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Abstract 

Marked-point process models have recently been used to capture the coding 
properties of neural populations from multi-unit electrophysiological recordings 
without spike sorting. These ‘clusterless’ models have been shown in some instances 
to better describe the firing properties of neural populations than collections of 
receptive field models for sorted neurons and to lead to better decoding results. To 
assess their quality, we previously proposed a goodness-of-fit technique for marked-
point process models based on time-rescaling, which for a correct model, produces a 
set of uniform samples over a random region of space. However, assessing 
uniformity over such a region can be challenging, especially in high dimensions. 
Here, we propose a set of new transformations both in time and in the space of spike 
waveform features, which generate events that are uniformly distributed in the new 
mark and time spaces. These transformations are scalable to multi-dimensional mark 
spaces and provide uniformly distributed samples in hypercubes, which are well 
suited for uniformity tests. We discuss properties of these transformations and 
demonstrate aspects of model fit captured by each transformation. We also compare 
multiple uniformity tests to determine their power to identify lack-of-fit in the 
rescaled data. We demonstrate an application of these transformations and 
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uniformity tests in a simulation study. Proofs for each transformation are provided in 
the Appendix section. We have made the MATLAB code used for the analyses in 
this paper publicly available through our Github repository at 
https://github.com/YousefiLab/Marked-PointProcess-Goodness-of-Fit 
1 Introduction 

In recent years, marked point process models have become increasingly common in 

the analysis of population neural spiking activity [1-3]. For multi-unit spike data, 

these models directly relate the occurrences of spikes with particular waveform 

features to the biological, behavioral, or cognitive variables encoded by the 

population, without the need for a separate spike-sorting step. For this reason, these 

are sometimes called ‘clusterless’ neural models. Clusterless models have been 

shown to capture coding properties for spikes that cannot be sorted with confidence 

and to lead to improved population decoding results in place field data from rat 

hippocampus during spatial navigation tasks [1-3]. Additionally, avoiding a 

computationally intensive spike-sorting step allows for neural decoding to be 

implemented in real-time, closed-loop experiments. 

A critical element of any statistical modeling procedure is the ability to assess the 

goodness-of-fit between a fitted model and the data. For point process models of 

sorted spike train data, effective goodness-of-fit methods have been developed based 

on the time-rescaling theorem [4, 5]. Previously, we developed an extension of the 

time-rescaling theorem for marked point processes, which given the correct model, 

rescales the observed spike and mark data to a uniform distribution in a random 

subset of a space of the marks and rescaled times [6]. We can then use established 

statistical tests for uniformity to assess whether the model used for rescaling is 

consistent with the observed data. However, several challenges still limit the 

efficient application of these methods to marked point process models, in some 

cases. For models with high-dimensional marks representing the waveform features, 

computing the space in which the rescaled data should be uniform can be 

computationally expensive [6]. Since this space is random and typically not convex, 

the number of statistical tests for uniformity is limited to those that can be applied in 

general spaces. Finally, of the multitude of uniformity tests, it is often not clear 

which should be applied to the rescaled data.       
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Here, we propose several extensions to this goodness-of-fit approach based on 

combinations of time and mark scaling, which for a correct model, transform the 

observed spike and waveform data to uniformly distributed samples in a hypercube. 

This in turn, simplifies and opens up more options for assessing uniformity. We 

discuss properties of each transformation and demonstrate which aspects of model 

lack-of-fit are better captured using each. Finally, we perform a simulation analysis 

to compare and contrast the transformations proposed here – along with the multiple 

uniformity tests - to assess different models’ fit to the simulated data.  

Our goal here is not to identify one single, best transformation and uniformity test 

for assessing goodness-of-fit of marked point process models; instead, we aim to 

provide a toolbox of methods to identify multiple ways in which a model may fail to 

capture structure in the data and to provide guidance about which methods are most 

likely to be useful in different situations. We also developed an interactive and easy-

to-use toolbox for the transformations and uniformity tests described here, to assist 

other researchers in applying these goodness-of-fit techniques in their analysis of 

neural spike trains.  

The paper is organized as follows: we first introduce each transformation in detail 

and briefly discuss their core properties. We then discuss different uniformity tests 

and their main attributes. We then go through a simulation example and compare 

goodness-of-fit results for the true and a set of alternative generative models. We 

finish the paper with theoretical proofs that the transformations under the correct 

model yield uniform samples.   

2 Marked-Point Process to Uniform Transformation 

In this section, we introduce two transformations that take a dataset of spike times 

and waveforms from a marked point process model to a set of identically distributed 

uniform samples on the hypercube �0  1����, where � is the dimension of the mark 

used to describe the spike waveform features in the model. We also discuss 

properties of both transformations and explain which features of model misfit can be 

better captured by each transformation. 
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A marked point process model is defined by a joint mark intensity function (JMIF), ��	, ����, where 	 represents time, and ��� represents a vector mark describing spike 

waveform features. ��	, ���� is defined so that the likelihood of observing a spike at 

time 	 with a waveform with features in a neighborhood � of ��� is given by,  

Pr�spike at �	, 	 � Δ� with mark in Μ|!�� " # ��	, ���� 

�
����Δ  

A marked point process model expresses this intensity as a function of any signals or 

covariates encoded by the neural population, $�	�, and the history of spikes and 

waveforms up to time 	, !�. Using this joint mark intensity, we can compute the 

ground intensity, Λ�	� " # ��	, ���� 

�
����, where � is the full space of marks, which 

defines the intensity of observing any spike at time 	. Similarly, we can define the 

mark intensity, Γ����� " # ��	, �����

�
�	. 

For an observation interval, �0, '�, we observe a sequence of spike events at times 0 "  (�  ) (� )  (	  ) *  )  (
 ) * )  (��� )  ' with associated marks ���
 , 

for  + " 1, … , -�'� with joint mark intensity function ��	, ����. We assume this joint 

mark intensity function is integrable over both time and mark space. The notation 

we use to define the data and model components are listed in Table 1. 

Table 1: Notation for the marked point process model and data 

Name Mathematical Notation 

Joint Mark Intensity Function � �	, ���� 

Ground Intensity Λ �	� 

Mark Intensity Γ ����� 

Full Spike Event �(
 , ���
� 

Spike time (
 

Spike mark ���
 

Conditional mark distribution ���
|(
 

Conditional intensity (
|���
 
 

In the following subsections, we present the transformations and associated 

uniformity tests. 
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2.1 Interval-Rescaling Conditional Mark Distribution Transform 

(IRCM) 

This algorithm requires the computation of the ground intensity – Λ �	� – followed 

by the conditional mark distribution – ���|(
 . We first rescale the inter-spike intervals 

across all observed spikes based on the ground intensity. We then rescale each mark 

dimension sequentially, using a Rosenblatt transformation [7] based on the 

conditional mark distribution given the spike time. The order of conditioning for the 

mark features can be specified directly or selected randomly. The dimension of new 

data samples is � � 1, where � is the dimension of mark space. The transformed 

data samples are i.i.d with a uniform distribution in the hypercube �0 1����. The 

following table presents the first algorithm, which we call the Interval-Rescaling 

Conditional Mark Distribution Transform or IRCM.  

Algorithm 1 Interval-Rescaling Conditional Mark Distribution Transform 

(IRCM)  

• Select a mark dimension ordering: Θ�/� is a permutation of / 0 11, … , �2  
• Compute the ground intensity: Λ �	� " # � �	, �������� 

�
 for all 	  

• for each + in 1 … -�'�  
Compute the conditional mark density: 3����|(
� " � �(
 , ����/Λ �(
�  
Set: 5
 " 1 6 exp �6 # Λ �	��	���

����
       

Set: 8


��� " # 3�����|�

����� , … ,��

����

��
�


��� , (
������        / "1, … , � 
 
end for 

• Under the correct model, 98


��, 5
; / " 1, … , �;    + " 1, … , -�'� are 

i.i.d. samples with a uniform distribution over the hypercube �0 1���� 
 

 

No matter which ordering we select for the mark components, the i.i.d. and 

uniformity properties will hold for the true model. The theoretical proof of IRCM 

transformation is included in Appendix A.1 section - Theorem 1 and Corollaries 1, 

and 2.  

