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1 A two-enhancer model reproduces dynamical features of Tribolium segmentation1

In [1], two of us proposed a model of Tribolium segmentation relying on the interplay of two sets of enhancers. In short,2

two sets of enhancers (static S(P ), dynamic D(P )) were used, where the role of parameter g is played by morphogen3

Caudal (cad) [2] (Figure 1–figure supplement 2). S(P ) encodes a multistable system and D(P ) a sequential cascade of4

genetic expression of gap genes (hb, Kr, mlpt, gt). This system was found to implement a “speed gradient” model,5

where the speed of traveling waves of gap genes from posterior to anterior depended on the level of cad concentration6

(Figure 1–figure supplement 2B-D). This led to robust patterning of the embryo (Figure 1–figure supplement 2E) but7

the mathematical origin of the speed gradient was not explained.8

To better understand the underlying dynamics of the system, we consider the time courses of multiple cells at different9

positions and thus with different final fates. Figure 1–figure supplement 2F shows the projection of the cells’ dynamics10

on a 2D plane corresponding to the first two genes expressed in the cascade (Kr and hb), as well as a typical flow for11

different values of cad while keeping the other genes (mlpt, gt and X) at zero. Importantly, for cad = 0.13, we see the12

appearance of a new fixed point (green disk on Figure 1–figure supplement 2F).13

We make four observations:14

• The flow of the system is canalized. The trajectories of the cells stay very close to one another in phase space.15

• As cad is lowered, the new fixed point appears very close to the common trajectory of all cells (Figure 1–figure16

supplement 2F, top row), and clearly separates the trajectories of cells ending up at different fates (Figure17

1–figure supplement 2F, bottom row).18

• When cad further decreases, the new fixed point moves in the high hb, low Kr region, corresponding to the19

eventual fate of Cell 1.20

• When the new fixed point appears, the flow of cells past this fixed point is slowed down (Figure 1–figure21

supplement 2G).22
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These four observations offer a concise explanation to the “speed gradient” model: as the system gets closer to the23

bifurcation happening at cad = 0.13, the system is slowing down because of the future fixed points appearing on the24

trajectory. Intuitively, this is due to the fact that a fixed point corresponds to a frozen state, and thus to an infinite25

time-scale (static). When cad varies, the system has to interplay between a non-zero time-scale (dynamics) and such26

infinite time-scale, and it thus makes sense a priori that in between, the time-scale of the system diverges. This27

mechanism is close in principle to the critical timing proposed in [3].28

2 List of the functions used for the dynamics of each model29

2.1 Gene network models30

In the gene network models, biochemical interactions between genes are modeled explicitly. Ordinary differential31

equations (ODEs) represent the dynamics of the concentration of the proteins that are encoded by the genes in the32

network. The deterministic part of the dynamics is composed of a protein production term and a protein degradation33

term. The production rate of a given protein can be altered by the interactions between the genes. Hill functions are use34

to model repression and activation of the production of a given protein by the genes. When multiple genes affect the35

concentration of a protein, the Hill functions corresponding to each interaction are multiplied. In the simulations, we set36

to 1 the maximal production rate of all proteins. Similarly, we set the degradation rate of all proteins to 1. In Eq. 1 of37

the main text, C(P ) encodes the degradation term, and ΘS(g) S(P ) +ΘD(g)D(P ) represents the production term.38

2.1.1 3-gene models39

The proteins associated to the 3 genes are named arbitrarily A, B and C:40

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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B

C
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C(P ) =
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D(P ) =
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Table 1 lists the values of the parameters used in the repression interactions of all versions of the 3-gene models: the41

symmetric version used to generate the results of Figure 2, Figure 2–figure supplements 1 and 2, Figure 3 and Figure42

3–figure supplement 1, the version with a weak asymmetry used in Figure 5, the version with a strong asymmetry used43

in Figure 5–figure supplement 1 and the version with a randomized asymmetry used in Figure 5–figure supplement44

