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Abstract 
Genotype-environment interaction (G×E) studies typically focus on variants with 
previously known marginal associations. While such two-step filtering greatly reduces 
the multiple testing burden, it can miss loci with pronounced G×E effects, which tend to 
have weaker marginal associations. To test for G×E effects on a genome-wide scale 
whilst leveraging information from marginal associations in a flexible manner, we 
combine the conditional false discovery rate with interaction test results obtained from 
StructLMM. After validating our approach, we applied this strategy to UK Biobank 
(UKBB) data to probe for G×E effects on BMI. Using 126,077 UKBB individuals for 
discovery, we identified known (FTO, MC4R, SEC16B) and novel G×E signals, many 
of which replicated (FAM150B/ALKAL2,TMEM18, EFR3B, ZNF596-FAM87A, LIN7C-
BDNF, FAIM2, UNC79, LAT) in an independent subset of UKBB (n=126,076). Finally, 
when analysing the full UKBB cohort, we identified 140 candidate loci with G×E effects, 
highlighting the advantages of our approach. 
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Genotype-environment interaction (G×E) studies aim to identify variants with trait-
effects that vary under different environmental exposures, which can provide biological 
insights for understanding trait onset and progression. Additionally, such interactions 
yield modifiable risk factors, which may be easier to target for disease prevention, and 
G×E analyses help to identify subgroups of the population at greatest risk of disease 
who would most benefit from lifestyle or drug intervention for disease prevention1-3. 
 
Whilst G×E effects have already been identified for different traits, including body mass 
index (BMI) and obesity3-15, the number of robustly detected G×E effects remains 
small2. 
 
G×E scans are not currently conducted on a genome-wide scale due to the prohibitive 
multiple testing burden that they incur, along with lower power to detect interaction 
effects compared to marginal association effects16,17. Instead, G×E studies are typically 
based on a two-stage design, where in the first stage variants with marginal 
association effects are selected and in the second stage, these selected variants are 
tested for G×E effects. Whilst such independent filtering18 reduces the burden of 
multiple testing, this approach assumes that only variants with sufficiently strong 
marginal association signals can be subject to interaction effects. Consequently, 
variants with the strongest and hence most interesting G×E effects may be missed if 
they fall below the chosen selection threshold for the marginal association signal. This 
may be particularly problematic if the marginal association signals used are obtained 
from meta-analyses that combine data across multiple cohorts (in particular for 
different ancestry groups), which are exposed to different environments. Consequently, 
there is a need for more flexible approaches that leverage the marginal association 
signal without the need to perform rigid filtering.  
 
 
Results 
 
Here, we combine the conditional false discovery rate (cFDR) with G×E interaction 
testing using StructLMM10 to address the aforementioned limitations of G×E studies. 
The cFDR has traditionally been applied to leverage the marginal association signal for 
one trait to improve power in detecting association for a second related trait.  
 
Briefly, the key concept of the cFDR is that an informative covariate allows for 
estimating and accounting for variations in the distribution of null to non-null variants 
across all tests19-21. The cFDR for a given hypothesis can also be defined as the 
posterior probability of being null given thresholds on both the P value of the tested 
hypothesis and the corresponding covariate value19. 
 
In this work, we adapt the cFDR to perform genome-wide G×E analysis using the 
StructLMM interaction test (StructLMM-int)10. In this setting, the cFDR allows for 
leveraging the marginal association signal for the discovery of G×E effects, by 
performing data driven false discovery. This approach improves the power for G×E 
analyses, enabling such scans to be conducted at a genome-wide scale by leveraging 
the information that is contained in the corresponding marginal association signals; 
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however, without the need to select arbitrary filtering thresholds. Intuitively, this cFDR-
based approach can be interpreted as a ‘soft’ thresholding equivalent of the commonly 
employed two-step filtering approach without the need to define rigid thresholds.  

Simulated data 

To validate and assess this approach, we initially considered simulated data using 
5,000 individuals of European ancestry based on genotypes from the 1000 Genomes 
Project22. Following Moore et al.10, we simulated interaction effects based on 60 
environmental covariates derived from UKBB. We generated phenotypes with 550 
independent genetic effects, with varying fractions of phenotypic variance explained by 
G×E versus marginal effects (𝜌, Methods). For non-zero values of 𝜌 the marginal 
association signal acts as an informative covariate in assigning the probability that a 
variant has non-null G×E (Supp. Fig. 1a). Conversely, under the null, when simulating 
only marginal genetic effects (𝜌 = 0, Supp. Fig. 1b, Methods) or when simulating no 
causal genetic effects (Supp. Fig. 1c, Methods), the marginal association test results 
do not act as an informative covariate in assigning the probability that a variant has 
non-null G×E.  
 
