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The total microbiome functionality of bacteria was recently predicted to be 35.5 ±0.2 million of 

KEGG functions. Logically, due to the limitation in space and resource availability of the local 

community, local functionality will only comprise a small subset of the total functionality but the 

relationship between taxonomy and functionality is still uncertain. Here, I used a meta-analysis 

of 139 extant Tara ocean seawater samples from 68 locations across to globe with information 

on prokaryotic taxonomy on species level from 16S metabarcoding and functionality of 

prokaryotes on eggNOG gene family level from metagenomes to unveil the relationship 

between taxonomy and functionality, and to predict the global distribution of functionality. 

Functional richness showed a statistically significant increase with increasing species richness (P 

<0.0001, R
2
 =0.64) and increasing species diversity (P <0.0001, R

2
 =0.26) while functional 

diversity was similar across the different waters, ranging from 2.96 to 3.22. Globally, the highest 

functional richness was found in the Northern Pacific Ocean and in the North Atlantic Ocean, 

and decreased at extreme latitudes. Taken together, I unveil the relationship between taxonomy 

and functionality, and predict the global distribution of functional richness in prokaryotes 

inhabiting aquatic ecosystems, implying more pronounced effects in terrestrial ecosystems due 

to larger differences in environmental parameters especially for functional diversity. 

Ecosystem functioning is mediated by biochemical transformations performed by a 1 

community of microbes from every domain of life 
1
. Prokaryotes play key roles in 2 

biogeochemical processes such as carbon and nutrient cycling 
2
 and provide the basis for the 3 

genetic diversity due to their biomass with 10
4
 to 10

6
 cells per milliliter combined with high 4 

turnover rates and environmental complexity 
3
. The visible result of genetic diversity are 5 

functions, which can be statistically inferred based upon homology to experimentally 6 

characterized genes and proteins in specific organisms to find orthologs in other organisms 7 

present in a given microbiome. This so-called ortholog annotation, among others, can be 8 

performed in eggNOG 
4
 that comprises 721,801 orthologous groups encompassing a total of 9 
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4,396,591 genes and covers all three domains of life (more information about the database can 10 

be obtained under http://eggnogdb.embl.de/#/app/home). However, the bottleneck of 11 

describing microbiome functions is the low number of fully sequenced and annotated genomes 12 

as they are mostly limited to those that have undergone isolation and extensive 13 

characterization.  Problematically, the vast majority of organisms were not yet studied 
5,6

 and 14 

the annotation is based on the similarity to the genomes of the very few studied model 15 

organisms. Recently, the total functionality in bacteria were estimated to be 35.5 ±0.2 million 16 

functions 
7
 but the relationship between taxonomy and functionality at the local scale and the 17 

global distribution of functionality is still uncertain. Here, I used a meta-analysis of 139 extant 18 

Tara ocean seawater samples using 16S metabarcoding for the taxonomic profile of bacteria 19 

combined with metagenome sequencing and eggNOG affiliation for the functional profile of 20 

prokaryotes. I aimed to estimate the number of prokaryotic microbiome functions and its 21 

Shannon diversity in 20L seawater by identifying the model that best fitted their relationship to 22 

species richness and species diversity, and to predict the global distribution of functional 23 

richness and functional diversity. I hypothesize that (i) both richness and diversity of local 24 

functionality will increase with increasing richness and diversity of prokaryotic species due to 25 

the addition of rare functions and (ii) that the functional diversity is similar across different 26 

seawater ecosystems as the environments are similar. 27 

In the 139 Tara ocean seawater samples enriched in prokaryotes, functionality ranged 28 

from 12,328 eggNOG gene families in the Southern Oceans (-61.969˚ latitude & -49.502˚ 29 

longitude) to 25,238 in the South Pacific Ocean (-8.973˚ latitude & -139.239˚ longitude) with an 30 

average of 19,523 ±2,682 functions. The relationship between taxonomy and functionality 31 

showed statistically significant (P-value <0.05) correlations but the coefficient of determination 32 

depended on the specific comparison (Figure 1 & Table 1). The linear relationship of increasing 33 

functional richness with increasing taxonomic richness  showed the statistically best correlation 34 

with a low P-value in combination with a high coefficient of determination (Figure 1a), 35 

consistent with my first hypothesis. The addition of new species is likely to add new rare 36 

functions 
7
 to the total functional richness which is why an increasing number of species will 37 

result in an increasing number of functions. However, this number is limited by space and 38 
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resource availability of the surrounding environment and its inhabiting microbial community. A 39 

maximum of 25,238 functions were carried by 6,254 species but it is likely to assume that 40 

seawater samples carry around the average at 19,523 ±2,682 functions in 4,034 ±992 species. 41 

Otherwise, the nature of the correlations between taxonomic richness and functional diversity 42 

