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One Sentence Summary: The quality of tumor neoantigens predicts response to immunotherapy 
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Lack of responsiveness to checkpoint inhibitors is a central problem in the modern era of cancer 
immunotherapy. Tumor neoantigens are critical mediators of host immune response and 
immunotherapy treatment efficacy. Current studies of neoantigens almost entirely focus on total 
neoantigen load, which simplistically treats all neoantigens equally. Besides, neoantigen loads 
have been linked with treatment response and prognosis only in some studies, but not others. We 
developed a Cauchy-Schwarz index of Neoantigens (CSiN) score to characterize the degree of 
concentration of immunogenic neoantigens in truncal mutations. Unlike simple neoantigen loads, 
CSiN incorporates the effect of both clonality and MHC-binding affinity of neoantigens when 
characterizing patient neoantigen profiles. By exploiting the clinical responses in 501 treated 
patients (mostly by checkpoint inhibitors) and the overall survival of 1,978 baseline patients, we 
showed that CSiN scores predict treatment response to checkpoint inhibitors and prognosis in 
melanoma, lung cancer, and kidney cancer patients. CSiN substantially outperforms prior 
genetics-based prediction methods of responsiveness. Overall, our work fulfilled an important 
gap in current research involving neoantigens. 

Introduction 

Most immunotherapies, including checkpoint inhibitors, benefit only a small subset of patients. 
For example, anti-PD-1 and anti-PD-L1 agents, which have demonstrated marked clinical benefit 
in various diseases, have overall response rates ranging from 10%-50% in melanoma and non-
small lung cancer (1–5) and higher response rate in some other select tumor types, such as 
classic Hodgkin lymphoma (6, 7) (65-80%). Similarly, the efficacy of anti-CTLA4 agents ranges 
from 10-15% for objective response rates and <3% for complete response (8). Unfortunately, the 
field is still far from clearly understanding how to distinguish responders and non-responders to 
immunotherapy. All forms of immunotherapy, such as checkpoint inhibitors and neoantigen 
vaccines, seek to activate the host immune system to attack the tumor cells. These forms of 
immunotherapy have different modes of actions, but most are intended to mobilize the 
cytotoxicity of T cells in the patient. Neoantigens are the most potent targets of T cell responses 
(9–13) and the profiles of neoantigens in each patient are central to determining the 
responsiveness to immunotherapy treatment.  

A major impediment of current research that seeks to correlate neoantigens with immunotherapy 
treatment response is that most studies have only considered whether a higher 
neoantigen/mutation load (namely, the total number of neoantigens or mutations) is correlated 
with better immunotherapy response. This simplistic approach misses the rich information 
contained in the whole repertoire of neoantigens and has been successful in only some studies (2, 
4, 14–18), but not others (19–24). Neoantigens are associated with mutations that can be either 
truncal or subclonal. Some neoantigens are also more immunogenic than others. This rich 
information is not captured by the unsophisticated neoantigen/mutation load approach, but could 
be critical for understanding the responsiveness of cancer patients to immunotherapy treatment. 
For example, Miao et al showed that cancer patients with a high proportion of clonal mutations 
have better rates of checkpoint inhibitor treatment response (25). The only other study that we 
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are now aware of and that has defined a more sophisticated neoantigen-based predictive metric is 
the neoantigen fitness model developed based on evolutionary modeling of patient neoantigen 
profiles (16, 26). This work considered the neoantigen-class I MHC binding affinity and only 
retained the top neoantigen from missense mutations with the highest binding affinity within 
each tumor clone. This metric demonstrated excellent predictive power for survival of patients 
after immunotherapy treatment in a few cohorts, however, its predictive values and prognostic 
values have not been widely evaluated.  

In this study, we developed CSiN for a quantitative characterization of the delicate internal 
structure of patient tumor neoantigen profiles. We assembled 10 immunotherapy-treated patient 
cohorts and 6 patient cohorts with baseline survival information, both from public sources and 
also our own cohorts. In our unbiased analysis, CSiN achieved almost uniformly significant 
results on the checkpoint inhibitor cohorts and the baseline cohorts of immunogenic cancers, 
which is significantly better than previously reported neoantigen-based biomarkers. Taken 
together, our work filled an important “void” in immune-oncological research that resulted from 
overlooking neoantigen clonal structures.  

