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Abstract 1 

Ventral visual cortex can be divided into a variety of retinotopically as well as category-2 

specific regions. These brain areas have been the focus of a large body of functional MRI research, 3 

significantly expanding our understanding of high-level visual processing. As studying these 4 

regions requires accurate localization of their cortical location, it is usually necessary to perform 5 

functional localizer runs on an individual subject level. These runs are costly in terms of scanning 6 

time and a participant’s capacity level. Moreover, certain patient populations are unable to undergo 7 

such localizers, for instance the congenitally blind. In the current paper, we aimed to overcome 8 

these challenges by developing a functional atlas based on localizer- and visual field mapping data 9 

acquired in 20 healthy subjects. Single subject functional maps were aligned to both volume and 10 

surface group space, after which a probabilistic functional group atlas was created. We 11 

subsequently quantified the inter-subject variability of category-selective regions in visual cortex 12 

and the specificity of each atlas region – to our knowledge the first such analyses. Additionally, 13 

we validated our atlas against existing atlases of retinotopic as well as category-specific regions. 14 

The resulting functional atlas is made publicly available for a variety of software packages 15 

(https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). 16 

 17 

 18 
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Human visual cortex can be divided into dozens of visual field maps (Arcaro et al., 2009; 1 

Wandell et al., 2005; Wandell and Winawer, 2011; Wang et al., 2014), as well as category-2 

selective regions, each showing recognition expertise for specific visual categories, divided into 3 

three main processing streams (Goodale et al., 1991; Mishkin et al., 1983; Grill-Spector & Weiner, 4 

2014). While the dorsal stream consists mainly of visual field maps, the lateral and ventral visual 5 

streams contain visual field maps as well as category-selective regions. Those category-specific 6 

regions process categories like faces, houses, words, or bodies (e.g. object-selective: Malach et al., 7 

1995; face-selective: Kanwisher, McDermott, & Chun, 1997; place-selective: Aguirre, Zarahn, & 8 

D’Esposito, 1998; Epstein & Kanwisher, 1998; word-selective: Cohen et al., 2000; body-selective: 9 

Peelen & Downing, 2005. 10 

In order to study the detailed neural computations of these category selective regions in 11 

visual cortex, one has to identify their cortical location first. The standard method is to perform a 12 

functional localizer scan, identifying the region of interest (ROI) that is selectively responding to 13 

the category of interest (e.g. by using a t-statistic). Consequently, the experiment of interest is 14 

performed, and the data are analyzed within the ROI previously identified. ROI approaches are 15 

advantageous for a variety of reasons, among which: (1) they allow hypothesis driven comparisons 16 

of signals within a specific area of interest across different conditions, (2) they increase statistical 17 

sensitivity in multi-subject analyses (Nieto-Castañón and Fedorenko, 2012) and  (3) they reduce 18 

the number of multiple comparisons present in whole-brain analyses (Saxe et al., 2006). 19 

Additionally, ROIs frequently serve as seed regions for connectivity analyses and computational 20 

modeling (El Gazzar et al., 2019; Kautzky et al., 2018; Rondina et al., 2018; Vakli et al., 2018). 21 

While the individual localizer approach has its benefits, it also comes with problems: first, 22 

a localizer scan is subject-specific and not necessarily representative of the population. Second, 23 

performing an accurate localizer scan before each experiment is costly in terms of scanning time, 24 

as well as in attention for the subject. The latter can result in fatigue during the actual experiment. 25 

Lastly, in some cases it is not possible to obtain a localizer, for example in patient populations as 26 

for example the congenitally blind (Bedny et al., 2011; Mahon et al., 2009; Striem-Amit et al., 27 

2012a, 2012b, Van den Hurk et al., 2017) and individuals with visual agnosia/prosopagnosia 28 

(Barton, 2008; Gilaie-Dotan et al., 2009; Schiltz and Rossion, 2006; Sorger et al., 2007; Steeves 29 
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et al., 2006; Susilo et al., 2015). However, it may still be of interest to investigate functional or 1 

anatomical patterns within those populations, for example to compare them to typical individuals. 2 

To overcome these problems, progressions in the field of cognitive neuroscience have led 3 

to the development of cortical atlases which allow localization of specific regions in a new, 4 

independent set of subjects by leveraging ROI-data from typical populations (e.g. Eickhoff et al. 5 

2006, Frost and Goebel, 2012; Glasser et al., 2016; Rosenke et al., 2017; Wang et al., 2014). Next 6 

to providing independent data, this approach enables quantification of between-subject variability, 7 

as well as measures of prevalence and robustness of a region of interest. Recent atlases have 8 

mapped visual cortex retinotopically (Wang et al., 2014), cytoarchitectonically (Amunts et al., 9 

2000; Caspers et al., 2013; Kujovic et al., 2013; Lorenz et al., 2015; Rosenke et al., 2017a; 10 

Rottschy et al., 2007) and using multimodal approaches (Glasser et al., 2016). To our knowledge, 11 

a gap in the field is a detailed atlas that delineates category-selective regions in lateral occipito-12 

temporal and ventral temporal cortex.  13 

In the present research, we aimed at (a) developing a functional atlas of category-selective 14 

visual cortex, (b) quantifying inter-subject variability of category-selective regions in visual 15 

cortex, and (c) validation of our atlas against existing atlases. We performed a localizer experiment 16 

in order to map category-selective regions, as well as a visual field mapping experiment to 17 

delineate early visual cortex in each participant. The experiment was performed using data of 18 

twenty healthy adults. The resulting atlas will be available in BrainVoyager 19 

(www.brainvoyager.com) and FreeSurfer (www.surfer.nmr.mgh.harvard.edu) file formats for 20 

surface analysis, as well as NifTI format for volumetric analysis 21 

(https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). 22 

 23 

MATERIALS AND METHODS 24 

Participants 25 

To obtain functional data, a total number of 20 participants (average age 30 ± 6.61) were 26 

recruited at Maastricht University. Two participants were left-handed, and the sample consisted of 27 
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10 women and 10 men. All participants were healthy with no history of neurological disease and 1 

had normal or corrected-to-normal vision. Written consent was obtained from each subject prior 2 

to scanning. All procedures were conducted with approval from the local Ethical Committee of the 3 

Faculty of Psychology and Neuroscience. After data acquisition, one participant’s functional MRI 4 

scans were excluded from further analysis due to self-reported lack of attention on the stimuli and 5 

intermittent sleep. 6 

 7 

Data acquisition 8 

Participants underwent one scanning session of 1 hour at a 3T Siemens Prisma Fit 9 

