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Abstract

We develop a scalable and highly efficient algorithm to fit a Cox proportional hazard model by
maximizing the L1-regularized (Lasso) partial likelihood function, based on the Batch Screening
Iterative Lasso (BASIL) method developed in (Qian et al. 2019). The output of our algorithm is
the full Lasso path, the parameter estimates at all predefined regularization parameters, as well
as their validation accuracy measured using the concordance index (C-index) or the validation
deviance. To demonstrate the effectiveness of our algorithm, we analyze a large genotype-
survival time dataset across 306 disease outcomes from the UK Biobank (Sudlow et al. 2015).
Our approach, which we refer to as snpnet-Cox, is implemented in a publicly available package.

1 Introduction

Survival analysis involves predicting time-to-event, such as survival time of a patient, from a set of
features of the subject, as well as identifying features that are most relevant to time-to-event. Cox
proportional hazard model (Cox 1972) provides a flexible mathematical framework to describe the
relationship between the survival time and the features, allowing a time-dependent baseline hazard.
Survival analysis faces computational and statistical challenges when the the predictors are ultrahigh-
dimensional (when feature dimension is greater than the number of observations) and large scale
(when the data matrix does not fit in the memory). Based on the Batch Screening Iterative Lasso
(BASIL), we develop an algorithm to fit a Cox proportional hazard model by maximizing the Lasso
partial likelihood function. We apply the method to 306 time-to-event disease outcomes from UK
Biobank combined with genetic data. We generate improved predictive models with sparse solutions
using genetic data with the number of variables selected ranging from a single active variable in the
set and others with almost 2,000 active variables.

1.1 Cox Proportional Hazard Model

Given a numerical predictor X ∈ Rd, Cox model assumes that there exists a baseline hazard function
h0 : R+ 7→ R+ and a parameter vector β ∈ Rd such that the hazard function for survival time has
the form:

h(t|X) = h0(t) exp(βTX). (1)
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Intuitively the hazard function at time t measures the relative risk of death around time t, given that
the patient survives up to time t. Under Cox proportional hazard model, the hazard ratio between
two subject with covariates X and X ′ can be written as:

HR = HR(X,X ′) =
h(t|X)

h(t|X ′)
= exp[βT (X −X ′)] (2)

When X is an indicator for a treatment, the hazard ratio can be interpreted as the risk of event
occurring in the treatment group, compared to the risk in the control group, and the regression
coefficient β is the log-hazard ratio.

To describe the distribution of the survival time we can equivalently use its cumulative distribu-
tion function:

P (T ≤ t|X) = 1− exp

(
−
∫ t

0

h0(s)eβ
TXds

)
(3)

In practice it is often the case that the survival time is right-censored. That is the event has not yet
happened at the time the data was collected. Therefore for the ith individual we observe a tuple
(Xi, Oi, Ti), where Xi ∈ Rd is the predictors, Oi ∈ {0, 1} is the event indicator. If Oi = 1, then
Ti is the actual survival time of the ith individual. If Oi = 0, then we only know that the true
survival time of the ith individual is longer than Ti. Throughout this paper we will assume that
the censoring is non-informative, meaning that the time of censoring is independent of the (possibly
unobserved) event time conditional on Xi.

One advantage of the Cox model is that, while being a semi-parametric model (the baseline
function is non-parametric), we could still estimate the parameter β without estimating the baseline

function. This can be achieved by choosing β̂ that maximizes the log-partial likelihood function:

β̂ = arg max
β

∑
i:Oi=1

βTXi − log

 ∑
j:Tj≥Ti

exp(βTXj)

 . (4)

We use the C-index to evaluate a fitted β̂:

C(β̂) =

∑n
i,j=1 1[β̂TXi > β̂TXj ]1(Ti < Tj , subjects i, j are comparable)∑n

i,j=1 1(Ti < Tj , subjects i, j are comparable)
. (5)

Here subject i and j are comparable if and only if:

• Oi = Oj = 1. That is an event has been observed for both i and j;

• Oi = 0, Oj = 1, Ti > Tj , or vice-versa. In this case, although only one event event is observed,
the ordering of the underlying event time can still be inferred.