Results 

Constructing the Cauchy-Schwarz index of Neoantigen (CSiN) to characterize the fine 
structure of patient neoantigen repertoire 

Some somatic mutations are truncal and other somatic mutations are subclonal. Truncal 
mutations are shared among more tumor clones (founding and derivative clones) and, if targeted 
by T cells through neoantigens, would likely cause a stronger cytotoxic effect. Subclonal 
mutations are unique to different clones, and if a subclonal mutation is in a clone with a larger 
clonal fraction, the neoantigens associated with this mutation are likely to have a stronger effect 
on the survival of the tumor cells than subclonal mutations associated with minor clones. 
Besides, each somatic mutation could generate a different number of neoantigens of different 
peptide lengths (8 to 11 amino acids for class I MHC-binding peptides, 15 amino acids for class 
II-binding peptides), with different registers (a sliding window of protein segments around the 
mutated position) and presented by different HLA alleles (class I and class II). Insertions and 
deletions usually generate a higher number of neoantigens per mutation than missense mutations 
as they lead to the translation of completely new segments of protein sequences (shown in 
Supplementary Information). We hypothesize that a favorable distribution of neoantigens and 
tumor mutations occurs when immunogenic neoantigens are concentrated on truncal mutations 
(Fig. 1A), and we developed CSiN to characterize this.  

The core of CSiN is based on the mean of the product of the variant allele frequency (VAF) of 
each somatic mutation and the number of neoantigens from that mutation. When the mutations 
with higher VAFs are also the mutations that generate more neoantigens (favorable distribution), 
the product value will be larger (a higher CSiN score). Therefore, a higher CSiN conforms to a 
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favorable neoantigen clonal structure. CSiN is so named because it bears analogy to the Cauchy-
Schwarz inequality, which states the inner product of two vectors is maximal when they are in 
parallel (in the same ranked order). We also considered the immunogenicity quality of 
neoantigens. As there are currently no well accepted tools for predicting the potential of both 
class I and class II neoantigens to induce T cell responses (27), we used the binding affinity of 
peptides to MHCs, which has been shown to be one of the most important predictors of 
neoantigen immunogenicity (28). We set a series of cutoffs on the peptide-MHC binding affinity 
strengths predicted by the IEDB tools (29, 30) to generate several subsets of neoantigens with 
increasing stringency. We then calculated the means of product of VAF and per-mutation 
neoantigen load (neoantigens of both class I and class II, all HLA alleles, and all registers from 
one mutation) for each subset of neoantigens. The final CSiN score is the arithmetic mean of 
these sub-indices, in which neoantigens with better MHC binding affinity have higher weights 
(for details, please refer to Supplementary Information). The distributions of the CSiN scores 
in Renal Cell Carcinoma (RCC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), and melanoma (SKCM), which are all immunogenic tumors (31), are shown in Fig. 1B.  

We assessed whether CSiN characterizes unique information that is not captured by the 
commonly used mutation load and neoantigen load approaches (both classes, all possible lengths 
and all possible registers) or by candidate transcriptomic-based predictive biomarkers. For 
transcriptomic features, we examined the expression of PD-1, PD-L1, CTLA-4 (32), CD8, and an 
IFN-gamma gene signature (33). Fig. 1C shows a scatter plot of the CSiN scores with the 
activation (ssGSEA) of the IFN-gamma signature in the RCC cohort, which yielded a Spearman 
correlation of 0.067. Fig. 1D visualizes these correlations in heatmaps for pairwise comparisons 
of these biomarkers in each cohort, which shows that CSiN is an independent biomarker 
(Spearman correlation<0.1 for all comparisons). Further analyses, using the Pearson correlation, 
threshold comparisons, and mutual information, again demonstrated their independence 
(Supplementary Information). 

