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 2 

Abstract 29 

 30 
Despite numerous studies, there is little agreement about what brain changes accompany motor 31 

sequence learning, partly because of a general publication bias that favors novel results. We 32 

therefore decided to systematically reinvestigate proposed functional magnetic resonance 33 

imaging correlates of motor learning in a preregistered longitudinal study with four scanning 34 

sessions over 5 weeks of training. Activation decreased more for trained than untrained 35 

sequences in premotor and parietal areas, without any evidence of learning-related activation 36 

increases. Premotor and parietal regions also exhibited changes in the fine-grained, sequence-37 

specific activation patterns early in learning, which stabilized later. No changes were observed in 38 

the primary motor cortex (M1). Overall, our study provides evidence that human motor sequence 39 

learning occurs outside of M1. Furthermore, it shows that we cannot expect to find activity 40 

increases as an indicator for learning, making subtle changes in activity patterns across weeks 41 

the most promising fMRI correlate of training-induced plasticity.  42 
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Introduction 43 

 44 
Humans have the remarkable ability to learn complex sequences of movements. While 45 

behavioural improvements in sequence learning tasks are easily observable, the underlying 46 

neural processes remain elusive. Understanding the neural underpinnings of motor sequence 47 

learning could provide clues about more general mechanisms of plasticity in the brain. This 48 

motivation has led numerous functional magnetic resonance imaging (fMRI) studies to investigate 49 

the brain changes related to motor sequence learning. However, there is little agreement about 50 

how and where in the brain learning-related changes are observable. Previous studies include 51 

reports of signal increases across various brain regions (Floyer-Lea & Matthews, 2005; Grafton, 52 

Hazeltine, & Ivry, 1995; Hazeltine, Grafton, & Ivry, 1997; Karni et al., 1995; Lehéricy et al., 2005; 53 

Penhune & Doyon, 2002), as well as signal decreases (Jenkins, Brooks, Nixon, Frackowiak, & 54 

Passingham, 1994; Peters, Lee, Hedrick, Neil, & Komiyama, 2017; Toni, Krams, Turner, & 55 

Passingham, 1998; Ungerleider, Doyon, & Karni, 2002; Wiestler & Diedrichsen, 2013), nonlinear 56 

changes in activation (Ma et al., 2010; Xiong et al., 2009), spatial shifts in activity (Lehéricy et al., 57 

2006; Steele & Penhune, 2010), changes in multivariate patterns (Wiestler & Diedrichsen, 2013; 58 

Wymbs & Grafton, 2015), and changes in inter-regional functional connectivity (Bassett, Yang, 59 

Wymbs, & Grafton, 2015; Bassett et al., 2010; Doyon et al., 2002; Mattar et al., 2016). Additionally, 60 

some experiments have matched the speed of performance (Karni et al., 1995; Penhune & 61 

Doyon, 2002; Steele & Penhune, 2010; Lehéricy et al., 2005; Seidler et al., 2002, 2005), while 62 

others have not (Bassett et al., 2015; Lutz, Koeneke, Wüstenberg, & Jäncke, 2004; Wiestler & 63 

Diedrichsen, 2013; Wymbs & Grafton, 2015). Given that fMRI analysis has many degrees of 64 

freedom, these inconsistencies may not be too surprising. However, the implicit pressure in the 65 

publication system to report findings may also have contributed to a lack of coherency. To address 66 

this issue, we designed a comprehensive longitudinal study of motor sequence learning that 67 

allowed us to systematically reinvestigate previous findings. In order to increase transparency, 68 

we pre-registered the design, as well as all tested hypotheses on the Open Science Framework 69 

(Berlot, Popp, & Diedrichsen, 2017; https://osf.io/etnqc), and make the full dataset available to 70 

the research community. 71 

 The main aim of our study was to systematically evaluate different ideas of how learning-72 

related changes are reflected in the fMRI signal. In the context of motor sequence learning, the 73 

most commonly examined brain region is the primary motor cortex (M1). Previous reports of 74 

increased M1 activation after long-term learning have been interpreted as additional recruitment 75 

of neuronal resources for trained behavior, taken to suggest the skill is represented in M1 (Floyer-76 
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Lea & Matthews, 2005; Karni et al., 1995, 1998; Lehéricy et al., 2005; Penhune & Doyon, 2002; 77 

for a review see Dayan & Cohen, 2011; Fig. 1a). Since then, several pieces of evidence have 78 

suggested that sequence-specific memory may not reside in M1 (Beukema, Diedrichsen, & 79 

Verstynen, 2019; Wiestler & Diedrichsen, 2013; Yokoi & Diedrichsen, 2019). However, some of 80 

these reports studied skill acquisition over a course of a few days, while human skill typically 81 

evolves over weeks (and months) of practice. Therefore, including several weeks of practice, 82 

might be more suitable to test whether, and at what time point, M1 develops skill-specific 83 

representations. 84 

Outside of M1, learning-related activation changes have been reported in premotor and 85 

parietal areas (Grafton, Hazeltine, & Ivry, 2002; Hardwick, Rottschy, Miall, & Eickhoff, 2013; 86 

Honda et al., 1998; Penhune & Doyon, 2002; Tamás Kincses et al., 2008; Vahdat et al., 2015), 87 

with activation increases commonly interpreted as increased involvement of these areas in the 88 

skilled behavior. Yet, recent studies have mostly found that, as the motor skill develops, activation 89 

in these areas predominantly decreases (Penhune & Steele, 2012; Wiestler & Diedrichsen, 2013; 90 

Wu et al., 2004). Such reductions are harder to interpret as they could reflect a reduced areal 91 

involvement in skilled performance or, alternatively, more energy efficient implementation of the 92 

same function (Fig. 1b) (Picard, Matsuzaka, & Strick, 2013; Poldrack et al., 2005). To complicate 93 

things further, regional activity increases and decreases could occur simultaneously in the same 94 

area (Fig. 1c; Steele & Penhune, 2010). In such a scenario, the net activation in the region would 95 

not change, yet, the trained sequences would engage slightly different subpopulations of the 96 

region than untrained sequences. 97 

 A variant of this idea is that each specific sequence becomes associated with dedicated 98 

neuronal subpopulation (and hence fMRI activity pattern). Such a representation would form the 99 

neural correlate of sequence-specific learning – the part of the skill that does not generalize to 100 

novel, untrained motor sequences (Karni et al., 1995). Sequence-specific activation patterns 101 

should change early in learning (Fig. 1d), when behavior improves most rapidly, and stabilize 102 

later, once the skill has consolidated and an optimal pattern is established (Peters et al., 2017). 103 

One possible way in which sequence-specific patterns could reorganize is by becoming more 104 

distinct from one another (Fig. 1e; Wiestler & Diedrichsen, 2013). Having a distinctive code for 105 

each sequence might be of particular importance to the system in a trained state, allowing it to 106 

produce different dynamical sequences, while avoiding confusion or “tangling” of the different 107 

neural trajectories (Russo et al., 2018). 108 

To systematically examine the cortical changes associated with motor sequence learning, 109 

we carried out a longitudinal study over 5 weeks of training with 4 sessions of high-field (7 Tesla) 110 
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fMRI scans. Behavioural performance in the first three scanning sessions was imposed to the 111 

same speed of performance. This allowed us to inspect whether examined fMRI metrics reflect 112 

brain reorganization, independent of behavioral change. However, controlling for speed incurs 113 

the danger of not tapping into neural resources that are necessary for skilled performance (Orban 114 

et al., 2010; Poldrack, 2000). We therefore compared the fMRI session with paced performance 115 

at the end of behavioural training with one acquired with full speed performance (Fig. 2). This 116 

manipulation allowed us to systematically assess the role of speed on the fMRI metrics of learning, 117 

thereby addressing an important methodological problem faced by virtually every study on motor 118 

learning. 119 

 120 

 121 
Figure 1. Potential fMRI signatures of learning in a specific brain area. Each panel shows hypothetical 122 
activation for the six trained sequences (red) and the six untrained sequences (blue) in the space of two 123 
hypothetical voxels. a) Activation could increase during learning across voxels, indicating additional 124 
recruitment of resources involved in skilled behavior. b) Activation could decrease across voxels, implying 125 
that the region performs its function more efficiently. c) Some voxels (x-axis) could increase activation with 126 
training, while others (y-axis) could decrease. This would lead to a shift of the overall activity pattern in the 127 
region without an overall net change in activation. d) Activation patterns specific to each trained sequence 128 
could undergo more change than untrained sequences, reflective of plastic reorganization of the sequence 129 
representation. Arrow length in the figure indicates the amount of reorganization. e) One specific form of 130 
such reorganization would be increasing dissimilarities (pattern separation) between activity patterns for 131 
individual trained sequences.  132 
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Results 133 