The rescaled data samples from the IRCM transformation not only provide insight 

about the overall quality of the proposed joint mark intensity function, but also 

reveal finer aspects of the model fit or misfit. The 5
  samples are computed using 
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only the spike times and the estimated ground intensity model and can be used 

separately to assess the goodness-of-fit of the temporal component of the model to 

the unmarked spike times using the time-rescaling theorem [5]. The 8

��� samples 

for a fixed dimension, /, are computed using only marks Θ�1�, … , Θ�/� and the 

conditional mark density, 3�����|������ , … , ����, (
�; if samples 8

���  for < ) /  

are uniform but  8

��� are not, this suggests specific lack of fit in modeling the 

coding properties of the waveform features associated with mark dimension /. 
2.2 Mark Density Conditional Intensity Transform (MDCI) 

This algorithm requires rescaling time separately for each spike, based on its joint 

mark intensity. This can potentially break the ordering of spikes with different 

waveform features, while spikes with similar waveforms will tend to maintain their 

relative ordering. Next, the algorithm sequentially rescales each mark dimension, 

again based on a Rosenblatt transformation [7]. Like IRCM, we can choose any 

ordering for the mark features, or select a random ordering. Distinct from IRCM, 

this transformation does not depend on the time of the spike, only on its mark value. 

The table below describes this mapping, which is called Mark Density Conditional 

Intensity Transform or MDCI. 

Algorithm 2 Mark Density Conditional Intensity Transform (MDCI) 

• Select a mark dimension ordering: Θ�/� is a permutation of / 0 11, … , �2   
• Compute the mark density function: 3����� " Γ  �����/ # Γ  ��������� 

�
 

• for each + in 1 … -�'�  

Set: 8


��� " # 3�����|�

�����, … ,��

����

��
�


���������        / " 1, … , � 

Compute the rescaled intensity: 3�	|���
� " � �	, ���
�/Γ �������� 
Set: 5
 " # 3�	|���
��	��

�
       

end for 

• Under the correct model, the unordered points, 98


��, 5
; / " 1, … , �; + "1, … , -�'� are uniformly distributed over the hypercube �0 1���� 
 

 

The proof that the MDCI transformation under the true conditional intensity model 

leads to uniform samples is included in Appendix A.2 section – Theorem 2. 
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The key difference between the IRCM and MDCI transforms is that the IRCM 

transforms the inter-spike intervals independent of their marks and then transforms 

each mark based on the intensity of spikes with that waveform at the observed time, 

while the MDCI transforms the marks independent of when the corresponding 

spikes occur and then transforms time differently for each spike waveform. For 

neural spiking models, the IRCM examines the intervals between spikes, and tends 

to mix the marks so that spikes with similar waveforms may end up far apart in the 

transformed mark space; inversely, the MDCI tends to leave spikes with similar 

waveforms nearby in the transformed mark space, while mixing up the spike timing 

from different neurons. Another important difference is that, for the correct model, 

the IRCM generates i.i.d. uniform samples while the MDCI samples are not 

independent. However, the set of all the unordered MDCI samples do have a joint 

uniform distribution. We therefore expect these transforms to allow us to determine 

separate aspects of lack of fit. The misfit associated with the model of individual 

neurons or particular waveform features might be better assessed using MDCI while 

misfit associated with interactions between neurons might be better assessed using 

IRCM. We investigate these expectations in the Simulation section below. 

In this section, we described two algorithms which take marked point process data 

and map them to uniformly distributed samples in a hypercube, �0 1���� based on 

their joint mark intensity. These methods allow for marks of arbitrary dimension. In 

Appendix B we describe one additional transformation, which applies in the specific 

case where the mark is scalar. 

3 Uniformity Tests 

There are a multitude of established uniformity tests for one-dimensional data; 

however, the number of established, robust, multi-dimensional uniformity tests is 

more limited. Pearson’s chi-square test can be used to assess uniformity by 

partitioning the space into discrete components and computing the number of 

samples in each [8, 9]. Another approach is to apply a multivariate Kolmogorov-

Smirnov (KS) test [10], which uses a statistic based on the maximum deviation 

between the empirical multivariate cdf and that of the uniform to build a distribution 

free test for multi-dimensional samples. Other test statistics are derived from 
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number-theoretic or quasi-Monte Carlo methods for measuring the discrepancy of 

points in �0  1�� [11, 12]. Using Monte Carlo simulation, it is known that the finite-

sample distribution of these statistics can be well approximated by a standard normal 

distribution [11, 12]. Two other approaches to assessing multivariate uniformity are 

based on distances between samples and the boundary of the hypercube [13] and 

distances between nearest samples, which leads to the computation of Ripley’s K 

function [14-16]. Fan [17] describes a test based on the =	 distance between the 

kernel density estimate of the underlying probability density and the uniform 

distribution. Other tests include those built upon order statistics [18], Friedman-

Rafsky's minimal spanning tree [19], or a weighted >-function [20-22]. There are 

several other multivariate uniformity tests which are not presented here; a 

comprehensive discussion of scalar and multivariate uniformity tests can be found in 

[23]. There are also uniformity tests specifically designed for two- and three-

dimensional spaces including complete spatial randomness or bivariate Cramer-von 

Mises tests that are described in [24-26].  

Here, we investigate a few of these approaches in terms of their ability to detect 

model misfit in rescaled samples from the spike transformations described above; 

the tests are a Pearson’s chi-square test [8], a multivariate KS test [10], the distance-

to-boundary method [13], a discrepancy-based test [11], a test based on Ripley’s >-

function [14-16], and a test using minimum spanning trees (MST) [27, 28]. The tests 

are described in detail in the cited literature and are expressed algorithmically in 

Table 2. These tests tend to be straightforward to implement with a few exceptions; 

Ripley’s >-function becomes computationally expensive to test in more than two 

dimensions; Pearson’s chi-square requires defining a set of sub-regions of the 

hypercube. The remaining tests do not require any parameters to be selected except 

for the test significance level. 

Table 2: Uniformity Tests; � is the dimension of the data, ? is the number of data 
samples, and @ is the significance level 

Test Name Method 
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Pearson �� 
test [8] 

1. Define M sub-regions, �	  � � 1, … , 	  in the hypercube �  
2. Let 
	 � ��	�/|�|, where |�| represents the volume of region �.  

3. Calculate �
 � ∑ ��	 � �
	�
 �
	��
	�  using the rescaled data samples, 

where �	 is the number of samples in �	 
4. If �
 � ���


 �1 � �� reject the null hypothesis, where  ���

 �1 � �� is the 

inverse of the chi-square cdf with  	 � 1 degrees of freedom. 

Multivariate 
Kolmogorov-
Smirnov test 

[10] 

1. Define � 
�� � sup� |�  !�

�1, … , !�
�d, "�# � "� ∏ !�

�d�
�� |, where ��·� is 

the empirical multivariate CDF  
2. Use Monte Carlo simulation to find the critical value – &� – for the test at 
the significance level of �  
3. Calculate � 

�� using transformed data samples. 
4. If � 

�� � &� reject the null hypothesis  

Distance to 
boundary test 

[13] 

1. Define ��", '(� � min����,- � ",, where '( is the boundary of the 
hypercube and ,·, is Euclidean norm on ��  
2. Calculate .� � ��"� , '(�/max ���"	, '(�� for � � 1, … , �  samples 
3. Calculate ��� � sup� |��.�� � 1 1 �1 1 .���|, where ��·� is the empirical 
CDF  
4. If ��� � &�/√� , where &� is the KS critical value, reject the null 
hypothesis 

Discrepancy 
test [11] 

1. Calculate A� � √n4�U � M�� 1 2�U
 � M��8/�95ξ� ,  
-Appendix C.1 provides the definitions for 	, <, U1 and U2 

Under the null hypothesis,  A� has a standard normal distribution, 
2. If |=�| � >�/
, reject the null hypothesis, where >�/
 is the critical value of 
a standard normal at significance level α . 
 