Better response to checkpoint inhibitors in immunogenic cancers is associated with higher 
CSiN scores 

Next we investigated the implications of CSiN for checkpoint inhibitor treatment response. We 
analyzed the neoantigen profiles of melanoma patients on anti-CTLA-4 therapy from Van Allen 
et al (34). We observed patients with better response were more likely to have high CSiN (higher 
than median) than patients with worse response (P=0.009, Fig. 2A). We analyzed another cohort 
of melanoma patients on anti-CTLA-4 therapy from Snyder et al (35). We also observed that 
patients who received Durable Clinical Benefit (DCB defined as CR/PR/SD>6 month) had 
higher CSiN scores than patients with No Durable Benefit (NDB, SD<6 month/PD) (P=0.033, 
Fig. 2B). We analyzed a third cohort of melanoma patients (Riaz cohort) on anti-PD-1 therapy 
(15). We examined whether patients with better treatment response have higher CSiN scores. 
There is indeed a significant positive association in this cohort (P=0.037, Fig. 2C). We analyzed 
one more cohort (Hugo) of melanoma patients from Hugo et al (14). Fig. 2D shows that there is 
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an overall trend of patients with better response associated with higher CSiN scores (P=0.043). 
In clear cell RCC (ccRCC), we examined anti-PD-1/anti-PD-L1-treated ccRCC patients from 
Miao et al (17). The same significantly positive association of higher CSiN scores with better 
response was observed (Fig. 2E) (P=0.036). We analyzed metastatic ccRCC patients treated with 
atezolizumab, an anti-PDL1 agent (Immotion150 cohort) (36). We found that there was a 
significant association of higher CSiN with better treatment response for Teff-high patients 
treated with atezolizumab (Fig. 2F, P=0.028 and Supplementary Information). In contrast, we 
did not observe this association for Teff-high patients treated with sunitinib (P=0.890). For 
patients with lower Teff signature expression, there was no significant association for either 
atezolizumab or sunitinib. Non Small Cell Lung Cancer (NSCLC) patients (the Hellmann cohort) 
treated with PD-1 and CTLA-4 inhibitors were available from Hellmann et al (37). Our analyses 
showed that PD-L1+ patients with Durable Clinical Benefit had higher CSiN scores than patients 
with No Durable Benefit (Fig. 2G, P=0.007), while this association is insignificant for patients 
of low PD-L1 expression. We examined another NSCLC cohort (the Acquired cohort) from 
Anagnostou et al (2) and Gettinger et al (22). All of these patients achieved partial response, 
except for one patient who exhibited stable disease after initial checkpoint inhibitor treatment. 
All patients developed acquired resistance after 4 to 40 months. Interestingly, patients with 
sustained response were more likely to have higher CSiN scores than patients with short term 
progression (Fig. 2H) (P=0.015). Lastly, another cohort of NSCLC patients on anti-PD-1 
therapies from Rizvi et al (4) was analyzed. In Fig. 2I, we showed that more DCB patients had 
higher CSiN scores than NDB patients (P=0.058). The False Discovery Rates for all the above 
mentioned cohorts fall under 10% (Sup. Table 3). 

In comparison, we examined the predictive power of neoantigen load (Fig. S1) and the 
neoantigen fitness model (Fig. S2) in the same cohorts and by the same statistical tests. For 
consistency we used median to split the cohorts. For neoantigen load, we also adopted another 
cutoff (median + 2 x interquartile range), developed by Zehir et al (38) (results shown in 
Supplementary Information). For this analysis, the neoantigen fitness model is calculated for 
neoantigens of both class I and class II, as is done for CSiN and neoantigen load. We provided 
the results of the neoantigen fitness scores calculated using class I 9-mer neoantigens from 
missense mutations in Supplementary Information, as is done in its original report. Overall, 
neoantigen load and the neoantigen fitness model are not as strongly predictive as CSiN. We 
used bootstrap analysis to evaluate the statistical significance of the advance of CSiN against the 
other two approaches, which is an accepted methodology for model comparison (39, 40). In Fig. 
2J, we showed that CSiN significantly outperformed neoantigen load in 7 out of the 9 cohorts 
evaluated and outperformed neoantigen fitness also in 7 out of the 9 cohorts. Overall, our results 
show that CSiN is capable of predicting response to checkpoint inhibitors in immunogenic 
cancers, and demonstrated a significant improvement over existing predictive tools. We also 
demonstrated the predictive power of CSiN, neoantigen load, and neoantigen fitness model using 
survival analysis criterion. Detailed results are shown in Supplementary Information.  
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Finally, we also explored the predictive power of CSiN in other forms of immunotherapies. We 
generated genomics data for an in-house cohort (the IL2 cohort) of ccRCC patients treated with 
concurrent IL-2 and Stereotactic Ablative Body Radiation (SAbR) treatment. IL2 has pleiotropic 
activating effects on cytotoxic T cells, Treg cells and NK cells (41). It has been shown that SAbR 
has multiple immunogenic properties and could enhance the response to IL-2 (42). The 
neoantigen-mediated cytotoxicity probably partially explains the effects of this regimen. In this 
cohort, CSiN scores of patients with DCB are higher than CSiN scores of patients with NCB 
with marginal significance (Fig. S3. A, P=0.053), and out-perform neoantigen load and the 
neoantigen fitness model (Fig. S3. B-C).  