 134 

Speed of sequence execution increases with learning 135 

We trained 26 participants to perform six 9-digit sequences with their right hand on a keyboard 136 

device (Fig. 2a). During training, they received visual feedback (green for correct and red for 137 

incorrect presses) and were rewarded for both accuracy and speed (see Materials and Methods). 138 

Over the course of 5 weeks, participants practiced ~4000 trials (Fig. 2b). This led to substantial 139 

performance improvement, with the average movement time (MT) to complete a sequence 140 

decreasing from an initial 3.2 seconds to 1.2 seconds at the end of the training (Fig. 2c). The 141 

training regime was complemented with behavioral assessments on four occasions designed to 142 

specifically assess participants’ performance on trained sequences relative to untrained 143 

sequences (Fig. 2d, yellow underlay). Prior to training (test day 1), the speed of sequence 144 

execution did not differ between trained and untrained sequences. For all subsequent sessions, 145 

MTs were significantly faster for trained than untrained sequences (p<.001), implying sequence-146 

specific learning. Additionally, performance of trained sequences improved between all 147 

subsequent sessions, even after week 3 (week 3-5: t(25)=5.49, p=1.1e-5). Thus, participants’ 148 

performance of trained sequences improved across the five weeks. 149 

To assess fMRI changes with learning, participants underwent four fMRI scans (1st scan: 150 

before the main training; 2nd scan: week 2; 3rd & 4th scan: week 5), performing both trained and 151 

untrained sequences (Fig. 2d – grey underlay). During the first three sessions, participants were 152 

paced with a metronome so that all sequences, trained and untrained, were performed at the 153 

same speed as in the first scan. Performance in the fourth session was at maximum speed, 154 

resulting in significantly lower MTs for trained compared to untrained sequences (Fig. 2d). To 155 

assess different neural signatures of observed behavioral learning, we first examined how the 156 

overall evoked activation changed over weeks of training for the same speed of movement. 157 
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 158 
Figure 2. Experimental design and paradigm. a) Apparatus and task. Participants were trained to 159 
perform six 9-item sequences on a keyboard device. For each finger press, the corresponding digit on the 160 
screen turned green (correct) or red (incorrect). During fMRI scans 1-3, an expanding pink line under the 161 
numbers indicated the pace at which participants had to press the keys. See supplementary figure S2 for 162 
trial structure during scanning sessions. b) Training protocol lasted for 5 weeks, and included four 163 
behavioral test sessions (yellow underlay) and four scans (grey underlay). Scans 1-3 were performed at a 164 
paced speed, while scan 4 performance was full speed (fs). c) Average group performance executing 165 
trained sequences across the training sessions, measured in seconds. The average movement time (MT) 166 
decreased with learning. Shaded area denotes between-subject standard error. d) Performance during 167 
scanning sessions and behavioral tests, measured in seconds. Performance of trained sequences 168 
improved across all subsequent behavioral test sessions. Performance improved also for untrained 169 
sequences from week 2 onwards, suggesting some transfer in learning, but performance was still faster for 170 
trained sequences, indicating sequence-specific learning. Error bars indicate between-subject standard 171 
error. Stars denote significance levels lower than p<.001. 172 
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Overall activation does not change in M1 173 

First, we re-investigated the classical finding that activity, measured as the percent BOLD signal 174 

change relative to rest, increased in M1 for matched performance after long-term training (Karni 175 

et al., 1995; Fig. 1a). Our task elicited activation in a range of cortical areas (Fig. 3a for session 176 

1 – i.e., prior to learning). A region of interest (ROI) analysis of the hand area of M1, contralateral 177 

to the performing hand, however, showed no significant change across weeks (Fig. 3b, 178 

F(2,50)=1.82, p=.17). Neither did we find any difference between trained and untrained sequences 179 

(F(1,25)=0.19, p=.66), or a significant interaction between the two (F(2,50)=2.01, p=0.14). 180 

The absence of overall activity changes, however, should not be taken as evidence for an 181 

absence of plasticity in the region. It is possible that some subregions of M1 increased in activation 182 

for learned sequences, while other decreased, as suggested by Steele and Penhune (2010). Such 183 

mixed changes would result in a shift of the overall pattern, which would lead to an increase in 184 

the angle between the mean activity pattern for trained and untrained sequences (Fig. 1c).  185 

Because we calculated the angle between activity patterns for each participant separately, this 186 

criterion does not assume that the observed shift is spatially consistent across individuals – any 187 

idiosyncratic shift could be detected. Therefore it serves as a sensitive statistical criterion to detect 188 

shifts in spatial location of activation, which were previously reported only descriptively (Steele & 189 

Penhune, 2010).  190 

However, in M1, the averaged cosine angle (Fig. 3c) remained unchanged across the 191 

weeks (F(2,50)=1.71, p=.19), indicating that the average activity pattern remained comparable 192 

across trained and untrained sequences. In sum, we found no evidence for activation increases 193 

(Karni et al., 1995), decreases, or relative shifts in activation patterns (Steele & Penhune, 2010) 194 

in M1.  195 
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 196 
Figure 3. Overall activation and changes with learning in defined regions of interest. a) Average 197 
activation during production of any sequence in scanning session 1 (prior to learning) in the hemisphere 198 
contralateral to the performing hand. Activation was contrasted against resting baseline. On the right, 199 
activation map is presented on a flattened surface, corresponding to surface maps in other figures. b) 200 
Changes in activation across predefined areas – primary motor cortex (M1), primary somatosensory cortex 201 
(S1), premotor dorsal area (PMd) and superior parietal lobule – anterior (SPLa). No significant changes in 202 
activation were observed in M1 or S1 across weeks or between trained and untrained sequences (* 203 
indicates p<.01). Error bars indicate between-subject standard error. c) The cosine angle dissimilarity 204 
between average trained and untrained sequence across scanning weeks. The cosine angle increased 205 
significantly across weeks in PMd, SPLa and S1, but not M1 (* indicates p<.05). Error bars indicate 206 
between-subject standard error. 207 

 208 
Learning-related activation changes in premotor and parietal areas 209 

To investigate activation changes in areas outside of M1, we calculated changes in activity 210 

between the weeks in a map-wise approach (Fig. 4a). Over the three measurement time points, 211 

we found no reliable activation increases in any cortical area that was activated by the task in 212 

week 1. Instead, we observed widespread learning-related reductions in activity in premotor and 213 

parietal areas (Fig. 4a), in line with our pre-registered prediction. These activation reductions 214 

were observed across both subsequent sessions (i.e. weeks 1-2, weeks 2-5) for trained and 215 

untrained sequences, with bigger reductions for trained sequences. In weeks 2 and 5, trained 216 

sequences elicited overall lower activity than untrained sequences (Fig. 4b; see supplementary 217 

figure S4 for statistical maps). These learning-related reductions in activity were also statistically 218 

significant in our predefined ROIs in premotor (dorsal premotor cortex – PMd) and parietal cortices 219 

