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Supporting Information A. Detailed description of the data assimilation methods used in 12 

FLARE.  13 

The data assimilation in FLARE used the ensemble Kalman Filter (EnKF) with state 14 

augmentation to calibrate parameters (following the methods of [Zhang et al. 2017]). The EnKF 15 

state matrix had M ensemble members, each with K model depths (state variables) and P number 16 

of parameters (an augmentation of the states by including parameters), resulting in an M × (K + 17 

P) matrix. 18 

The EnKF was initialized with a set of M ensemble members, in which each ensemble 19 

member i had a vector of modeled water temperatures at K depths at the 0th time (𝑥#$ ) and a 20 

vector of P parameters (𝛼#$ ). For the first day of data assimilation at the beginning of the spin-up 21 

period only, the values of 𝑥#$  were initialized with observed sensor temperatures and linear 22 

interpolation was used to initialize the modeled depths that did not have observations.   23 

For this application, P was three because three General Lake Model (GLM) parameters 24 

were calibrated for Falling Creek Reservoir: SW_factor, LW_factor, zone1temp, and zone2temp. 25 

These parameters were chosen based on a one-step-at-a-time (OAT) global sensitivity analysis of 26 

all GLM parameters [Morris 1991]. 𝛼#$  was initialized using a random draw for each ensemble 27 

from a parameter-specific uniform distribution. For every sequential day in the spin-up 28 

forecasting and forecasting periods, a new vector of parameters for each ensemble member 29 

(𝛼'$()	was created by adding a normal random variable centered at 0 with a specified covariance 30 

(𝜙) to the previous day’s parameter values (eqn. SI.1). The negative sign in the 𝛼'$( signifies a 31 

parameter vector before updating using assimilated observations, following eqn. SI.1: 32 

𝛼'$( = 𝛼'(,$ + 𝑀𝑉𝑁(0, Θ) (eqn. SI.1) 33 
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The covariance (Θ) was constant throughout assimilation and was set to be small but non-zero to 34 

allow the P parameters to adjust over time and improve the model calibration. 35 

Every day, the observed meteorology from the previous 24 hours was pulled from the 36 

GitHub repository and processed to generate a matrix of hourly meteorological inputs for GLM. 37 

This matrix was combined with the other model driver data (inflow rate, mean historical 5-year 38 

inflow water temperature, and mean historical 5-year outflow rate) to create a driver matrix (𝐷'$) 39 

for each ensemble member. The GLM inputs did not differ among the ensembles when 40 

assimilating observations using historical observations. 41 

The vector of modeled water temperature for each depth from the previous day (𝑥'(,$ ), 42 

the parameter vector (𝛼'$(), and the last 24 hours of driver data (𝐷'$) were used to initialize and 43 

run a 1-day simulation of the GLM for each ensemble member, 𝐺6𝑥'(,$ , 𝛼'$(, 𝐷'$7. Process 44 

uncertainty was added to the water temperature predictions from the GLM following eqn. SI.2 to 45 

create predictions of water temperature with process uncertainty for each depth: 46 

𝑥'$( = 𝐺6𝑥'(,$ , 𝛼'$(, 𝐷'$7 + 	𝑀𝑉𝑁(0, Σ') (eqn. SI.2) 47 

where 𝑥'$( is the K × 1 vector of predicted water temperatures at the modeled depths for the ith 48 

ensemble member at time t. MV𝑁(0, Σ') is a random draw from a multivariate normal 49 

distribution with a mean of 0 and the covariance matrix at time t (Σ').   50 

The Σ' matrix evolved through data assimilation, as the model predictions prior to 51 

updating (𝑥'$()	improved or degraded over time. This allowed for the process uncertainty to 52 

reflect the performance of model predictions over a specified time period (a 30-day window in 53 

our application for Falling Creek Reservoir). The first 30 days of assimilation used to generate 54 

the Σ' matrix so that the Σ' during that period did not evolve and was a diagonal matrix with a 55 

constant variance for all depths (0.5 ℃). After the first 30 days, a 30-day running covariance 56 
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matrix at the observed depths (Σ'∗) was calculated as the residual of the predictions prior to 57 

updating, following eqn. SI.3: 58 

𝚺𝒕∗ = 	
,
>
∑ (𝑥'(@ − 𝑦'(@)(𝑥'(@ − 𝑦'(@)	>
@C' 	 (eqn. SI.3) 59 

𝚺𝒕∗ was used to calculate 𝚺𝒕 by linearly interpolating the variances and covariances between 60 

depths in 𝚺𝒕∗. In eqn. SI.3, V is the number of previous days included in the covariance matrix 61 