Higher CSiN predicts more favorable prognosis in immunogenic cancers 

To understand the implication of neoantigen heterogeneity for long term survival of patients, we 
examined the association between CSiN and prognosis in the RCC, LUAD, LUSC and SKCM 
cohorts. We first focused on patients with high levels of T cell infiltration, profiled by our 
recently published eTME gene signatures (31). We speculated that the neoantigen-T cell axis is 
more likely to be functionally active when T cell infiltration is present in the tumor. 
Interestingly, in these patients, we indeed observed that higher CSiN scores had a significantly 
positive association with better survival for RCC (P=0.01, Fig. 3A), LUAD (P=0.036, Fig. 3B), 
LUSC (P=0.024, Fig. 3C), and SKCM (P=0.038, Fig. 3D). The False Discovery Rates for the 4 
cohorts fall under 10% (Sup. Table 3). However, the overall survival of patients with lower T 
cell infiltration was indifferent to the levels of CSiN scores, which fits our speculation. We 
extracted and combined the high T cell infiltration patients from all four cohorts, and carried out 
survival analyses, which again showed that patients with higher CSiN scores had a significantly 
better overall prognosis (P=3.8x10-5, Fig. 3E). To further exclude the effect of clinical 
confounders, we performed multivariate survival analysis adjusted by disease type, stage, gender 
and age in this combined cohort. The significant association between survival and CSiN was 
retained (P<0.001, Fig. 3F).  

In contrast, the same analysis for neoantigen load and the neoantigen fitness model yielded 
insignificant association (Fig. S4 and Fig. S5). We also employed the bootstrap analysis to 
evaluate the statistical significance of this comparison. In Fig. 3G, we showed that CSiN 
significantly outperformed both methods in all 4 cohorts evaluated. Overall, in concordance with 
several previous studies that reported a lack of association of higher neoantigen load with better 
prognosis in several cancer types (19–21), our results suggest that the heterogeneity of 
neoantigens could be more prognostically important. 

We assessed non-immunogenic cancer types as well. Pediatric Acute Lymphocytic Leukemia is 
an aggressive childhood tumor type with low neoantigen load. We evaluated a cohort (pALL) of 
pediatric ALL patients and observed that CSiN was not predictive of prognosis (Fig. S6. A, 
P=0.584), with the results for neoantigen load shown in Fig. S6. B and neoantigen fitness shown 
in Fig. S6. C). We considered the liver hepatocellular carcinoma patients from The Cancer 
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Genome Atlas (TCGA) (LIHC cohort), although whether liver cancer is an immunogenic cancer 
type is still under debate (43, 44). We observed patients with higher CSiN scores had a non-
significant trend of better survival than patients with low CSiN scores in the high T cell 
infiltration subset of patients ( Fig. S6. D, P=0.165), with the results for neoantigen load shown 
in Fig. S6. E and neoantigen fitness shown in Fig. S6. F). These observations further confirmed 
the coupling effect of CSiN with the immunogenic environment of tumors. 