(Erlangen, Germany). First, a whole brain, high resolution T1-weighted scan (MPRAGE) was 10 

acquired (repetition time/echo time = 2250/2.21 ms, flip angle = 9 ˚, field of view = 256 x 256 11 

mm, number of slices = 192, 1 mm isovoxel resolution). Following that, six functional runs were 12 

acquired using a T2*-weighted sequence with the following parameters: repetition time/echo time 13 

= 2000/30 ms, flip angle = 77 ˚, field of view = 200 x 200 mm, number of slices = 35, slice 14 

thickness = 2 mm, in-plane resolution = 2 × 2 mm.  15 

 16 

Visual localizers 17 

Category-selective regions in ventral temporal cortex 18 

In order to identify category-selective regions that respond preferentially to characters 19 

(pseudowords, numbers), bodies (whole bodies, limbs),  places (houses, corridors) , faces (child, 20 

adult) and objects (cars, instruments), we used stimuli included in the fLoc functional localizer 21 

package (Stigliani et al., 2015). Eight stimuli of one of the five categories were presented in each 22 

miniblock design, each miniblock holding a duration of 4 seconds. To assure participant’s 23 

attention, they were asked to perform an Oddball task, indicating with a button press when they 24 

saw a scrambled image instead of one of the categories. Each run consisted of 150 volumes. 25 

 26 
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hMT+ 1 

To localize the motion-selective area in middle temporal cortex (hMT+, Dumoulin et al., 2 

2000; Zeki et al., 1991), we used stimuli as in Emmerling et al. (2016) and  Zimmermann et al. 3 

(2011), which were based on Huk et al. (2002). During the first 5 volumes participants were 4 

presented with a fixation dot in the center of the screen. In the following, blocks moving and 5 

stationary dot patterns were alternated while the participants fixated on the fixation dot in the 6 

center of the screen. Moving dot blocks were 18 seconds long, while stationary blocks in-between 7 

had a duration of 10 seconds. The active screen filled with dots was circular. In total, each run 8 

consisted of 12 blocks of moving dots and 12 blocks of stationary dots. Furthermore, dots were 9 

presented either in the center of the screen, in the left visual hemifield, or in the right visual 10 

hemifield, while participants maintained fixation to the center of the screen. Stationary blocks were 11 

in the same three locations. The order of blocks was fixed (center moving, center static, left 12 

moving, left static, right moving, right static). For the moving dot blocks, dots moved outward and 13 

inward to the center of the circular field (left, center, right) in a steady speed until they reached the 14 

boundary of the circle, where they diminished. Each subject underwent two hMT+ localizer runs. 15 

 16 

Early visual cortex 17 

The visual retinotopic mapping run consisted of 304 volumes (TR = 2s). In the first 8 18 

volumes a fixation dot was presented, followed by a high-contrast moving bar stimulus (1.33° 19 

wide) revealing a flickering checkerboard pattern (10 Hz). The checkerboard pattern varied in 20 

orientation and position for 288 volumes, concluding the run with 8 volumes of fixation dot 21 

presentation. The fixation was presented during the entire run and changed color at random time 22 

intervals. To keep participants’ motivation and attention they were asked to count these color 23 

changes. The bar stimulus moved across the visual field in 12 discrete steps and remained at each 24 

position for 1 TR. The 12 different stimulus positions were randomized within each bar orientation. 25 

Each combination of orientation (4) and direction (2) represented one cycle. These eight different 26 

cycles were repeated three times in random order throughout the run (Senden et al., 2014). The 27 

width and height of the visual presentation subtended 15.5 x 15.5 degrees of visual angle. 28 
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 1 

Preprocessing 2 

If not stated otherwise, data were preprocessed and analyzed using BrainVoyager 20.6 3 

(Brain Innovation, Maastricht, The Netherlands). Anatomical data were inhomogeneity corrected 4 

and transformed to Talairach space (TAL, Talairach and Tournoux, 1988) by identifying the 5 

anterior commissure (AC) and posterior commissure (PC) and fitting the data to TAL space. 6 

Functional data were slice scan time corrected, motion corrected with intra-run alignment to the 7 

first functional run to account for movement between runs, and high-pass filtered (3 cycles). Next, 8 

the preprocessed functional data were coregistered to the inhomogeneity corrected anatomical 9 

image. Using the anatomical transformation files, all functional runs were normalized to TAL 10 

space. Based on the normalized anatomical data, we segmented the grey-white matter boundary 11 

for each brain and created a cortical surface. Next, the volumetric functional data were sampled 12 

on the cortical surface incorporating data from -1 to +3 mm along the vertex normals. Ultimately, 13 

we computed two general linear models (GLM), one for the three localizer runs for category-14 

selective regions in ventral temporal cortex, and one for the hMT+ localization.  15 

 16 

Regions of interest 17 

All ROIs where manually defined in individual subject space on the cortical surface 18 

construction in BrainVoyager. For volumetric alignment and atlas generation, surface regions were 19 

transformed to volumetric regions by expanding them (-1 to +2 mm) along the vertex normals of 20 

the white-gray matter boundary. 21 

 22 

Retinotopic areas in occipital cortex 23 

Visual field maps were determined for each subject based on an isotropic Gaussian 24 

population receptive Field (pRF) model (Dumoulin and Wandell, 2008; Senden et al., 2014). The 25 

obtained pRF maps estimating the location and size of a voxel pRF were used to calculate 26 
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eccentricity and polar angle maps. The polar angle maps were projected onto inflated cortical 1 

surface reconstructions and used to define six topographic regions in occipital cortex (V1d, V2d, 2 

V3d and V1v, V2v, V3v, where d = dorsal and v = ventral) by identifying the reversals in polar 3 

angle representation at the lower vertical meridian (LVM), upper vertical meridian (UVM) or 4 

horizontal meridian (HM; DeYoe et al., 1996; Engel et al., 1997; Sereno et al., 1995). 5 