2. In the latter version, we randomly picked the values of the repression interactions of the static term S(P ) from a45

Gaussian distribution with mean 0.4 and standard deviation 0.04. Table 2 lists the weights ΘD(g) and ΘS(g) used for46

all 3-gene models: Models 1 and 2 used to generate the results of Figure 2, Figure 2–figure supplement 1, Figure 3,47
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Figure 5 and Figure 5–figure supplements 1 and 2, as well as Models 3 and 4 used in Figure 2–figure supplement 1 and48

Figure 3–figure supplement 1.49

Table 1: Parameter values for the repression interactions of the 3-gene models

Model version K
B­A
D K

C­B
D K

A­C
D K

B­A
S K

C­A
S K

C­B
S K

A­B
S K

A­C
S K

B­C
S

Symmetric 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Weak asymmetry 0.4 0.4 0.4 0.36 0.36 0.4 0.4 0.4 0.4

Strong asymmetry 0.4 0.4 0.4 0.32 0.32 0.36 0.36 0.4 0.4

Randomized asymmetry 0.4 0.4 0.4 0.3825 0.3560 0.4334 0.4102 0.3802 0.4038

Table 2: Weights of the dynamic and static terms of the 3-gene models

Weights Model 1 Model 2 Model 3 Model 4

ΘD(g) g
2

g
(g/0.4)5

1+(g/0.4)5
(g/0.4)5

1+(g/0.4)5

ΘS(g) (1 − g)2 1 − g 1

1+(g/0.6)5
1

1+(g/0.4)5

2.1.2 Model of Tribolium segmentation50

In the model of Figure 1–figure supplement 2, the interactions between hunchback (hb), Krüppel (Kr), mille-pattes51

(mlpt), giant (gt) and an unidentified gene X are modeled (see the supplement of [1]). Note that the role of parameter g52

is played by caudal (cad) in the model for Tribolium segmentation.53

P =
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D(P ) =
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1+(Kr/0.12)5

(hb/0.4)5
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1

1+(gt/0.3)5

(mlpt/0.4)5

1+(mlpt/0.4)5
1
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(2)
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S(P ) =
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ΘD(cad) = 3
cad

1 + cad
ΘS(cad) =

1

1 + cad
(3)

2.2 Gene-free models54

In the gene-free model, ODEs encode flows in an abstract 2D phase space. The two geometric variables are named55

arbitrarily y and z:56

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where parameter y0 (resp. y1 and y2) controls the position of the unstable fixed point (resp. the stable fixed points) of57

the static term along the y axis. Parameter y0 is set to 0 in the symmetric version of the model used in Figure 4, Figure58

4–figure supplements 1 and 2, Figure 4–movie supplements 1 and 2, Figure 6, Figure 7 and Figure 7–figure supplement59

1, as well as in the version of Figure 6–figure supplement 1. In Figure 6, parameter y0 is set to 0.05 and 0.1 to model60

different levels of asymmetry in the basins of attraction. In Figure 7–figure supplement 1, parameter y0 is set to 0.02 for61

Model 1 and 0.05 or Model 2 to obtain a similar level of asymmetry in the final pattern generated by the two models.62

We set y1 = −1 and y2 = 1 for all versions of the gene-free models, except for the version used to generate the results of63

Figure 6–figure supplement 1. In this version, the stable fixed points of the static module are placed outside the region64

delimited by the limit cycle of the dynamic module by setting y1 = −2 and y2 = 2.5. To obtain a Hopf bifurcation65

with the gene-free model, we followed a similar approach than for the 3-gene model. We reasoned that the sum of the66

weights of the dynamic and static modules should become smaller than a degradation-like term for values of g around67

0.5. For this reason, an "intermediate term" I(P ) = [−z − y]T is introduced in the ODE. The intermediate term is68

weighted by the function ΘI (g). Eq. 1 of the main text thus becomes:69

Ṗ = ΘD(g)D(P ) +ΘI (g) I(P ) +ΘS(g) S(P ) + η(g, P ) (5)