(Figure 1b), taxonomic diversity and functional richness (Figure 1c) and taxonomic diversity and 43 

functional diversity (Figure 1d) were all quadratic, implying a local minimum or maximum for 44 

each function. Indeed, functional diversity showed a maxima at 3.12 ±0.01 (with 3.11 and 3.13 45 

as 2.5% confidence intervals) with a richness of 5,809 species but a minimum at a functional 46 

diversity of 3.08 ±0.01 (3.07-3.09) with a species diversity of 6.4. Functional richness showed a 47 

minimum at 17,441 ±446 (16,568-18,317) functions with a species diversity of 6.1. Noteworthy, 48 

the increase in functional richness with decreasing  species diversity is driven by three samples 49 

from the Indian Ocean and their exclusion results in a statistically significant linear and positive 50 

relationship (P <0.0001, R
2
 =0.27) which is why I would argue increasing  species diversity is 51 

increasing functional richness similarly to  species richness. Otherwise, functional diversity 52 

showed opposing trends for species richness (local maximum) and species diversity (local 53 

minimum). Again, the relationship of species diversity is driven by the three samples from the 54 

Indian Ocean but also two samples from the Southern Ocean, making it more likely to be a 55 

reasonable trend as it was found in different waters across the globe. However, functional 56 

diversity ranges only from 2.96 to 3.22 with an average of 3.09 ±0.05 across the 139 seawater 57 

samples from different locations where functional richness ranged from 12,328 to 25,238 58 

functions. In comparison, species diversity ranges from 2.48 to 6.97 with an average of 4.03 59 

±0.99 and a species richness from 2,484 to 6,974. A three-fold larger range in functional 60 

richness but a magnitude smaller range in functional diversity suggests, in my opinion, that 61 

functional diversity is similar or at least comparable in all the different waters, in line with my 62 

second hypothesis. The highest functional diversity reflects both a fit and a healthy community 63 

that is able to perform a wide spectrum of possible transformations given by the space and the 64 

resource availability of the surrounding environment without overproportioned abundance of 65 

singular functions, which would cause a decrease in functional diversity - as seen in the 66 

taxonomic data. Environmentally, similar functional diversity across the different waters makes 67 
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sense as similar processes are performed and the environmental variables such as temperature 68 

8
, salinity 

9
, oxygen availability 

10
 and dissolved inorganic nutrients 

11
 are similar among the 69 

sampled regions. Otherwise, samples from more diverse regions such as the Arctic Ocean or 70 

terrestrial ecosystems with a wider range of values of different environmental variables will 71 

cause more pronounced differences in functional diversity.  72 

Globally, functional richness was highest in Northern Pacific Ocean near the American 73 

coast and in the North Atlantic Ocean, consistent with statistically significant (P-value <0.05) 74 

higher averages of these waters compared to the regions with low functional richness such as 75 

the Indian Ocean, the Mediterranean Sea, the Red Sea and the Southern Ocean (Figure 2). 76 

Overall, the model comprising second-degree polynomial terms increased in significance 77 

(adjusted R
2
 =0.34, P-value =1.105e

-6
) when environmental variables were considered (adjusted 78 

R
2
 =0.64, P-value =7.132e

-8
) but nitrate concentration showed the most significant individual 79 

effect among the tested environmental variables revealed by the lowest AIC (Table 2) and the 80 

highest increase in significance (adjusted R
2
 =0.56, P-value =1.059e

-9
). The correlation between 81 

nitrate concentration and functional richness was significant and positively linear (Adjusted R
2
 82 

=0.15, P-value =1.342e
-5

), similar to the significant and positive first-degree polynomial 83 

contribution to the best fitting model (P-value =0.000319) to infer high functional richness with 84 

high nitrate concentrations. An increase in functionality with changing conditions from aerobic 85 

near the surface and anaerobic with increasing depths aligns well with an increasing number of 86 

transformation processes and related enzymes involved in microbial respiration. On the one 87 

hand, aerobic breathing comprises only one reaction that oxidizes a carbon source to water and 88 

carbon dioxide performed by mono- and dioxygenases. Otherwise, the marine nitrogen cycle 89 

includes nitrogen fixation by bacteria, nitrate reduction of ammonia production/reduction by 90 

phytoplankton in the euphotic zone, followed by sinking/mixing of ammonia and its nitrification 91 

to nitrate in the ‘dark ocean’ from where denitrification to nitrogen or vertical mixing with the 92 

euphotic zone takes place 
12

. To my surprise as it is contrary to the positive relationship 93 

between nitrate concentration and functional richness, low functional richness was found in 94 

extreme negative latitudes even though the nitrate concentrations were reported to be highest 95 

in these regions with sea-surface concentrations up to 30 mmol N per m
3
 near Antarctica 