Ripley 
statistics test 

[15, 16]  

1. Compute the distance from each rescaled point to its nearest neighbor, 
 rA � Br, … , r�C   
2. For each �� calculate Ripley’s D-function statistics by KF�r�� �
∑ IBd�u , u!� I r�C"�#"�

  

3. Let KF �  KF�r� � B�r�, … , KF�r�� � B�r��# where  B�r�� � � $

%
r�

% 1 



r�

& 

4. Calculate T
 � LΣ�

��KF � πrA 

�L - under the null hypothesis,  T
 has a chi-

square distribution with  d degree of freedom -Appendix C.2 provides the 
definition for  Σ . 
5. If T
 � χ�


�α�, where ��

�α� is the chi-square critical value, reject the null 

hypothesis 
 

Minimal 
Spanning Tree 
(MST) test [27, 

28] 

1. Draw P multi-variate uniform sample points 
2. Calculate the number of degree pairs, &, in the MST that share a common 
node.  
3. If Q� is the degree of R'( node, C is defined by  C � 1/2 ∑ d �d �)

 �

1� , N � m 1 n 
4. Calculate the number of edges linking a point from the generated data to 
uniform sample points – U 
5. Under the null hypothesis assumption, calculate 

 VarWT|CX � 
*�

)�)��
�
*��)

)
1 +�),


�)�
��)�%�
WN�N � 1� � 4mn 1 2X� and  EWTX �


*�

),
 

6. Calculate  D � �T � EWTX�/9VarWT|CX  
7. If � \ >�, reject the null hypothesis, where >� is the �-quantile of the 
standard normal distribution 
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The data transformations require the selection of an ordering of the mark 

dimensions; the uniformity tests can be applied to one particular ordering or can be 

modified to allow for assessment across multiple permutations of orderings. In such 

cases, the test procedures should be adjusted for multiple comparisons [29].  

4 Simulation Study 

In this section, we demonstrate an application of the IRCM and MDCI 

transformations along with the multiple uniformity tests described in the Table 2 to 

assess their ability to measure goodness-of-fit in simulation data. We first describe 

how the simulation data is generated, and then examine the transformations and 

goodness-of-fit results. 

4.1 Simulation Data 

We generate simulated spiking data using a marked-point process intensity model 

consisting of two connected neurons encoding a simulated position variable, x�. $� is 

modeled as an AR1 process, $� " @$��� � A� (1) 

where @  is set at 0.98 and A� is a zero mean white noise process with a standard 

deviation of 0.3. The neurons’ spiking activity depends on $� and on previous 

spiking; each neuron has a refractory period and neuron 2 has an excitatory 

influence on neuron 1. We generate the simulated spike data in discrete time using a 

step size of 1 millisecond, based on the following joint mark intensity function  ��	, �� " B��,��$�� � ��,��	�C��,��	�DE�; F�,��	�, G�,�
	 H� �	,��$���	,��	�DE�; F	,��	�, G	,�

	 H 
(2) 

where, D�$; I, G	� is the pdf of a normal distribution with mean w and variance G2 

at point $ , used to represent the variability of the spike waveform marks. In 

Equation (2)  

��.��$�� " J$K LM� 6 E$� 6 N�,�H	

2G�,�
	

P   Q " 1,2 (3) 
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represents the receptive fields of neuron 1 and 2, N�,� and G�,�
	  define the field center 

and width, and M� define the peak firing rates. The excitatory influence of neuron 2 

on neuron 1 is defined by 

��,��	� " R J$K SM! 6 �	 6 (
 6 T�	2G�
	 U����


"�

V#��$%-& (4) 

where W	 is the set containing all the spike times of neuron 2 and T  is the time lag of 

the peak effect of each neuron 2 spike on neuron 1. The variable M! defines the peak 

excitatory influence from neuron 2 on the firing rate of neuron 1. The history 

dependent terms for each neuron, are defined by 

��,��	� " R L1 6 J$K S6 �	 6 (
�	2G	
	

UP����


"�

V#��$%.&      Q " 1,2 (5) 

where, -�	�� is the total number of spikes up to, but not including, time 	 and W�  is 

the set containing the spike times for each neuron. The mark process for each neuron 

is a scalar random variable with distribution �~-EF�,��	�, G�,�
	 H    Q " 1,2.    (6) 

The marks are normally distributed with a time-dependent mean and a known 

variance G�,�
	 , Q " 1,2. The time-dependent mean for each neuron is defined by 

F�,��	� " N�,� � Z 	'      Q " 1,2 (7) 

where, N�,� is the time-independent component of the mean and ' is the total time 

interval for the experiment. Z defines how rapidly the mean of mark distribution 

changes as a function of time. Such a time-dependent drift in the mark could reflect 

changes in the spike waveform amplitude of each neuron due to electrode drift, for 

example. Table 3 shows the numerical values of the model free parameters. We note 

that these parameters are assumed to be known in both the true and mis-specified 

models. Here, we are focusing on assessing lack-of-fit due to model misspecification 

rather than due to parameter estimation error. 

 

Table 3: Values for the simulation model parameters 

Parameter Value 
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] Neuron1 peak firing rate log �0.18� 

]
 Neuron 2 peak firing rate log �0.18� 

]% Peak excitatory influence log �0.3� 

e,� Mean of receptive field model for neuron 1 �2 

e
,� Mean of receptive field model for neuron 2 2 

f,�

  Variance of receptive field model for neuron 1 0.5 

f
,�

  Variance of receptive field model for neuron 2 0.5 

e,0 Neuron 1 time-independent marks’ mean 11 

e
,0 Neuron 2 time-independent marks’ mean 12 

g Mark time dependency drift parameter 0.8 

f,0

  Variance of neuron1 mark distribution 0.09 

f
,0

  Variance of neuron2 mark distribution 0.09 

f

 Excitatory term variance 2 

f


 Inhibitory term variance 14 

r Lag time of the excitatory influence 10 
 

 

To assess how the IRCM and MDCI transformations, and the selected uniformity 

tests can capture the extent or lack of goodness-of-fit for marked-point process data, 

we generate simulated spike data using the joint marked intensity model described in 

Equations (2) - (7); we compare the assessed goodness-of-fit of a set of alternative 

models, including the true model and a number of mis-specified models, to fit this 

data. The true model is the one specified by Equations (2) - (7) and the parameter 

values in Table 3. The first mis-specified model uses the correct place and mark 

structure for each neuron and the interaction between them, but omits the refractory 

period for each neuron; the JMIF is ��	, �� " ���,��$�� � ��,��!���DE�; F�,��	�, G�,�
	 H� �	,��$��DE�; F	,��	�, G	,�

	 H 
(8) 

The second mis-specified model lacks only the excitatory influence of neuron 2 on 

neuron 1; its JMIF is  ��	, �� " ��,��$����,��!��DE�; F�,��	�, G�,�
	 H� �	,��$���	,��!��DE�; F	,��	�, G	,�

	 H 
(9) 
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The final mis-specified model includes all components, but lacks the temporal drift 

in the mark distribution for both neurons; its JMIF is  ��	, �� " B��,��$�� � ��,��!��C��,��!��DE�; N̂�,� , G\�,�
	 H� �	,��$���	,��!��DE�; N̂	,� , G\	,�

	 H 
(10) 

where, N̂�,� " N�,� 6 0.5 Z   are the means and G\�,�
	  are the variances of the mark 

density for each neuron, based on the best estimates of these parameters using the 

true model under the incorrect assumption that the means are constant.  

 

A

B 

 Figure1: Simulated spiking by a marked-point process model with JMIF and $� 
defined in Equations (1)-(7). There are 784 spikes in this example. (A) 

Simulated x� and spike locations in time t. Spikes from neuron 1 change from 
red to yellow to indicate time into the simulation. Similarly, spikes from neuron 

2 change from blue to green. This coloring scheme will help visualize the 
transformations in the IRCM and MDCI mappings in subsequent figures. (B) 
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Mark values of each spike. Red and blue colors imply whether a spike comes 
from neuron 1 or neuron 2, respectively. 

 

Figure 1 shows an example of the simulation data including the spike times and 

marks along with the position variable generated using the true model. This example 

includes 784 spikes - 486 from neuron 1 and 298 from neuron 2. The range of marks 

for neuron 1 is from 9.62 to 11.77 and for neuron 2 is from 10.53 to 12.71. This 

overlap means that perfect spike sorting using this single mark is impossible. 

Similarly, these two neurons fire over overlapping regions of space - $� – as shown 

in Figure 1.A.  

4.2 Transformation results 

Figure 2 shows the mapping results for the IRCM transform of the simulation data 

using the true and alternative models. The colors of the dots indicate both the 

identity of the neuron generating the spike and the relative order of the spike within 

the experiment, matching those of Figure 1A. For the true model (Figure 2A), the 

transformed points are shuffled in both the rescaled time and mark axes. Visually, 

the transformed points appear uniformly distributed over the square; we will assess 

this quantitatively using multiple uniformity tests in the next section. Figure 2B 

shows the transformed data using the first mis-specified model, which lacks the 

refractory behavior of each neuron. When this inhibitory history term is omitted, the 

ground intensity function is over-estimated immediately after each spike, which 

increases the values of u. Since the missing inhibitory term does not affect the 

marks, the transformed data points in v axis do not show clear deviation from 

uniformity. Figure 2C shows the mapping result for the model missing the excitatory 

influence from neuron 2 to neuron 1. In this mis-specified model, a subset of the 

transformed data points is shifted toward lower values of u, since the intensity for 

neuron 1’s marks are underestimated immediately after neuron 2 spikes. In addition, 

since the influence of excitatory term is only on neuron 1, it is primarily the red to 

yellow rescaled points that are concentrated near the origin.  