We then assessed the power of the cFDR approach to identify variants with true 
simulated G×E effects (𝜌 > 0), as well as the power to detect variants within different 
G×E bins, stratifying based on the strength of the simulated G×E effects (𝜌). We 
compared the results to those obtained from conventional FDR (Benjamini-
Hochberg23), as well as two step-filtering for different selection thresholds (Methods). 
We found that the cFDR approach was better powered than either of these approaches 
(𝜌 > 0, 1% FDR, Fig. 1a); all methods empirically control the FDR (Fig. 1b, Methods). 
As expected, two-step filtering performs well for identifying variants with weak G×E 
effects (𝜌 < 0.5, Fig. 1a), whereas the conventional FDR when considering all variants 
is only competitive for detecting variants with very strong G×E effects (𝜌 = 1, Fig. 1a), 
when the marginal association signal is not informative. In contrast, the cFDR 
approach performs well in both regimes and in particular overcomes the need to 
choose a suitable selection threshold for the association signal (conventional FDR 
corresponds to the 100% threshold), which will vary depending on the (a priori 
unknown) extent of G×E. 
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Figure 1 | Assessment of power and empirical FDR control of alternative methods 
using simulated data. (a) Comparison of power for detecting simulated interaction 
effects, considering varying fractions of genetic variance explained by G×E (𝜌), based 
on a synthetic European population of 5,000 individuals derived from 1000 Genomes22 
genotypes (1,650,000 total variants, 550 with non-zero genetic effects; Methods). 
Shown is power to detect variants with G×E effects (FDR < 1%), considering either all 
variants with G×E (𝜌 > 0, left), or variants stratified by the extent of simulated G×E 
(right). (b) Empirical assessment of the FDR control of alternative methods for increasing 
thresholds; dashed lines indicate the selected FDR thresholds (Methods). Compared 
were cFDR considering all 1,650,000 tested variants, FDR (Benjamini-Hochberg23) 
considering all 1,650,000 variants and FDR (Benjamini-Hochberg23) applied to the 
subset of variants selected at 1% (3,275 - 5,000 tested variants per repeat experiment) 
and 5% (3,937 - 5,947 tested variants per repeat experiment) FWER based on marginal 
association effects, using p-values obtained from the StructLMM interaction test and 
LMM association test for all three methods. Displayed are the average results across 
100 repeat experiments, with error bars denoting plus or minus one standard deviation. 

Application to data from UK Biobank 

Next, we applied the cFDR approach to UKBB to identify genetic variants with G×E 
effects on BMI. We considered 252,153 unrelated UKBB individuals of European 
ancestry for which BMI and 64 lifestyle environmental factors (diet-related factors, 
three factors linked to physical activity and six lifestyle factors, modelled as gender and 
age adjusted, similar to Moore et al.10; Methods), were available in the full release of 
UKBB. We split the cohort randomly into a discovery and validation set consisting of 
126,077 and 126,076 individuals, respectively and considered 7,515,856 low-frequency 
and common variants (imputed variants, MAF > 1%, Methods) for analysis. 
 
On the discovery dataset, we first applied a genome-wide G×E scan using 
conventional FDR, which identified 78 variants mapping to three loci (ACTBL2-PLK2, 
FTO, SDCCAG3P1-MC4R) with G×E effects (Benjamini-Hochberg; FDR < 5%, 
Methods; Fig. 2a, Supp. Fig. 5a, 6a, 7, Supp. Table 1). 
 
Next, we applied a two-step filtering, whereby 3,767 variants with genome-wide 
significant BMI association effects (P < 5×10-8, LMM, Supp. Fig. 4) were considered 
for interaction testing. This identified 330 variants corresponding to eight distinct loci, 
including two (near FTO and SDCCAG3P1-MC4R) of the three loci identified above, 
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with significant G×E effects (Benjamini-Hochberg; FDR < 5%, distinct based on 
distance clumping of +/-500kb and LD r2 > 0.1, Methods; Fig. 2b, Supp. Fig. 5b, 6b, 
8, Supp. Table 1). Notably, because of the assumption that tested variants have 
substantial marginal effects, by design this approach only identified variants with weak 
to moderate G×E effects (𝜌 <	0.556 for all 330 variants with significant G×E effects, 
Benjamini-Hochberg FDR < 5%). 
 
Finally, we applied cFDR, conditioning the genome-wide G×E test statistics on the 
corresponding BMI marginal association signal, noting that the marginal association 
signal is indeed an informative covariate (Supp. Fig. 3). This yielded 964 variants 
corresponding to 29 loci with significant G×E effects (cFDR < 5%, +/-500kb, r2 > 0.1, 

Methods; Fig. 2c, Supp. Fig. 5c, 6c, 9, Supp. Table 1). As well as identifying all loci 
(and their tag variants) found by the two-step-filtering approach, the cFDR approach 
identified 21 additional loci, many of which have moderate to strong G×E effects (Fig. 
2c, Supp. Fig. 9, Supp. Table 1) with weak to no marginal BMI association effects 
(Supp. Fig. 5c, Supp. Table 1), clearly highlighting the potential gains of using the 
cFDR approach. 
 