  6 

Ventral and lateral category-selective areas 7 

 Each category (e.g. faces) was contrasted against the mean of all other categories to identify 8 

vertices that displayed a preference for the given category. Then we followed a two-step approach 9 

to define ROIs: First, for all categories we selected a statistical threshold of t = 3 for a whole brain 10 

map. Based on the thresholded activation map we identified ROIs in anatomically plausible 11 

locations (see details for each region below). Furthermore, in the case of an activation cluster 12 

transitioning into an adjacent one of the same visual category, we divided those clusters into 13 

separate ROIs by following the spatial gradient of t-values and separating the two areas at the 14 

lowest t-value. Based on insufficient activation pattern found for the ‘objects’ category, we 15 

dismissed that category from further analysis. 16 

Face-selective regions (faces>all others) were identified in the mid lateral fusiform gyrus 17 

(mFus) and posterior lateral fusiform gyrus (pFus), which correspond to the fusiform face area 18 

(Kanwisher et al. 1997), as well as on the inferior occipital gyrus (IOG). Body-selective regions 19 

(bodies>all others) were observed in ventral temporal cortex on the occipital temporal sulcus 20 

(OTS), also known as fusiform body area (FBA,  Peelen et al., 2009; Schwarzlose, 2005) and in 21 

lateral occipital cortex. There, we identified three different regions (Weiner and Grill-Spector, 22 

2011) together forming the extrastriate body area (Downing et al., 2001), one anterior of hMT+ 23 

on the middle temporal gyrus (MTG), one posterior of hMT+ on the lateral occipital sulcus (LOS), 24 

and one ventral to hMT+, on the inferior temporal gyrus (ITG). Place-selective regions (places> 25 

all others) were observed in ventral temporal cortex on the collateral sulcus (CoS), corresponding 26 

to the parahippocampal place area (PPA, Epstein and Kanwisher, 1998), and on the transverse 27 

occipital sulcus (TOS, Hasson et al., 2003). Character-selective regions (characters > all others) 28 
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 9 

were identified in the posterior occipital temporal sulcus (pOTS) and a left-lateralized region in 1 

the mid occipital temporal sulcus (mOTS). Furthermore, we identified one character-selective 2 

regions in the inferior occipital sulcus (IOS). In the following, we will refer to each ROI by its 3 

anatomical nomenclature, as described in Stigliani et al. (2015). For reference, Table 1 provides 4 

an overview about each ROI’s anatomical as well as functional name.  5 

 6 

 7 

Table 1. Nomenclature for functional regions-of-interest (fROIs). Each category-selective functional activation 8 
cluster can be described by functional category or anatomical location. In this article we describe category-selective 9 
ROIs using the anatomical nomenclature and provide this table as a reference. Functional abbreviations are as 10 
followed: FFA: fusiform-face area, FBA: fusiform-body area, EBA: extrastriate body area, VWFA: visual word form 11 
area, PPA: parahippocampal place area, hMT: human middle-temporal (cortex). 12 

 13 

hMT+ 14 

 Motion selective regions were identified by contrasting left, right and central visual field 15 

motion conditions vs. the equivalent stationary conditions and using a thresholded statistical map 16 
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 10 

with a minimum t-value of 3. Two subjects only showed functional activation for the contrasts at 1 

a t value of 2.5 in one hemisphere, which we allowed for these subjects. hMT+ was consistently 2 

located in the posterior inferio-temporal sulcus (pITS). 3 

 4 

Visual functional atlas (visfAtlas) generation 5 

After ROIs were defined for each subject in each subject’s space, we utilized two 6 

normalization techniques to bring the data into a common space: (1) nonlinear-volumetric 7 

alignment (NVA) for volume and (2) cortex-based alignment (CBA) for surface space. 8 

Furthermore, as it is common that not every ROI can be identified in each of the subjects, we 9 

decided that an ROI had to be present in more than 50% of the subjects (N > 10) to be considered 10 

for a group atlas. The ROIs which were ultimately used for the group atlases and in how many 11 

subjects they were defined can be found in Table 2.  12 

 13 

 14 
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Table 2. Number of subjects per functional ROI (fROI). Individual variability across people, keeping a strict 1 
statistical threshold, and stimulus choices results in not every fROI being identified in all participants. We chose to 2 
exclude ROIs from atlas generation that were defined in less than half the participants (N = 10). Abbreviations: LH: 3 
left hemisphere, RH: right hemisphere. 4 

 5 

Nonlinear-volumetric alignment (NVA) 6 

First, surface regions that were defined on each subject’s cortical surface were mapped to 7 

volumetric regions by expanding them (-1 to +2 mm) along each vertex normal of the white-gray 8 

matter boundary. Second, the volumetric regions were transformed back to native ACPC space. 9 

Next, the individual brains were registered to the MNI152 group average brain using the Advanced 10 

Normalization Tools (ANTS; https://sourceforge.net/projects/advants/). Finally, the resulting 11 

nonlinear transformation matrices were used to warp the functionally-defined regions of interest 12 

(fROIs) into the same orientation and reference frame. The specific code for the affine volume 13 

registration and nonlinear transformation can be found here: 14 

https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk. The resulting NVA-aligned 15 

regions were further processed in NifTi format using MATLAB (www.mathworks.com), see 16 

details below. 17 

 18 

Cortex-based alignment (CBA) 19 

To generate a surface group average brain of the subjects, we used cortex-based alignment 20 

(CBA) to generate a dynamic average (subsequently called BVaverage, publicly available at 21 

https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). CBA was performed for 22 

both hemispheres separately after inflation to a sphere with overlaid curvature information at 23 

various levels of resolution (Frost and Goebel, 2012; Goebel et al., 2006). First, during a rigid 24 

alignment, the spheres of each subject’s hemisphere was rotated along three dimensions to best 25 

match the curvature pattern of a randomly chosen target hemisphere. The lower the variability 26 

between the two folding curvature patterns, the better the fit after rigid sphere rotation. Following 27 

the rigid alignment for all subjects, a non-rigid CBA was performed. Curvature patterns of each 28 
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subject were used in four different levels of anatomical detail. Starting from low anatomical detail, 1 

each subject’s hemisphere was aligned to a group average out of all subjects. During this process, 2 

the group average was dynamically updated to most accurately average all hemispheres. This 3 

sequence was repeated for all levels of curvature detail, until the group average was updated based 4 

on the highest level of anatomical detail per subject. During the alignment, we (1) derived a group 5 

average for each hemisphere (BVaverage), as well as (2) a transformation indicating for each 6 

vertex on a single-subject cortical surface where it maps to on the group average. These 7 

transformation files were then used to map each individual subject’s fROIs to the BVaverage. 8 