Figure 2D shows the rescaled data using the alternative model missing the drift in 

the mark structure. Here, there is no apparent lack of uniformity among the points, 
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but there is a clear pattern wherein the yellow and green points from the end of the 

simulation session tend to cluster near the origin and the red and blue points from 

earlier in the session tend to cluster near the opposite corner of the square. This 

suggests that simple tests of uniformity might be insufficient to detect this lack-of-fit 

based on the IRCM transformation. In this case, including tests for independence 

between rescaled samples may provide a more complete view of model fit to the 

observed data.  

A. True Model B. Missing Refractoriness 

  

C. Missing Neural Interaction D. Constant Mark  

  

Figure 2: Rescaling results for the IRCM algorithm using four different models 
– the true model and three alternative models described in section 4.1; dot color 

indicates the neuron identity and timing of spike before rescaling, consistent 
with Figure 1A. (A) Rescaling using the true mark intensity function produces 
apparently uniform data, (B) Rescaling using the missing refractoriness model 

shows clear non-uniformity in u axis, (C) Rescaling using the missing 
interaction model shows clustering of points from neuron 1 at the origin (D) 

Rescaling using the missing mark drift model produces apparently uniform, but 
not independent samples 
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Figure 3 shows the rescaling results for the MDCI algorithm. Figure 3A shows the 

transformed data points using the true model are distributed uniformly. In contrast to 

IRCM, there is little shuffling of points along the rescaled time and mark axes. In 

this transform, each neuron’s early spikes tend to rescale to smaller values of  and its 

late spikes tend to rescale to later values of 5
 . Therefore, each 5
  individually is not 

uniformly distributed; however, the full set of unordered rescaled times are jointly 

uniform.  

Figure 3B shows the rescaled points for the mis-specified model lacking 

refractoriness. Visually, there is no clear evidence of lack of uniformity among the 

samples, suggesting that tests based on this transform may lack statistical power to 

reject this mis-specified model. When the excitatory influence of neuron 2 on 

neuron 1 is omitted from the model (Figure 3C), a subtle deviation from uniformity 

in observed in the resulting transformed data; the fewer spikes from neuron 2 (blue 

to green points) occupy as much area as the more prevalent spikes from neuron 1 

(red to yellow points) suggest a lack of uniformity along the v axis. Figure 3D shows 

the rescaled points for the model lacking the drift in the marks. This leads to an 

apparent drift in the rescaled points, with earlier spikes producing larger values of v 

and later spikes producing smaller values of v. Unlike the IRCM transformation, the 

lack of uniformity is visually clear for this mis-specified model.  

 

A. True Model B. Missing Refractoriness 

  

C. Missing Neural Interaction D. Constant Mark 
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Figure 3: Rescaling results for the MDCI algorithm using four different models 
– the true model and three alternative models described in the section 4-1; dot 

color indicates neuron and timing of spike, consistent with Figure 1.A. (A) 
Rescaling using the true mark intensity function produces apparently uniform 
data, (B) Rescaling using missing refractoriness model appears like the true 
model in A. (C) Rescaling using the missing interaction model shows more 

density at lower values of v for neuron 1. (D) Rescaling using the missing mark 
drift model shows a non-uniform drift. 

Figures 2 and 3 suggest that different forms of model mis-specification may be 

better identified using different transformations; the missing refractoriness model 

shows clear lack-of-fit based on the IRCM but not the MDCI transformation, while 

the missing mark drift model shows more apparent lack-of-fit through the MDCI 

transformation. It remains to be seen whether this apparent lack-of-fit is captured 

quantitatively using each of the uniformity tests described previously; we explore 

this in the following Section.  

4.3 Uniformity Test Results 

Tables 4 and 5 provide the results of the uniformity tests described in Table 2 along 

with their corresponding p-values on the rescaled data shown in Figures 2 and 3 

using the IRCM and MDCI transformations. A small p-value indicates strong 

evidence against the null hypothesis; here, we set the significance level α of 0.05. 

The null hypothesis is that the sample data are distributed uniformly in a unit square; 

this hypothesis would be true if the original marked point process data are generated 

based on the joint mark intensity model used for the transformation. 

Table 4: Different uniformity test statistics and corresponding p-values using the 
IRCM algorithm; the bold numbers (gray boxes) show cases where the test 

identified lack of fit at a significance-level of α " 0.05 
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Uniformity 
Test 

True Model 
Missing 

Refractoriness 
Model 

Missing Neural 
Interaction 

Model 

Constant Mark 
Model 

Pearson χ2 –
Statistic Test 
with different 

degree of 
freedom 

	 � i � 3, j$

��� � 15.51 

Metric p-value Metric p-value Metric p-value Metric p-value 
3.109 0.9273 746.55 ~ 0 396.30 ~ 0 4.7398 0.785 

	 � i � 4, j1

 ��� � 24.99 

Metric p-value Metric p-value Metric p-value Metric p-value 
10.571 0.7823 838.08 ~ 0 707.02 ~ 0 15.346 0.4267 

	 � i � 5, j
&

 ��� � 36.41 

Metric p-value Metric p-value Metric p-value Metric p-value 
23.461 0.4927 920.33 ~ 0 1029.4 ~ 0 20.910 0.644 

Multivariate 
Kolmogorov 

Smirnov (KS) 
Test 

� � 784, &�2 √�⁄ � 0.053 
Metric p-value Metric p-value Metric p-value Metric p-value 

0.0314 0.462 0.4316 7.1e-05 0.2291 3.1e-05 0.0314 0.462 

Distance-To- 
Boundary Test 

� � 784, &�/√� � 0.048 
Metric p-value Metric p-value Metric p-value Metric p-value 
0.0420 0.251 0.1359 3.5e-04 0.2252 2.1e-05 0.0563 0.013 

Discrepancy 
Test 

>�/

� � n1.6449 

Metric p-value Metric p-value Metric p-value Metric p-value 
0.5435 0.3442 4.1766 6.5e-05 -3.312 0.0017 0.7858 0.2930 

Ripley Statistics 
Test 

 Q � 2, ��

��� � 5.9915 

Metric p-value Metric p-value Metric p-value Metric p-value 
4.3124 0.1158 31.084 1.77e-7 123.54 1.4e-27 4.731 0.09387 

Minimal 
Spanning Tree 

(MST) Test 

>�
� � n1.64 

Metric p-value Metric p-value Metric p-value Metric p-value 
0.9367 0.2573 -6.770 4.4e-11 -4.60 9.9e-06 -0.86 0.2756 

 
Table 5: Different uniformity test statistics and corresponding p-values using the 

MDCI algorithm; the bold numbers (gray boxes) show cases where the test 
identified lack of fit at a significance-level of @ " 0.05 

Uniformity 

Test 
True Model 

Missing 

Refractoriness 

Model 

Missing Neural 

Interaction 

Model 

Constant Mark 

Model 

Pearson χ2 –

Statistic Test 

with different 

degree of 

freedom 

 

	 � i � 3, j$

��� � 15.51 

Metric p-value Metric p-value Metric p-value Metric p-value 

1.997 0.981 2.788 0.946 54.33 5.9e-9 94.510 ~ 0 

	 � i � 4, j1

 ��� � 24.99 

10.22 0.805 10.693 0.774 77.87 1.7e-10 117.79 ~ 0 

	 � i � 5, j
&

 ��� � 36.41 

Metric p-value Metric p-value Metric p-value Metric p-value 

21.202 0.626 18.423 0.782 82.900 2.08e-8 139.15 ~ 0 

Multivariate � � 784, &�2 √�⁄ � 0.053 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.919050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919050


19 

 