Table 3 lists the weights used for all gene-free models: Model 1 used to generate the results of Figure 4–figure70

supplements 1 and 2, Figure 4–movie supplement 1, Figure 6, Figure 6–figure supplement 1 and Figure 7–figure71
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supplement 1, and Model 2 used to generate the results of Figure 4, Figure 4–figure supplement 2, Figure 4–movie72

supplement 2, Figure 6, Figure 6–figure supplement 1, Figure 7 and Figure 7–figure supplement 1. Recall that in a73

given cell, only the dynamic module should be present at the beginning of the simulation, when g = 1. Similarly, only74

the static module should be present at the end of the simulation, when g = 0. Therefore, we set the weight of the75

intermediate module equal to g (1 − g), which is zero at both g = 1 and g = 0. Since this weight is of the order 2 in g,76

we make the weights of the dynamic and static modules of the order 3 in g to ensure that they become smaller than the77

weight of the intermediate term for g around 0.5.78

Table 3: Weights of the dynamic, static and intermediate terms of the gene-free models

Weights Model 1 Model 2

ΘD(g) g
3

g

ΘS(g) (1 − g)3 1 − g

ΘI (g) g (1 − g) 0

2.3 Infinite-period scenarios of Figure 1 and Figure 779

The infinite-period scenario of Figure 1B-F is a simplified version of the model of the appendix of [4]. The dynamics of80

the phase of the oscillators are modeled directly using the following ODE:81

φ̇ = ω(g) = π

2
g
2 (6)

The infinite-period scenario of Figure7A-E is the 1D model of coupled oscillators from [5]. In brief, the dynamics of82

the phase of the oscillators are described by the following ODE:83

φ̇(x, t) = ω(x, t) + ε

2a2
( sin[φ(x − a, t − τ ) − φ(x, t)] + sin[φ(x + a, t − τ ) − φ(x, t)]) (7)

where ε represents the coupling strength between a cell and its 2 nearest neighbors, a is the average cell diameter (cd),84

and τ is the time delay in the coupling. The spatio-temporal profile of the frequency of the oscillators ω(x, t) is given85

by the following formula:86

ω(x, t) = ω∞(1 − e−(x−vt)/σ) (8)

where ω∞ represents the characteristic intrinsic frequency of the oscillators, v is the speed at which the spatial frequency87

profile moves along the posterior direction, and σ controls the spatial steepness of the frequency profile. Table 4 lists88

the parameter values used to generate the results of Figure 7A-E. See [5] for more details.89
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Table 4: Parameter values for the ODE of the phase oscillators in the infinite-period scenario of Figure 7

ε [cd2/min] a [cd] τ [min] ω∞ [min−1] v [cd/min] σ [cd]

0.07 1 0 0.3886 0.255 36

2.4 Hopf scenario of Figure 190

The Hopf scenario of Figure 1G-K is the cell-autonomous model evolved in silico in [6]. The model describes the91

dynamics of two proteins, the effector protein E and the repressor protein R, under the control of morphogen g via92

ODEs with time delays:93

Ė = ( max [ E
n1

En1 + En1

E

,
g
n2

gn2 + gn2

E

] SE
1 + (R/RE)n3

)
t−τE

− δE E (9)

Ṙ = ( g
n4

gn4 + gn4

R

SR
1 + (R/RR)n5

)
t−τR

− δRR (10)

The subscript of a closed parenthesis indicates the time at which the expression inside the parenthesis is evaluated. If no94

such parenthesis with a subscript is present in a given expression, this expression is evaluated at time t. The values of95

all parameters are given in Tables 5 and 6.96

Table 5: Parameter values for the ODE of the effector protein E in the Hopf scenario of Figure 1

SE RE gE EE τE δE n1 n2 n3

0.7176 0.4942 0.0678 0.3213 0.48 0.8538 3 4.3549 4.5321

Table 6: Parameter values for the ODE of the repressor protein R in the Hopf scenario of Figure 1