 9 

Probabilistic maps for occipitotemporal cortex in volume and surface space 10 

 We generated probabilistic maps of all regions after NVA as well as CBA and each of the 11 

following was done in both group spaces: after individual subject fROIs were projected to the 12 

MNI152 and BVaverage, respectively, each group fROI was defined. For each voxel/vertex of a 13 

group fROIs, the number of subjects which shared that voxel/vertex of the fROI was divided by 14 

the total number of subjects (𝑣𝑜𝑥𝑒𝑙	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	 /01234	56	702839:7	7;<4=/>	?5@3A/?34:3@	
:5:<A	/01234	56	702839:7	=/	6CDE

). Thus, a value of 15 

0 at a vertex in the group fROI indicates a vertex did not belong to that fROI in any subject, a value 16 

of .5 means that it belonged to the fROI in half the subjects, a value of 1 indicates that it belonged 17 

to that functional region in the entire study population (Fig. 1). 18 

 19 

Cross-validated predictability estimation and atlas generation 20 

 One interesting feature of those fROIs is the possibility to serve as a prior to estimate the 21 

localization of corresponding ROIs in a new subject’s brain, eliminating the need for a dedicated 22 

localizer run in the new subject. To allow for a reasonable estimate on the confidence to find this 23 

region in a new subject, we performed an exhaustive cross-validation analysis of the volumetric 24 

(NVA) as well as surface (CBA) alignment. For each fold, we generated a group probabilistc fROI 25 

(G) and a left-out subject’s individual fROI (I). We estimated the predictability of the group 26 
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probabilistic fROI by calculating the dice coefficient (DSC), a measure of similarity of two 1 

samples:  2 

	3 

𝑑𝑠𝑐 =
2|𝐼 ∩ 𝐺|
|𝐼| + |𝐺|

 4 

 5 

 A dice coefficient of zero indicates no predictability and a dice coefficient of 1 indicates perfect 6 

predictability. As we did in previous work (Rosenke et al., 2017a), we applied different threshold 7 

levels to the group probabilistic fROI (G) to predict the location of the left-out-subject (Fig.2). 8 

That means we created a liberal group probabilistic fROI including each vertex that was present 9 

in at least 1 subject. Then we sequentially increased the threshold up to the most conservative 10 

threshold where all subjects had to share a voxel/vertex for it to be included in the group map. For 11 

statistical assessment, we compared dice coefficients across the two alignment methods using a 12 

repeated measures analysis of variance (ANOVA) with individual regions as different entries, 13 

alignment method (CBA vs NVA) as within-subject factor and hemisphere as between-subject 14 

factor. We ran this comparison on two different thresholds: once on unthresholded group maps, 15 

and once on a threshold that produced - across regions and methods - the highest predictability, 16 

0.2. Additionally, we ran paired permutation tests within each region on dice coefficient results at 17 

threshold 0.2. Finally, we calculated the mean ROI size for each hemisphere and ROI in square 18 

millimeter (mm2, Fig. 3) and used a paired t-statistic to assess whether there was a systematic 19 

hemispheric difference in size across ROIs. 20 

 21 

Generating a visual functional atlas (visfAtlas) by assigning each voxel and vertex to a unique 22 

fROI 23 

The processes described below provide a non-overlapping tiling of the functionally defined 24 

regions in occipito-temporal cortex in surface as well as volume space (Fig. 4). 25 

Cortex based alignment: The probability maps determine the probability that each vertex belongs 26 

to a given fROI. However, it is possible that a point on the brain may belong to more than one 27 
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probabilistic fROI. This overlap is more likely to occur along boundaries of neighboring functional 1 

regions. In order to assign a unique functional label to each vertex in the atlas, we generated a 2 

maximum-probability map (MPM) of each area, once in volume space (NVA) and once in surface 3 

space (CBA). Using the probabilistic fROIs, we determined which vertices were shared by more 4 

than one probabilistic fROI and assigned these vertices to a single fROI based on the area which 5 

showed the highest probability at that vertex (Eickhoff et al., 2005). In cases where two areas held 6 

the same probability value for one vertex, we averaged the probabilistic values of neighbors of that 7 

vertex for each of the fROIs. The degree of neighbors averaged was increased until the vertex had 8 

a higher probability value in one of the areas. Lastly, after all vertices were assigned in each of the 9 

MPM areas, we searched for individual vertices that were not connected to other vertices of the 10 

same ROI. We used a decision threshold where a minimum of at least one 3rd degree neighbor for 11 

each vertex had to be in the same group ROI for that vertex to be part of the group ROI. In cases 12 

where single vertices where detected, they were assigned to the ROI with the second-highest 13 

probabilistic value and same-ROI vertices in the immediate neighborhood. 14 

Nonlinear volume alignment: The creation of a maximum probability map in volume space was 15 

identical to that for CBA as described above, except for the neighborhood search. The 16 

neighborhood search was not implemented in the same way as the 3D nature of the volume atlas 17 

would lead to inevitable differences in the MPM creation when compared to the surface atlas. 18 

Instead, neighborhood search was only performed for 3 immediately adjacent voxel (3rd degree 19 

neighbor) in all three dimensions. 20 

 21 

A visual functional atlas available in volume and surface space 22 

The unique tiling of functionally defined visua regions provides a functional atlas 23 

(visfAtlas) which we make available (1) in volume space, and (2) in surface space. In addition, we 24 

make this atlas available in multiple file formats. Volume: we publish the volumetric visfAtlas in 25 

MNI space in BrainVoyager file format (VOI file) and NifTi format, which can be read by a variety 26 

of software packages. Surface: we publish the visfAtlas in file formats compatible with Brain 27 

Voyager as well as FreeSurfer. Note, however, that the surface atlases are generated slightly 28 
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differently for each software. For BrainVoyager, we generated a publicly available dynamic group 1 

average brain (BVaverage) that will be available with the distributed atlas, details are described 2 

above. Since FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) is commonly used with the 3 

fsaverage brain, an average surface of 39 individuals, we converted the individually defined fROIs 4 

from each subject to cortical surface space in FreeSurfer after running each subject through the 5 

recon-all pipeline. Then, we used the FreeSurfer CBA algorithm to bring each subject’s fROIs to 6 

the fsaverage space. Further processing was done as described above and the same for both 7 

softwares. All files can be downloaded here: 8 

https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk.  9 

 10 

Functional selectivity of atlas fROIs 11 

When using a probabilistic atlas, it is of great interest not only to know how likely one 12 

would find a new subject’s fROI in the same location, but also what signals would be picked up 13 

for that subject within an atlas-fROI. For example, are voxel/vertices in face-selective atlas fROIs 14 

selective for faces? To test the generalizability of our atlas, we performed a leave-subject-out 15 

selectivity analysis in volume space. Although alignment in surface space leads to an overall better 16 

between-subject alignment than normalized volume space does, we decided to run the cross-17 

validation in suboptimal volume space, thereby assessing the results in a conservative way. The 18 

analysis calculates the percentage of voxel selective for each condition within a given fROI, where 19 

the fROI is defined on all subject’s data except the one dataset used for the selectivity computation. 20 