(here, 30).  62 

If data were not available to update the model states due to missing sensor data, the states 63 

were not updated and 𝑥'$ = 	 𝑥'$(. Otherwise, we calculated the covariance among states in the 64 

ensemble members (𝑪𝒙𝒙) using eqn. SI.4: 65 

𝑪𝒙𝒙 = 	
,

F(,
∑ (𝑥'$( − 𝑥')(𝑥'$( − 𝑥')F
$C,  (eqn. SI.4) 66 

where 𝑥' was the mean temperature at each modeled depth across ensemble members. The 𝑪𝒙𝒙 67 

matrix represents the estimated model error. Similarly, we calculated the covariance among 68 

parameters and states in the ensemble members (𝐶HI) to estimate the relationship between 69 

parameters and model predictions using eqn. SI.5: 70 

𝑪𝜶𝒙 = 	
,

F(,
∑ (𝛼'$( − 𝛼')(𝑥'$( − 𝑥')F
$C,  (eqn. SI.5) 71 

where 𝛼' was the mean across ensemble members for each parameter in the parameter vector.   72 

Next, to quantify uncertainty in the observations, we added normally-distributed noise to 73 

the vector of observations at time t (𝑦')	using the observation covariance matrix (𝑹) (eqn. SI.6):    74 

𝑦L'$ = 𝑦' + 𝑀𝑉𝑁(0, 𝑹) (eqn. SI.6) 75 

where 𝑦L'$ is the vector of observations with uncertainty added. In our application, the 76 

observational uncertainty was equal for all depths and not correlated among depths, and thus the 77 

𝑹 matrix was diagonal.   78 
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The model states (water temperatures at specific depths) and parameter updating using 79 

the observations first required calculating the Kalman gain for the states (𝑲𝒙)	and parameters 80 

(𝑲𝜶) following eqn. SI.7: 81 

N𝑲𝒙
𝑲𝜶
O = 	 N𝑪𝒙𝒙𝑯

Q(𝑯𝑪𝒙𝒙𝑯Q + 𝑹)(,

𝑪𝜶𝒙𝑯Q(𝑯𝑪𝒙𝒙𝑯Q + 𝑹)(,
O  (eqn. SI.7) 82 

where H is a matrix in which each row corresponds to a depth with an observation and each 83 

column represents each of the modeled depths. The column that matched the depth of the 84 

particular row’s observation had a value of 1 while all other columns had a value of 0. Each row 85 

only had a single 1. T represents the transpose of the H matrix.  86 

The Kalman gain represented the proportional adjustment of the GLM model output 87 

based on the difference between the model predictions of water temperature and the sensor 88 

observations. A Kalman gain value of 1 is associated with a full adjustment of the model state to 89 

match an observation (likely due to low or near-zero observational uncertainty; R), while a value 90 

of zero has no adjustment of the modeled state. The full matrix of the Kalman gain included the 91 

direct updating of water temperature at a particular depth based on the comparison to sensor 92 

observations at that depth and on the covariance of model states across depths (i.e., a large 93 

update in one depth influenced the update of another depth if there was high correlation between 94 

those two specific depths). This allowed the Kalman gain to update depths without sensor 95 

observations because they were correlated with observed depths in the model predictions in Cxx.   96 

Finally, the corrupted states and parameters were updated by adding the state gain 97 

𝑲𝒙6𝑦L'$ − 		𝑯𝑥'$(	7	and parameter gain 𝑲𝜶(𝑦L'$ − 		𝑯𝑥'$(	), using eqn. SI.8: 98 

R𝑥'
$

𝛼'$
S = R𝑥'

$(	

𝛼'$(
S + R	𝑲𝒙(𝑦L'$ − 		𝑯𝑥'$(	)