Figure 2 | Comparison of variants with G×E effects in the discovery set of UKBB 
identified by alternative methods. Scatter plots of negative log StructLMM interaction 
P values (y-axis) versus negative log LMM association P values (x-axis, 7,515,856 
variants), obtained from UKBB BMI data using the discovery set of individuals (n = 
126,077). Variants with G×E effects (FDR < 5%) are highlighted, with colour denoting 
the estimated fraction of the genetic variance due to G×E (𝜌). Considered were (a) 
genome-wide analysis where all 7,515,856 variants were tested for interaction effects 
(78 variants mapping to three loci < 5% FDR; Benjamini-Hochberg, Methods, Supp. 
Table 1), (b) two-step filtering considering variants with genome-wide significant 
marginal association signals (P < 5×10-8; 3,767 variants) for interaction testing (variants 
in black not tested, 330 variants mapping to eight loci < 5% FDR; Benjamini-Hochberg 
Methods, Supp. Table 1) and (c) a genome-wide analysis of all 7,515,856 variants using 
cFDR (964 variants mapping to 29 loci < 5% cFDR, Methods, Supp. Table 1). Loci were 
defined using LD clumping (r2 < 0.1, +/- 500kb; Methods).  
 
To further assess the additional associations identified, we assessed the replication of 
the variants detected by the cFDR approach for replication in the independent validation 
set of individuals (n = 126,076), again using the StructLMM interaction test.  
 
Globally, we observed that variants with G×E identified in the discovery set were 
enriched for small p-values in the validation set, which includes the 21 loci that were 
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exclusively identified by the cFDR (Fig. 3a, Supp. Fig. 10). Consistent with this, the tail 
strength24 (deviation measure between the observed and expected set of p-values) for 
the 29 cFDR loci exceeded the chance expectation (empirical P < 0.002 based on 500 
matched sets of null variants25, Methods; P < 0.002 for the 21 loci), which is similar to 
loci identified by the two-step filtering approach (P < 0.002). 
 
In addition, the lead variant is nominally significant (P < 0.05) in the validation dataset 
for eight (SEC16B, ALKAL2-TMEM18, ZNF596-FAM87A, FAIM2, LAT, FTO, 
SDCCAG3P1-MC4R and POFUT2) of the 29 discovered loci, which exceeds the chance 
expectation (empirical P < 0.002, using 500 matched sets of null variants, Methods). In 
comparison, only three (FTO, SDCCAG3P1-MC4R and LAT) of eight loci for the two-
step filtering approach (empirical P = 0.012, using 500 matched sets of null variants, 
Methods) and two (FTO, SDCCAG3P1-MC4R) of three loci for the genome-wide FDR 
approach (empirical P = 0.01, using 500 matched sets of null variants, Methods) are 
nominally significant (P < 0.05) in the validation dataset. Considering the 21 loci unique 
to the cFDR approach in discovery, the lead variant is nominally significant (P < 0.05) for 
five (SEC16B, ALKAL2-TMEM18, ZNF596-FAM87A, FAIM2 and POFUT2) of the 21 loci 
(empirical P = 0.002, using 500 sets of matched variants, Methods). These results 
indicate that the rate of replication of variants discovered using the cFDR approach is as 
good as using a conventional two-step filtering pipeline. 
 

 
Figure 3 | Replication of variants with GxE in the validation datasets. (a) QQ plot of 
negative log P values from the StructLMM interaction test evaluated in the validation 
dataset (n = 126,076) for the 964 variants identified by the cFDR approach in the 
discovery analysis. The 330 variants also identified by the genome-wide FDR and/or the 
two-step filtering in the discovery set are displayed in grey whilst the 634 variants 
exclusively identified by the cFDR approach are displayed in red. (b) Table summarising 
the validation metrics considered. Columns 1 and 2 state the number of variants and loci 
(LD clumped loci, r2 < 0.1 within +/-500kb), respectively with significant G×E effects (FDR 
5%) identified in the discovery set of UKBB individuals (n = 126,077); column 3 displays 
the significance of the tail strength of the replication P values (based on 500 sets of 
matched null variants; Methods); column 4 states the number of loci identified in 
discovery that are nominally significant (StructLMM interaction P < 0.05) in validation set, 
column 5 the corresponding empirical P value based on 500 sets of matched variants 
(Methods), columns 6 and 7 the number of variants that validate the number of variants 
and loci respectively that validate (Storey FDR 5%26,27). ‘cFDR only’ results are based 
on variants/loci that were only found using the cFDR multiple testing correction. 
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Even higher numbers of loci replicated when using Storey’s Q values (estimates the 
fraction of non-null variants and does not assume it is 1 as for the Benjamini-Hochberg 
approach)26,27, providing further support for using the cFDR when testing for G×E. 
Sixteen of the loci identified with the cFDR approach replicate (FDR < 5%), whilst in 
comparison, only five and two of the loci identified by the conventional filtering approach 
and the genome-wide FDR approach replicate (both are a subset of those that replicate 
based on the cFDR approach), such that ten loci (SEC16B, ALKAL2-TMEM18 two 
distinct signals, ZNF596-FAM87A, SEM4AD-GADD456, ITGB1-NRP1, FAIM2, 
SDCCAG3P1-MC4R two distinct signals, POFUT2) are identified and replicate solely 
through the use of the cFDR (Supp. Table 1). BDNF is identified both by cFDR and the 
two-step filtering approach but only replicates in the cFDR approach (Supp. Table 1). 
 