This was repeated for all possible leave-subject-out combinations. First, for each subject 21 

individually we created a volume maximum probability map (MPM) based on the other N-1 22 

subjects (leaving the target subject out). Then, for each individual voxel within each fROI in this 23 

MPM, we estimated the average response amplitude to each category across trials using the 24 

optimized Least Squares – Separate (LS-S) trial estimation approach as described by Mumford et 25 

al. (2012). Then, we created a ‘winner map’ for each fROI per subject, in which the condition 26 

index that yielded the strongest response was assigned to each voxel within the fROI. Per 27 

condition, we counted the number of winning voxels within the ROI, which we expressed as a 28 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.22.916239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.916239
http://creativecommons.org/licenses/by-nd/4.0/


 16 

percentage of the total number of voxels in the fROI. This procedure was repeated for each subject 1 

(Fig. 5).  2 

 3 

Comparison of our visfAtlas to existing publicly available atlases and relevant fROIs 4 

 How does the visfAtlas compare to published atlases available? While there is no complete 5 

occipitotemporal atlas yet, retinotopic areas have been published by Wang et al. (2014), a 6 

probabilistic CoS-places by Weiner et al. (2018) and a motion selective area hMT+ by Huang et 7 

al. (2019). We compared our visfAtlas to the existing surface maps by assessing their 8 

correspondence in Freesurfer’s fsaverage space. For each fROI, we superimposed our MPM-ROIs 9 

onto the existing atlas-ROI (Fig 6). We quantified their correspondence by calculating the dice 10 

coefficient (see details in previous section) between our visfAtlas MPM-ROI and the respective 11 

other atlas. However, as the hMT+atlas by Huang et al. (2019) was not constrained by other 12 

regions, we calculated the dice coefficient between the extent of our probabilistic map and their 13 

fROI. Specifically, our hMT+ atlas-ROI is constrained by surrounding body-selective regions that 14 

compete for voxel selectivity. For the atlas generation in Huang et al. (2019), however, no 15 

functional activations other than motion-selectivity were used when defining the altas-hMT, 16 

making a comparison of both atlases an unequal comparison. 17 

 18 

RESULTS 19 

Superior spatial overlap after cortex-based alignment for retinitopic and category selective 20 

regions 21 

 Using data from 19 healthy participants we aimed at generating a probabilistic atlas of 22 

occipito-temporal and ventral temporal cortex.  Individually defined regions were normalized to 23 

group space using either (1) cortex based alignment (CBA) or (2) nonlinear volumetric alignment 24 

(NVA). Figure 1 displays three example regions, one early visual retinotopic region in occipital 25 

cortex (v1d), as well as two higher-order category-selective regions in ventral temporal cortex 26 
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(Cos-bodies and mFus-faces). Qualitatively, this resulted in a higher degree of consistency across 1 

subjects when group maps were normalized using CBA as compared to NVA. Both v1d and Cos-2 

places display a high consistency in the group map center as indicated by yellow colored vertices, 3 

while centers are more variable after NVA alignment, most evident in v1d. For mFus-faces, both 4 

group maps display a greater degree of variability across subjects than the other two regions, 5 

potentially due to region size and/or greater anatomical variability. 6 

 7 

 8 

Figure 1. Example probabilistic group maps in the left hemisphere after two brain alignments. (A) Three 9 
example regions-of-interest (ROIs) are displayed where the most left column, v1d, shows an early visual cortex map 10 
and the middle and right columns display two higher-order visual category-selective regions in ventral temporal 11 
cortex, Cos-places and mFus-faces. Probability values range from 0 to 1 where 0 indicates no subject at a given vertex 12 
and 1 that all subjects in the probabilistic maps shared the given vertex. mFus-faces reveals less consistency as shown 13 
by a lower percentage of yellow-colored vertices. Bottom inset displays zoomed in location of the main figure. (B) 14 
Same ROIs as in A but after nonlinear volumetric alignment (NVA). Bottom inset for CoS-places and mFus-faces 15 
indicates the location of the axial slice in the volume.  16 
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 1 

To quantify which group alignment resulted in higher consistency and therewith 2 

predictability, we used the dice coefficent (DSC) and a leave-one-out cross-validation procedure 3 

to determine the predictability of finding the same region in a new subject. Moreover, we 4 

calculated the dice coefficient using different thresholds for the probabilistic group map, ranging 5 

from a liberal unthreshold (one subject at a given voxel/vertex is enough to assign it to the group 6 

map) maps to a conservative threshold where all N-1 subjects had to share a voxel/vertex to be 7 

assigned to the group map (Fig. 2). 8 

For retinotopically defined regions, DSC’s varied between 0.35 and 0.55 for peak 9 

probability after CBA, and between 0.30 and 0.40 after NVA. Especially regions with a lower 10 

predictability overall tended to show superior predictability after NVA for more conservative 11 

group thresholds (e.g. Fig. 2b, mFus-faces, TOS-bodies). For CBA, peak predictibility (DSC) for 12 

each region ranged from 0.1 to 0.55, while it ranged from 0.1 to 0.42 for NVA, with character-13 

selective regions showing the lowest consistency for both alignments, closely followed by mFus- 14 

and IOG-faces. As the smaller regions seemed to show a greater variability we correlated ROI size 15 

(Fig. 3) with DSCs at a threshold of 0.2. 16 

Quantitatively, CBA displayed an overall greater predictability across regions and 17 

thresholds (except for v3d), which was confirmed by a significant difference in alignment for both 18 

unthresholded (F(1,34) = 20.12, p < .001) and thresholded (0.2) probability maps, matching the 19 

highest DSC across regions and alignments(F(1,34) = 174.84, p < .001). Additionally, there was 20 

no significant main effect for hemisphere (unthresholded: p = .90; thresholded: p = .56) and no 21 

interaction between alignment and hemisphere (unthresholded: F(1,34) = .85, p = .36, thresholded: 22 