(anterior superior parietal lobule – SPLa) (Fig. 3b): In a 3 (week) x 2 (sequence type) ANOVA on 220 

observed activation both main effects and interaction were highly significant in PMd (week: 221 
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F(2,50)=17.47, p=1.77e-6; sequence type: F(1,25)=11.86, p=2.03e-3; interaction: F(2,50)=13.22, 222 

p=2.46e-5) as well as in SPLa (week: F(2,50)=19.14, p=6.73e-7; sequence type: F(1,25)=19.36, 223 

p=1.77e-4; interaction: F(2,50)=21.59, p=1.74e-7). In contrast, no main effect of week was observed 224 

in S1 (F(2,50)=0.44, p=.85). There was a significant main effect of sequence type (F(1,25)=6.32, 225 

p=.019), but none of the post-hoc t-tests revealed a significant difference. The week x sequence 226 

type interaction was not significant in S1 (F(2,50)=0.17, p=.84). Thus, we observed widespread 227 

activation decreases with learning across secondary and association cortical areas. 228 

 In a few smaller areas, activation increased with learning (red patches in Fig. 4a-b). This 229 

was observed uniformly in areas with activity at or below baseline – thus these changes reflect 230 

decreased suppression of activity rather than increases. It is likely that these activity increases 231 

are not task relevant, but instead reflect the increasing automaticity and lower need for central 232 

attentional resources with learning (see Discussion). 233 

 234 
Figure 4. Changes in average activation across the cortical surface. a) Average change in activation 235 
across subsequent sessions. Activation was measured as difference in percent signal change relative to 236 
the resting baseline. Activation decreased (blue shades) in motor-related regions across sessions during 237 
sequence execution. b) Contrast of activation for trained vs. untrained sequences per scanning session. In 238 
weeks 2 and 5, trained sequences elicited lower activation in motor-related regions than untrained 239 
sequences (blue shades; see supplementary figure S4 for t-maps and statistical quantification of activation 240 
clusters). Areas with observed increases in activation for trained sequences (red shades) lie in the default 241 
mode network that showed on average lower activity during task than rest. 242 
 243 
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We also examined whether there were, in addition to the overall activity decreases, shifts 244 

in the average activity patterns in the predefined regions of interest (Fig. 1c). As for M1, we 245 

calculated the cosine angle dissimilarity (see Materials and Methods) between the average 246 

activity patterns for trained and untrained sequences, separately for each scanning session. 247 

Figure 5a shows cosine angle dissimilarities between trained and untrained sequences in PMd, 248 

displayed using multidimensional scaling (MDS). Patterns for trained sequences moved away 249 

from the starting point over weeks, and became more different from untrained patterns. Both in 250 

parietal and premotor areas there was clear evidence for a shift – cosine angular dissimilarity 251 

between the average trained and untrained sequence activation increased significantly across 252 

weeks (PMd: F(2,50)=23.63, p=5.98e-8; SPLa: F(2,50)=23.19, p=7.49e-8) (Fig. 3c). S1 also showed a 253 

significant increase in cosine dissimilarity between trained and untrained patterns with learning 254 

(F(2,50)=8.68, p=5.79e-4). These changes, however, were much less pronounced than those 255 

observed in premotor and parietal areas. 256 

To investigate whether the observed changes in the overall activity patterns in premotor 257 

and parietal areas were spatially consistent across individuals, we normalized (z-scored) 258 

activation maps in each region and assessed the relative contribution of subregions to overall 259 

activation in weeks 1 and 5 (Fig. 5b). Comparing the pattern of activation revealed that before 260 

training (week 1, blue) sequences elicit relatively more activation in rostral parts of the premotor 261 

and supplementary motor areas, and that activity was more caudal after training (week 5, red; 262 

Fig. 5c displays the cross-section of relative activation changes). Some differences were also 263 

observed in the posterior parietal cortex, with activation shifting from more posterior to anterior 264 

subregions after learning (Fig. 5c). Altogether, these results show that with learning, the execution 265 

of sequences relies on slightly different subareas within premotor and parietal regions.  266 

 267 
Figure 5. Relative change in evoked activation. a) Multidimensional scaling plot of cosine angle 268 
dissimilarities for trained and untrained sequences in premotor dorsal area (PMd) across weeks 1-5. Each 269 
dot represents a single sequence, and dots are connected for each session and sequence type separately. 270 
Trained sequences on average become more distant from untrained sequences with learning. Untrained 271 
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sequences on average also progress across weeks, but less than trained sequences. b) Normalized 272 
activation plots for trained sequences in week 1 (blue) and 5 (red). The arrows and brackets indicate the 273 
direction and range of activation cross-sections presented in c). Areas: dorsal premotor cortex (PMd), 274 
primary motor cortex (M1), primary somatosensory cortex (S1), superior parietal lobule (SPL). c) Cross-275 
section of elicited activation for trained sequences in defined areas, in weeks 1 (blue) and 5 (red).  276 
 277 
Sequence-specific activity patterns reorganize early in learning 278 

Our analyses so far have been concerned with changes in the overall pattern of trained vs. 279 

untrained sequences, and showed widespread reductions in activation and some more subtle 280 

changes in relative location. The sequence-specific performance advantage, however, indicates 281 

that the brain must represent specific sequences – i.e. there should be activity patterns that are 282 

unique to each individual sequence. Sequence-specific learning should then be reflected in 283 

changes of these sequence-specific activity patterns with learning (Fig. 1d). Consistent with 284 

previous results (Wiestler & Diedrichsen, 2013; Yokoi & Diedrichsen, 2019), we detected 285 

sequence-specific activity patterns, i.e. activity patterns that differentiate between the tested 286 

motor sequences, in various cortical regions, even in session 1 (Fig. 6a). This allowed us to 287 

assess their reorganization across sessions.  288 

Our pre-registered hypothesis (https://osf.io/etnqc) was that earlier in learning sequence-289 

specific activity patterns would change more for trained than untrained sequences, and would 290 

stabilize later in learning. In contrast to the other ideas tested in this paper, this was a novel 291 

hypothesis and not based on previous reports. Specifically, we predicted that the correlation of 292 

each sequence-specific pattern between weeks 1 and 2 should be lower for trained as compared 293 

to untrained sequences. The problem with performing a simple correlation analysis on the 294 

patterns, however, is that the estimated correlation will be biased by noise – i.e., more within-295 

session variability for one set of sequences will result in a lower correlation (Diedrichsen, Yokoi, 296 

& Arbuckle, 2017). To address this problem, we used the pattern component modelling (PCM) 297 

framework which explicitly models and estimates the signal and noise for each session explicitly. 298 

Using this approach, we estimated the likelihood of each participants’ data under a series of 299 

models, each assuming a true correlation in the range between 0 (uncorrelated patterns) and 1 300 

(perfect positive correlation; see Materials and Methods for details). Figure 6b shows the log-301 

likelihood for each specific correlation model relative to the mean across all models. In SPLa, the 302 

most likely correlation of the activity patterns for the trained sequences between weeks 1 and 2 303 

was r =0.37. For week 2-5, the likelihood peaked at r =0.6. In contrast, the likelihood functions for 304 

untrained sequences indicated that the most likely model was between r =0.6-0.7 for both week 305 

1-2 and 2-5. The advantage of this analysis is that we can be sure that the observed low 306 

correlation in week 1-2 for trained sequence was not due to increased noise. In fact, if the noise 307 
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in one or both sessions was too high, then the model would be unable to distinguish between any 308 

of the correlation models – i.e. the likelihood curve would be a flat line.  309 

To statistically assess the difference in correlations across trained and untrained 310 

sequences, we compared the likelihood of the data of trained sequences between two models: 311 

the best-fitting model for the trained sequences (r =0.37 in SPLa) and the correlation model best 312 

fitting the data of untrained sequences (r =0.6) (black dots and projections onto y-axis in Fig. 6b). 313 