Discussion 

The fundamentally surprising biological insight of our work is that the neoantigen clonal 
structure in each tumor specimen and the immunogenicity quality of neoantigens (represented by 
the MHC-binding strength in our study) are predictive of response to checkpoint inhibitors and 
prognosis. And this could significantly out-weight the simple neoantigen count. Our 
comprehensive analyses show that CSiN, which describes these properties of the neoantigen 
profile quantitatively, possesses substantially better predictive and prognostic performance than 
other neoantigen-based biomarkers, in the majority of evaluated cohorts. Our implementations of 
CSiN, neoantigen load, and neoantigen fitness model have considered both MHC class I and 
class II neoantigens, and also neoantigens generated from insertions/deletions and stop-loss 
mutations. This is different from the original publication of the neoantigen fitness model that 
only considered 9-mer class I neoantigens generated from missense mutations. We believe 
inclusion of all these sources of neoantigens is important for a complete characterization of the 
neoantigen profiles in each patient (analyses for each class of neoantigens only are shown in 
Supplementary Information). In alignment with our reports, McGranahan et al made a 
qualitative observation that CTLA-4-resistant tumors could be enriched for subclonal mutations, 
which may enhance total neoantigen burden but not elicit an effective antitumor response due to 
the subclonal nature of these neoantigens (13). Miao et al also made a similar observation (25). 
Our study is distinguished from these earlier reports in that we provided a robust quantitative 
measurement that was subjected to systematic evaluations, and we also evaluated prognosis in 
addition to treatment response. Overall, CSiN likely constitutes an important predictive tool for 
medical oncologists treating patients with checkpoint blockade, and has addressed the limitations 
of prior neoantigen-based predictive biomarkers of checkpoint inhibitors. 

CSiN extracts genetics information that is not captured by neoantigen load, neoantigen fitness 
model or expression-based biomarkers. A number of expression-based biomarkers for 
immunotherapy have been proposed and validated on different levels so far. For example, PD-L1 
expression in the tumor microenvironment (45, 46), Th1-type chemokine expression (47), and T 
cell infiltration (48), as well as many others. But CSiN augments and complements, rather than 
replaces, these biomarkers. We show that CSiN is associated with longer survival only in 
patients with sufficient T cell infiltration. Similarly in the treatment cohorts, the P values for 
testing the correlation between CSiN and treatment response in the high T cell/high PD-L1 
patient subsets are generally smaller compared with the P values of the full cohorts (Fig. 2 and 
Supplementary Information), even though the subset cohorts are much smaller in sample size. 
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These results suggest that it is crucial for all components of the neoantigen-host immune axis to 
be functionally active, in order to enable efficient immuno-elimination of tumor cells. The 
insignificant association of CSiN with prognosis in the less immunogenic liver cancers and 
pediatric ALLs also supports this notion. Our observations may inspire potential future studies to 
construct more sophisticated predictive and prognostic models that incorporate CSiN, neoantigen 
load, the neoantigen fitness model and other biomarkers together for improved performance.  

Our results reporting the positive correlation between neoantigens and treatment response in 
RCCs is interesting. Currently, the field is still debating the role of neoantigens in immune 
response of RCCs. While RCCs have low neoantigen/mutation loads, Turajlic et al discovered 
that RCCs have the highest number of insertion/deletion mutations on a pan-cancer basis (49), 
which tend to encode high quality neoantigens. In terms of predicting survival after 
immunotherapy treatment, Samstein et al reported a significant correlation between tumor 
mutation burden and progression free survival (50), while this observation is not made in the 
phase 3 JAVELIN Renal 101 trial (51). Cherkasova et al discovered the re-activation of a 
HERV-E retrovirus in RCCs, which can encode an immunogenic peptide recognizable by 
cytotoxic T cells (52). It is highly likely both neoantigens and self antigens contribute to the 
immunogenicity in RCCs. In the future, it will be of interest to investigate whether CSiN is more 
predictive of patients’ response to immunotherapies when such antigens have been incorporated 
in the calculation, in more and larger cohorts. 

One limitation of our study and, to some extent, this field, is that we used predicted neoantigens 
from genomics data for correlation with patient phenotypes. Despite our efforts to validate the 
neoantigen predictions, it is likely there are still false positive and false negative predicted 
neoantigens that convoluted our analyses. In future studies, incorporating the genomics-based 
approach with other methods, such as mass spectrometry(53), may improve the sensitivity and 
specificity of neoantigen detection, and thus further enhance the predictive power of CSiN.  

Class I and class II neoantigens represent very different aspects of immune response. But several 
recent studies have implicated neoantigen-specific CD4+ T-cells in direct tumor clearance (54–
56). Our results also suggest that the inclusion of class II neoantigens is important for treatment 
response prediction. In the future, it will be interesting to carry out comprehensive research into 
the roles of class II neoantigens in the tumor microenvironment.  

