018) category were used 

(Supplemental Data Set 8, Supplemental Figure 2). 

Identification and processing of publicly available GM12878 ChIP-seq data 

571 ChIP-seq datasets were obtained from the Gene Expression Omnibus (GEO)74 using custom 

scripts that searched for ChIP-seq experiments performed in the GM12878 cell line. The 

annotations for every dataset (assay type, cell line, assayed molecule) were manually checked 

by two authors (MTW and LCK) to ensure accuracy. The Sequence Read Archive (SRA) files 

obtained from GEO were analyzed using an automated pipeline. Briefly, the pipeline first runs QC 

on the FastQ files containing the sequencing reads using FastQC (v0.11.2)75. If FastQC detects 

adapter sequences, the pipeline runs the FastQ files through Trim Galore (v0.4.2)76, a wrapper 

script that runs cutadapt (v1.9.1)77 to remove the detected adapter sequence from the reads. The 

quality controlled reads are then aligned to the reference human genome (hg19/GRCh37) using 

bowtie2 (v2.3.4.1)62. The aligned reads (in .BAM format) are then sorted using samtools (v1.8.0)78  

and duplicate reads are removed using picard (v1.89)79. Finally, peaks are called using MACS2 

(v2.1.2) (flags: callpeak -g hs -q 0.01 -f BAM)80. ENCODE blacklist regions81 were removed from 

the peak sets using the hg19-blacklist.bed.gz file available at https://github.com/Boyle-
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Lab/Blacklist/tree/master/lists/Blacklist_v1. ChIP-seq datasets GSM1666207, GSM2748907 and 

GSM1599157 were removed due to the low number of cells used in the experiments. 

Functional genomics dataset enrichment analysis with RELI 

We used the RELI10 algorithm to identify genomic features (TF binding events, histone marks, 

etc.) that coincide with enVars. As input, RELI takes the genomic coordinates of enVars. RELI 

then systematically intersects these coordinates with one of the GM12878 ChIP-seq datasets, 

and the number of input regions overlapping the peaks of this dataset (by at least one base) is 

counted. Next, a p-value describing the significance of this overlap is estimated using a 

simulation-based procedure. To this end, a ‘negative set’ is created for comparison to the input 

set, which in this study contains the set of non-enVars (i.e., variants with no allele having an 

adjusted p-value of less than 0.05 and more than 10%- fold change in the DESeq2 result). A 

distribution of expected overlap values is then created from 2,000 iterations of randomly sampling 

from the negative set, each time choosing a set of negative examples that match the input set in 

terms of the total number of genomic loci. The distribution of the expected overlap values from 

the randomized data resembles a normal distribution and can thus be used to generate a Z-score 

and corresponding p-value estimating the significance of the observed number of input regions 

that overlap each ChIP-seq data set.  

We performed similar RELI analysis for allelic enVars. As input, we used the allelic enVar sites. 

For the ‘negative set’, we used the set of common SNPs taken from the dbSNP142 database 

downloaded from the UCSC table browser60. 

Identification of allelic ChIP-seq reads using MARIO  

To identify possible mechanisms underlying our allelic enVars, we applied our MARIO10 method 

to the GM12878 ChIP-seq dataset collection described above. In brief, MARIO identifies common 
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genetic variants that are (1) heterozygous in the assayed cell line (here, GM12878) and (2) 

located within a peak in a given ChIP-seq dataset. It then examines the sequencing reads that 

map to each heterozygote in each peak for imbalance between the two alleles. Results are 

combined across experimental replicates to produce a robust Allelic Reproducibility Score (ARS). 

Results with MARIO ARS values >0.4 were considered allelic, and any TF with inconsistent allelic 

imbalance across ChIP-seq datasets at a given variant site was removed, following our previous 

study10. 

Identification of variant overlapping and variant adjacent TFs 

Variant overlapping TFs were identified using an algorithm that compares predicted TF binding 

motif scores between the different alleles of each allelic enVar. First, we padded each allele of a 

given allelic enVar with 25 bps of upstream and downstream DNA sequence (a sufficient length 

to account for any known human TF binding sites82). The algorithm consists of two major 

components: (1) individually scoring the two alleles of a given variant with a given TF model; and 

(2) quantifying the difference in the binding intensity between these two alleles. DNA sequences 

are scored using the large collection of human TF position frequency matrix (PFM) models 

contained in the Cis-BP database27 and the log-likelihood PFM scoring system83. Since log-

likelihood score distributions vary substantially (depending on the information content of a given 

motif), we employ a simple scaled scoring system that maps a given log-likelihood score to the 

percentage of the maximum achievable log-likelihood score of the given motif – we refer to this 

value as the “relative PFM score”. We identify binding site altering events (i.e., “creating” or 

“breaking” a predicted binding site for a given TF motif) as cases where one allele has a relative 

PFM score of 70% or higher, and the other allele has a score of less than 40%. For a given variant, 

any TF with allelic ChIP-seq sequencing reads (see above) and a binding site altering event for 

any of its motifs was deemed a variant overlapping TF.  Any TF with allelic ChIP-seq sequencing 
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reads and a lack of a binding site altering event for any of its motifs was deemed a variant adjacent 

TF. 

We next sought to identify particular TFs that tend to be variant overlapping TFs at SLE allelic 

enVars.  To this end, we calculated the fraction of times each TF motif has a binding site altering 

event (as defined above) at SLE allelic enVars.  As background, we calculated the fraction of 

times each TF motif has a binding site altering event at non-allelic enVars. The significance of the 

difference between these two fractions was then calculated using a proportions test.  Results are 

provided in Supplemental Data Set 15. 