Finally, having validated the approach, we took advantage of the full set of 252,188 
individuals in UKBB, to increase power to identify additional candidate loci with G×E 
effects on BMI. The cFDR approach identified 140 loci with significant G×E effects 
(cFDR < 5%, +/-500kb, r2 > 0.1, Methods, Supp. Fig. 11 c, f, Supp. Fig. 13c, Supp. 
Table 2). In comparison, the genome-wide and conventional two-step filtering 
approaches identified six and 23 loci with significant G×E effects (FDR < 5%, +/-500kb, 
r2 > 0.1, Methods, Supp. Fig. 11, Supp. Fig. 12, Supp. Fig. 13, Supp. Table 2), 
respectively.   
 
Among the 140 loci identified from the full UKBB dataset, in addition to loci overlapping 
those identified in the discovery and validation datasets, several others merit additional 
validation in other large biobanks. Of particular interest are ten loci where marginal 
association with BMI is weak (P > 10-3) but with strong evidence of G×E (P < 10-5) and 
where 𝜌 is large (> 0.5) (Supp. Table 2). Among these is CADM2, a locus previously 
associated with BMI, obesity and adiposity traits28-32, in addition to reported associations 
with physical activity33, risk taking behaviour, alcohol, smoking and many other 
behavioural and cognitive traits34, it has recently been suggested to form a link between 
psychological traits and obesity35. 

Discussion 
 
To date, G×E discovery efforts have lagged behind genetic association studies due to 
limitations in available methods, and sample sizes. Genome-wide G×E scans have a 
high multiple-testing cost and are therefore limited in power. In contrast, two-step filtering 
approaches whereby only genetic variants with prior evidence of marginal association 
with a given trait or disease of interest are tested for G×E effect, limit the multiple-testing 
burden but are constrained by the number of variants tested and the need to set arbitrary 
association significance thresholds for filtering. To overcome these limitations, we 
describe the use of the conditional false-discovery (cFDR) approach, aligned with our 
recently described StructLMM interaction test method10, to perform a genome-wide 
search for G×E effects whilst avoiding the high multiple testing burden.  
 
Using both simulated data and UKBB data to identify novel loci with evidence of G×E 
effects on BMI, we highlight two significant advantages of the cFDR approach compared 
to genome-wide FDR, or two-step filtering approaches. Firstly, cFDR allows a genome-
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wide G×E exploration whilst retaining greater discovery power compared to conventional 
genome-wide FDR. Secondly, variants found uniquely by cFDR validate, in an 
independent dataset, at an equivalent rate to those identified by the conventional hard-
filtering approach, demonstrating the utility of the approach to discover variants with a 
previously unsuspected effect on the trait in question. We further demonstrate that 
focusing on variants with marginal associations may paradoxically limit the ability to 
discover variants with the highest G×E effects, because many of these will either have 
been filtered out in large meta-analyses due to large heterogeneity between contributing 
datasets, or they will have insufficient evidence for trait-association in combined datasets 
to be taken forward for G×E testing. This is demonstrated by the two-step filtering 
approach only identifying loci with low 𝜌 value, whereas those loci identified by the cFDR 
approach have a greater distribution of 𝜌 values (Fig. 2, Supp. Fig. 11).  
 
Using the cFDR approach in combination with StructLMM, we detected 16 replicating 
loci (only five of which were identified and validated with a conventional two stage design) 
with evidence of G×E effects on BMI. Two (FTO and MC4R), had been previously 
established5,7,9,10,15,36, and were also detected when applying genome-wide FDR or two-
step filtering approaches. In addition, for the first time we demonstrate evidence of G×E 
effects on BMI, in EFR3B, LINC7C and UNC79, replicating loci overlapping between 
cFDR and two-step filtering approaches. 
 