SR RR gR τR δR n4 n5

0.9422 0.1156 0.5047 3.92 0.9759 3.2136 4.522

3 Spatio-temporal profile of the control parameter for each model97

For all models except the model for Tribolium segmentation and the infinite-period scenario of Figure 7A-E, the follow-98

ing function is used to describe the spatio-temporal profile of the input g, which is treated either as the concentration of99

a morphogen in the gene network models, or as an abstract control parameter in the gene-free models:100

g(x, t) = H(x − vt) = min [es (x−vt+xosc) , 1] (11)
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where parameter s controls the steepness of the gradient and v represents the speed at which the gradient moves along101

the antero-posterior axis. Parameter xosc allows to generate a few oscillations inside the first simulated cell before g102

starts decreasing. Note that the position vector x is normalized in all our simulations, such that positions are constrained103

from 0 to 1. Table 7 lists the values of the parameters used for the gradients of all models (except the model for104

Tribolium segmentation): the gradients of the infinite-period scenario and of the Hopf scenario used to generate the105

results of Figure 1 B-F and Figure 1 G-K, respectively, the shallow gradient used in the 3-gene models of Figure 2,106

Figure 2–figure supplements 1 and 2, Figure 3, Figure 3–figure supplement 1, Figure 5 and Figure 5–figure supplements107

1 and 2, the steep gradient used in the 3-gene models of Figure 5 and Figure 5–figure supplements 1 and 2, and the108

gradients used in the gene-free models of Figure 4, Figure 4–figure supplements 1 and 2, Figure 6, Figure 6–figure109

supplement 1, Figure 7, and Figure 7–figure supplement 1.110

Table 7: Parameter values for spatio-temporal profile of input g

Model s v xosc

Infinite-period scenario of Figure 1 0.5 0.08 0.2

Hopf scenario of Figure 1 0.5 3 0

3-gene models, shallow gradient 1 0.05 0.2

3-gene models, steep gradient 2.5 0.05 0.2

Gene-free models (Figure 4 and its supplements) 0.5 0.035 0.2

Gene-free models (Figure 6 and its supplement) 1 0.036 0

Gene-free models (Figure 7 and its supplement) 6 0.0042 0

In the model for Tribolium segmentation, the role of input g is played by the maternal gene cad. The dynamics of cad111

is modelled with a Hill function:112

cad(x, t) =
(x/x∗(t))n(t)

1 + (x/x∗(t))n(t) (12)

where the time dependencies of parameters x∗(t) and n(t) encode respectively the regression of the morphogen gradient113

along the antero-posterior axis, and the gradual increase in the steepness of the morphogen gradient:114

x
∗(t) = max [0.4 , 0.4 + 0.2 (t − 2)] ; n(t) = max [4 , 4 e

(t−2)] (13)
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4 Integration schemes115

4.1 Euler algorithm for deterministic simulations116

Eq. 1 of the main text can be integrated via the Euler algorithm to obtain a time series representing the deterministic117

dynamics of vector P :118

P (t + dt) = P (t) + (ΘD(g(t))D(P (t)) +ΘS(g(t)) S(P (t)) + C(P (t))) dt (14)

The Euler algorithm, which is equivalent to approximating the temporal derivative of P by a first-order finite difference,119

was used to perform deterministic simulations of all versions of the 3-gene models (Figure 2, Figure 2–figure supple-120

ments 1 and 2, Figure 5 and Figure 5–figure supplements 1 and 2). A similar version of this algorithm that includes the121

intermediate term was used for deterministic simulations of the gene-free models (Figure 4, Figure 4–figure supplement122

1, Figure 6, Figure 6–figure supplement 1, Figure 7 and Figure 7–figure supplement 1). The Euler algorithm was also123

used to perform simulations of the infinite-period and Hopf scenarios (Figure 1 and Figure 7). On the other hand,124

deterministic simulations of the model for Tribolium segmentation were carried out via the lsoda integrator from the125

scipy library in Python (Figure 1–figure supplement 2).126

4.2 Langevin equation for stochastic simulations of the 3-gene models127

The stochastic nature of chemical reactions, due at least partly to the finite number of molecules involved in these128

reactions, introduces fluctuations in protein concentrations in single cells. To generate the results of Figure 3 and Figure129

3–figure supplement 1, noise was introduced in the 3-gene models in a chemically realistic and mathematically rigorous130

way by following the method of [7]. In the generic formulation of the present problem, there are N molecular species131

Si, i = 1, ..., N , that can interact through M different reactions Rj , j = 1, ...,M . Let Xi(t) represent the number of132