The neoantigen repertoire is in a constant dynamic evolution (2, 57), in which immunoediting 
and immunotherapy treatment actively modify its landscape. CSiN offers a new tool to monitor 
the neoantigen profiles, where different tumor cells could have different growth advantages 
subject to the pressure of T cell cytotoxicity determined by each cell’s neoantigen composition. 
Overall, our work offers a rigorous methodology of predicting response to immunotherapy and 
prognosis from routine patient samples, and should be useful for personalizing medicine in the 
modern era of immunotherapy. 
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Materials and Methods 

Study Design 

The objective of this research project is to study the implication of the clonal structure of 
neoantigens for predicting treatment response and prognosis. The research subjects are individual 
cancer patients. This is a descriptive study. Patients were or were not treated with 
immunotherapy. As this is a retrospective analysis study, the researchers were not blinded to the 
allocation labels. We included all available samples and data from either public or private 
sources into our study. We stopped the data collection on the lock date of September 1st, 2019. 
The endpoints considered are response categories and survival of cancer patients treated with 
immunotherapy or baseline cancer patients. Usually one sample per patients was available. In the 
uncommon cases of more than one sample collected for each patient, we will average the 
statistics (e.g. CSiN) calculated for each patient.  

The Cauchy–Schwarz index of Neoantigens  

In CSiN, we considered the pairing between the repertoire of neoantigens and the tumor 
mutations to which they belong. One way to characterize this property is to average the product 
of the variant allele frequencies (VAF) of somatic mutations and the number of neoantigens 
generated by each mutation, normalized by the average VAF and average mutation-specific 
neoantigen load in each patient. It is >1 under a “good” pairing, and vice versa. This forms the 
backbone of the final CSiN score. CSiN was so named as the pairing of tumor mutations and 
neoantigens and its effect on the overall CSiN score bear analogy to the Cauchy-Schwarz 
inequality, which describes the upper bound of the product sum of two vectors of real numbers 
and the condition for the equality to be achieved - the values of the two vectors are in parallel 
(naturally then in the same ranked order). Refer to Supplementary Information for the 
implementation details of CSiN and additional analyses involving CSiN, which are not shown in 
the main text. A cartoon showing the workflow of CSiN is shown in Fig. S7. 

The QBRC mutation calling pipeline 

We used the QBRC mutation calling pipeline for somatic mutation calling, developed in the 
Quantitative Biomedical Research Center (QBRC) of UT Southwestern Medical Center. In 
short, exome-seq reads were aligned to the human reference genome by BWA-MEM (58). 
Picard was used to add read group information and sambamba was used to mark PCR 
duplicates. The GATK toolkit (59–61) was used to perform base quality score recalibration and 
local realignment around Indels. MuTect (62), VarScan (63), Shimmer, SpeedSeq (64), Manta, 
and Strelka2 (65) were used to call SNPs and Indels. A mutation that was repeatedly called by 
any two of these software was retained. Annovar was used to annotate SNPs and Indels, and 
protein sequence changes (66). All SNPs and Indels were combined and only kept if there were 
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at least 7 total (wild type and variant) reads in the normal sample and at least 3 variant reads in 
the tumor sample. Somatic mutations and germline mutations were annotated according to the 
variant allele frequencies in the normal and tumor samples.  

The QBRC neoantigen calling pipeline 

We used the QBRC neoantigen calling pipeline for neoantigen calling, which follows similar 
standards as those pipelines used in high impact publications such as (17, 18, 22, 34, 67, 68). The 
validity of our neoantigen predictions is demonstrated in Supplementary Information. We kept 
only frameshift, non-frameshift, missense and stop-loss mutations that would lead to protein 
sequence changes. We kept only somatic mutations whose variant allele frequencies (VAFs) 
were <0.02 in the normal sample and VAFs>0.05 in the tumor samples. For class I HLA proteins 
(A, B, C), we predicted putative neoantigens of 8-11 amino acids in length, and for class II HLA 
proteins (DRB1 and DQB1/DQA1), we predicted putative neoantigens of 15 amino acids in 
length. Class I and II HLA subtypes were predicted by the ATHLATES tool (69), which has 
been shown to be accurate for these HLA alleles (70). Samples whose total successfully typed 
HLA alleles (counting both chromosomes) were <8 were regarded as poor quality data, and were 
left out from downstream analyses. Putative neoantigens with amino acid sequences exactly 
matching known human protein sequences were filtered out. For class I bindings, the IEDB-
recommended mode (http://tools.iedb.org/main/) was used for prediction of binding affinities, 
while for class II binding, NetMHCIIpan embedded in the IEDB toolkit was. Neoantigens were 