Kolmogorov 

Smirnov Test 

Metric p-value Metric p-value Metric p-value Metric p-value 

0.038 0.307 0.0152 0.834 0.120 9.1e-04 0.079 0.007 

Distance-To- 

Boundary Test 

� � 784, &�/√� � 0.048 

Metric p-value Metric p-value Metric p-value Metric p-value 

0.0162 0.814 0.023 0.661 0.035 0.368 0.028 0.524 

Discrepancy 

Test 

>�/

� � n1.6449 

Metric p-value Metric p-value Metric p-value Metric p-value 

-0.209 0.390 -0.169  0.393 0.245  0.387 0.037 0.398 

Ripley 

Statistics Test 

 Q � 2, ��

��� � 5.9915 

Metric p-value Metric p-value Metric p-value Metric p-value 

1.862 0.394 2.376 0.304 3.920 0.140 4.903 0.086 

Minimal 

Spanning Tree 

(MST) Test 

>�
� � n1.64 

Metric p-value Metric p-value Metric p-value Metric p-value 

0.128  0.395 -0.150 0.394 -1.341 0.162 -2.561 0.0150 

 

The results presented in Tables 4 and 5 suggest that there is no single combination 

of transform and uniformity test that will identify all forms of model lack-of-fit. For 

this simulation, the IRCM transformation makes it simple to identify lack of fit due 

to incorrect history dependence structure – either missing refractoriness or neural 

interactions – using any of the uniformity tests. However, it remains difficult to 

detect lack-of-fit due to missing the mark dynamics; while the distance-to-boundary 

test detects the mis-fit at the @ " 0.05 significance level, this result would not hold 

up to correction for multiple tests. The MDCI transformation is not able to detect 

mis-fit in the missing refractoriness model using any of the uniformity tests, but both 

the Pearson and multivariate KS tests are able to detect lack of fit due to missing 

neural interactions and missing mark dynamics at very small significance levels.  

These results also suggest that certain uniformity tests may achieve substantially 

higher statistical power over others for the types of lack-of-fit often encountered in 

neural models. While all of the tests were able to identify the mis-specified models 

missing history dependent components via the IRCM transformation, the Pearson 

and multivariate KS tests provided much lower p-values for detecting the missing 

interaction and constant mark models’ mis-fit under the MDCI transformation. This 

suggests that different combinations of transformations and uniformity and 
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independence tests can provide different views on goodness-of-fit that can be used 

together to provide a more complete picture of the quality of a model. 

While the IRCM transformed samples in the constant mark model do not show 

obvious lack of uniformity in Fig. 2D, these samples do show obvious dependence – 

as seen through the structure in the dot colors. The rescaling theorem for this 

transformation guarantees that under the true model, these samples will be 

independent. We can therefore apply correlation tests to these samples to further 

assess model goodness-of-fit. To demonstrate, we used a correlation test between 

consecutive samples based on a Fisher transform [30], defined by 

a " 0.5 log S 1 � |T |1 6 |T| 

U e 1? 6 3g  (11.a) 

where T  is the correlation coefficient between 8
  and 8
�� and ? is the number of 

samples. Under the true model, the p-value for this test is 0.58 suggesting no lack-

of-fit related to dependence in the transformed samples; under the constant mark 

model, the p-value was 2.1e-08, suggesting lack of fit in the model leading to 

dependence of the samples. This suggests that uniformity and independence tests 

can provide complementary tools to identify model misspecification in IRCM 

transformed samples. 

 

5 Discussion  

A fundamental component of any statistical model is the ability to evaluate the 

quality of its fit to observed data. While the marked point process framework has the 

potential to provide holistic models of the coding properties of a neural population 

while avoiding a computationally expensive spike-sorting procedure, until recently 

methods for assessing their goodness-of-fit have been lacking. Our preceding work 

to extend the time-rescaling theorem [5] to marked point process neural models has 

provided a preliminary approach to address this problem [6] but further work was 

necessary to make the approach computationally efficient in higher dimensions, to 

enable the use of more statistically powerful test methods, and to understand which 

tests are most useful for capturing different aspects of model misspecification.  
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In this paper, we proposed two new transformations – IRCM and MDCI – that 

combine rescaling in both the time and mark spaces, to produce samples that are 

uniformly distributed in a hypercube for the correct marked point process model. 

This removes one of the most troublesome issues with our prior method, the fact that 

time-rescaling produced uniform samples in a random space that could be 

computationally challenging to compute, precluded multiple uniformity tests, and 

made those tests that could be performed more computationally challenging.  In 

particular, these methods can reduce concerns in designing population coding 

models that using high dimensional spike features will make model assessment 

intractable; instead the focus of waveform feature selection for these models can be 

on finding the features that best explain the population coding properties.  

While both the IRCM and MDCI transformations produce samples that are 

uniformly distributed in a hypercube for the true model, each transformation can 

capture different attributes of the quality of the model fit to the observed data. The 

IRCM rescales the inter-spike intervals between all observed spikes, irrespective of 

their waveforms, and then rescales the marks in a time-dependent manner. For 

correct models, this causes mixing between the spike marks from different neurons. 

This transformation is likely to be particularly sensitive to misspecification of 

interactions between neurons as in our simulation example. The MDCI 

transformation rescales the spike waveform features irrespective of when they occur 

and then rescales the spike times in a manner that depends upon their waveforms. 

This transformation tends to keep spikes from a single neuron nearby, and is likely 

to be sensitive to misspecification of the coding properties of individual neurons. 

The fact that the IRCM makes the rescaled samples independent allows us to use 

correlation tests as further goodness-of-fit measures. The fact that the MDCI keeps 

marks from individual neurons nearby allows us to identify regions of 

nonuniformity in the hypercube to determine which waveforms have spiking that is 

poorly fit by the model. Together, these transformations provide complimentary 

approaches for model assessment and refinement. 

In addition to having multiple, complimentary transformations for the data, we have 

multiple tests for uniformity and dependence with which to assess the transformed 
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samples. Here, we explored six well-established uniformity tests to examine how 

different forms of model misspecification could be captured using combinations of 

these transforms and tests. As expected, the true model did not lead to significant 

lack of uniformity in either transformation based on any of the tests we explored. 

Similarly, for the true model, our correlation test did not detect dependence in the 

IRCM transformed samples. For the misspecified models, different combinations of 

transformations and uniformity tests were able to identify different sources of lack-

of-fit. The missing refractoriness and missing neural interaction models were easily 

identified as mis-fit under the IRCM transform using all of our tests, but the constant 

mark model could not be identified by any of the tests using this transform. The 

constant mark model was identified as mis-fit under the MDCI using the Pearson 

and multivariate KS tests but not the other uniformity tests. Across these 

simulations, the Pearson Chi-Square, Multivariate KS, and MST tests proved to be 

statistically more powerful in capturing the particular forms of model 

misspecification that we examined. However, these simulations were limited both by 

using a simple two-neuron population model and by using only a one dimensional 

mark. While more systematic exploration of uniformity tests are necessary to know 

which combinations of transforms and tests are most useful for determining different 

aspects of model goodness-of-fit, these results suggest that no one combination is 

likely to work in all cases. Relatedly, goodness-of-fit for marked point process 

models should not be limited to rescaling methods; deviance analysis and point 

process residuals can provide additional, complementary goodness-of-fit measures. 

A toolbox that includes multiple approaches, including different rescaling 

transformations and tests provides substantially more statistical power than any one 

approach on its own.  

Ultimately, insight into which goodness-of-fit methods are most useful for these 

clusterless coding models will require extensive analysis of real neural population 

spiking data. Based on the many advantages of the clusterless modeling approach – 

the reduction of bias in receptive field estimation [31], the ability to use spikes 

cannot be sorted with confidence [2], the ability to fit models in real time for during 

the recording sessions – and the experimental trend toward recording larger 
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populations and closed-loop experiments, we anticipate that clusterless modeling 

approaches and methods to assess their quality will become increasingly important. 

In order to enable experimentalists to apply these algorithms in their data analysis, 

we have made the MATLAB code for these transformations along with the 

uniformity tests explored here available through our Github repository at 

https://github.com/YousefiLab/Marked-PointProcess-Goodness-of-Fit 
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Appendix A. Rescaling Theorem Proofs 

In this paper, we introduced IRCM and MDCI algorithms. In this section we present 

the theoretical proof for these algorithms in two separate subsections.  