Furthermore, eleven replicating loci were uniquely identified by the cFDR approach 
(Supp. Table 1). Amongst these eleven loci, is SEC16B, a positive control for which 
previous secondary analyses provided some evidence for an interaction (P = 0.025) with 
physical activity in Europeans36, and in Hispanics37 and identified more recently by us 
using the StructLMM interaction test with a sample size approximately twice as large, 
though we note it contains the samples used here10. Notable loci with new evidence for 
G×E effects on BMI include ALKAL2, TMEM18 and FAIM2. ALKAL2 and FAIM2 were 
also detected when using a two-step filtering approach but only when the entire UKBB 
dataset was used. ALKAL2 (previously called FAM150B) lead variant rs62107263 
(MAF=	22%) is in D’=1 with rs62107261 (MAF=4%), previously associated with obesity 
and body fat distribution32,38, lung function39 and smoking status39. In TMEM18 the variant 
with G×E effects (rs74676797) is in perfect LD (r2 =	1) with rs13021737 previously 
shown to associate with BMI and obesity29,40,41. Finally, in FAIM2 (rs7132908), the same 
variant has been previously associated with childhood obesity41, severe obesity32, BMI39 
and alcohol consumption42. The latter is interesting as the environment with the most 
evidence of driving the interaction effect is alcohol frequency in women (Supp. Fig. 14). 
 
In summary, we describe a novel approach that uses the cFDR to discover G×E effects 
genome-wide without incurring the high multiple testing burden. While we describe an 
application that combined the cFDR approach with our previous StructLMM interaction 
test10, it is important to note that the cFDR approach can be combined with any G×E test 
and therefore has wide applicability. Additionally, we note that while we considered 
marginal association results with BMI as our informative covariate, it is equally valid to 
use marginal association results with one trait to test for G×E interactions on a second 
trait, for example, we could use marginal associations with BMI, to look for G×E on type 
2 diabetes risk. 
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Online methods 

Statistical tests 

LMM 
A conventional linear mixed model (LMM) to test for marginal associations can be cast 
as 
𝒚 = 𝑿𝒃 + 𝒙𝛽 + 𝒖 + 𝝍                                                     (1), 
where 𝛽 is the effect size of the focal variant 𝒙, 𝑿 denotes the fixed-effect design matrix 
of 𝐾 covariates and 𝒃 the corresponding effect sizes. The variable 𝒖 denotes additive 
(confounding) factors, and 𝝍 denotes i.i.d. noise. The random effect component 𝒖 and 
the noise vector 𝝍 follow multivariate normal distributions, 𝒖~𝑁(𝟎, 𝜎:;𝚺) and 
𝝍~𝑁(𝟎,𝜎>;𝐈), where the covariance matrix 𝚺 reflects the covariance of environment 
across individuals. 𝚺 is estimated using a linear covariance function such that 𝚺 = 𝐄𝐄A, 
where 𝐄 is an 𝑁 × 𝐿 matrix composed of 𝐿 environmental exposures for each of the 𝑁 
individuals (see Moore et al.10 for full details). Marginal association tests for non-zero 
effects of the focal variant correspond to alternative hypothesis 𝛽 ≠ 0. 
 
StructLMM interaction test 
The StructLMM interaction test generalises the LMM by introducing per-individual 
effect sizes of the focal variant due to G×E and can be cast as 
𝒚 = 𝑿𝒃 + 𝒙𝛽 + 𝒙⊙𝜷F×G + 𝒖 + 𝝍                               (2), 
where ⊙ denotes the Hadamard product and 𝜷F×G is a per-individual allelic effects 
vector and follows a multivariate normal distribution with environment covariance 𝚺: 
𝜷F×G~𝑁(𝟎, 𝜎F×G; 𝚺), where 𝚺 = 𝐄𝐄A as described above. As a result the interaction test, 
with alternative hypothesis 𝜎F×G; > 0, tests for G×E effects due to potentially multiple 
environmental variables (see Moore et al.10 for full details). It can be seen that under 
the null StructLMM reduces to the LMM described above. 
 
Fraction of genetic variance explained by G×E (𝞺) 

In this study, 𝜌 = 	 IJKL×M

IJKLNIJKL×M
  is defined as the fraction of genetic variance that is 

explained by G×E, where VarF denotes the fraction of the variance explained by 
marginal genetic effects and  VarF×G variance due to G×E.  An estimate of 𝜌 can be 
obtained by maximizing the marginal likelihood of Eq. (2) (see Moore et al.10 for 
details). 
 
The conditional false discovery rate (cFDR) 
The cFDR is an estimate of the posterior probability of a primary trait of non-G×E 
interaction given p-value thresholds for hypothesis tests of G×E interaction and for a 
secondary trait of phenotype-genotype (G) association. In this work, p-values for the 
‘primary trait’ are obtained from application of the StructLMM interaction (StructLMM-
int) test (see above) and the conditional informative covariate trait as the association 
test results, obtained from LMM (see above, Moore et al.10 description of LMM-Renv for 
full details). 
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Formally, denoting 𝐻SF×G as a null hypothesis of non-G×E, 𝑃 as a random variable 
corresponding to the p-value from a hypothesis test for G×E from StructLMM, and 𝑄 as 
a p-value from a hypothesis test for phenotype association, the cFDR is a function of 
thresholds 𝑝, 𝑞: 
𝑐𝐹𝐷𝑅(𝑝, 𝑞) = 𝑃\𝐻SF×G	]	𝑃 ≤ 𝑝, 𝑄 ≤ 𝑞) 
 