To avoid double-dipping, the ‘best-fitting’ model was chosen on 25 participants (n-1) and the 314 

likelihood assessed on the left-out subject (see Materials and Methods). The difference in model 315 

evidence was significant for correlation between weeks 1-2 in SPLa (t(25)=2.88, p=8.0e-3). In 316 

contrast, no difference in correlation was observed later in learning, between weeks 2 and 5 317 

(t(25)=1.21, p=0.24). A similar pattern of results was observed in PMd, with correlation of trained 318 

sequences significantly lower than that of untrained sequences between weeks 1 and 2 (t(25)=2.93, 319 

p=7.2e-3), but not between weeks 2 and 5 (t(25)=0.88, p=.39). No such change in correlation across 320 

weeks 1-2 was observed in M1 (t(25)=0.43, p=.67) or S1 (t(25)=1.72, p=0.097). Overall, we found 321 

significant evidence that sequence-specific trained patterns in SPLa and PMd reorganize more in 322 

weeks 1-2 as compared to the untrained sequences, and stabilize later on with learning, in line 323 

with our new pre-registered prediction.  324 

 To determine more generally where in the neocortex sequence-specific plasticity could be 325 

detected, we fit PCM correlation models to regularly tessellated regions spanning the cortical 326 

surface. Figure 6c displays the correlation with the highest evidence for activity patterns across 327 

weeks 1-2 and 2-5; separately for trained and untrained sequences. In general, the highest 328 

correlations were found in core sensory-motor areas. Across weeks 1-2 for trained sequences, 329 

correlations were significantly lower in a number of dorsal premotor, inferior frontal, and parietal 330 

regions (Fig. 6c). Across the cortex, correlation for trained patterns increased for weeks 2-5, 331 

resulting in similar values which did not differ significantly between trained and untrained 332 

sequences for most tessels (see supplementary figure S6). Together, these results confirmed that 333 

sequence-specific activation patterns in secondary association areas show less stability early in 334 

learning, but stabilize later on. 335 

Can we obtain further insight into how the sequence-specific patterns change in these 336 

areas? One specific preregistered prediction was that there would be an increase in 337 

distinctiveness (dissimilarity) between fMRI patterns underlying each trained sequence (Wiestler 338 

& Diedrichsen, 2013; Fig. 1e). To test this hypothesis, we calculated crossnobis dissimilarities 339 

(Walther et al., 2016) between sequence-specific activations, separately for trained and untrained 340 

sequences. In contrast to our prediction, no significant change in dissimilarity across weeks was 341 
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observed in any of the predefined regions (Fig. 6d). This suggests that the reorganization 342 

observed for trained sequences early in learning did not increase the average distinctiveness of 343 

the sequence-specific patterns. 344 

 345 
Figure 6. Sequence-specific activity patterns reorganize across sessions. a) Cortical surface map of 346 
crossnobis dissimilarities between activity patterns for different sequences in session 1. These regions 347 
encode which sequence is executed by the participant. b) Evidence explained by models of correlation 348 
values between r =0 and r =1 for sequence-specific patterns across weeks 1-2 (solid) and 2-5 (dashed), 349 
separately for trained (red) and untrained (blue) sequences. Evidence was assessed with a type-II log-350 
likelihood, relative to the average log-likelihood across models. Shaded areas indicate standard error 351 
across participants. Difference between log-likelihoods can be interpreted as log-Bayes factor, with a 352 
difference of 1 indicating positive evidence. Horizontal lines are drawn for the winning correlation model for 353 
trained (red) and untrained (blue) patterns across weeks 1-2. Black dots are projections of the two winning 354 
models onto the correlation function of trained sequences across weeks 1-2. The horizontal lines from the 355 
two black dots indicate the likelihood of the trained data under the two models, which was tested in a 356 
crossvalidated t-test. c) Map displaying the correlation of the winning model for trained and untrained 357 
sequences across weeks 1-2 and 2-5. The correlation of the winning correlation model is shown in all 358 
tessels where the difference between evidence for winning model vs. worst-fitting model exceeds log-Bayes 359 
factor of 1 (averaged across participants). See S6 for the difference in best model correlation between 360 
trained and untrained sequences, and an indication of tessels where the difference is significant, as based 361 
on the crossvalidated t-test. d) Crossnobis dissimilarities between trained and untrained sequence pairs 362 
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across weeks. No significant effect of week, sequence type or their interaction was observed in any of the 363 
regions. Error bars indicate standard error across participants. 364 
 365 

Trained sequences elicit distinct patterns during full speed performance 366 

In the last part of the experiment, we asked whether some of the negative findings (e.g. no 367 

changes in M1, no increase in dissimilarities for trained sequences) might have been due to the 368 

fact that participants were paced at a relatively slow speed. Matching the speed across sessions 369 

allows for the comparisons of changes in neural activity for exactly the same behavioral output 370 

(Karni et al., 1995; Lehéricy et al., 2005). However, it could be that controlling for speed impairs 371 

our ability to study brain representations of motor skill; simply because after learning, the system 372 

is not challenged enough to activate the neuronal representations supporting skilled performance. 373 

Consequently, several studies have not (Bassett et al., 2010; Wymbs & Grafton, 2015), or not 374 

strictly (Wiestler & Diedrichsen, 2013), matched performance across sessions or levels of training. 375 

To examine the effect of performance speed, we added a fourth scanning session (fs), just a day 376 

after from the third session in week 5, in which participants were instructed to perform the 377 

sequence as fast as possible. 378 

Performance during the 4th scan was 1010 ms faster than in the first session (t(25)=15.7, 379 

p=1.82e-14) and also 338 ms (t(25)=9.92, p=4.58e-10) faster for trained than for untrained 380 

sequences. Averaged over trained and untrained sequences, we found that the faster 381 

performance in this session led to an increase in activity across premotor and parietal areas (Fig. 382 

7a,b). Although trained sequences were executed faster than untrained sequences, activation 383 

was still lower for trained compared to untrained sequences, similar to what we observed for 384 

paced performance (Fig. 7c; see S7a for statistical maps). In M1 and S1, we found no difference 385 

in activation between trained and untrained sequences (Fig. 7a; M1: t(25)=1.78, p=.09; S1: 386 

t(25)=1.69, p=.10). Overall, the pattern of results for evoked activation did not change qualitatively 387 

when participants performed at full speed. 388 

Next, we examined whether the brain representations of individual sequences are similarly 389 

engaged at slow and fast speeds. The correlation between sequence-specific patterns was 390 

relatively high (r=0.62) across our regions of interest. We found no differences between the 391 

different regions (F(3,75)=1.47, p=.23), or sequence types (trained vs. untrained: F(1,25)=0.25, 392 

p=.62). Thus, the sequence-specific representations activated during performance at high skill 393 

level (full speed) are at least partly activated even when performance slowed down.  394 

Having established that the mean activation results are replicated across paced and full-395 

speed performance, and that similar sequence-specific representations are activated in both 396 

cases, we tested whether activation patterns for different trained sequences are more distinct 397 
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during full speed performance, as reported in Wiestler & Diedrichsen (2013). Overall, crossnobis 398 

dissimilarities increased at full speed for trained sequences in PMd and SPLa (Fig. 7e). No such 399 

changes were found in M1 or S1. Moreover, trained sequences showed larger dissimilarities than 400 

untrained at full-speed performance across premotor and parietal cortices (Fig. 7f), which was 401 

not the case for the last paced session. In our predefined ROIs, this difference was significant for 402 