Appendix A.1. Interval-Rescaling Conditional Mark Distribution 

(IRCM) 

 In this section, we provide a set of new transformations and their properties in 

transforming observed marked-point process data points to uniformly distributed 

samples in hypercube. We take different methodologies to prove properties of these 

transformations; we either use change of variables’ theorem [32] or derive the 

distribution of observed joint mark and spike events under these transformations in 

these proofs. We assume that we have a sequence of marked-point process with 

observed marks ���
 0  h  + " 1, … , -�'� associated with the spike time 0 "  (� ) (� )  (	 ) *  )  (
 ) *  )  (���  )  '  and with a joint mark intensity function � �	, ����  "  ��	, ���|!��. The joint probability of observing -�'� events over the 

period of 	 " �0 '� is defined by  i�1�(
 , ���
�, + " 1, * , ?2, -�'� " ?�
" j S� �(
 , ���
�exp �6 k k � �	, ���� ���� 

�

�

�

 �	�U'


"�

 

" exp �6 # # � �	, ���� ���� �	 

�

�

�3
� ∏ m� �(
 , ���
�exp �6 # # � �	, ���� ���� �	 

�

��

����
�n'


"�  
 (A.1) 
and we show the following transformation takes �(
 , ���
�, + " 1, * , ?  to a set of new 

data points �5
 , 8
�, + " 1, * , ?  which are i.i.d samples with a uniform distribution 

in the range of �0 1����  – � is the dimension of mark. 

Theorem 1: Let’s define the ground conditional intensity by  

Λ �	� " k � �	, ���� ����  

�

 (A.2) 

and conditional intensity of mark given the event time by 3����|	� " 3E��� , ��	 , * , ���o	H " � �	, ����/Λ �	� (A.3) 

where m�� is /�( element of the vector ���. The conditional intensity of mark can be 

written by 3E���, ��	 , … , ���o	H " (A.4
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3E���o����� , … , ��� , 	H … 3E��!o��	, ��� , 	H3E��	o���, 	H3E���o	H ) 

where, 

3E���o	H " k * k 3����|	����-� * ���4�    (A.5a) 

3E��	o��� , 	H " 3E��	, ���o	H 3E���o	Hp " * 

k * k 3����|	����5� * ���4� /3E���o	H 
(A.5b) 

3E���o�����, * , ���, 	H " 3E���, * , ���o	H3������ , * , ���|	�       / q 1 (A.5c) 

Now, we can define the following � � 1 new variables – 5
, 8


��, 8


�	, …,8


��, + " 1 * ?: 

5
 " 1 6 exp r6 k Λ �	��	��

���� 

s (A.6a) 

8


�� " k 3 9���tu�


��; Q ) / & / " 1 * �w, (
;��
���

�� 

���� (A.6b) 

which are i.i.d. samples with a uniform distribution in �0 1���� hypercube, under the 

true model. 

Proof: We can redefine Equation (A.1) by, i�1�(
 , ���
�, + " 1, * , ?2, -�'� " ?� " 

j � �(
 , ���
�Λ �(
�
'


"�

Λ �(
� exp r6 k Λ �	��	��

����

s exp r6 k Λ �	��	�

�3

s " 

 j 3����
|	� Λ �(
� exp r6 k Λ �	��	��

����

s'


"�

 exp r6 k Λ �	��	�

�3

s 

(A.7) 

here, the first n terms represent the probability of observing continuous samples 

over the time period of �0, ('� with marks ���
  + "  1, … , ? . The last term 

corresponds to the probability of not observing any event for the time period of �(' , '�; this corresponds to -�'� 6 -�('�  "  0.  

We want to build the joint probability distribution of  

195�, 8�

�� , * , 8�

��;, … , 95' , 8'
��, * , 8'

��;2 given 1�(�, �����, … , �(', ���'�, -�'�  "
 ?2. We first focus on the time period �0, ('�, where we observe n events. We use the 
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change of variable theorem [32] to build the joint probability distribution of full 

events over this time period. To derive the joint probability distribution, we need to 

calculate the Jacobian matrix, which is defined by 
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 (A.8) 

where, x5)x(*

" 0                  y z q K           (A.9a) 

x5)x�*
��

" 0                         y K, z, /                      (A.9b) 

x8)
��

x�*
��

" 0                z q K  Or < q /  (A.9c) 

where, K, z 0 11, … , ?2 and /, < 0 11, … , �2. Note that, the upper triangular elements 

of the matrix J are equal to zero, and thus we only need to calculate the diagonal 

elements of the matrix to calculate its determinant. The matrix diagonal elements are 

defined by x5
x(


" Λ �(
��1 6 5
�              + " 1, … , ? (A.10a) 

x8


��

x�



��
" 3 9�


��tu�


��; Q ) / & / " 1 * �w, (
; (A.10b) 

The Jacobian matrix determinant is equal to 

|}| " j 3 9�


��tu�


��; Q ) / & / " 1 * �w, (
;'


"�

 Λ �(
��1 6 5
�   (A.11) 
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by replacing these elements in the Equation (A.7), we get 

i u95
 , 8


��;, + " 1 * ?w
" |}|��  j 3 9�


��tu�


��; Q ) / & / " 1 * �w, (
;'


"�

 Λ �(
��1 6 5
� " 1  (A.12) 

Now, we consider the last component of the distribution which implies no event 

from time s+ to T. Let's define a new random variable z, 

� " k Λ �	��

�3

�	 (A.13) 

which defines the number of events for the time s+ to T. We define the probability 

of not observing an event by 5 " i�?� J$	TM J8J?	� " exp �6�� (A.14) 

where, u is a new random variable in the range of 0 to 1. By changing the variable 

from z to u, the joint probability distribution can be written by 

i 9u95
 , 8


��;, + " 1, … , ?, / " 1, … , �w , -�'� " ?;
" |}|��exp ��� j 3 9�


��tu�


��; Q ) / & / " 1 * �w, (
; Λ �(
��1'


"�6 5
� exp�6�� " 1 

(A.15) 

Thus, all elements including the last element are uniformly distributed on �0  1���� 

given the assumption that samples are generated using the true � �(, ����.  □ 

Not that the last element becomes a sure event in u space. The last term can be also 

projected back to u,s; with this assumption – when it is not compensated – the 

transformed u,s are uniformly distributed on a scaled space of 

�0  exp 9# Λ �	��	�

%3
;�

3�. 
Corollary 1: The marginalization steps over the mark dimension described in 

Theorem 1 is valid on any arbitrary sequence of the mark space dimension. 

Corollary 2: The u, samples generated by Equation (A.6a) given the ground 

conditional intensity defined in Equation (A.2) are independent and uniformly 

distributed over the range 0 to 1 independent of v samples. u samples are 
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independent of v samples, and the mapping over u corresponds to a time rescaling 

theorem [5] over the full event’s time intervals. 

 

Appendix A.2. Mark Density Conditional Intensity (MDCI) 

In this section, we provide a proof for Algorithm 2 using the following theorem. 

Theorem 2: Let’s assume the following pdfs are defined using � �	, ��, 

���~ Γ  �����# Γ  ����� ���� 

�

" 3����� (A.16a) 

	|���~ � �	, ����Γ  ����� " 3�	|���� (A.16b) 

where, Γ  ����� is defined by 

Γ  ����� " k � �	, ���� �	 �

�

 (A.17) 

Now, we can define the following � � 1 new variables – 5
, 8


��, 8


�	, …,8


��, + " 1 * ?: 

5
 " k 3�	|���
��	��

�

 (A.18a) 

8


�� " k 3����|�


���� , … ,��
���

��

�


�������        / " 1 * � (A.18b) 

which are rescaled samples with a uniform distribution in �0 1���� hypercube, under 

the true model. 

Proof:  

The joint probability distribution of full event defined in equation (A.1) can be 

rewritten by 

������ , �����
	


���

� , ���	  �	
 exp �� � � � ��, ����	 ���

�

�����  

�

� �� � � ��, ����	 ���

�

�����  

�

�
�

� ����
|�����

	�������
	

�

���

 
(A.19) 
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To prove the theorem, we require to build the joint probability distribution of 

195�, 8�

�� , * , 8�

��;, … , 95' , 8'
��, * , 8'

��;2 given 1�(�, �����, … , �(', ���'�, -�'�  "
 ?2. First, we define i�1�(
 , ���
�2
"�

' |-�'� " ?�, which corresponds to 

i�1�(
 , ���
�2
"�
' |-�'� " ?� " i�1�(
 , ���
�2
"�

' , -�'� " ?�i�-�'� " ?�  

" i�1�(
 , ���
�2
"�
' , -�'� " ?�expE6 # Γ  ����� ����  

�
H E# Γ  ����� ����  

�
H'/?! 