Given observed (𝑃, 𝑄) values (𝑝_, 𝑞_), (𝑝;, 𝑞;), . . . , (𝑝>, 𝑞>) for each SNP, ranking 
hypothesis by 𝑐𝐹𝐷𝑅(𝑝_, 𝑞_), 𝑐𝐹𝐷𝑅(𝑝;, 𝑞;), . . . , 𝑐𝐹𝐷𝑅(𝑝>, 𝑞>) may sort null and non-null 
SNPs more effectively than ranking by p-values 𝑝_, 𝑝;, . . . , 𝑝> alone. The best possible 
metric by which to rank SNPs can be shown19 to be: 
𝑃(𝐻SF×G	|	𝑃 = 	𝑝, 𝑄	 = 	𝑞)  
but this quantity is difficult to estimate, whereas the cFDR is readily and partly-
consistently estimable from empirical cumulative density function of 𝑃 and 𝑄. 
  
The cFDR can be seen to be related to the Benjamini-Hochberg procedure. The 
Benjamini-Hochberg procedure controlling FDR at 𝛼 is roughly equivalent to rejecting 
the null for all 𝑖 such that: 
estimated	{	𝑃(𝐻SF×G	|	𝑃 ≤ 	𝑝j)	} 	< 𝛼 
  
A corresponding rule for the cFDR does not hold21; rejecting 𝐻SF×G whenever 
estimated	{	𝑐𝐹𝐷𝑅(𝑝, 𝑞)	} < 𝛼 does not control the FDR at 𝛼. 
  
We control type-1 error rate (as FDR) using an approach proposed by Liley et al.19 
(code available at https://github.com/jamesliley/cfdr, using options mode = 2 and adj = 
T). Briefly, in this method, type-1 error rate (as FDR) is controlled by using the 
estimated cFDR to define a map from the unit square (the domain of 𝑃, 𝑄)) to the real 
line. This enables 'contours' of cFDR to be drawn through each p-value pair of interest 
and the regions within integrated with respect to an estimated distribution of the p-
value pairs under 𝐻SF×G, thereby transforming the set of pairs of p-values into a set of 
single p-values against 𝐻SF×G which encompass the additional information from the 
covariate (and can be used in the Benjamini-Hochberg procedure to control FDR). For 
correct calibration of the resultant p-value, the map must be independent of the p-value 
pairs it is used on, so in each case we fitted the map using only p-values from SNPs in 
linkage equilibrium with the SNP under investigation. 
   
Both the cFDR and two-stage independent filtering18 assume independence of 𝑃 and 𝑄 
under 𝐻SF×G (although both may be adapted if this condition does not hold, and cFDR 
estimates are reasonably robust to small correlations under the 𝐻SF×G 21). It can be 
shown that independence of 𝑃 and 𝑄 holds for nested models (StructLMM interaction 
test reduces to LMM under the null as described above)43. This is in agreement with 
our simulation experiments that indicate results from the StructLMM interaction test are 
independent of those from the LMM association test (Supp. Fig. 1).  

Simulations 

Simulation procedure overview 
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Simulations were based on genotypes of European individuals from the 1000 
Genomes project22 (phase 1, 1,092 individuals, 379 Europeans), considering 103,527 
variants on chromosome 21 (minor allele frequency ≥2%). Following10,44,45, 5,000 
synthetic genotypes of unrelated individuals were generated for different sample sizes, 
while preserving the population structure of the seed population (see46). We considered 
33 environmental exposures using empirical environmental covariates from 70,282 
UKBB individuals (based on the Interim release), augmented with gender (binary male 
indicator vector and binary female indicator vector) and age (continuous vector), 
resulting in 99 lifestyle covariates and age itself, giving a total of 100 environmental 
variables. 60 of these environments were selected at random with a subset of 30 
environments used to simulate G×E effects and all 60 environments used for testing. 
These environmental variables were preprocessed as in the UKBB analysis (see 
below) and randomly assigned to synthetic genotypes (see Moore et al.10 for full 
details).  
 
We randomly select 550 segments of approximately 2Mb from chromosome 21, 
simulating genetic effects from one causal variant. 50 of these segments were 
simulated with marginal genetic effects only (𝜌 = 0) and G×E effects of varying 
strengths were simulated for the remaining 500 segments (𝜌 = 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 and 1.0 for 50 segments each). This procedure is repeated 100 times; 
thereby generating 100 phenotypes, with each the sum of 50 marginal association 
effects and 500 G×E effects. 
 
Conditional QQ plots 
QQ plots based on one of the repeat experiments of the StructLMM interaction results 
were generated for the subset of variants with LMM association p-values < 1 (blue), < 5 
×10-3 (orange), < 5 ×10-5 (green) and < 5 ×10-8 (purple), referred to as conditional QQ 
plot (Supp. Fig. 1a). For comparison, we simulated phenotypes with no dependence 
between the association and interaction test results, considering i) simulated marginal 
genetic effects (550 variants with marginal genetic effects but no G×E effects (𝜌 = 0), 
Supp. Fig. 1b) and ii) no simulated genetic effect (Supp. Fig. 1c).  
 