We used a similar procedure to identify particular TFs that tend to be variant adjacent TFs at SLE 

allelic enVars.  We performed HOMER motif enrichment analysis using the full 170bp allelic enVar 

DNA sequences as input. The standard HOMER null model (scrambled input sequence, 

maintaining dinucleotide frequencies) was used as background. The fractions of motif “hits” 

obtained in the foreground vs. background set were then compared, and significance was again 

calculated using a proportions test.  Results are provided in Supplemental Data Set 15. 

 

Data availability 

MPRA data are available in the Gene Expression Omnibus (GEO) database under accession 

number GSE143792. This dataset will remain private until the article is “in press”.  

Full datasets and processed results are provided in the Supplementary Material. Investigators 

requesting access to the supplementary materials are requested to contact the corresponding 

authors directly. 
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Code availability 

Source code, with full documentation and examples, are freely available under the GNU General 

Public License on the Weirauch Lab GitHub page: 

https://github.com/WeirauchLab 
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Figure Legends 

Figure 1. Massively Parallel Reporter Assay Workflow. See text for description. 

Figure 2. Regulatory activity of enhancer variants (enVars). a. Distribution of MPRA 

regulatory activity. The normalized fold-change of MPRA activity relative to plasmid control (X-

axis) was calculated using DESeq2. Enhancer alleles (enAlleles) were identified as those alleles 

with significant activity relative to control (padj < 0.05) and at least a 50% increase in activity (see 

Methods). b. Enrichment of histone marks in GM12878 cells at enVars compared to non-enVars. 

p-values were estimated using RELI (see Methods). Full RELI results are provided in 

Supplemental Data Set 9. c. Enrichment of regulatory protein and transcription factor (TF) 

binding at enVars compared to non-enVars. The top 15 TFs (based on RELI p-values) that overlap 

at least 10% of enVars are shown. Full results are provided in Supplemental Data Set 9. d. TF 

binding site motif enrichment for enVars compared to non-enVars. p-values were obtained from 

HOMER using the full oligo sequences of enVars and non-enVars (see Methods). The top 15 

enriched TF motif families are shown.  Full results are provided in Supplemental Data Set 10. 

Figure 3. Regulatory activity of allelic enhancer variants (allelic enVars). a. Identification of 

allelic enVars. Genotype dependence (Y-axis) is defined as the normalized fold change of MPRA 

activity between the non-reference and reference alleles (see Methods). MPRA enhancer activity 

(X-axis) is presented as the maximum normalized fold-change of MPRA activity for any allele of 

the variant. Allelic enVars were defined as variants with a significant difference in MPRA activity 

(padj < 0.05) between any pair of alleles and at least a 25% change in activity difference (see 

Methods).  b. MPRA enhancer activity at the 27 risk loci with at least one allelic enVar. Bar plots 

indicate the total number of variants at each locus. Variants with allelic enhancer activity (allelic 

enVars) are shown in red. Variants lacking allelic enhancer activity are shown in grey. 
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Figure 4. Lupus risk allele-dependent gene regulatory mechanisms at the C4A and 

SYNGR1 genomic loci. a. and e. Normalized MPRA enhancer activity of each experimental 

replicate for rs3101018 and rs26069235. b. and f. Expression trait quantitative loci (eQTLs) 

revealing genotype-dependent expression of C4A and SNYGR1 for rs3101018 and rs26069235 

in EBV-infected B cell lines (GTEx). c. and g. Genotype-dependent activity of transcription factors, 

transcriptional regulators, and histone marks in GM12878 cells for rs3101018 and rs26069235. 

Results with MARIO ARS values >0.4, at least a 1.5-fold imbalance between alleles, and 

consistent allelic imbalance across TF ChIP-seq datasets are included (see Methods). The X-axis 

indicates the preferred allele, along with a value indicating the strength of the allelic behavior, 

calculated as one minus the ratio of the weak to strong read counts (e.g., 0.5 indicates the strong 

allele has twice the reads of the weak allele). Variant overlapping TFs are indicated in black.  

Variant adjacent TFs are shown in green (see definition in Figure 5a). d. and h. DNA binding 

motif logos are shown for the ATF/CREB/CREM family, IKZF2, and ELF1 in the context of the 

DNA sequence surrounding rs3101018 and rs2069235, respectively. Tall nucleotides above the 

X-axis indicate preferred DNA bases. Bases below the X-axis are disfavored. 

Figure 5. Identification of variant overlapping and variant adjacent TFs. a. Model of variant 

overlapping and variant adjacent transcription factors (TFs). Variant overlapping TFs allelically 

bind on top of variants, while variant adjacent TFs allelically bind near variants. b. TF binding site 

location distribution for variant overlapping and variant adjacent TFs, relative to allelic enVars. c. 

TF motif families enriched for participating as variant overlapping TFs at allelic enVars. Motif 

disruption p-values were estimated by comparing the fraction of motif disruption events at allelic 

enVars to the fraction observed at non-allelic enVars (see Methods). d. TF motif families enriched 

for participating as variant adjacent TFs at allelic enVars. Motif enrichment p-values were 

estimated by comparing the fraction of predicted TF binding sites in allelic enVars to random 

expectation (see Methods). For both the variant overlapping and variant adjacent analyses, motif 
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families are shown with padj <0.0001 and three or more allelic events at allelic enVar loci, or five 

or more predicted binding sites at allelic enVar loci, respectively. 
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