Si molecules at time t. Then, the vector X(t) ≡ [Xi(t) ... XN (t)] represents the state of the whole system of N133

molecules at time t. For each reaction Rj , a propensity function aj is defined such that if the system is in state X at time134

t, then aj(X) dt is the probability that one Rj reaction will occur in the next infinitesimal time interval dt, i.e. between135

t and t + dt. For each reaction Rj , a state-change vector νj is defined such that its ith component νji represents the136

change in the number of Si molecules produced by one Rj reaction. Once the M propensity functions and state-change137

vectors are defined, the time evolution of the state vector X(t) is found via the N deterministic reaction rate equations:138

Ẋi(t) =
M

∑
j=1

νji aj(X(t)) for i = 1 , ... , N (15)
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The numerical integration of these rate equations can be performed via the Euler algorithm:139

Xi(t + dt) = Xi(t) +
M

∑
j=1

νji aj(X(t)) dt for i = 1 , ... , N (16)

The stochastic form of this simulation algorithm is given by the chemical Langevin equation:140

Xi(t + dt) = Xi(t) +
M

∑
j=1

νji aj(X(t)) dt +
M

∑
j=1

Nj(t) νji
√
aj(X(t)) dt for i = 1 , ... , N (17)

where N1(t) , ... , NM (t) are M independent Gaussian random variables with mean and variance equal to 0 and 1,141

respectively, and that are not correlated in time. In the 3-gene models, the role of vector X is played by P . Note that142

re-scaling the numbers of proteins Xi by constant factors corresponds to multiplying both sides of Eq. 15 to 17 by143

that constant factor (as long as the state-change vectors νj are also re-scaled). Therefore, Eq. 15 to 17 are still valid144

when simulating protein concentrations scaled from 0 to 1 instead of absolute numbers of proteins. Furthermore, the145

reactions of the 3-gene models are encoded in the protein production and degradation terms. The propensities of the146

protein production and degradation terms are respectively ΘD(g)D(P ) +ΘS(g) S(P ) and P . Eq. 16 thus becomes eq.147

14, and eq. 17 can be re-written as the following expression:148

Pi(t + dt) = Pi(t) + (ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) − Pi(t)) dt i = 1, 2, 3

+ (N prod
i (t)

√
ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) −N deg

i (t)
√
Pi(t) )

√
dt (18)

where N prod(t) = [N prod
1 (t), N prod

2 (t), N prod
3 (t)] and N deg(t) = [N deg

1 (t), N deg
2 (t), N deg

3 (t)] are 2 vectors, each containing149

3 independent Gaussian random variables with mean 0 and variance 1. This equation can be simplified by leveraging150

the fact that the sum of Gaussian random variables with mean 0 and different variances is equal to a single Gaussian151

random variable with mean 0 and a variance equal to the sum of the variances:152

Pi(t + dt) = Pi(t) + (ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) − Pi(t)) dt i = 1, 2, 3

+ (Ni(t)
√

ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) + Pi(t) )
√
dt (19)

where N (t) = [N1(t), N2(t), N3(t)] is a vector containing 3 independent Gaussian random variables with mean 0 and153

variance 1. Note that a different independent random variable is used for each protein, since the production term of154
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each protein is due to a different combination of repression interactions. To control the level of noise, a parameter Ω is155

introduced in the previous equation such that increasing Ω decreases the level of noise:156

Pi(t + dt) = Pi(t) + (ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) − Pi(t)) dt i = 1, 2, 3

+ (Ni(t)√
Ω

√
ΘD(g(t))Di(P (t)) +ΘS(g(t)) Si(P (t)) + Pi(t) )

√
dt (20)

Since noise arises at least partly from the stochastic nature of single reactions between a finite number of proteins,157

increasing the concentration of proteins is expected to buffer the intrinsic chemical noise. Therefore, the noise level158

is expected to decrease as the protein concentration is increased. The following mathematical derivation shows that159

parameter Ω can be interpreted as the typical concentration of proteins in the system, such that increasing the protein160

concentration corresponds to increasing the value of parameter Ω. First, let’s take a look at the stochastic integration161

algorithm for protein A and write explicitly the maximal production rate ρA and the degradation rate δA:162