11,13
. 96 
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However, none of these regions of presumably low functionality have actually been sampled 97 

and the lower predictions are likely due to the nature of second-degree polynomial functions 98 

that forced the maximum of functionality where the samples were taken and result in a 99 

minimum towards the extremes. In favor of the lower functional richness near Antarctica are 100 

three samples from the Southern Ocean, which align well with the prediction. Admittedly, 101 

despite the high coefficient of determination and the significant P-value of the model, most 102 

sampling points do not show a close match to the local prediction of functional richness which 103 

is why more samples are necessary for a more precise prediction of functionality, especially in 104 

the less sampled regions with low functionality such as the Arctic Ocean. 105 

 Altogether, I quantify the relationship between taxonomy and functionality in 106 

prokaryotes inhabiting different waters locally and predicted the global distribution of 107 

functional richness as functional diversity showed only marginal differences. Noteworthy, the 108 

coverage of aquatic ecosystems of the data was admittedly low despite the massive effort of 109 

sampling eight oceans over three years but the sampling of more oceans will be beneficial for 110 

further predictions. Lastly, due to the grid cell based approach, only half of the bacteria-111 

enriched seawater samples were actually taken into account by the model which is why further 112 

expeditions must consider sampling with more spatial separation. Moving forward, this 113 

relationship must be examined for terrestrial ecosystems as those generally comprise larger 114 

differences in resource availability and environmental variables, potentially resulting in larger 115 

differences in functional diversity, as well as for other domains as those govern key roles in 116 

terrestrial ecosystem functioning. 117 

Materials and Methods 118 

Data collection and correlation between taxonomy and diversity 119 

The publicly available data used to describe the structure and function of the global 120 

ocean microbiome 
14

 was downloaded from http://ocean-121 

microbiome.embl.de/companion.html. 139 samples enriched in bacteria comprised the 122 

taxonomic profile as annotated 16S OTU count table and the functional profile of prokaryotes 123 

as eggNOG gene families annotated to the eggNOG version 3 database 
4
 from the metagenome; 124 
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both derived from extracted DNA. The richness was determined as the number of different 125 

eggNOG gene families or  species. The diversity was determined as Shannon diversity H 126 

according to Equation 1 where pi is the relative abundance of the eggNOG gene families or 127 

prokaryotic species. 128 

Eq. 1: � � � ∑ ��log 
���
�

���
 129 

The estimates on functional richness and functional diversity were modelled to species 130 

richness as a linear, a logarithmic and a quadratic function using non-linear least squares in the 131 

R package nlme 
15

. The best fitted model was chosen based on the lowest Akaike’s An 132 

Information Criterion (AIC) 
16

 with a penalty per parameter set to k equals two. The P-value of 133 

their correlation was determined with the function rcorr from the R package Hmisc 
17

 using the 134 

Spearman’s rank correlation. The pseudo coefficient of determination (R
2
) of the non-linear 135 

models were estimated with the function Rsq in the R package soilphysics 
18

. 136 

Global diversity of functional richness 137 

To explore the geographic patterns of functional richness in prokaryotes inhabiting 138 

aquatic ecosystems, I assigned the samples to 1x1 degree grid cells covering the globe. Grid-139 

based rather than locality-based analyses can be used to standardize the geographic scale of 140 

the analysis, which facilitates cross-region comparisons and limits false presences in the data 
19

. 141 

The grid-based approach is broadly favored in biogeographic analyses for its suitability for 142 

large-scale comparisons 
20

. In cells containing multiple samples, the sample with the highest 143 

number of eggNOG families was selected, resulting in a total number of 74 samples. I used non-144 

parametric smoothing to investigate the changes in functionality (number of eggNOG families) 145 

with latitude and longitude in second-degree polynomial terms added to the single or all 146 

second-degree polynomial terms of six environmental variables (depth, generation time, nitrate 147 

concentration, oxygen concentration, phosphate concentration and temperature). Nitrate 148 

concentration combined with latitude and longitude showed the best fit of the data, which was 149 

closest to the significance of the model with all environmental variables (Table 2). Then, each 150 

combination of first- and second-degree polynomial terms for the three variables was modelled 151 

and evaluated. The best fitting model used second-degree polynomial terms for latitude and 152 
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longitude combined with a first-degree polynomial term for nitrate concentration and was used 153 

to predict functional richness in a 5x5 degree grid from -180 to 190 degrees longitude, -90 to 90 154 

degrees latitude and -5 to 45 µmol/L nitrate using the function dpred from the R package iqspr 155 

21
. Admittedly, it is questionable that negative nitrate concentration exist but the data was 156 

taken as it is available online and since it was present in 28 of 139 samples, their exclusion or 157 

further data manipulation could potentially change the data structure. However, it could be the 158 

reason for the very low functional richness with extreme latitudes.  159 
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Figures 205 

206 

 Figure 1: The relationships as smoothed averages between species richness and diversity from207 