In this paper we assume that there is no ties between event time or predictors. For a more complete
description of C-index, see (Harrell et al. 1982, Li & Tibshirani 2019)

2 Method

2.1 Preliminaries

We first introduce the following notations:
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• Let n, d be the number of observations and the number of features respectively. Let X ∈ Rn×d
be the matrix of predictors. To simplify notation, we use n, d,X for all of train, test, and
validation set. Whether X comes from train, test, or validation data can be inferred from the
context.

• Let Xi ∈ Rd be the ith row of X.

• Let xj ∈ Rn be the jth column of X.

• Denote the log-partial likelihood function as f(β). That is

f(β) =
∑
i:Oi=1

βTXi − log

 ∑
j:Tj≥Ti

exp(βTXj)

 . (6)

We focus on survival analysis in the high-dimensional regime, where the number of predictors is
greater than the number of observations (d > n), although same procedure can easily be applied to
low-dimensional cases. We use Lasso to perform variable selection and estimation at the same time.
In particular, we optimize the L1-regularized log-partial likelihood:

β̂(λ) = arg max
β

 ∑
i:Oi=1

βTXi − log

 ∑
j:Tj≥Ti

exp(βTXj)

− λ‖β‖1
 (7)

where the ‖β‖1 =
∑d
j=1 |βj | . More generally, we allow each parameter or each observation to have a

different weight in the objective function, the right-hand side of (7). In particular, given a vector of
penalty factors wp ∈ Rd+, and observation weight wo ∈ Rn+, we define the general objective function
to be ∑

i:Oi=1

woi

βTXi − log

 ∑
j:Tj≥Ti

exp(βTXj)

− λ d∑
j=1

wpj |βj |. (8)

This can be particularly useful if we are considering genetic variants that we would like to upweight
during variable selection, e.g. coding variants in a region of perfect linkage disequilibrium. To
simplify the notation we describe our algorithm assuming that the parameters and the observations
are unweighted.

2.2 Hyperparameter Selection

To find the optimal hyperparameter λ, we start with a sequence of L candidate regularization
parameters λ1 > λ2 > · · · , λL > 0 and compute the corresponding parameter estimate as well as
the validation metric. The optimal regularization parameter is then selected to be λl that maximizes
the validation metric and β̂ is set to be β̂(λl). The sequence of regularization parameters can be

chosen by setting λ1 to be sufficiently large such that the optimal β̂(λ1) is just zero, and find L = 100
equally spaced λs in log-scale.

Applying this procedure naively requires solving L optimization problems, each reading the en-
tire predictor matrix X. The key components of our algorithm that significantly speed up the
computation are the following observations adapted from (Qian et al. 2019).
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2.3 Batching Screening Procedure

The KKT condition of (7) indicates that the optimal β̂(λ) must satisfy:∣∣∣∣ ∂∂βk f(β̂(λ))

∣∣∣∣
{

= λ, if βk 6= 0

< λ, if βk = 0
(9)

When λ is sufficiently large, β̂(λ) is sparse, so our strategy is to solve the optimization problem
(7) using only a small subset of features, assuming all the others have coefficient zero. Then we
verify that the solution satisfies the KKT condition (9). We iteratively apply this strategy for
λ = λ1, · · · , λL to obtain the entire Lasso path. To determine which predictors to include in the
model, we adopt the screening rules used in BASIL, which is inspiered by the strong rules proposed
in (Tibshirani et al. 2012). In Cox model, the strong rules assumes β̂j(λk) = 0 (discard the jth
predictor when fitting) if ∣∣∣∣ ∂∂βj f(β̂(λk−1))

∣∣∣∣ < λk − (λk−1 − λk). (10)

By convention we set λ0 =∞. Although it is possible for strong rules to fail, it rarely happens when
d > n.