PMd (Fig. 7d), but also parietal areas showed significantly higher dissimilarities between trained 403 

sequences at full speed (supplementary figure S7b). This suggests that while activity patterns at 404 

full speed are correlated to those during paced performance, they are more distinguishable for 405 

trained sequences.  406 

Could this effect be driven by behavioral performance, with trained sequences performed 407 

more differently at full speed (i.e. different speeds across trained sequences), while untrained 408 

sequences were performed at a more equal speed? To test for this, we calculated crossnobis 409 

dissimilarities between movement times associated with different trained and untrained 410 

sequences. The dissimilarities based on speed of performance did not differ significantly across 411 

trained and untrained sequences (t(25)=0.57, p=.57). Therefore, increased dissimilarity of trained 412 

compared to untrained patterns in premotor and parietal areas could not be explained by a 413 

difference in execution speed. Instead, this effect likely reflects changes in activity patterns 414 

underlying full speed skilled performance. 415 

  416 

 417 
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Figure 7. Speed-related changes in activation and dissimilarities. a) Overall activation in week 5 in 418 
paced and full speed sessions for trained (red) and untrained (blue) sequences. Activation was measured 419 
as percent signal change over resting baseline (* indicates p<.05). Error bars indicate standard error across 420 
participants. b) Increase in activation for full speed compared to paced speed in percent signal change, 421 
averaged across trained and untrained sequences. Red colors indicate an increase in activity during full 422 
speed performance compared to paced performance. Blue colors indicate higher activation during paced 423 
compared to full speed performance. c) Difference in activation elicited for trained relative to untrained 424 
sequences, during the paced and full speed sessions (see supplementary figure S7a for statistical maps). 425 
Trained>untrained is shown in red, untrained>trained in blue. d) Average crossnobis dissimilarity between 426 
sequence-specific patterns in paced and full speed sessions for trained and untrained sequences. 427 
Dissimilarities are significantly larger for trained (red), as compared to untrained (blue) patterns, in PMd for 428 
full-speed session (* indicates p<.05). Error bars indicate standard error across participants. e) Difference 429 
between crossnobis dissimilarities across full speed and paced sessions, averaged across trained and 430 
untrained sequences. Higher dissimilarities for full speed than paced session are shown in red, whereas 431 
blue/green hues indicate higher dissimilarities during paced than full speed session. f) Difference in 432 
dissimilarities for trained relative to untrained sequences, during the paced and full speed sessions. 433 
Trained>untrained is shown in red, untrained>trained in blue/green. Trained sequences elicited higher 434 
dissimilarities than untrained in full speed, but not paced session (see S7b for statistical t-maps).  435 

 436 

Striatal activity patterns for trained sequences manifest at full speed performance 437 

We observed learning-related changes in cortical association areas, but not in the primary motor 438 

cortex. Of course, learning could also be driven by neuronal changes in subcortical brain regions 439 

(Ashby, Turner, & Horvitz, 2010; Graybiel, 2016; Graybiel & Grafton, 2015; Hikosaka et al., 1999; 440 

Yin et al., 2009). The striatum in particular has been proposed as a structure where motor skills 441 

are stored (Kawai et al., 2015; Lehéricy et al., 2006). Inspecting changes in overall activity across 442 

sessions, we observed no difference in activity between trained and untrained sequences in either 443 

putamen or caudate nucleus (Fig. 8a).  444 

 Previous experiments have reported that with learning, activation moves from more 445 

‘cognitive’ areas of the striatum (i.e. caudate nucleus) to more ‘motor’ areas (i.e. putamen) 446 

(Coynel et al., 2010; Lehéricy et al., 2005; Reithler, van Mier, & Goebel, 2010). Our data fails to 447 

replicate this result: Both the visual inspection (Fig. 8b), and statistical quantification of the mean 448 

pattern difference for trained and untrained sequences across sessions revealed no such 449 

learning-specific shift of mean striatal activation pattern with learning.  450 

Lastly, we examined if the striatum represents individual sequences. During the paced 451 

sessions, activity patterns for different sequences were not distinguishable in either caudate 452 

nucleus or putamen (Fig. 8c). However, during full speed performance trained sequences elicited 453 

distinct activity patterns in both regions (i.e. crossnobis dissimilarity>0: caudate nucleus: 454 

t(25)=2.27, p=0.032; putamen: t(25)=2.44, p=.022; Fig. 8c). This effect was specific to the trained 455 

sequences, with untrained sequences still exhibiting undistinguishable patterns of activity at full 456 
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speed. Thus, we found some evidence that trained motor sequences are represented in the form 457 

of distinct activity patterns in the striatum during full speed skilled performance. 458 

 459 
Figure 8. Striatal changes in activation and dissimilarities with learning. a) Overall activation (percent 460 
signal change over resting baseline), for trained (red) and untrained (blue) sequences. Activation did not 461 
differ across sessions, or sequence types in the striatum. Error bars indicate the standard error across 462 
participants. b) Activation during performance of trained sequences in the striatum across weeks 1, 5 463 
(paced speed) and 5 (full speed – fs), averaged across sequences and participants. c) Crossnobis 464 
dissimilarities between activation patterns of sequence pairs, calculated separately for trained and 465 
untrained patterns. Dissimilarities were not significantly different for trained or untrained sequences during 466 
paced performance. At full speed, sequence-specific activity patterns amongst trained sequences differed 467 
significantly in both caudate nucleus and pallidum (* indicates p<.05). Error bars indicate the standard error 468 
across participants.   469 
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Discussion 470 

 471 
Here we present a large longitudinal motor sequence learning study that allowed us to 472 

systematically investigate several previously proposed fMRI signatures of motor learning, 473 

including one new hypothesis concerning the change in multivariate activity patterns with learning. 474 

The existing literature, with its diversity of experimental protocols and analysis approaches, does 475 

currently not provide a consistent picture of learning-related changes. This inconsistency is 476 

exacerbated by the fact that most papers prioritize making new claims over re-examining 477 

previously established findings. Consequently, it is very hard to assess the replicability of most 478 

past findings. We address this issue here by a) producing a well-powered, longitudinal data set 479 

that tackles some of the methodological inconsistencies (i.e. speed matching), b) pre-registering 480 

both design and hypotheses, and c) making data and analysis pipelines openly available, such 481 

that other hypotheses and analyses techniques can be freely tested.  482 

Our findings reveal that parietal and premotor areas show widespread decreases in overall 483 

activation, as well as reorganization of sequence-specific patterns early in learning. Additionally, 484 

we observed that sequence specific patterns in these areas (as well as the striatum) were more 485 

distinct during full speed performance. In contrast to this set of results, none of these learning-486 

specific metrics were detected in M1, even after 5 weeks of training.  487 

 On the one hand, our lack of any observable change in M1 activation contradicts some 488 

prior results, where increased activation in M1 was observed for matched performance after 489 

learning (Karni et al., 1995; Matsuzaka, Picard, & Strick, 2007; Penhune & Doyon, 2002; Steele 490 

& Penhune, 2010; Vahdat et al., 2015), and does not align with reports of M1 stimulations 491 

influencing consolidation or storage of motor skills (in motor sequence tasks: Kang & Paik, 2011; 492 

Nitsche et al., 2003; Reis et al., 2009; Waters-metenier, Husain, & Wiestler, 2014; in other motor 493 

tasks: Classen, Liepert, Wise, Hallett, & Cohen, 1998; Galea, Vazquez, Pasricha, Orban De Xivry, 494 

& Celnik, 2011; Hadipour-Niktarash, Lee, Desmond, & Shadmehr, 2007). We also found no 495 

support for a combination of increases and decreases of activation with training, which would lead 496 

to an overall change of the mean activity pattern (Steele & Penhune, 2010).  497 

Instead, our results suggest that the pattern of neural activity in M1 does not change as 498 

participants become more skilled at producing motor sequences. This is consistent with a recent 499 

line of evidence demonstrating that M1 does not change activation with learning (Huang et al., 500 