16S metabarcoding and functional richness or diversity of eggNOG functions from208 

metagenomes in 20L seawater samples from 68 locations waters across to globe. The adjusted209 

coefficient of determination (R
2
) is given for the best fitting model for each equation: quadratic210 

(a), logarithmic (b), quadratic (c) and linear (d). The P-value was determined by Spearman’s211 

rank correlation.  212 
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213 

Figure 2: Global distribution of functional richness as eggNOG gene families from metagenomes214 

in 20L seawater samples from 68 locations waters across to globe using non-parametric215 

smoothing for 1x1 grid cells by additive second-degree polynomial models for latitude,216 

longitude, temperature, concentration of nitrate, oxygen and phosphate, and generation time217 

Including nitrate concentration (AIC =1,138.6) showed the lowest AIC compared to the basic218 

model with latitude and longitude (AIC =1,360.4) and the model with all environmenta219 

variables (AIC =1,115.7). The additive pairing of first- or second-degree polynomial terms for220 

latitude, longitude and nitrate concentration showed the lowest AIC value when a first-degree221 

polynomial term is used for nitrate concentration combined with second-degree polynomia222 

terms for latitude and longitude (AIC =1,136.7). The functional richness is also shown based on223 

the region of the different waters with the number of samples as numbers. Groups followed by224 

the same letter are not significantly different according to the HSD test (P-value >0.05). 225 
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Tables 226 

Table 1: AICs and pseudo R
2
s of the linear (ln), the logarithmic (lg) and the quadratic (qu) model 227 

to describe the relationship between functionality as eggNOG gene families from metagenomes 228 

as eggNOG richness and eggNOG diversity to taxonomy as species from 16S metabarcoding and 229 

functionality in the form of richness and Shannon diversity. The best fitting model is highlighted 230 

in bold. 231 

 

eggNOG richness vs 

species richness 

eggNOG diversity vs 

species richness 

eggNOG richness vs 

species diversity 

eggNOG richness vs 

species  diversity 

AIC pseudo R
2
 AIC pseudo R

2
 AIC pseudo R

2
 AIC pseudo R

2
 

ln 2452.71 0.64 -469.09 0.14 2567.19 0.18 -448.27 <0.01 

lg 2454.22 0.63 -470.65 0.15 2568.86 0.26 -448.19 <0.01 

qu 2454.22 0.64 -470.72 0.16 2553.80 0.17 -461.90 0.11 

  232 
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Table 1: AICs of the basic model (Lat
2nd

, Long
2nd

) combined with single environmental variables (DE - 233 

depths, GT - generation time, Ni - nitrate concentration, Ox - oxygen concentration, Ph - Phosphate 234 

concentration and T - temperature) or altogether (Lat
2nd

, Long
2nd

, DE
2nd

, GT
2nd

, Ni
2nd

, Ox
2nd

, Ph
2nd

, SA
2nd

, 235 

T
2nd

) to describe the global distribution of functional richness as number of different eggNOG 236 

gene families from 139 seawater metagenomes in 1x1 grid cells. In cells containing multiple 237 

samples, the sample with the highest functional richness was used (n =74). The best fitting 238 

model for the comparison of individual environmental factors to the combination is shown in 239 

bold. Then, each combination of first- and second-degree polynomial terms for latitude, 240 

longitude and nitrate concentration was tested and the best fitting model shown in bold used 241 

to predict the global distribution of functional richness. 242 

Model (variable
degree

) AIC 

Lat
2nd

, Long
2nd

 1360.369 

Lat
2nd

, Long
2nd

, DE
2nd

 1357.532 

Lat
2nd

, Long
2nd

, GT
2nd

 1362.422 

Lat
2nd

, Long
2nd

, Ni
2nd

 1138.57 

Lat
2nd

, Long
2nd

, Ox
2nd

 1339.934 

Lat
2nd

, Long
2nd

, Ph
2nd

 1285.342 

Lat
2nd

, Long
2nd

, T
2nd

 1336.751 

Lat
2nd

, Long
2nd

, DE
2nd

, GT
2nd

, Ni
2nd

, Ox
2nd

, Ph
2nd

, SA
2nd

, T
2nd

 1115.652 

Lat
1st

, Long
1st

, Ni
2nd

 1147.529 

Lat
1st

, Long
2nd

, Ni
1st

 1147.579 

Lat
2nd

, Long
1st

, Ni
1st

 1137.43 

Lat
1st

, Long
2nd

, Ni
2nd

 1149.528 

Lat
2nd

, Long
1st

, Ni
2nd

 1139.336 

Lat
2nd

, Long
2nd

, Ni
1st

 1136.7 

Lat
2nd

, Long
2nd

, Ni
2nd

 1138.57 

Lat
1st

, Long
1st

, Ni
1st

 1145.579 
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