A
+
= A + (ρA(ΘD(g) 1

1 + (B/KB­A
D

)5
+ΘS(g)

1

1 + (B/KB­A
S

)5
1

1 + (C/KC­A
S

)5
) − δA A) dt

+
N1√
Ω

√
√√√√√√⎷ρA(ΘD(g) 1

1 + (B/KB­A
D

)5
+ΘS(g)

1

1 + (B/KB­A
S

)5
1

1 + (C/KC­A
S

)5
) + δA A

√
dt (21)

where a + superscript on a protein concentration indicates that this variable is evaluated at time t + dt and the absence163

of a superscript on a variable indicates that it is evaluated at time t. Multiplying both sides of the equation by Ω leads to164

the following expression:165

ΩA
+
= ΩA + (Ω ρA(ΘD(g) 1

1 + (B/KB­A
D

)5
+ΘS(g)

1

1 + (B/KB­A
S

)5
1

1 + (C/KC­A
S

)5
) − Ω δA A) dt (22)

+N1

√
√√√√√√⎷Ω ρA(ΘD(g) 1

1 + (B/KB­A
D

)5
+ΘS(g)

1

1 + (B/KB­A
S

)5
1

1 + (C/KC­A
S

)5
) + Ω δA A

√
dt

Now, let’s re-scale all quantities that have the units of protein concentration by a factor of Ω. To achieve this, we166

define the re-scaled variables A∗
= Ω A, B∗

= Ω B and C∗
= Ω C, as well as re-scaled parameters ρA∗ = Ω ρA,167

K
B

∗
­A

∗

D = ΩK
B­A
D , KB

∗
­A

∗

S = ΩK
B­A
D and KC

∗
­A

∗

S = ΩK
C­A
D :168
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A
∗+

= A
∗
+ (ρA∗(ΘD(g) 1

1 + (B∗/KB∗­A∗

D
)5
+ΘS(g)

1

1 + (B∗/KB∗­A∗

S
)5

1

1 + (C∗/KC∗­A∗

S
)5

) − δA A∗) dt (23)

+N1

√
√√√√√√⎷ρA∗(ΘD(g) 1

1 + (B∗/KB∗­A∗

D
)5
+ΘS(g)

1

1 + (B∗/KB∗­A∗

S
)5

1

1 + (C∗/KC∗­A∗

S
)5

) + δA A∗
√
dt

A similar procedure can be followed for proteins B and C. Therefore, multiplying the stochastic term of the Langevin169

equation for all proteins by 1/
√

Ω is equivalent to re-scaling all variables and parameters that have the units of a protein170

concentration by a factor of Ω. Since we set the maximal production rates and the degradation rates of all proteins to171

1, the typical concentration of proteins A, B and C is normalized to 1. Re-scaling all protein concentrations and all172

parameters with units of protein concentration by a factor of Ω thus corresponds to setting the typical concentration of173

proteins to Ω. In conclusion, parameter Ω of equation 20 indeed corresponds to the typical concentration of proteins.174

4.3 Cell-to-cell coupling in the 3-gene models175

A strategy that a cell can use to fight the intrinsic noise in protein concentrations is to evaluate the protein expression176

state of its neighbors and change its own protein expression state accordingly. In the stochastic simulations of the 3-gene177

models, cell-to-cell communication is modelled via a diffusion term included in the differential equations describing the178

dynamics of the set of protein concentrations. The higher the concentration of a given protein is in a given simulated179

cell, the more this protein will diffuse to neighboring simulated cells. Diffusion thus models the process of adjusting180

the protein concentration of a given cell according to the protein concentration of surrounding cells. The dynamics of181

vector P in the 3-gene models is therefore given by the following differential equation:182

∂P

∂t
= ΘD(g)D(P ) +ΘS(g) S(P ) − P + η(g, P ) +D ∂

2
P

∂x2
(24)

where the diffusion constant D controls the strength of cell-to-cell coupling. The complete stochastic simulation183

algorithm for the 3-gene model thus becomes:184

Pi(x, t + dt) = Pi(x, t) + (ΘD(g(x, t))Di(P (x, t)) +ΘS(g(x, t)) Si(P (x, t)) − Pi(x, t) +D
∂
2
Pi