𝑲𝜶(𝑦L'$ − 		𝑯𝑥'$(	)
S	(eqn. SI.8) 99 
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The Kalman gain thus updated the model states for which there were corresponding observations 100 

and updated the model states that did not have corresponding observations based on the 101 

correlation between the observed and unobserved states. Similarly, the parameters were updated 102 

based on their correlation with the observed states. 103 

 104 

References 105 

Morris, M.D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments. 106 

Technometrics 33(2), 161-174, https://doi.org/10.1080/00401706.1991.10484804 107 

Zhang, H., Hendricks Franssen, H.-J., Han, X., Vrugt, J.A. and Vereecken, H. (2017), State and 108 

parameter estimation of two land surface models using the ensemble Kalman filter and the 109 

particle filter. Hydrol. Earth Syst. Sci. 21(9), 4927-4958, https://doi.org/10.5194/hess-21-4927-110 

2017 111 

112 



 S7 

Supporting Information B. Description of how the NOAA GEFS forecasts were spatially 113 

and temporally-downscaled.  114 

The overarching goal of the spatial and temporal downscaling was to adjust the 1 x 1º 115 

spatial resolution and 6-hour temporal resolution NOAA GEFS forecasts to represent the 116 

reservoir’s local meteorological conditions at a 1-hour temporal resolution.   117 

First, we used historical GEFS forecasts and 1-minute scale observational data measured 118 

at the reservoir from 6 April – 6 December 2018 as the “training data” for the spatial 119 

downscaling [Carey et al. 2019]. We aggregated both the NOAA GEFS and the observed 120 

meteorology to the daily scale by averaging all observations (except for precipitation, which was 121 

summed) and matched the data by date. In this training dataset, we only used the first day of each 122 

historical 16-day NOAA GEFS forecast because it contained the lowest spread among NOAA 123 

GEFS ensemble members and was mostly likely to represent any consistent offsets between the 124 

1×1º forecast and the local conditions.    125 

To spatially-downscale temperature, relative humidity, wind speed, shortwave radiation, 126 

and longwave radiation, we estimated the linear relationship between the daily observation and 127 

forecast data in the training dataset (Supporting Information Table 2). We then applied this linear 128 

model to each day of the 16-day forecast. We set downscaled values for each variable that was 129 

less than zero to zero and values of relative humidity greater than 100 to 100. This resulted in a 130 

spatially-downscaled NOAA GEFS forecast product at the daily time scale.  131 

To temporally-downscale the spatially-downscaled temperature, relative humidity, and 132 

wind speed forecasts from the daily to 1-hour resolution, we first used the difference between the 133 

pre-spatially downscaled NOAA GEFS 6-hour forecast and its daily mean to convert the daily 134 

spatially-downscaled forecast to its original 6-hour resolution. We used a monotone Hermite 135 
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spline method to obtain hourly values from the 6-hour values. Before applying the spline method 136 

within the first 6-hour period, we used the observed meteorology as the 0-hour variable and the 137 

downscaled forecast as the 6-hour value. This allowed for a smooth transition between the 138 

observed meteorology used in data assimilation and the downscaled forecast.   139 

  To temporally-downscale shortwave radiation from the spatially-downscaled daily 140 

resolution to 1-hour resolution, we calculated the potential top-of-atmosphere solar radiation for 141 

each hour to determine a scaling factor between hourly shortwave radiation and the mean daily 142 

potential shortwave radiation [following the solar_geom.R function in Dietze 2017]. We used 143 

this ratio to convert the daily downscaled shortwave radiation to the 1-hour resolution.   144 

  To temporally-downscale longwave radiation from the spatially-downscaled daily 145 

resolution to 1-hour resolution, we first used the relative difference between the pre-spatially 146 

downscaled NOAA GEFS 6-hour forecast and its daily mean to convert the daily spatially-147 

downscaled forecast to its original 6-hour resolution. We then applied the 6-hour mean value to 148 

each hour within that time window.   149 

Precipitation was only spatially-downscaled. We first calculated the ratio of the 150 

forecasted precipitation to observed precipitation in the training data. Then, we multiplied each 151 