F(1,34) = 0.35, p = .56). We followed up with a paired permutation test (across alignments) for the 23 

unthresholded DSC within each fROI. As there was no main effect for hemisphere (see above) and 24 

no significant difference in region size across hemispheres (t(17) = -0.48, p = .64, Fig. 3), 25 

permutation tests were performed on dice coefficients using an unthresholded group map 26 

prediction and averaged across hemispheres. Results show that CBA alignment has a higher 27 

predictability than NVA for all regions (p < .05), except for unthresholded: pOTS-characters (p = 28 
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1), IOS-characters (p = .81), v3d (p = .05), IOG-faces (p = .05) and thresholded: v3d (p = .05), 1 

mFus (p = .70), IOG (p = .55), pOTS (p = 1), IOS (p = 1), OTS (p = .14). 2 

 3 

 4 

Figure 2. Leave-one-out cross-validation predictability analysis using the dice coefficient (DSC) for retinotopic 5 
regions (A) and category-selective regions (B). x-axis: threshold of the probability map generated using N-1 6 
subjects, y-axis: DSC. A DSC value of 1 indicates perfect overlap between the N-1 group map and the left out subject 7 
0 indicates no overlap. Blue lines: DSC after CBA, red lines: DSC after NVA. Results for left and right hemisphere 8 
were averaged per alignment method. Red: face-selective ROIs, green: body-selective ROIs, yellow: character-9 
selective ROIs, light blue: motion-selective ROI, error bars: standard error (SE) across the N-fold cross-validation. 10 

 11 
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  1 

Figure 3. fROI size across occipito-temporal cortex. Average ROI size in surface space separately for the left 2 
hemisphere (LH, light gray) and right hemisphere (RH, dark gray). Error bars: standard error across subjects. Regions 3 
of X-axis are organized by category. 4 

 5 

A functional atlas of occipito-temporal cortex in volume and surface space 6 

By systematically varying the group map threshold for predicting a left-out subject’s fROI, 7 

we established that a group map threshold of 0.2 allows for greatest predictability across regions. 8 

Using the 0.2 threshold, we generated a functional atlas of occipito-temporal cortex by generating 9 

a maximum probability map (MPM, see Methods for details). Figure 4 displays the resulting 10 

unique tiling of category-selective regions in stereotaxic space for surface (Fig. 4A) and volume 11 

(Fig. 4B) space. The visfAtlas is publically available in both surface as well as volume space to 12 

allow usage in a variety of analyses and in file formats for BrainVoyager and FreeSurfer for surface 13 

space as well as in volume space using the NifTi format 14 

(https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). 15 
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 1 

 2 

Figure 4. Maximum-probability map (MPM) of occipito-temporal cortex functional regions-of-interest 3 
(fROIs). (A) visfAtlas in surface space after cortex-based alignment. Each color displays a unique fROI group map 4 
thresholded at 0.2 of all subjects in which the given fROI could be identified. (B) Volume atlas using the same color 5 
coding as in surface space. Inset between coronal and axial view displays the slice location for coronal and axial slices, 6 
respectively. LH: left hemisphere, RH: right hemisphere. 7 
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 1 

Generalizability of functional selectivity 2 

One of the advantages of a probabilistic atlas is the ability to locate a region of interest with 3 

a degree of certainty (as established using the dice coefficient analysis) in a new subject without 4 

the need to run a localizer itself. In order to quantify the atlas’ generalizability, the selectivity of 5 

the category selective areas in new participants is a crucial metric. Therefore, we performed a 6 

leave-subject-out selectivity analysis in volume space to assess category-selectivity. For each 7 

fROI, we established the percentage of voxels that showed the strongest response to each available 8 

category (Fig. 5, see Methods for details of selectivity estimation). For all category selective 9 

regions, we confirmed that the category it is selective for indeed yields the highest percentage of 10 

voxels across subjects. Face-selective fROIs (Fig. 5, top left) contain 52-72% (lowest to highest 11 

fROI) face-selective voxel responses (red). The second-highest selectivity is body-selective 12 

(green) with 10-43% on average across subjects, followed by character-selective regions (gray) 13 

with 2-25%. Body-selective regions (Fig. 5, top right) contain the highest proportion of body-14 

selective voxels for lateral bod-selective regions (80-94%), with lowest proportions for ventral 15 

OTS-bodies in left and right hemisphere (46-55%). The second-largest number of voxel-selectivity 16 

is face selectivity (1- 40%). Place-selective fROIs (Fig. 5, bottom left) show a large proportion of 17 

voxels with their preferred place selectivity (purple, 77-82%), followed by up to 21% body-18 

selective voxel. Character-selective ROIs (Fig 5., bottom right) on the other hand contain 41 - 52% 19 

character-selective voxel, followed by up to 38% body-selective voxels.  20 

 21 

 22 
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 1 

Figure 5. Selectivity analysis for category-selective fROIs using a leave-subject-out cross-validation procedure. 2 
For each major category - faces, bodies, places, characters – proportions of category selectivity are displayed with 3 
each region’s preferred category as the bottom bar of each stacked bar graph. Error bars: Selectivity estimate across 4 
all left-out subjects. 5 

 6 

Similarities between previously published atlas areas and our visfAtlas 7 

 In order to establish the correspondence of our probabilistic functional atlas to other atlases, 8 

we made quantitative comparisons to existing atlases of one or multiple regions localized with 9 

comparable stimuli. As retinotopic atlases are frequently used to define early visual cortices in 10 

new subjects, we wanted to compare our retinotopic areas v1-v3 dorsal and ventral to a group atlas 11 
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of retinotopic visual areas aligned to the fsaverage brain by Wang et al. (2014). To assess the 1 

correspondence between the two atlases we computed the dice coefficient (see Methods for details) 2 

between the existing group atlas and our visfAtlas region for each region separately. Qualitatively, 3 

v1d and v1v from both atlases show a high degree of overlap and correspondence decreases when 4 

moving to the dorsal and ventral v2 and v3 regions (Fig. 6A). In addition, there is a shift in the 5 

right hemisphere region location that is not present in the left hemisphere. This observation is 6 

confirmed with high dice coefficients for v1d and v1v in the left hemisphere (0.81 and 0.89, 7 

respectively) and lower dice coefficients in the right hemisphere (v1d: 0.70, v1v: 0.72). Both 8 

dorsally and ventrally, the difference between hemispheres becomes more prominent (LH: v2d: 9 