Before we describe the full algorithm, first we write the gradient of the log-partial likelihood into a
simple form. Notice that the gradient of the log-partial likelihood function can be written as:

∇βf(β) =
n∑
i=1

OiXi −Oi

∑
j:Tj≥Ti

exp(βTXj)Xj∑
j:Tj≥Ti

exp(βTXj)
(11)

Let r = r(data, β) ∈ Rn be defined as

ri = Oi −
∑

j:Tj≤Ti

Oj exp(βTXi)∑
k:Yk≥Yj

exp(βTXk)
(12)

Then by direct computation one can show that

∇βf(β) =
n∑
i=1

riXi = rTX. (13)

Our full algorithm follows the same structure as in BASIL (Qian et al. 2019), where at each iteration
of our algorithm we look for Lasso solution for multiple consecutive λs in the Lasso path so that
large dataset is not read in to frequently. Suppose β̂(λ0), · · · , β̂(λl) have been computed in the
first k − 1 iterations. At the kth iteration we maintain a strong set S(k) ⊆ [d], an ever-active set
A(k) ⊆ [d], and a set of regularization parameters Λ(k) ⊆ {λ1, · · · , λL} that we use to fit Lasso in

the current iteration. Here S(k) is the small subset of variables that are used to fit β̂ implied by our
screening procedure (10), and A(k) is the subset of variables such that Lasso coefficients are non-zero
for at least one λ in λ0, · · · , λl. Each iteration has the following three steps: screening, fitting and
checking. At the screening step we update S(k), which includes variables that are in A(k−1) and the
top M variables with the largest partial derivative in the left-hand side of (10) that are also not in
A(k−1). At the fitting step, we solve the optimization problem (7) using regularization parameters in
Λ(k) and variables in S(k). At the checking step, we check that the KKT condition (9) is satisfied and
extend Λ(k) to Λ(k+1) by adding the next few λs in the list that are unused yet. As an optional step,
we compute the validation C-index of β̂(λ) for λ ∈ Λ(k). Algorithm 1 summarizes this procedure.
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Algorithm 1: BASIL for Cox Model

Input: The training set Dtrain = {(Xi, Oi, Ti)}ni=1 stored in the disk;

The validation set Dtrain = {(Xi, Oi, Ti)}n
′

i=n+1;
(Optional) Regularization parameter λ1 > λ2 > · · · > λL > 0

Result: β̂(λ1), · · · , β̂(λL)
Initialize A(0) = ∅;
Construct the regularization parameters λ1, · · · , λL if not provided by the user;

Compute the initial r(0) using (12) with β = 0 (or fit a β̂ using only unpenalized variables if
there is any);

Initialize a short list of initial regularization parameters Λ(0) = {λ1, · · · , λL(0)};
Set the iteration counter k = 0;

while β̂(λL) not computed do
Screening:
for 1 ≤ j ≤ d do

Compute the partial derivative c
(k)
j = xTj r

(k);

end

Set E(k)M to be the M variables in [d] \ A(k) with the largest |c(k)j |;
Set S(k) = A(k) ∪ E(k)M ;
Fitting:
for λ ∈ Λ(k) do

Obtain β̂(λ) by solving (7) using only variables in S(k). Coefficients for variables not
in S(k) are set to be zero.;

Define r(k)(λ) using (12) with β = β̂(λ)
end
Checking:
Find the smallest λ ∈ Λ(k) such that the KKT condition (9) is satisfied:

λ
(k)

= min

{
λ ∈ Λ(k) : max

j∈[d]\S(k)
|xTj r(k)(λ)| < λ

}

Update A(k+1) = A(k) ∪ {j : β̂(λ
(k)

) 6= 0} ;

Update r(k+1) = r(k)(λ
(k)

);

Update Λ(k+1) = {λ ∈ Λ(k) : λ < λ
(k)}. Extend Λ(k+1) if it is too short.;

For λ ∈ {λ ∈ Λ(k) : λ ≥ λ(k)}, we obtain valid Lasso solution β̂(λ);

(Optional) For λ ∈ {λ ∈ Λ(k) : λ ≥ λ(k)}, we can compute the validation C-index:

C(β̂(λ)) =

∑n′

i,j=n+1 1[β̂TXi > β̂TXj ]1(Ti < Tj)∑n′

i,j=n+1 1(Ti < Tj)

Set k = k + 1;

end

return β̂(λ1), · · · , β̂(λL)
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2.4 Fast C-Index Computation

Several frequently-used C-index computational algorithms, including the first algorithm we tried,
have time complexity O(n2). As population-scale cohorts, like UK Biobank, Million Veterans Pro-
gram, and FinnGen, aggregate time to event data for survival analysis it is increasingly important to
consider the computational costs of statistics like C-index to build and evaluate predictive models.
The time to event data for survival analysis include age of disease onset, progression from disease
diagnosis to another more severe outcome, like surgery or death. Here, we present an implementa-
tion with O(n log n) time complexity (and O(n) space complexity) that can introduce over 10,000x
speedup for biobank-scale data relative to several R packages, and over 10x speedup compared to
existing O(n log n) tim complexity (and O(n+n log n) space complexity) algorithm implemented in
the survival analysis package (Therneau & Lumley 2014).

We initially assume there are no tied f or T values.

I Define g (Xj) to be the number of values i in {1, . . . , n} where β̂TXi > β̂TXj . For example, if
n = 3, f (X1) = 6, f (X2) = 3, and f (X3) = 4, then g (X1) = 2, g (X2) = 0, and g (X3) = 1.

Note that 1 [g (Xi) < g (Xj)] is always the same as 1 [f (Xi) < f (Xj)]; these functions have the
same rank ordering. So we just work with g in the remainder of this discussion. And, given f ,
it is straightforward to compute g in O(n log n) time.

II Sort the records in order of nonincreasing T .
This lets us rewrite

∑n
i,j=1 1 [g (Xi) < g (Xj)] 1 (Ti < Tj) as∑n

j=1 # [i : g (Xi) < g (Xj) , i < j] for uncensored j.

III Each g (X) value is a distinct nonnegative integer in {0, 1, . . . , n− 1}. So we can use a bitarray
to represent the set {g (Xi) : i < j}. This bitarray has two nice properties:

(a) # [i : g (Xi) < g (Xj) , i < j] is the number of set bits (“popcount”) in bitarray positions
{0, 1, . . . , g (Xj)− 1}.

(b) When we advance to the next j, we set one bit in the bitarray to update it.

Bitarrays are compact, and very efficient to work with. (The exact arithmetic and bitwise
operations we used were primarily informed by (Knuth 2011) and (Mu la et al. 2016).) However,
we need to perform O(n) array-popcount operations, so the top-level algorithm is still O(n2) if
each popcount takes O(n) time.

To get the array-popcount operations down to O(log n), we augment the bitarray with a stack of
indexes. For example, the first-level index can be of the form <# of set bits in {0, 1, . . . , 511}>
, <# of set bits in {512, 513, ..., 1023}>,<# of set bits in {1024, 1025, ..., 1535}>, . . . , and the
second-level index can be of the form <# of set bits in {0, 1, . . . , 16383}>,<# of set bits in
{16384, 16385, . . . , 32767}>, . . . . Then, for g(Xj) = 40000, we wouldn’t actually need to scan
the first 40000 bits. We could instead get popcount({0, 1, . . . , 39935}) by adding 2 second-level-
index entries to 14 first-level-index entries, and we’d only need to directly scan the last 64
bits.

The drawback is that when we advance to the next j, we now have to update the indexes
in addition to setting a bit in the main bitarray. But in the example above, only two index
entries need to be updated. In the general case, the number of required index updates when we
increment j is O(log n), which is within our O(n log n) budget.

IV Ties introduce some challenges to deal with, but the same core algorithm is still effective.
With very large groups of tied f() values, the main tie-handling strategy causes the algorithm
to degrade to O(n2), so our implementation detects this scenario and switches to a slightly
different loop that doesn’t degrade.
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3 Applications

3.1 UK Biobank age of diagnosis data preparation

We have prepared an age of diagnosis dataset from the UK Biobank derived from Category 1712, the
category containing data showing the ‘first occurrence’ of any code mapped to 3-character ICD-10
(see Supplementary Material).