2013), and primarily encodes single movement elements, rather than sequences (Yokoi, 501 

Arbuckle, & Diedrichsen, 2018; Russo et al., 2019). Somewhat more surprisingly, we also 502 

observed no difference in overall M1 activation during full speed performance, when performance 503 
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was considerably faster for trained sequences. This suggests that the activity increases related 504 

to faster movement speeds are compensated for by the shorter duration spent on the task.  505 

Primary somatosensory cortex in many ways paralleled the results observed in M1. We 506 

observed no overall activation change, or change in the sequence-specific pattern correlation 507 

across sessions. The only exception was the observed shift in the mean activation pattern across 508 

sessions. One possible explanation is that feedback-related sensory activity in S1 undergoes 509 

some plastic changes with learning. This is consistent with a recent study demonstrating that S1, 510 

but not M1, is involved during consolidation of motor skills (Kumar, Manning, & Ostry, 2019; for a 511 

review on somatosensory plasticity in motor learning see Ostry & Gribble, 2016). 512 

 In contrast to the limited evidence of learning-related changes in primary somatosensory 513 

and primary motor areas, higher order association areas (e.g. parietal and premotor cortices) 514 

displayed an array of learning-related changes. First, activation decreased in areas involved in 515 

sequence execution, with larger decreases for trained as compared to untrained sequences. This 516 

result contrasts with other previous studies reporting increases in activation in premotor areas 517 

with learning (Grafton et al., 2002; Honda et al., 1998; Penhune & Doyon, 2002; Vahdat et al., 518 

2015). Partially responsible for these inconsistencies may be a publication bias, favoring reports 519 

of signal increases over signal decreases with learning. For example, a recent metanalysis 520 

reanalyzed evidence for signal increases in the main text, while moving the (matched) evidence 521 

for signal decreases into the supplementary materials (Hardwick et al., 2013). Our data 522 

corroborates a number of recent studies reporting reduced activation in task-evoked premotor 523 

and parietal areas (Steele & Penhune, 2010; Wiestler & Diedrichsen, 2013; Wu et al., 2004).  524 

The only activation increases for trained relative to untrained sequences were observed 525 

in areas that were suppressed below baseline during sequence execution. This has also been 526 

previously reported in a motor sequence learning study (Tamás Kincses et al., 2008), where 527 

deactivation was larger during performance of trained than random sequences. These areas 528 

include the precuneous, temporal parietal junction and the cingulate, regions commonly assigned 529 

to the default mode network (Raichle et al., 2001; Shulman et al., 1997). This group of regions is 530 

more activated during rest than during task performance, and has been associated with functions 531 

such as episodic memory retrieval and attention to internal states (Andrews-Hanna, Reidler, 532 

Sepulcre, Poulin, & Buckner, 2010; Gusnard, Akbudak, Shulman, & Raichle, 2001). Our 533 

observation of decreased inhibition of the default mode network likely reflects central attentional 534 

resources being freed up, allowing participants to engage in other mental processes (e.g., 535 

daydreaming) while performing the task. Thus, this release from initial deactivation is possibly 536 

task-irrelevant, reflecting increased automaticity with learning (Shamloo & Helie, 2016). 537 
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 Overall, changes in average activation are relatively hard to interpret, as they could reflect 538 

a combination of numerous factors. As a more direct fMRI metric of plasticity, we suggest to 539 

inspect changes in the sequence-specific activity patterns, since these constitute a more likely 540 

fMRI correlate of the sequences-specific performance advantage observed after training. In this 541 

project, this provided us with two key insights of how activation patterns reorganize in association 542 

areas with learning. First, activity patterns associated with each of individual trained sequences, 543 

changed to a greater extent earlier in learning, and stabilized later. This finding resonates with 544 

several animal studies suggesting that the emergence of skilled behavior is associated with early 545 

plasticity and later stabilization of neuronal activity patterns (Makino et al., 2017; Peters et al., 546 

2017). Here we report a similar effect in humans, and advance these findings by demonstrating 547 

that this reorganization occurs at the level of sequence-specific patterns. In past studies using 548 

rodent models, sequence-specific patterns could not be dissociated from the overall activity 549 

pattern, as the animals were only trained on production of a single sequence. Additionally, by 550 

pacing participants’ speed, we were able to cleanly dissociate changes in the organization of 551 

activity patterns from changes in the behavioral performance or variability. Second, activation 552 

patterns became more distinct for trained sequences at full speed. This indicates that the 553 

engagement of specific neuronal subpopulations for different sequences is particularly important 554 

when pushing the limit of performance.  555 

 While our study focused on the role of cortical areas in motor sequence learning, we also 556 

examined activation in the striatum, which has been suggested to play a critical role in skilled 557 

performance (Graybiel & Grafton, 2015; Kawai et al., 2015; Otchy et al., 2015). In contrast to 558 

previous fMRI studies (Coynel et al., 2010; Lehéricy et al., 2006; Reithler, van Mier, & Goebel, 559 

2010), we did not find clear evidence for differences in overall activity, or shifts of the overall 560 

activity pattern with learning. Nonetheless, we observed distinguishable striatal activation patterns 561 

for different trained sequences at full speed, in line with a recent report showing distinguishable 562 

striatal patterns for performance of consolidated motor sequences (Pinsard et al., 2018). While 563 

by itself the finding of differential sequence-specific activity patterns is not evidence for a causal 564 

role of the striatum in the production of skilled behaviors, it is a necessary condition for such a 565 

functional role. Therefore, our results here are in line with the proposed involvement of the 566 

striatum in motor sequence learning.  567 

 An important feature of our design was that we collected imaging data in the trained state, 568 

both when performance was clamped to the initial speed, and when participants performed as 569 

fast as possible. Previous studies have usually included only one of these two options, making 570 

direct comparisons difficult (see Lutz et al., 2004 for an examination of various execution speeds 571 
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on BOLD activity and Orban et al., 2010 in a motor learning context). Our results provide two 572 

important insights: first, in terms of the overall fMRI activation, the pattern of results remained the 573 

same for paced vs. full speed performance. This indicates that, in this specific case, the increased 574 

motor demands and the decreased time on task averaged out. In general, however, these two 575 

factors may not balance perfectly – therefore paced performance may be a better choice when 576 

comparing overall activation across sessions. Second, even though slow and paced performance 577 

in the trained state activated sequence-specific activation patterns, these were much stronger 578 

when performing at maximal speeds. Thus, for questions regarding the fine-grained patterns, it 579 

might be more suitable to challenge the system fully. 580 

Of course, our list of inspected fMRI metrics of learning was not exhaustive. For instance, 581 

we did not investigate whether various fMRI correlates of learning predict behavioral outcomes, 582 

or how functional connectivity and network metrics change with learning, partly because of the 583 

absence of specific predictions. Pre-registration of hypothesis are especially important for these 584 

analyses, since the search space of possible tests becomes exponentially larger (e.g. correlating 585 

all possible brain metrics with all possible behavioral metrics; or using various metrics to assess 586 

inter-regional relationships). However, we hope that our dataset, upon its public release, can 587 

serve as a resource for other researchers to (re-)test novel predictions about learning related 588 

changes. 589 

 590 

Conclusion 591 

The search for neural substrates of learning is a daunting task: the acquisition of longitudinal data 592 

sets is work intensive, and the large dimensionality of possible brain metrics makes the search 593 

difficult (Poldrack, 2000). Historically, the question was simplified by studying activation increases 594 

in single areas as proxies for motor ‘engram’ localization (Berlot, Popp, & Diedrichsen, 2018). 595 

Here we found no evidence for such activation increases; instead we observed widespread and 596 

distributed decreases in activation across cortical areas. In contrast, subtler changes in the 597 

distributed patterns of fMRI activity have the potential to provide more direct metrics of plasticity. 598 