NOAA GEFS 6-hourly forecasts of precipitation by this ratio.   152 

Finally, we represented uncertainty in the spatial and temporal-downscaling process by 153 

adding random noise to each downscaled 1-hour forecast. To add the random noise, we first 154 

applied the spatial and temporal downscaling process described above to the NOAA GEFS 155 

forecast used in the training data. Second, we calculated the residuals between the observed 156 

meteorology and the downscaled NOAA GEFS forecast at the 1-hour resolution for temperature, 157 

relative humidity, wind speed, shortwave radiation, and longwave radiation. This resulted in a set 158 
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of residuals for each variable (except precipitation) within each hour. Third, we used the 159 

residuals to determine the covariance of residuals among variables across all hours in the training 160 

dataset (Supporting Information Table 3). Finally, to add noise to each hour of a 16-day forecast, 161 

we used this covariance to draw values for each variable from a multivariate normal distribution 162 

that was centered at the downscaled values. By using the multivariate normal distribution, the 163 

added noise reflects the downscaling uncertainty that is not independent among variables. In 164 

total, we generated 21 random draws from the downscaling uncertainty for each of the 21 165 

downscaled NOAA GEFS ensembles.   166 

 167 
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Supporting Information C: A description of the sensor array at the reservoir and wireless 176 

data transmission methods. 177 

We measured the water temperature profile in Falling Creek Reservoir on 1-m intervals 178 

from the surface (0.1 m depth) to just above the sediments at 9 m at the deepest site of the 179 

reservoir with NexSens T-Node FR thermistors (NexSens Technology, Inc.; Fairborn, Ohio, 180 

USA; [Carey et al. 2019b]. Thus, we had sensor observations for 0.1 m, 1 m, 2 m, 3 m, 4 m, 5 m, 181 

6 m, 7 m, 8 m, and 9 m. The thermistor string was factory-calibrated and verified against a 182 

NIST-traceable thermistor to meet measurement accuracy of ±0.075oC. A Campbell Scientific 183 

(Logan, Utah, USA) research-grade meteorological station deployed on the dam of the reservoir 184 

measured shortwave radiation, longwave radiation, air temperature, relative humidity, rainfall, 185 

wind speed, and barometric pressure [Carey et al. 2019a]. These meteorological variables were 186 

measured every minute and then downsampled (temperature, wind speed, humidity), averaged 187 

(shortwave and longwave), or summed (precipitation) to the hourly scale to serve as driver data 188 

for the GLM model (Supporting Information Table 1). 189 

The water temperature and meteorological sensor data were staged on Campbell 190 

Scientific data loggers on-site as measurements were retrieved, and transmitted daily to cloud 191 

storage. The sensor gateway attached to the Campbell Scientific data loggers ran the Ubuntu 192 

Linux software distribution, as well as software applications and scripts that were developed to 193 

perform data transfer and management functions including: 1) retrieve data from the logger using 194 

Campbell Scientific interfaces, 2) check cellular modem connectivity and reset modules as 195 

needed; and 3) reliably upload sensor data updates to appropriate repositories on cloud storage 196 

using the git client. Data were structured as a time series, with measurements appended as lines 197 

to a comma-separated values (CSV) file. Data transfers used Git (https://git-scm.com), an open-198 
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source distributed version control system, for efficient and reliable updates with minimum 199 

bandwidth usage, such that only the data collected since the last successful transfer were sent 200 

from the gateway to the cloud server. The gateway also ran a virtual private network (VPN) 201 

open-source software, IPOP (IP-over-P2P) to provide authentication and encryption [Ganguly et 202 

al. 2006], thereby providing a secure data transfer.  203 

We measured the inflow discharge rate of the primary tributary entering into FCR 204 

through a weir with an INW Aquistar PT2X pressure sensor (INW, Kirkland, Washington, 205 

USA), which recorded the water temperature and water level [Carey et al. 2018]. We used the 206 

water level to calculate the mean daily discharge rate following [Gerling et al. 2014] and set the 207 

outflow discharge rate to the inflow discharge rate as the reservoir was maintained at a constant 208 

water level through the study.. Because we were unable to wirelessly connect the weir sensor to 209 

the cloud to transmit the inflow discharge data in real-time, we averaged the previous five years’ 210 

data measured on a given day to serve as driver data for forecasting.  211 
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Supporting Information Table 1. Meteorological sensors deployed on the dam at the Falling 235 