Assessment of the discovery rate control using simulations 
If a variant that lies within a block simulated to have only marginal genetic effects (𝜌 =
0) was declared as having a significant interaction effect, this was defined as a false 
discovery whilst if a variant lies within a block with simulated causal G×E (𝜌 > 0) was 
declared as having a significant interaction effect, this was defined as a true discovery. 
The empirical FDR was then calculated as the number of mJnop	qrostupKrpo

vKwp	qrostupKrpoNmJnop	qrostupKrpo
, 

with the average value and standard error over the 100 repeat experiments calculated 
(Fig. 1b). 
 
Power simulations 
We first calculated power to detect any G×E effects (𝜌 > 0) and then power to detect 
the subset of simulated causal variants for each of the 11 values of 𝜌. Power was 
assessed at the 1% FDR, considering variants in linkage disequilibrium with the 
selected true causal variants (r; ≥ 0.8) as true positives, reporting the average power 
and standard error across the 100 repeat experiments (each experiment has power 0, 
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0.002, 0.004, …, 0.996, 0.998, 1 when considering power to detect any interaction 
effect and  0, 0.02, 0.04…, 0.96, 0.98, 1 when considering power to detect variants at 
each value of 𝜌, Fig. 1a). 
 
Comparison methods 
We compared the cFDR to alternative multiple test strategies. We considered testing 
all variants for interaction effects at 1% FDR (Benjamini-Hochberg). We also 
considered two-stage independent filtering approaches18, in which variants were 
selected for interaction testing based on their association results (LMM) at 1% and 5% 
FWER. For any of the two-stage filtering approaches, a 1% FDR (Benjamini-Hochberg) 
was then applied to the subset of variants that were tested for interaction effects. 
 

Analysis of BMI in UK Biobank 

This research has been conducted using the full release of the UK Biobank Resource 
(Application 14069)47. The UK Biobank study has approval from the North West Multi-
Centre Research Ethics Committee and all participants included at the time of the 
analyses provided informed consent to UK Biobank. 
 
Data Preprocessing 
The data was preprocessed as described in Moore et al.10. Briefly, BMI phenotype data 
is ‘Instance 0’ of UKBB data field 21001. Individuals with missing BMI data were 
discarded and BMI log transformed15,48. We considered 21 lifestyle covariates as 
environments, discarding individuals with outlying or missing environmental data (see 
Supp. Note in Moore et al.10 for details). We further discarded individuals of non-British 
ancestry, related individuals and those that had withdrawn consent at the time of 
analysis. After these QC procedures on the BMI phenotype, genotype and 
environmental variables, we had a set of 252,153 individuals for analysis. These 
individuals were randomly split into a discovery set (n=126,077) and a validation set 
(n=126,076). Principal components for population structure were those computed by 
Moore et al.10, using flashPCA version 2.049 using 147,604 variants as indicated by the 
field ‘in_PCA’ from the released marker QC file.   
 
Genotype data 
The genetic variants considered were the same as those used in Moore et al.10. 
Specifically, 7,515,856 variants imputed with the HRC panel (build GRCh37) with 
missingness < 5%, MAF > 1%, HWE P > 1 × 10yz, and INFO score r2 > 0.4 were 
considered (see Moore et al.10 for full details). 
 
Environmental covariance and covariates 
The environmental matrices 𝐄 for the discovery, validation and analysis using all 
available samples were generated by augmenting the 21 environmental variables 
described above with gender (binary male indicator vector and binary female indicator 
vector) and age (continuous vector), resulting in 63 covariates and age itself was also 
included, giving a total of 64 environmental factors (see Supp. Note in Moore et al.10 for 
details). The environmental covariance was then estimated using standardised 
environmental variables followed by per-individual standardisation (see Supp. Note in 
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Moore et al.10 for details). In all analyses, a mean vector, genotype chip, gender, age2, 
age3, gender × age, gender × age2, gender × age3 and ten genetic principal 
components were included as covariates. 
 
Calibration of the considered tests 
To check that the association and interaction tests were calibrated under the null, we 
assessed the empirical calibration using permuted genotype variants (89,166 variants) 
on chromosome 22 (Supp. Fig. 2). Genomic control was calculated as 𝜆|} =

nt~��(�)
nt~��(S.�)

; 

m is the median StructLMM interaction P value. 
 
Discovery interaction testing 
In these analyses we used only the discovery set of 126,077 individuals. 
 
For the genome-wide FDR approach we applied the 5% Benjamini-Hochberg FDR23 to 
the corresponding G×E results obtained using StructLMM interaction test for all 
7,515,856 that passed QC, identifying 78 variants with significant G×E effects. 
 