Increased pattern reorganization (across weeks), and larger pattern separation for trained 599 

sequences was found across prefrontal, parietal, and striatal regions. These metrics may be 600 

useful as general fMRI correlates of neural reorganization beyond the domain of motor learning.  601 
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Materials and Methods 602 

 603 
 604 

Participants 605 

Twenty-seven volunteers participated in the experiment. One of them was excluded because field 606 

map acquisition was distorted in one of the four scans. The average age of the remaining 26 607 

participants was 22.2 years (SD = 3.3 years), and the sample included 17 women and 9 men. All 608 

participants were right-handed and had no prior history of psychiatric or neurological disorders. 609 

They provided written informed consent to all procedures and data usage before the study started. 610 

The experimental procedures were approved by the Ethics Committee at Western University. 611 

 612 

Apparatus 613 

Participants performed finger sequences with their right hand on an MRI-compatible keyboard 614 

(Fig. 2a), with keys numbered 1-5 for thumb-little finger. The keys had a groove for each fingertip 615 

and were not depressible. The force of isometric finger presses was measured by the force 616 

transducers (FSG-15N1A, Sensing and Control, Honeywell; dynamic range 0-25 N) mounted 617 

underneath each key with an update rate of 2 ms. A key press was recognized when the sensor 618 

force exceeded 1 N. The measured signal was amplified and sampled at 200 Hz. 619 

 620 

Learning paradigm 621 

Participants were trained to execute six 9-digit finger sequences over a period of five weeks (Fig. 622 

2a). They were split into two groups with trained sequences of one group constituting the 623 

untrained sequences for the other group and vice versa. Finger sequences of both groups were 624 

matched as closely as possible in terms of the starting finger, number of finger repetitions in a 625 

sequence and first-order finger transitions. This counterbalancing between the groups ensured 626 

that any of the observed results were not specific to a set of chosen trained sequences. 627 

In the pre-training session prior to the first scan (Fig. 2b), participants were acquainted 628 

with the apparatus and task performed during scanning. Sequences executed during this pre-629 

training session were not encountered later on in the experiment.  630 

During the training sessions, participants were trained to perform the six sequences as 631 

fast as possible. They received visual feedback for the correctness of their presses with digits 632 

turning green for a correct finger press and red for an incorrect one. After each trial, participants 633 

received points based on the accuracy and their movement time (MT – time from the first press 634 

until the last finger release in the sequence; Fig. 2c). Trials executed correctly and faster than 635 

participant’s median MT from the previous blocks were rewarded with 1 point. If participants 636 
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performed correctly and 20% faster than the median MT from previous blocks, they received 3 637 

points. If they made a mistake or performed below their median MT, they received 0 points. 638 

Participants performed each sequence twice in a row: digits were written on the screen for the 639 

first execution, but removed for the second execution so that participants had to perform the finger 640 

sequence from memory. Training sessions were broken into several blocks, each consisting of 641 

24 trials (4 trials per trained sequence), with time between blocks to rest. At the end of each block, 642 

participants received feedback on their error rate, median MT and points obtained during the 643 

block. If participants performed with an error of <15% and faster than the previous median MT, 644 

the MT threshold was updated. This design feature was chosen to maintain participants’ 645 

motivation to execute the sequences as fast as possible, within the allowed error range.  646 

During the behavioral test sessions (Fig. 2d), participants executed sequences they were 647 

trained on as well as untrained matched sequences, which were randomly interspersed. All 648 

sequences were still performed twice in a row, with numbers on the screen present on both 649 

executions. 650 

 651 

Experimental design during scanning 652 

Participants underwent four scanning sessions (Fig. 2d) – with the first one before learning regime 653 

started, the second after a week and two more scans after completion of the 5 training weeks. 654 

Each scanning session consisted of eight functional runs. We employed an event-related design, 655 

randomly intermixing execution of trained and untrained sequences. Each sequence was 656 

repeated twice in a row (with digits always present on the screen), and there was a total of six 657 

repetitions per sequence in every run. Each trial started with 1 second preparation time, during 658 

which the sequence was presented on the screen. After that time, a ‘go’ signal was displayed as 659 

short pink line underneath the sequence numbers. In scanning sessions 1-3, this line started 660 

expanding below the written numbers, indicating the speed at which participants were required to 661 

press along. In scanning session 4, only a short line was presented in front and underneath the 662 

sequences. When the line disappeared, this signaled a ‘go’ cue for participants to execute the 663 

presented sequence as fast as possible. The execution phase including the feedback on overall 664 

performance lasted for 3.5 seconds, and the inter-trial interval was 0.5 seconds (see 665 

supplementary figure S2). Each trial lasted for 5 seconds. Five periods of rest, each 10 seconds 666 

long, were added randomly between trials in each run to provide a better estimate of baseline 667 

activation. 668 

  669 

Image acquisition 670 
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Data was acquired on a 7-Tesla Siemens Magnetom scanner with a 32-receive channel head coil 671 

(8-channel parallel transmit). Anatomical T1-weighted scan was acquired at the beginning of the 672 

first scanning session, using a magnetization-prepared rapid gradient echo sequence (MPRAGE) 673 

with voxel size of 0.75x0.75x0.75 mm isotropic (field of view = 208 x 157 x 110 mm [A-P; R-L; F-674 

H], encoding direction coronal). Functional data were acquired using a sequence (GRAPPA 3, 675 

multi-band acceleration factor 2, repetition time [TR] = 1.0 s, echo time [TE] = 20 ms, flip angle 676 

[FA] = 30 deg). We acquired 44 slices with isotropic voxel size of 2x2x2 mm. For estimating 677 

magnetic field inhomogeneities, we additionally acquired a gradient echo field map. Acquisition 678 

was in the transversal orientation with field of view 210 x 210 x 160 mm and 64 slices with 2.5 679 

mm thickness (TR = 475 ms, TE = 4.08 ms, FA = 35 deg). 680 

 681 

First-level analysis 682 

Functional data were analyzed using SPM12 and custom written MATLAB code. Functional runs 683 

were corrected for geometric distortions using fieldmap data (Hutton et al., 2002), and head 684 

movements during the scan (3 translations: x, y, z; 3 rotations: pitch, roll, yaw), and aligned across 685 

sessions to the first run of the first session. The functional data were then co-registered to the 686 

anatomical scan. No smoothing or normalization to an atlas template was performed. 687 

Preprocessed data were analyzed using a general linear model (GLM; Friston et al., 688 

1994). Each of the performed sequences was defined as a separate regressor per imaging run, 689 

resulting in 12 regressors per run (6 trained, 6 untrained sequences), together with intercept for 690 

each of the functional runs. The regressor was a boxcar function starting at the beginning of the 691 

trial and lasting for trial duration. The boxcar function was convolved with a hemodynamic 692 

response function, with a time to peak of 5.5 seconds, and a manually adjusted onset to best fit 693 

each participant’s average evoked response. This analysis resulted in one activation estimate 694 

(beta image) for each of the 12 conditions per run, in each scanning session. 695 

 696 

Surface reconstruction and regions of interest 697 

We reconstructed individual subjects’ cortical surfaces using FreeSurfer (Dale, Fischl, & Sereno, 698 

1999). All individual surfaces were aligned to the FreeSurfer’s Left-Right symmetric template 699 

(workbench, 164k nodes) via spherical registration. To detect sequence representation across 700 

the cortical surface, we used a surface-based searchlight approach (Oosterhof, Wiestler, 701 