" ?! ∏ 3�(
|���
�3����
�'

"�  (A.20) 

In equation (A.20), the denominator defines the joint probability distribution of 

observing ? events independent of their temporal order. Given the history 

dependence of the events, the joint probability distribution of temporally ordered 

events [6] is defined by i�1�(
 , ���
�2
"�
' , (
�� ) (
|-�'� " ?� " ∏ 3�(
|���
�3����
�'


"�  (A.21) 

In equation (A.21), 3�	|����3����� defines the joint probability distribution of the 

mark and spike time. Equation set (A.18) is the Rosenblatt Transformation [7] of the 

spike time and mark, mapping the observed events from multivariate continuous 

random variables defined by �	, ���� to another one, �5, 8�. Under the Rosenblatt 

Transformation theorem, the transformed data points are uniformly distributed in a 

hypercube of �0 1����. As a result, the joint distribution of �5, 8� is define by 

i 9u95
 , 8


��; / " 1 * �;w

"�

' |-�'� " ?; " 1 (A.22) 

which suggests that u95
 , 8


��;; / " 1 * �w s are uniform samples in a hypercube of 

�0 1����
□ 

Appendix B. 1. Mark-Rescaling Conditional Intensity (MRCI) 

The MRCI algorithm starts by building the mark intensity function – Γ ���, which 

is followed by deriving the conditional intensity function – 3�	 |�
�. This 

transformation corresponds to a time-rescaling on the mark and the cdf of 

conditional intensity on spike time. The table below describes the steps being taken 

to map the full spike event data to a unit square.  

Algorithm 3 Mark-Rescaling Conditional Intensity (MRCI) 
1. Permuted spike index: Θ�+� is the permutated index of + 
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2. Build mark intensity: Γ  ��� " # � �	, ���	�

�
 

3. Build conditional mark distribution: 3�	|�
� " �-�	, ��/Γ-��
� 
4. for each + in 1 … -�'� do 

5. Set: 8
 " 1 6 exp �6 t# Γ  ��������

�������
��t�         

6. Set: 5
 " # 3E	o���
H�	�����

�
       

7. end for 
8. �8
 , 5
� + " 1, … , -�'� are uniformly distributed over �0 1�	 

 

In MRCI algorithm, we can use any permutated sequence over mark and the 

resulting �8
 , 5
� samples still hold uniformity. We provide the theoretical proof of 

MRCI transformation in Appendix B.2 section. Like the previous algorithms, we can 

use multiple uniformity tests, described in section 3, to assess the accuracy of model 

fit.  

In contrast to IRCM and MDCI, where we marginalized the conditional mark 

distribution over the mark space, marginalizing of Γ��� to construct uniformly 

distributed variables is not easy. When the mark is a scalar variable, we can use u, 

and v, samples to draw further insight about the model fit. u, samples, when they are 

constructed using sorted marks, reflect how properly the temporal properties of the 

full events are captured using the model.  

A challenge with MRCI, when the observed mark is multidimensional, is the 

interpretation of full spike events in the multi-dimensional spaces. There is no 

unique solution on how we should sort multi-dimensional marks. As a result, MRCI 

can be a proper transformation under two circumstances: a) when the mark, 

independent of its dimension, is treated as one element, b) when the dimension of 

the mark is one.  

We utilize the simulation data described in section (4-1) to assess the mapping result 

of MRCI. Figure A1 shows the mapping results for this algorithm. For the true 

model, we expect the observed data points are being mapped to uniformly 

distributed samples in a unit square - Figure A1. A. The results are in a strong 

support of this assumption, and Figures A1. B to A1. D show the mapping results 

using alternative models under MRCI mapping. For the inhibitory independent 

model, the transformed data points are shifted toward higher values in v axis. This is 

because, when the history term is dropped, the joint mark intensity function is over-
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estimated for the times after each spike and thus the mark intensity function 

increases in the interval between pair of events - check lines 5 in MRCI algorithm. 

Similarly, for excitatory independent model, the new data points are shifted toward 

low values of v axis; this is because by eliminating excitatory effect of neuron 2 on 

neuron 1, the joint mark intensity function is getting under-estimated for the time 

after neuron 2 spike and thus the mark intensity function decreases in the interval 

between pair of events - check lines 5 in MRCI algorithm. Figure A1. D shows the 

transformed data points under time independent mark model. Like the IRCM, the 

MRCI algorithm is not capable of capturing the misspecification being embedded in 

the mark distribution; this is because we take integral of the mark intensity function 

in interval between pair of events where the mark intensity function simultaneously 

increases and decreases over theses intervals.  

A. True Model B. Missing Refractoriness 

  

C. Missing Neural Interaction D. Constant Mark 

  

Figure A1: Rescaling results for the MRCI algorithm using four different 
models – the true model and three alternative models described in the section 4-

1; dot color indicates neuron and timing of spike, consistent with Figure 1.A. 
(A) Rescaling using the true mark intensity function produces apparently 

uniform data, (B) Rescaling using missing refractoriness model shows a non-
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uniform drift. (C) Rescaling using the missing interaction model shows more 
density at lower values of v. (D) Rescaling using the missing mark drift model 

appears like the true model in A. 

 The uniformity test results for the MRCI algorithm are reported in the Table A1. 

Given the result in the table, Chi-Square Pearson and Multivariate KS tests reject the 

null hypothesis for all alternative models. The Distance-To Boundary, Discrepancy, 

Ripley Statistics and MST tests only reject the null hypothesis for inhibitory 

independent model and fail to reject the null hypothesis for other miss-specified 

models. The results here are in accordance to the previous result in Tables 5 and 6, 

where Chi-Square Pearson and Multivariate KS tests show to be statistically 

stronger tests. The statement that we should try a combination of uniformity tests to 

build a stronger confidence in the goodness-of-fit result holds for this transformation 

as well.  

Table 1.A: Different uniformity tests’ metrics and corresponding p-values applied 
on the data points transformed using MRCI algorithm; the bold numbers (gray 

boxes) show cases that the null hypothesis is rejected with a significance-level of @ " 0.05 

Uniformity 
Test 

True Model 
Missing 

Refractoriness 
Model 

Missing Neural 
Interaction 

Model 

Constant Mark 
Model 

Pearson χ2 –
Statistic Test 
with different 

degree of 
freedom 

	 � i � 3, j$

��� � 15.51 

Metric p-value Metric p-value Metric p-value Metric p-value 
8.6071 0.3765 279.07 ~0 44.452 4.65e-7 33.484 5.03e-5 

	 � i � 4, j1

 ��� � 24.99 

Metric p-value Metric p-value Metric p-value Metric p-value 
15.931 0.3867 357.77 ~0 53.061 3.7e-6 45.469 6.45e-5 

	 � i � 5, j
&

 ��� � 36.41 

Metric p-value Metric p-value Metric p-value Metric p-value 
22.452 0.5523 453.36 ~0 67.658 4.92e-6 74.035 5.26e-7 

Multivariate 
Kolmogorov 
Smirnov Test 

� � 784, &�2 √�⁄ � 0.053 
Metric p-value Metric p-value Metric p-value Metric p-value 
0.0510 0.0510 0.2974 7.25e-5 0.0857 0.003 0.0820 0.005 

Distance-To 
Boundary Test 

� � 784, &�/√� � 0.048 

Metric p-value Metric p-value Metric p-value Metric p-value 
0.0282 0.536 0.1843 2.29e-4 0.035 0.366 0.0432 0.232 

Discrepancy 
Test 

z6/

� � n1.6449 

Metric p-value Metric p-value Metric p-value Metric p-value 
-0.667 0.3193 -1.720 0.0408 -0.893 0.2677 -1.351 0.1602 

Ripley 
Statistics Test 

 Q � 2, ��

��� � 5.9915 

Metric p-value Metric p-value Metric p-value Metric p-value 
2.3306 0.3118 23.374 8.4 e-9 4.2077 0.122 4.5260 0.104 
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Minimal 
Spanning Tree 

(MST) Test 

 z6
� � n1.6449 

Metric p-value Metric p-value Metric p-value Metric p-value 
0.9616 0.2513 -5.133 7.5e-07 -1.492 0.1311 -1.111 0.2151 

 

Appendix B.2. Mark-Rescaling Conditional Intensity (MRCI) 

Theoretical Proof 

Theorem 3: Let’s define the ground conditional intensity over the mark space by: 

Γ  ��� " k � �	, �� �	 �

�

 (A.23) 

and conditional intensity of the event given the mark by 

3�	|�� " � �	, ��/Γ  ��� (A.24) 

Then, the following two new variables – u, and v,: 

8, "
���
��1 6 exp �6 k Γ ��� �������

�������

� ���
 6 ���
�� � 0
1 6 exp �k Γ ��� �������

�������

� ���
 6 ���
�� ) 0� (A.25a) 

5
 " k 3�	|����

� 

�	 (A.25b) 

which are uniformly distributed samples over �0 1�	, under the correct model. Here, Θ�+� represents the corresponding permutated number for i. ���� is equal to 6∞ 

and ���'�� is equal to �∞.  