Creek Reservoir as part of a research-grade Campbell Scientific weather station that collected 236 

driver data for the General Lake Model. 237 

Sensors deployed at the reservoir Meteorological variables 
measured 

Measurement 
precision 

Rotronic Hydroclip2 HC2S3-L 
Temperature and Relative 
Humidity Probe with RM Young 
10 plate Solar Radiation Shield 

Air Temperature at 2 m -50 - 100℃ ± 0.1 

Relative Humidity at 2 m 0 - 100% ± 1.3 

RM Young 05103-L Wind 
Monitor 

Wind Speed at 4 m 0 - 100 m/s ± 0.3 

Hukseflux NR01 4-component Net 
Radiometer 

Surface Downward Shortwave 
Radiation Flux 

0 - 2000 W/m² ± 10% 

Surface Downward Longwave 
Radiation Flux 

0 - 1000 W/m² ± 10% 

 238 

  239 
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Supporting Information Table 2. The slope, intercept, and R2 for the relationship between the 240 

first day of each NOAA GEFS forecast for the grid cell that contains Falling Creek Reservoir 241 

and the observed meteorology from the on-site weather station, as described in Supporting 242 

Information B.  243 

 
Slope Intercept R2  

Air temperature 0.97 10.3 0.95 

Relative humidity 1.0 -1.4 0.55 

Wind speed 0.53 0.68 0.46 

Shortwave radiation 0.77 7.40 0.81 

Longwave radiation 0.96 43.5 0.94 

 244 

  245 
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Supporting Information Table 3. Covariance matrix describing the relationships among 246 

residuals from the observed meteorology and downscaled NOAA GEFS forecasts (see 247 

Supporting Information B). 248 

 Air 
temperature 

Wind 
speed 

Relative 
humidity 

Shortwave 
radiation 

Longwave 
radiation 

Rain 

Air temperature 2.26 0.05 -5.12 17.64 -0.11 0 
Wind speed 0.05 0.26 -0.54 3.45 -1.98 0 
Relative humidity -5.12 -0.54 80.26 -75.29 16.29 0 
Shortwave radiation 17.64 3.45 -75.29 1361.29 -231.28 0 
Longwave radiation -0.11 -1.98 16.29 -231.28 147.29 0 
Rain 0 0 0 0 0 0 

  249 
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Supporting Information Figure 1. Values for the three calibrated parameters: a) shortwave 250 

factor, b) mean zone 1 sediment temperature, and c) mean zone 2 sediment temperature from 251 

each ensemble member during the combined spin-up and forecasting periods of the study. 252 
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Supporting Information Figure 2. The relative contributions of the individual sources of 254 

uncertainty (left axis) to the total forecast uncertainty (right axis, orange line) varies through the 255 

16-day forecast horizon. This forecast was initialized on 1 September 2018 and is one of three 256 

16-day forecasts (with Supporting Information Figure 3 and Supporting Information Figure 4) 257 

that were averaged to create Figure 6. Two depths are shown (0.1 m – a, b; 8.0 m – c, d) and the 258 

relative contributions of initial condition uncertainty without (left) and with (right) gaps in water 259 

temperature sensor observations are shown in the two columns.   260 
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Supporting Information Figure 3. The relative contributions of the individual sources of 262 

uncertainty (left axis) to the total forecast uncertainty (right axis, orange line) varies through the 263 

16-day forecast horizon. This forecast was initialized on 18 October 2018, three days prior to 264 

turnover, and is one of three 16-day forecasts (with Supporting Information Figure 2 and 265 

Supporting Information Figure 4) that were averaged to create Figure 6. Two depths are shown 266 

(0.1 m – a, b; 8.0 m – c, d) and the relative contributions of initial condition uncertainty without 267 

(left) and with (right) gaps in water temperature sensor observations are shown in the two 268 

columns.   269 
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Supporting Information Figure 4. The relative contributions of the individual sources of 275 

uncertainty (left axis) to the total forecast uncertainty (right axis, orange line) varies through the 276 

16-day forecast horizon. This forecast was initialized on 1 December 2018 and is one of three 277 

16-day forecasts (with Supporting Information Figure 2 and Supporting Information Figure 3) 278 

that were averaged to create Figure 6. Two depths are shown (0.1 m – a, b; 8.0 m – c, d) and the 279 

relative contributions of initial condition uncertainty without (left) and with (right) gaps in water 280 

temperature sensor observations are shown in the two columns.   281 
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