Downing, & Diedrichsen, 2011), where for each node we selected a circular region of 120 voxels 702 

in the grey matter. The resulting analyses (dissimilarities between sequence-specific activity 703 

patterns, see below) was assigned to the center node. As a slightly coarser alternative to 704 
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searchlights, we performed regular tessellation of cortical surface into 162 tessels per 705 

hemisphere. This allowed us to fit correlation models (see below) across the cortical surface, 706 

while not being as computationally intensive as searchlight analyses. 707 

We defined four regions of interest to cover primary somato-motor regions as well as 708 

secondary associative regions. M1 was defined using probabilistic cytoarchitectonic map (Fischl 709 

et al., 2008) by including nodes with the highest probability of belonging to Brodmann area (BA) 710 

4, while excluding nodes more than 2.5 cm from the hand knob (Yousry et al., 1997). Similarly, 711 

S1 was defined as nodes related to hand representation in BA 1, 2 and 3. Additionally, we included 712 

dorsal premotor cortex (PMd) as the lateral part of the middle frontal gyrus. The anterior part of 713 

the superior parietal lobule (SPLa) was defined to include anterior, medial and ventral intraparietal 714 

sulcus. We also defined caudate nucleus and putamen as striatal regions of interest. The 715 

definition was carried out in each subject using FSL’s subcortical segmentation. 716 

 717 

Changes in overall activation 718 

We calculated the average percent signal change for trained and untrained sequences (averaged 719 

across the 6 trained and 6 untrained sequences) relative to the baseline for each voxel. The 720 

resulting volume map was projected to the surface for each subject, and a group statistical t-map 721 

was generated across subjects. Statistical maps were thresholded at p<.01, uncorrected, and the 722 

family-wise error corrected p-value for the size of the peak activation and activation cluster size 723 

was determined using a permutation test. Specifically, we ran 1000 simulations where we 724 

randomly flipped the sign of the contrast for subjects (chosen at random out of 226 possible 725 

permutations). The rationale behind this is that under the null hypothesis, there should be no 726 

difference between the two conditions, and the sign of each contrast should be interchangeable. 727 

As for the data, we thresholded the statistical map from each permutation, and recorded the peak 728 

t-value (across the map) and the size of the largest cluster. The real data was then compared 729 

against this distribution to assess the probability of the observed t-value and cluster-size under 730 

the null hypothesis.  731 

Additionally, we assessed changes in percent signal in predefined regions of interest (M1, 732 

S1, PMd, SPLa). This was performed in the native volume space of each subject. To do so, we 733 

averaged the percent signal change of voxels belonged to a defined region per subject and 734 

quantified activation changes across subjects using ANOVAs and t-tests across subjects.  735 

Besides overall activation, we also examined relative changes in elicited activation for 736 

trained sequences across sessions. This was done by normalizing (z-scoring) the percent signal 737 

change surface maps across voxels, separately for each subject. Normalization was applied both 738 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.08.899229doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899229


 27 

map-wise (for Fig. 5b), as well as for each of the pre-defined ROIs separately (for cross-sections 739 

in Fig. 5c). Statistical assessment of the difference between relative evoked activation pattern for 740 

trained vs. untrained sequence was carried out by calculating cosine angle dissimilarities between 741 

the mean evoked patterns. Cosine angle dissimilarity was chosen because it is not sensitive to 742 

overall magnitude in activation, and therefore assesses the difference in the relative activation 743 

distribution. 744 

 745 

Dissimilarities between sequence-specific activity patterns 746 

To evaluate which cortical areas display sequence-specific encoding, we performed a searchlight 747 

analysis calculating the dissimilarities between evoked beta patterns of individual sequences. 748 

Beta patterns were first multivariately prewhitened (standardized by voxels’ residuals and 749 

weighted by the voxel covariance matrix), which has been found to increase the reliability of 750 

dissimilarity estimates (Walther et al., 2016). We then calculated the cross-validated squared 751 

Mahalanobis dissimilarities (i.e. crossnobis dissimilarities) between evoked sequence patterns 752 

(66 dissimilarity pairs for 6 trained and 6 untrained sequences). These dissimilarities were then 753 

averaged overall, as well as separately for pairs within trained sequences, and within untrained 754 

sequences. This metric was used both for searchlight analysis and calculation of metric within 755 

predefined regions (cortical and striatal). The cortex surface maps contrasting dissimilarities 756 

between trained and untrained sequences were corrected for multiple comparisons using 757 

permutations, as described above for percent signal change surface maps.  758 

 759 

Pattern component analyses: modelling sequence-specific correlation across sessions 760 

Correspondence of sequence-specific patterns across sessions was quantified using pattern 761 

component modelling (PCM; Diedrichsen et al., 2017). This framework is superior at estimating 762 

correlations than simply performing Pearson’s correlation on raw activity patterns, or even in a 763 

crossvalidated fashion. The main problem with estimating correlations on data is that activation 764 

patterns are biased by noise, which varies across scanning sessions, and would therefore 765 

underestimate the true correlation. PCM separately models the noise and signal component, and 766 

can in this way combat the issue more than simply performing crossvalidation would. We 767 

designed 30 correlation models with correlations between 0 and 1 in equal step sizes and 768 

assessed the group likelihood of the observed data under each model. 769 

Subsequent group inferences were performed using crossvalidated approach on 770 

assessing individual log-Bayes factors (model evidence). A crossvalidated approach was used to 771 

ensure that our choice of ‘best-fitting models’ and the evidence associated was independent and 772 
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did not involve double-dipping. Specifically, we used n-1 subjects to determine the best-fitting 773 

models for trained and untrained patterns and recorded the log-Bayes factors for those two 774 

correlation models on the left-out subject. This was repeated across all subjects and a t-test was 775 

performed on the recorded log-Bayes factors (i.e. out-of-sample model evidences). The same 776 

evaluation was performed for pre-defined regions of interest (Fig. 6b), as well as a regular 777 

tessellation across the cortical surface (Fig. 6c). 778 
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Supplementary Figures 796 

 797 

 798 
Figure S2. Experimental trial structure during scanning sessions. Each trial consisted of a preparation 799 
period, execution period and inter-trial-interval (ITI), during which the feedback was presented on 800 
correctness of the trial. Each sequence was presented twice in a row. Periods of rest were added in-801 
between the trials.   802 
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 803 
Figure S4. Statistical maps for the trained vs. untrained contrasts on elicited activation in each 804 
session. Trained>untrained is shown in red, untrained>trained in blue. Maps were thresholded at a 805 

t25=2.5, p<.01 uncorrected for a two-sided t-test. Tables show peak t-value and size (in cm2) for each 806 
super-threshold cluster (indicated by numbers) for maps of week 2 and 5. pt_unc is the uncorrected p-value 807 
for the peak of each cluster. Family-wise error corrected p-values were determined using permutation 808 
testing for the peak t-value (pt_corr) and cluster size (pcluster).  809 
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 810 
Figure S6. Difference between correlation of winning model for trained and untrained sequences. 811 
Difference between the correlations of the winner models for trained and untrained sequences, separately 812 
for week 1-2 and week 2-5. Blue indicates a lower correlation across weeks for trained than untrained 813 
patterns of activity. The correlation difference values are plotted in tessels where the difference in model 814 
evidence was significant, as based on the cross-validated t-test (for two-sided p<.05).   815 
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 816 
Figure S7. Statistical maps for trained vs. untrained contrasts in week 5 (paced) and 5* (full speed) 817 
sessions. Trained>untrained is shown in red, untrained>trained in blue. a) Statistical contrast for average 818 
activation. Maps were thresholded at a t25= 2.5, p<.01 uncorrected for a two-sided t-test. Tables show 819 

peak t-value and size (in cm2) for each super-threshold cluster. pt_unc is the uncorrected p-value for the peak 820 
of each cluster. Family-wise error corrected p-values were determined using permutation testing for the 821 
peak t-value (pt_corr) and cluster size (pcluster). b) Statistical contrast for average dissimilarity of sequence-822 

specific activity pattern. Map was thresholded at t25= 1.7, p<.05, uncorrected. Statistical quantification 823 
using permutation tests is in the table below each map.  824 
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