0.61, v3d: 0.53, v2v: 0.89, v3v: 0.59; RH: v2d: 0.34, v3d: 0.05, v2v: 0.54, v3v: 0.31).  10 

 In a similar fashion to the retinotopic regions, we compared a category-selective region - 11 

the CoS-places fROI  - to a published probabilistic version by Weiner et al. (2018) which used the 12 

same localizer for their study. Both atlases display a high correspondence, with a higher dice 13 

coefficient in the left hemisphere than in the right hemisphere (LH: 0.85, RH: 0.61). On lateral 14 

occipito-temporal cortex we compared a recently published motion selective group area of 15 

hMT+that has been defined using data from 509 adults. As their group fROI was not bound by 16 

body-selective regions with a maximum probability map (MPM) as ours, we chose to compare 17 

their group hMT+map with our probabilistic hMT+ that is also not restricted with body-selective 18 

areas. In the left hemisphere the dice coefficient is 0.59, and 0.69 in the right hemisphere and 19 

therewith showing a greater consistency in the right hemisphere. 20 

 21 
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 1 

Figure 6. Similarities across different probabilistic atlases and the visfAtlas. Superposition of our visfAtlas onto 2 
three existing probabilistic atlases. (A) A comparison of V1-V3 dorsal and ventral of the retinotopic atlas published 3 
by Wang et al (2014) and our respective visfAtlas regions. Regions are presented on a medial-occipital view of the 4 
fsaverage group brain. (B) CoS-places as published by Weiner et al (2018) and visfAtlas CoS-places, localized using 5 
the same stimuli and visualized using a ventral view of the fsaverage brain. (C) A probabilistic ROI of motion-selective 6 
hMT+published by Huang et al. (2019) and our probabilistic ROI, noteworthy, not the MPM as it is not restricted by 7 
surrounding body-selective regions, of hMT+shown in a lateral view of the fsaverage brain. Solid ROIs: published 8 
atlases by other groups; outlined ROIs: our visfAtlas ROIs. LH: left hemisphere; RH: right hemisphere. 9 

 10 

 11 
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DISCUSSION 1 

We generated a cross-validated functional parcellation of occipito-temporal visual cortex, 2 

including early-visual cortex retinotopic regions as well as category-selective regions. 3 

Additionally, we estimated predictability and selectivity for left-out subjects. We show that cortex-4 

based alignment (CBA) outperforms nonlinear-volumetric alignment (NVA) in most cases and 5 

that each probabilistic functional region maintains between 40% and 94% of its own category’s 6 

response in a left-out subject (Fig. 5), suggesting a higher precision of our surface-based atlas 7 

while also demonstrating its utility in volumetric MNI space. To our knowledge this is the first 8 

extensive cross-validated probabilistic atlas of category-selective regions in ventral temporal 9 

cortex besides CoS-places published by Weiner et al. (2018). We make this functional atlas of 10 

occipito-temporal cortex available in surface as well as volume space, together with a new 11 

BrainVoyager surface average that can be used for any surface-analysis 12 

(https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). 13 

 14 

Superior consistency of functional group regions after cortex-based alignment: Implications 15 

Spatial consistency in both retinotopic as well as category-selective regions was higher after 16 

CBA as compared to NVA (Fig. 3). The superior performance of CBA is in agreement with 17 

previous findings of retinotopic regions (Wang et al., 2014) as well as cytoarchitectonic regions 18 

and their relationship to functional parcellations of the ventral visual stream (Rosenke et al., 2017a, 19 

2017b). The greater consistency of functional parcellations highlights a strong coupling between 20 

macroanatomical landmarks and functional regions, which has indeed been observed in early 21 

visual cortex between V1 and the calcarine sulcus (Hinds et al., 2008), in intermediate visual areas 22 

between V3A as well as human V4 and the transverse occipital and collateral sulcus, respectively 23 

(Nasr et al., 2011; Tootell et al., 1997; Witthoft et al., 2014), as well as in lateral visual cortex for 24 

motion-selective hMT+ and two underlying sulci (Dumoulin et al., 2000; Weiner and Grill-25 

Spector, 2011). Similarly, various category-selective regions in ventral temporal cortex have 26 

shown a macroanatomy-function coupling (Grill-Spector and Weiner, 2014; Weiner et al., 2018, 27 

2014; Weiner and Grill-Spector, 2013). 28 
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 Historically, functional regions were assumed to have a greater variability (a) in higher-1 

visual cortices, as well as (b) a weak co-occurrence with macroanatomical landmarks. However, 2 

as pointed out using various anatomical-functional correspondences in the paragraph above and 3 

supported by higher functional consistency after microanatomical alignment in recent work (Wang 4 

et al., 2014), this does not hold true. In accordance with this, our leave-one-out cross-validation 5 

procedure shows that five regions sensitive to visual stimulation of specific categories (pFus-faces, 6 

LOS-bodies, ITG-bodies, CoS-places, motion-selective hMT+, Fig. 3) have a similar amount of 7 

overlap as retinotopic regions outside of V1. Other functional regions, however, show more 8 

variability (e.g. mFus-faces, pOTS-characters, MTG-bodies, Fig. 3, see also Frost and Goebel, 9 

2012). This highlights how other factors besides location in the cortical hierarchy play a role in 10 

the consistency of functional regions, and we discuss a few possibilities here: First, it may be a 11 

factor of region size, as even though the dice coefficient takes overall region size into account, 12 

region size still correlates with dice coefficient results (Rosenke et al., 2017a). Future efforts 13 

should include the exploration and development of measures that are independent of region size. 14 

Second, functional variability can in part be influenced by the functional-macroanatomical 15 

consistency across subjects. For example, the anterior tip of a macroanatomical landmark, the mid-16 

fusiform sulcus (MFS), has been shown to be a more stable predictor of functional regions than its 17 

length or posterior section (Weiner et al., 2014). This indicates that not all anatomical structures 18 

that get aligned during CBA have to have an equally strong relationship to a functional region of 19 

interest. Third, the quality of the macroanatomical alignment across subjects may vary across 20 

cortical locations due to greater anatomical variability across individuals. While results of cortex-21 

based alignment are often seen as precise and superior to other methods, it is easily overlooked 22 

that functional consistency is often evaluated under the assumption that anatomical alignment is 23 

perfect. However, Frost and Goebel (2012, 2013) showed that while CBA outperforms non-aligned 24 

and volumetrically-aligned anatomical landmarks, macroanatomical landmarks still show a degree 25 

of variability unique to each landmark. One can imagine that for smaller landmarks with greater 26 

variability, e.g. the partially fragmented occipito-temporal sulcus (OTS), CBA will be less able to 27 

align landmarks compared to highly consistent anatomical structures. A future, more advanced, 28 

alignment scheme could take such emerging knowledge into account by using non-homogeneous 29 

regional weights for curvature landmarks.  30 
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 1 