Briefly, the data-fields have been generated by mapping: Read code information in the Primary
Care data (Category 3000); ICD-9 and ICD-10 codes in the Hospital inpatient data (Category
2000); ICD-10 codes in Death Register records (Field 40001, Field 40002), and Self-reported medical
condition codes (Field 20002) reported at the baseline or subsequent UK Biobank assessment centre
visit to 3-character ICD-10 codes.

For each code two data-fields are available: the date the code was first recorded across any of
the sources listed above, the source where the code was first recorded, and information on whether
the code was recorded in at least one other source subsequently.

We used these data and computed an age of diagnosis by using the Month of Birth Data Field
(Data-Field 52) and Year of Birth (Data-Field 34).

3.2 Genetic data preparation

Here, we used genotype data from the UK Biobank dataset release version 2 and the hg19 human
genome reference for all analyses in the study. To minimize the variabilities due to population
structure in our dataset, we restricted our analyses to include 337, 151 unrelated White British
individuals, used sex, Array (UK Biobank was genotyped in two different platforms), and 10 principal
components derived from the genotype data as covariates (described in detail in Supplementary
Note).

We focused our analysis on variants with a minor allele frequency (MAF) greater than or equal
to 0.1% for directly genotyped variants in either array, in addition to the Human Leukocyte Antigen
(HLA) alleles (Bycroft et al. 2018) and copy number variants (CNVs) described in (Aguirre et al.
2019) for a total of 1.08 million variants.

We split our dataset into a 70% training (n = 236,004), 10% validation, (n = 33,716) and 20%
held out test set (n = 67,430), and apply snpnet-Cox with 50 iterations. We focus our analysis on
306 ICD10 codes with at least 950 cases in the 337, 151 individuals dataset.

3.3 snpnet-Cox results

We summarize the results across the 306 ICD10 codes, but focus our detailed analysis for four of
them including:

1. asthma (ICD10 code: J45),

2. gout (M10),

3. disorders of porphyrin and bilirubin metabolism (E80), and

4. atrial fibrillation and flutter (I48).

When assessing the predictive performance of Xβ̂, where β̂ is the fitted regression coefficients
from the snpnet-Cox, and X is the matrix of genotypes for the individuals in the held out test set for
variants with non-zero regression coefficients from snpnet-Cox, we applied Cox proportional hazard
model in the survival package. We applied a couple of procedures to give a high level overview of
the results. First, we assessed whether the Polygenic Hazard Score (PHS), or Xβ̂, was significantly
associated to the time to event data in the held out test set (so that we obtained a P-value for each

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.913194doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913194
http://creativecommons.org/licenses/by/4.0/


ICD10 code). Second, we computed the Hazards Ratio (HR) for the scale (standard deviation unit),
and different thresholded percentiles (top 1%, 5%, 10%, and bottom 10% compared to the 40-60%)

of Xβ̂. Third, we computed the C-index (Harrell et al. 1982).
The C-index for the 101 ICD10 codes with PHS P < 0.01 range from 0.511 to 0.884 (see Global

Biobank Engine (GBE) snpnet-Cox page https://biobankengine.stanford.edu/snpnetcox) and
HR per standard deviation of PHS from 1.042 to 13.167. The results further highlight the sparsity
property of Lasso in the Cox model implemented in snpnet-Cox with some ICD10 codes including
a single active variable in the set and others with almost 2,000 active variables (e.g. non-insulin-
dependent diabetes mellitus).

3.3.1 Asthma - J45

Motivated by the varying age of asthma onset, a common disease that affects a substantial fraction
of young adults, we hypothesized that a PHS could capture individuals that are not only at higher
risk of disease onset, but also at a higher risk of developing asthma at a younger age.