∂x2
) dt

+ (Ni(x, t)√
Ω

√
ΘD(g(x, t))Di(P (x, t)) +ΘS(g(x, t)) Si(P (x, t)) + Pi(x, t) )

√
dt (25)

for i = 1, 2, 3. Note that diffusion is not included in the stochastic term, since diffusion of proteins is not a reaction in185

itself. In the simulations, the second spatial derivative is approximated by a second-order central finite difference with186

reflective boundaries.187
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4.4 Stochastic simulations of the gene-free models188

Since the gene-free models simulate the dynamics of abstract variables that do not represent explicitly protein con-189

centrations, the variance of the noise is held independent of the state of the system. The stochastic algorithm used to190

generate the results of Figure 4–figure supplement 2 is therefore the following:191

Pi(t + dt) = Pi(t) + (ΘD(g(t))Di(P (t)) +ΘI (g(t)) Ii(P (t)) +ΘS(g(t)) Si(P (t)) − Pi(t)) dt +
1√
Ω
Ni(t)

√
dt (26)

where i = 1, 2, and N (t) = [N1(t), N2(t)] is a vector containing 2 independent Gaussian random variables with mean 0192

and variance 1. Parameter Ω is still included to control the level of noise, but it cannot be interpreted as the typical193

concentration of proteins in the system since the gene-free models do not simulate explicitly protein interactions.194

5 Mathematical formula for the mutual information195

In deterministic simulations, the initial phase of the genetic oscillation inside a given cell determines in which part of the196

pattern this cell will end up. This is not necessarily the case in stochastic simulations. To quantify the robustness to noise197

of a given model for specific values of parameter Ω (and of the diffusion constant D in the case of the 3-gene models) it198

is required to define a metric that measures the accuracy with which the initial phase of the genetic oscillations inside a199

cell predicts the region of the pattern in which this cell will end up. The specific metric used in Figure 3, Figure 3–figure200

supplement 1, Figure 4–figure supplement 2 and Figure 5–figure supplement 2 is the mutual information between the201

initial phase of the oscillator and the final protein expression state of the simulated cells. The mutual information I(x, y)202

between two discrete variables x and y is given by the following expression:203

I(x, y) = ∑
y∈Y

∑
x∈X

p(x, y) log ( p(x, y)
p(x) p(y) ) (27)

where X and Y are the sets of possible values for x and y, respectively. Intuitively, the mutual information between204

two variables quantifies the amount of information obtained on the value of the first variable by knowing the value205

of the second variable (and vice versa). If the logarithm is in base 2, the units of the mutual information are bits. To206

measure how precisely the phase of the oscillator is read to form the final pattern, variable x is set to the phase of the207

oscillation in protein expression at the beginning of the simulation φi, and variable y is set to the protein expression208

state at the end of the simulation Pf :209

I(φi, Pf ) = ∑
Pf

∑
φi

p(φi, Pf ) log (
p(φi, Pf )
p(φi) p(Pf )

) (28)
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⇒ I(φi, Pf ) = ∑
Pf

∑
φi

p(Pf ∣φi) p(φi) log (
p(Pf ∣φi) p(φi)
p(φi) p(Pf )

) (29)

⇒ I(φi, Pf ) = ∑
Pf

∑
φi

p(Pf ∣φi) p(φi) log (
p(Pf ∣φi)

∑φi
p(Pf ∣φi) p(φi)

) (30)

To get the second equality, the fact that p(x, y) = p(x∣y)p(y) for any two variables x and y was used to get rid of the joint210

probability p(φ,Ri), which is not straightforward to evaluate directly. Similarly, the fact that p(y) = ∑x∈X p(x, y) =211

∑x∈X p(x∣y) p(y) for any two variables x and y was used to get rid of p(Pf ), which is less easy to compute than p(φi).212