Structures defined in maximum probability map are category specific  2 

As the main purpose of a functional atlas is to allow generalization to new individuals, 3 

confirmation and validation of the functional selectivity of the delineated areas is crucial. We used 4 

a leave-one-out approach to quantify the generalizability of our maximum probability map, and 5 

demonstrate that voxels within a region-of-interest are highly selective to the category that the ROI 6 

is known to respond to. This is an important confirmation of one of the underlying assumptions of 7 

functional atlases: a (macro-)anatomical correspondence to function (Grill-Spector and Weiner, 8 

2014; Weiner et al., 2018, 2014; Weiner and Grill-Spector, 2013), which can be utilized when 9 

aligning a new subject’s macroanatomy to the macroanatomy an existing functional atlas is based 10 

on. 11 

As can be observed in Figure 5, for each category-selective region, the largest proportion 12 

of voxel selectivity is that of the own category with the lowest overall proportion for word-13 

selective regions (Fig. 5, bottom right). Furthermore, the highest proportion of own-category-14 

selectivity can be found in lateral body-selective regions (Fig. 5, top right). One possible 15 

explanation for the variability in this location is the proximity to other category selective regions. 16 

For example, when comparing face-and body selective areas in ventral temporal cortex (see Fig. 17 

4 A for details), they are very close together as well as adjacent, when compared to body-selective 18 

regions in lateral occipital cortex. This close proximity increases the likelihood of overlapping 19 

functional specificity of atlas boundaries that may or may not align precisely with a new subject’s 20 

functional selectively. Next, areas in ventral temporal cortex tend to be smaller. Due to the nature 21 

of our selectivity measure, dividing the number of category-preferring voxel within a region by 22 

the total number is more drastically influenced by single voxels in smaller regions as compared to 23 

larger regions.  24 

 25 

Consistent functional loci across different atlases 26 
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Comparing our visfAtlas regions to existing atlases can highlight the effects of (1) different 1 

localizer stimuli (e.g. Fig 6 A & C), as well as (2) effects of the number of subjects included in a 2 

group map (Fig. 6). With retinotopy being one of the fundamental organizational principles of 3 

visual cortex (Arcaro et al., 2009; Brewer et al., 2005; Dumoulin and Wandell, 2008; Orban et al., 4 

2004; Sereno et al., 1995) we aimed at comparing our retinotopic regions V1-V3 dorsal and ventral 5 

to an existing atlas published by Wang et al. (2014). Interestingly, V1d and V1v show a high 6 

degree of overlap across both atlases (Fig. 6A), especially in the left hemisphere. Right hemisphere 7 

V1 of the visfAtlas extends more dorsally, consequently shifting other right hemisphere retinotopic 8 

regions as compared to the atlas by Wang et al.  (2014). In addition, we compared our visfAtlas 9 

CoS-places to a CoS-places published by Weiner et al. (2018), who used the same localizer for 10 

their atlas as well as the same statistical threshold for defining CoS-places in each subject (t=3). 11 

Interestingly, also here the probabilistic ROIs differ more in the right than left hemisphere (Fig. 12 

6B). However, we found no differences across hemispheres for region size as well as predictability, 13 

providing evidence against our assumptions. The fact that the right hemisphere showed more 14 

differences across atlases could be due to a variety of factors. 15 

Next to retinotopic regions of early visual cortex, we also compared our motion-selective 16 

hMT+ to a recently published probabilistic atlas, based on a large-scale dataset of  >500 17 

participants (Huang et al., 2019). In this work, a visual localizer (moving concentric rings which 18 

expanded or contracted) different from ours (circular block of dots moving in several directions) 19 

was used and might explain the slightly different loci of the hMT+ probability map presented here. 20 

Our hMT+ localizer may include less medial superior temporal (MST) area due to the differences. 21 

However, the probabilistic maps are difficult to compare due to the large difference in sample size 22 

between their and our study. The region published by Huang et al. (2019) has a surface area more 23 

than double from ours, highlighting the inter-subject variability in hMT+ location. 24 

Ultimately, besides the differences across atlas regions, each of the three atlases compared 25 

with our visfAtlas defines cortical areas with the same functional locus, highlighting the utility of 26 

functional atlases for future neuroimaging studies. 27 

 28 
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Conclusion and future uses 1 

To this date, no probabilistic atlas has been published which contains such an extensive set 2 

of functional regions in occipito-temporal cortex. The present study shows that most of the 3 

category-selective regions can indeed be found in new subjects at predicted locations with 4 

functional magnetic resonance imaging. Additionally, these regions show high specificity towards 5 

their respective categories. Finally, we showed that these selectivity results are generalizable by 6 

means of a leave-one-out analysis. Future studies should aim at extending this atlas by including 7 

dynamic stimuli in addition to static, since those are more suitable for ventral temporal correct and 8 

further category-selective regions in lateral occipital cortex could be delineated using dynamic 9 

stimuli (Beauchamp et al., 2003; Grossman and Blake, 2002; Pitcher et al., 2011; Puce et al., 1996). 10 

The functional atlas of occipito-temporal cortex in both, surface and volume space, is 11 

available in most commonly used imaging data formats 12 

(https://share.brainvoyager.com/index.php/s/m2E9oZTGWwXodRk). Our atlas may prove 13 

especially useful for (a) predicting a region of interest when no localizer data is available, saving 14 

scanning time and expenses or (b) for comparison’s across modalities as patient populations as for 15 

example patients who are brain lesioned (Barton, 2008; de Heering and Rossion, 2015; Gilaie-16 

Dotan et al., 2009; Schiltz and Rossion, 2006; Sorger et al., 2007; Steeves et al., 2006) or 17 

congenitally blind (Bedny et al., 2011; Mahon et al., 2009; Striem-Amit et al., 2012; van den Hurk 18 

et al., 2017). 19 
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