Here, we estimate a HR of 1.428 per SD of PHS (C-index of 0.605), and HR of 2.740, 2.137
and 1.825 for the top 1, 5, and 10% of the PHS distribution compared to the 40 − 60%. Further,
we find that 14.2% of individuals in the top 1% of the PHS score developed asthma by age 20.5
compared to only 1.1% in the bottom 10% and 3.2% of the 40 − 60%ile of the PHS score (see
Figure 1), which underscores the relevance of PHS in the context of early onset of common diseases
that are hypothesized to have a monogenic signature (Kelsen & Baldassano 2017). The asthma
PHS is composed of 1.567 active variable of which some are known from previous GWAS of traits
related to asthma. As an example, we identify the rs2381416 (MAF = 0.26) upstream of GTF3AP1
to associate with asthma with an effect size of -0.11. This variant has previously been found to
associate with eosinophil count (Gudbjartsson et al. 2009) and severity of childhood asthma (Smith
et al. 2017).

3.3.2 Gout - M10

Gout is a common disease, affecting at least 1% of men in Western countries, with a strong male
to female imbalance (Terkeltaub 2003). It is a form of arthritis caused by excess uric acid in the
bloodstream and characterized by severe pain, redness, and tenderness in joints.

In the UK Biobank study, we estimate a Hazard Ratio of 1.679 per SD of PHS (C-index of 0.649),
and HR of 3.70, 2.502 and 2.073 for the top 1,5, and 10% of the PHS distribution compared to the
40 − 60%. Further, we find that 4.89% of individuals in the top 1% of the PHS score developed
asthma by age 50.1 compared to only 0.30% in the bottom 10% and 1.02% of the 40− 60%ile of the
PHS score (see Figure 2). The gout PHS consists of 1.970 active variables and we identify loci that
have been identified in prior GWAS (Dehghan et al. 2008).

3.3.3 Disorders of porphyrin and bilirubin metabolism - E80

Bilirubin, which is the principal component of bile pigments, is the end product of the catabolism
of the heme moiety of hemoglobin and other hemoproteins. If bilirubin is produced in excessive
amounts or hepatic excretion of bilirubin into bile is defective, the concentration of bilirubin in the
blood and tissues increases, which may result in jaundice (Bosma 2003), a well recognisable symptom
of liver disease.

We estimate a HR of 13.167 per SD of PHS (C-index of 0.884). Here, given that we have only
2 active variables, we find that the snpnet-Cox algorithm finds a sparse solution (see Figure 3).
One of the active variables is the intron variant (rs6742078) of UTG1A4 (MAF = 0.31) which
encodes an enzyme UDP-glucuronosyltransferase that transforms small lipophilic molecules such as
bilirubin (Tukey & Strassburg 2000).

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.913194doi: bioRxiv preprint 

https://biobankengine.stanford.edu/snpnetcox
https://doi.org/10.1101/2020.01.20.913194
http://creativecommons.org/licenses/by/4.0/


3.3.4 Atrial fibrillation and flutter - I48

Atrial fibrillation is the most common type of arrhythmia in adults. The prevalence increases from
less than 1% in persons younger than 60 years of age to more than 8% in those older than 80 years
of age (McNamara et al. 2003). Earlier onset of atrial fibrillation is believed to have a strong genetic
component and whether that has more of a polygenic or monogenic flavor is currently unknown.

In the UK Biobank study we estimate a Hazard Ratio of 1.466 per SD of PHS (C-index of 0.618),
and HR of 3.883, 2.319 and 1.861 for the top 1,5, and 10% of the PHS distribution compared to
the 40− 60%. Further, we find that 6.57% of individuals in the top 1% of the PHS score developed
asthma by age 60 compared to only 0.70% in the bottom 10% and 1.41% of the 40− 60%ile of the
PHS score (see Figure 4), which underscores the relevance of PHS in the context of early onset of
atrial fibrillation.