For the conventional two-step filtering FDR approach, we selected the 3,767 variants 
with association P < 5×10-8 and then applied the 5% Benjamini-Hochberg FDR23 to the 
corresponding G×E results obtained using StructLMM interaction test, identifying 330 
variants with significant G×E effects. 
 
For the cFDR approach we applied the 5% cFDR procedure (described above19), using 
238 folds containing between 30,025 and 44,583 consecutive variants and excluding a 
fold either side of the focal fold such that the minimum distance between a focal SNP in 
fold and a SNP out of fold used for the inference was greater than 5,329,663 bp and 
the maximum LD (based on 100 boundary variants) r2 < 9.50×10-4 and to the G×E 
results obtained using StructLMM interaction test for all 7,515,856 that passed QC, 
using the corresponding association results obtained from LMM for all 7,515,856 
variants as the informative covariate, identifying 964 variants with significant G×E 
effects. 
 
For all variants with significant G×E effects, we estimated	𝜌, which is the fraction of the 
genetic variance explained by G×E effects (see Moore et al.10 for details). A value of 𝜌 
close to 0, means that the effect of variant is largely the same across all individuals 
with only a small component of the genetic effect dependent on environmental 
exposures whilst a value close to 1 means that the effect of variant is dependent on the 
environmental exposures. 
 
LD clumping was performed for each method to identify independent loci by: iteratively 
(i) selecting the most significant variant (based on the StructLMM interaction results), 
(ii) removing all variants in LD (r2 > 0.1 based on the UKBB discovery set of individuals) 
within +/- 500kb until no variants were left resulting in three, eight, and 29 clumps (loci) 
respectively (Supp. Table 1). Variants in each loci are visualised in Supp. Figs. 7, 8 
and 9, with variants in the clump coloured according to 𝜌 and the lead variant is 
represented by a diamond. 
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Validation 
In these analyses we used only the validation set of 126,076 individuals. 
 
We first tested the 964 variants identified with significant G×E effects (cFDR < 5%) in 
the discovery analysis for interaction effects using the StructLMM interaction test 
considering the validation set of individuals. QQ plots of the validation StructLMM 
interaction test results were plotted where (i) the 330 variants also identified by the 
genome-wide FDR and/or the conventional two-step filtering approach using the 
discovery set of individuals were coloured in grey (634 variants in red were identified 
only with the cFDR approach, Fig. 3) and (ii) all variants (615 variants) within the eight 
loci also identified by the genome-wide FDR and/or the conventional two-step filtering 
approach using the discovery set of individuals were coloured in grey (340 variants in 
the 21 loci identified only by the cFDR approach are shown in red, Supp. Fig. 10). 
 
We assessed the deviation from the null distribution using the tail strength measure24 
using the lead variant for each locus identified in the discovery analysis based on all 29 
cFDR loci, the 8 loci identified by the two-step filtering approach and for the 21 loci 
identified only by the cFDR approach. Empirical P values were calculated by identifying 
500 different matched variants for each lead variant using SNPsnap25 
(https://data.broadinstitute.org/mpg/snpsnap/match_snps.html), using default settings 
apart from setting the ‘Number of matched SNPs’ to 4000) and then calculating tail 
strength for each matched set and subsequently the fraction of the 500 matched sets 
that are at least as extreme as the observed tail strength measure.    
 
We also counted the number of loci with nominally significant P values (StructLMM 
interaction test in validation < 0.05) identified by each approach in discovery and also 
for the 21 loci only identified by the cFDR approach based on lead variants per locus 
identified in the discovery analysis.  Empirical P values were calculated using the same 
sets of matched variants as were used for the tail strength measure. 
 
Finally, we identified loci that validated for each method at the 5% FDR using Storey’s 
q value approach26,27. This involves estimating the proportion of tested variants that are 
truly null (𝜋0) based on the set of variants tested. As the number of variants identified in 
discovery for the genome-wide FDR and two-step filtering approaches is too low to 
estimate 𝜋0, the estimate of 𝜋0 obtained for the cFDR approach (0.202, 
https://www.bioconductor.org/packages/devel/bioc/vignettes/qvalue/inst/doc/qvalue.pdf
) was used.    
 
Interaction testing using all samples 
The data for this analysis was preprocessed as described above but at the time of 
analysis less individuals had withdrawn consent, resulting in a total of 252,188 
individuals. The analysis was conducted analogous to that described in the discovery 
interaction testing methods section, with the only difference being the larger sample 
size. 
 
Explorative analysis of driving environments at rs7132908 
As described in Moore et al.10, we explored which environments had putative effects on 
G×E by comparing the log marginal likelihood of the full model to models with 
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individual or sets of environments excluded. We initially assessed the relevance of 
individual environments based on the log(Bayes factor) of removing single 
environments (Supp. Fig. 14a). To account for correlations between environments, we 
also used a backwards elimination procedure (see Moore et al.10 Supp. Note for full 
details), greedily removing environments until there is evidence that we have selected 
a full set of environments that can drive the observed G×E effect (Supp. Fig. 14b).  
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