Indeed, φi is sampled uniformly in the simulations of the 3-gene and gene-free models, since the speed of regression213

of the input g is constant throughout the simulations. In the 3-gene models, the different phases φi are defined as the214

different states of protein expression along the oscillation cycle generated by the dynamic module (g = 1). A uniform215

sample of φi is obtained by sampling this oscillation cycle at constant time intervals for a total time length of one period.216

In the gene-free models, the different phases φi are defined as the different sets of (y, z) values along the oscillation217

cycle generated by the dynamic module (g = 1). Since the oscillations are on the unit circle (centered at the origin) and218

have a constant speed along the cycle, sampling uniformly the angles from the positive y axis (starting at 0 and stopping219

at 2π) generates a uniform sample of φi.220

6 Description of the source codes221

All codes are written in the python3 programming language (except for two Mathematica notebooks). Commented222

jupyter notebooks can be found on Github at the following address: https://github.com/laurentjutrasdube/223

Dual-Regime_Geometry_for_Embryonic_Patterning. This repository also contains folders with the source data224

files, as well as the source codes used to generate the data files.225

• 3-gene_det.ipynb226

This notebook performs deterministic simulations of the symmetric 3-gene Models 1, 2, 3 and 4. It also227

performs a bifurcation analysis of these models using the data found in the XPPAUTO_data folder, which228

also contains the .ode files used to generate the data with the XPP AUTO software [8]. Figure 2 and Figure229

2–figure supplements 1 and 2 show the results obtained with this notebook.230

• 3-gene_stoch.ipynb231

This notebook performs stochastic simulations of the symmetric 3-gene Models 1, 2, 3 and 4. It also generates232

plots of the mutual information using the data found in the Mutual_info_data folder, which also contains233

the python codes used to generate the data. Figure 3 and Figure 3–figure supplement 1 show the results234

obtained with this notebook.235
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• 3-gene_asym.ipynb236

This notebook performs deterministic simulations of the asymmetric 3-gene Models 1 and 2. It also performs237

a bifurcation analysis of these models and generates plot of the mutual information using the data found in the238

XPPAUTO_data and Mutual_info_data folders, respectively. Figure 5 and Figure 5–figure supplements 1239

and 2 show the results obtained with this notebook.240

• Gene-free_det.ipynb241

This notebook performs deterministic simulations of the symmetic gene-free Models 1 and 2. It also performs242

a bifurcation analysis of these models and generates flow plots using the data found in the XPPAUTO_data243

and Mathematica_data folders, respectively. Figure 4, Figure 4–figure supplement 1 and Figure 4–movie244

supplements 1 and 2 show the results obtained with this notebook.245

• Gene-free_stoch.ipynb246

This notebook performs stochastic simulations of the symmetric gene-free Models 1 and 2. It also generates the247

mutual information plots using the data found in the Mutual_info_data folder. Figure 4–figure supplement248

2 shows the results obtained with this notebook.249

• Gene-free_asym.ipynb250

This notebook performs deterministic simulations of the asymmetic gene-free Models 1 and 2. It also performs251

a bifurcation analysis of these models using the data found in the XPPAUTO_data folder. Moreover, it generates252

plots of the flow and of the spatial wave profiles. Figure 6, Figure 6–figure supplement 1, Figure 7 and Figure253

7–figure supplement 1 show the results obtained with this notebook.254

• Hopf_scenario_Fig1.ipynb255

This notebook performs deterministic simulations of the gene network model evolved in silico in [6]. Results256

are shown on Figure 1. It also performs a bifurcation analysis of this model, shown on Figure 1–figure257

supplement 1.258

• Infinite-period_scenario_Fig1.ipynb259

This notebook performs deterministic simulations of the infinite-period model of Figure 1, which is a simplified260

version of the model in the appendix of [4].261

• Infinite-period_scenario_Fig7.ipynb262

This notebook performs deterministic simulations of the infinite-period model of Figure 7, which is adapted263

from [5].264

• Tribolium_model.ipynb265

This notebook performs deterministic simulations of the model for Tribolium segmentation from [1]. It also266

generates flow plots and computes the speed of the cells in phase space. Figure 1–figure supplement 2 shows267

the results obtained with this notebook.268
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