4 Discussion

In this article, we developed the batch screening iterative LASSO (BASIL) algorithm (Qian et al.
2019) to find the lasso path of Cox proportional hazard models. We implemented an optimized
C-index function, which computes the C-index of a fitted Cox model in O(n log n) time with an
excellent constant factor. Our method was applied to the UK Biobank dataset to identify genetic
variants that are associated with time-to-event phenotypes and to build Polygenic Hazard Scores
(PHS). Visualizations of snpnet-Cox results across 306 ICD10 codes are available in Global Biobank
Engine (https://biobankengine.stanford.edu/snpnetcox) (McInnes et al. 2018).

Our current approach does have limitations, which we hope to resolve in future work. First,
we assume that each individual has independent survival times (conditional on the features). This
may become a limitation as population-scale cohorts especially in population isolates like in Finland
sample related individuals. Second, we do not provide procedures for false discovery rate estimates
based on selected features, which may be useful in communicating confidence in a single active
variable (Taylor & Tibshirani 2015). Third, as we move towards whole genome sequencing data
where a large fraction of variants discovered will have a rare event property, i.e. observed in a
handful of individuals, the validation accuracy may need to be redefined to evaluate a fitted ˆbeta.
Fourth, we do not consider time-varying coefficients and time-varying covariates, which may improve
inference in the setting where features may have multiple measurements over time. These are areas
of future direction that we anticipate we will address.

We provide the implementation of our approach in a publicly available package snpnet available
at https://github.com/junyangq/snpnet with cindex package dependency available at https:

//github.com/chrchang/plink-ng/tree/master/2.0/cindex.
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Figure 1: Asthma

A. Kaplan-Meier curves for percentiles of Polygenic Hazard Scores (PHS), or Xβ̂, for variants
selected by snpnet-Cox, in the held out test set (orange - top 1%, green - top 5%, red - top 10%,

blue - 40-60%, and brown - bottom 10%; ticks represent censored observations. Highlighted are the
proportion of asthma events by age 20 across the percentile scores. B. Plot of snpnet-Cox

coefficients for asthma with 1, 567 active variables. Green dots represent protein-altering variants.
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Figure 2: Gout

A. Kaplan-Meier curves for percentiles of Polygenic Hazard Scores (PHS), or XTB, for variants
selected by snpnet-Cox, in the held out test set (orange - top 1%, green - top 5%, red - top 10%,

blue - 40-60%, and brown - bottom 10%; ticks represent censored observations. Highlighted are the
proportion of gout events by age 50 across the percentile scores. B. Plot of snpnet-Cox coefficients

for gout with 1, 970 active variables. Green dots represent protein-altering variants.
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Figure 3: Disorders of porphyrin and bilirubin metabolism

A. Kaplan-Meier curves for percentiles of Polygenic Hazard Scores (PHS), or XTB, for variants
selected by snpnet-Cox, in the held out test set (orange - top 1%, green - top 5%, red - top 10%,

blue - 40-60%, and brown - bottom 10%; ticks represent censored observations. Highlighted are the
proportion of disorders of porphyrin and bilirubin metabolism events by age 60 across the percentile
scores. B. Plot of snpnet-Cox coefficients for disorders of porphyrin and bilirubin metabolism with

2 active variables. Green dots represent protein-altering variants.
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Figure 4: Atrial fibrillation

A. Kaplan-Meier curves for percentiles of Polygenic Hazard Scores (PHS), or XTB, for variants
selected by snpnet-Cox, in the held out test set (orange - top 1%, green - top 5%, red - top 10%,

blue - 40-60%, and brown - bottom 10%; ticks represent censored observations. Highlighted are the
proportion of atrial fibrillation events by age 60 across the percentile scores. B. Plot of snpnet-Cox
coefficients for atrial fibrillation with 1, 604 active variables. Green dots represent protein-altering

variants.
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Figure 5: snpnet-Cox paths

Each line in these plots corresponds to a variable from the best model. The vertical axis represents
the L1 norm of the estimated coefficients and the horizontal axis represents the value of the

coefficients. The path is computed at various level of regularization parameter. The whiskers at the
top of the plot are the number of variables selected. The first 12 variables are the covariates

including age, sex, PC1-10.
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