Proof: We can write the joint probability distribution of the event time and mark by i�1�(
 , �
�, + " 1, * , ?2, -�'� " ?�
" j � �(
 , �
�'


"�

exp r6 k k � �	, �� �	 ���

�

 

�

s " 

j � �(
 , �
�Γ  ��
�
'


"�

Γ  ��
� exp �6 k Γ  ��� �� 

�

� 

(A.26) 

We can replace the exponential term in the Equation (A.26) using different samples’ 

mark information 

exp r6 k Γ  ��� �� 

�

s " 

" expE6 # Γ ��� ����

��
Hexp�0� � expE6 # Γ  ��� ���-

��
HexpE6 # Γ  ��� ����

��
H � 

(A.27) 
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exp �6 # Γ  ��� ���5

��
�exp �6 # Γ  ��� ���-

��
� � * � expE6 # Γ  ��� �� 

�
H�exp �6 # Γ  ��� ���3

��
� 

where, marks are sorted from the lowest to largest one – a lower index corresponds 

to a mark with a lower value. Note that the above equality is valid for any sequence 

of �
  where + is defined by a permutation of �1  ?�. Thus, we have 

exp �6 k Γ ��� �� 

�

� " j exp �6 # Γ  ��� �������

��
�exp �6 # Γ ��� ���������

��
� "'��


"�

j�1 6 5
�'��


"�

 (A.28) 

where, Θ�+� represents the corresponding permutated number for +. ���� is equal to 6∞ and ���'�� is equal to �∞. In Equation (A.28), we assume ���
 is larger 

than ���
��, otherwise we swap the nominator and denominator – check Equation 

(A.25a). 

Now, we can use the change of variable theorem to prove that 5
  and 8
  are 

uniformly distributed in �0 1�	. Partial derivative of 5
  with respect ���
 is defined 

by 

x8
x���


" Γ  E���
H exp �6 �k Γ ��� �������

�������

�� " Γ  E���
H�1 6 8
� (A.29) 

and partial derivative of 5
  with respect (
  is defined by x8
x(


" 3�(
|�
� (A.30) 

By replacing these in the joint probability distribution of �(
 , �
� defined in 

Equation (A.26), we get the following probability distribution iE�5
 , 8
�, + " 1, * , ?; -�'� " ?H
" j 3�(
|�
�'


"�

Γ E�.�
H� 1 6 8
  �|}|���1 6 8'��� 
(A.31) 

where, |}| is the Jacobian of transformation defined by 

|}| " j�1 6 8
  �3�(
|�
�'


"�

Γ E���
H�1 6 8'�� � (A.32) 

where, for the last term, we take the derivative with respect ���'��, which we 

assume it goes to �∞. To calculate the derivative, we leverage from the fact that } is 

an upper – or lower – triangular matrix. Note that we can use the row operation to 
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change the order of Θ�+� to + and this will only change the sign of the determinant in 

Equation (A.32). For the transformation defined in Equation (A.31), the sign of the 

determinant is not important given we only need the absolute value of the 

determinant. The right side of Equation (A.31) becomes equal to 1, 

iE�5
 , 8
�, + " 1, * , ?; -�'� " ?H " 1 (A.33) 

which suggests 5
  and 8
  are uniformly distributed samples over the space �0 1�	
□ 

Corollary 3: The 8
  samples generated by Equation (A.26a) given the ground 

conditional intensity defined in Equation (A.24) are uniformly distributed over the 

range 0 to 1 independent of 8 samples. 

Here, we build a point process over the mark space, �; thus, if the marks are sorted 

in ascending order, under the time-rescaling theorem [5], 8
s are independent and 

uniformly distributed random variables. The result will be like Corollary 2. 

Appendix C. Uniformity Tests 

Here, we describe different terms used in the Discrepancy and Ripley Static tests. 

Appendix C.1. Discrepancy Test 

In this appendix, we provide �� and �	 terms’ definitions used in the step 4 of 

discrepancy test. In this test, we calculate the following equation after generating 

data samples by running IRCM or MDCI transformations. 

�' " √?���� 6 h�� � 2��	 6 h���/��5��� (A.34) 

In this equation for symmetric discrepancy h " 4/3 , �� " 9/

0
;� 6 91

/
;� , �	 " 2� 6

9�1

/
;�

, and ��, �	 dare defined by 

�� " 1? R j�1 � 2��� 6 2���
	 ��

�"�

'

�"�

 (A.35a) 

�	 " 2��� ?�? 6 1� R j�1 6 |��� 6 ���|��

�"�

'

�2�

 (A.35b) 
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where ���  are uniform samples that < and Q refer to <�(sample and Q�(dimension of 

data. For example, for simulation data  ��� " 5� , < " 1, . . , ? and ��	 " 8� , < "1, . . , ?. 

Appendix C.2. Ripley Statistics test 

The  Σ  used in step 4 of Ripley statistics method is defined by 

Σ " � �MT�>��T��� … ��8�>��T��, >��T���� � ���8�>��T��, >��T��� … �MT�>��T��� � (A.36) 

where, T
 0 T, T " 1T�, … , T�2 indicates the neighborhood radius of each sample point. 

The variance, �MT 9>��T
�; , + " 1, . . . , ( and covariance, ��8 9>��T
�, >�ET�H; , Q "
1, … , ( terms are defined by 

�MT 9>��T
�; " 2EJ3�
6 J3�

	 H?�? 6 1� � 4��T
��? 6 2�?�? 6 1�� �1 � ?� exp�6?� E1 6 exp�6?� 6 ?J$K�6?�HJ3�

	  

(A.37) 

where, ? is the number of samples and 

J3�
" �T


	 6 8T

!3 � T


42  (A.38) 

and  

��T
� " 2T

0 �83 � 6 25645 � � T


1 �1148 � 6 89 6 64� � 8T

53 6 T


64  (A.39) 

and for the covariance term 

��8 9>��T
�, >�ET�H;
" 2�J3�

6 J3�
J3.

�?�? 6 1� � 4�? 6 2�¡ET
 , T�H?�? 6 1�� J3�
J3.

exp �6?��1 � ?��1 6 exp�6?� 6 ?exp�6?�� 

(A.40) 

where, 

¡ET
 , T�H " E1 6 2T�H	T

	T�

	¢3�
¢3.

� 2E2 6 4T�HT

	T�

!¢3�
 

� k �¢3.
6 £�$��� �$� � 2E2 6 4T�HT


!T�
	¢3.

�

3�
3.

  (A.41) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.24.919050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919050


39 

 

� k �¢3.
6 £ rT
$�T�

s� 9¢3�
6 £�$��; �$�

�

�

 

�4T

	T�

4 k k �¤7� �T�$T


, T
� � ¤7	 �T�$T


, T
� � ¤7! �T�$T


, T
��

�

�

�

� ¤74�T�$T


, T
�� 
� E¤7!�$, T
� � ¤74�$, T
�H�$��$	 

where, $ " �$� $	�� is the sample point and  

¢3�
" � 6 1T


	 J3�
" 6 83 T
 � T


	2  (A.42) 

Also £�. � and ¤7��. �  < " 1, … ,4 in Equation (A.41) are defined by 

£�$�� " V�0 ) $� ) 1� rarccos $� � $�¦1 6 $�
	s 

¤7��$, T
� " ¢3 

V�$� � 1�V�$	 � 1� 

z7
�-, ��� � �{8�
� |�-
��}�- ~ 1�}�-
 \ 1� 1 �{8�

� |�-��}�-
 ~ 1�}�- \ 1� ¤7!�$, T
� " �¢3�
6 £�$�� 6 £�$	��V�$� � 1�V�$	 ) 1�V�$�

	 � $	
	 � 1� 

¤74�$, T
� " �¢3�
6 �4 6 $�$	 6 £�$�� � £�$	�2 �V�$�

	 � $	
	 § 1� 

(A.43) 
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