kept only if the predicted ranks of binding affinities were ≤2%. Tumor RNA-seq data, if 

available, were aligned to the reference genome using the STAR aligner (71). FeatureCounts was 
used to summarize gene expression levels (72). Neoantigens whose corresponding mutations 
were in genes with expression level <1 RPKM in either the specific exon or the whole transcript 
were filtered out. For the samples analyzed by our pipeline, we applied the filtering by RNA-seq 
data on the neoantigen list when RNA-Seq data are available. We showed the results for 
calculating CSiN with only exome-Seq data in Supplementary Information, which indicated 
that filtering the neoantigen list by RNA-Seq data is important for the predictive performance of 
CSiN. Finally, in accordance with our pipeline, evidence from Ott et al (73) has shown that 
neoantigens of class I and class II, and also different registers can all possibly be immunogenic, 
and IEDB (https://www.iedb.org/) has documented many immunogenic antigens of different 
peptide lengths.  

Patient cohorts 

For all patient cohorts, if approval of access to raw exome-seq and RNA-Seq data had been 
obtained, we predicted the somatic mutations and neoantigens using our in-house pipelines. In 
cases where raw genomics data were not accessible, we analyzed the processed neoantigen and 
mutation data, which were included in the supplemental files of the original publications. For 
exploratory analysis and association with overall survival, we collected data from 110 RCC 
patients from the Kidney Cancer Program at UT Southwestern Medical Center (31), 94 ccRCC 
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patients from Sato et al (23), and 162 ccRCC patients from TCGA (74) (the RCC cohort); 427 
lung adenocarcinoma patients from TCGA (75) (the LUAD cohort); 389 lung squamous cell 
carcinoma patients from TCGA (76) (the LUSC cohort); 401 melanoma patients from TCGA 
(77) (the SKCM cohort); 103 pediatric and young adult T-lineage acute lymphoblastic leukemia 
patients (the pALL cohort) from Liu et al (24); and 292 liver cancer patients from TCGA (78) 
(the LIHC cohort) (Sup. Table 1).  

For association of CSiN scores with immunotherapy response, 10 patient cohorts were collected 
and summarized in Sup. Table 1. Sup. Table 1 shows the total number of patients for each 
cohort used in correlation of treatment response and neoantigen-based predictive markers in this 
study. In the VanAllen cohort, there are 40 patients with matched RNA-Seq and exome-seq data 
and 3 patients were further removed due to lack of response information. For the Riaz cohort, 3 
patients were removed as two of them have lack of response information (“not evaluated” 
reported by the original study) and the third patient’s HLA alleles cannot be typed accurately 
from the sequencing data. In the Miao cohort, 2 patients were removed due to the HLA typing 
issue. In the Rizvi cohort, 3 patients were removed due to lack of response information (not 
reaching 6 month follow up) and 5 patients were removed due to the HLA typing issue. In the 
Snyder cohort, 3 patients were removed as the neoantigen data were not available from the 
original publication (we used neoantigens called by the original study for this cohort as we don’t 
have access to the raw genomics data). In the IMmotion150 cohort, 99 patients on atezolizumab 
and 50 patients on sunitinib have both exome-seq and RNA-Seq. 3 patients treated by 
atezolizumab and 4 patients treated by sunitinib were further removed because response 
information is not available. For the Hellmann cohort, the neoantigen lists were generated by the 
original authors and used by us in this work. There are 74 patients with neoantigen data 
generated. Only whole exome-seq was done and only about half of these patients have consented 
to genomics data sharing, so we decided to use these neoantigens called by the original report. 
For the Hugo cohort, 28 have both exome-seq and RNA-Seq data, and 2 were further removed 
due to the HLA typing issue. Stratified analyses (Fig. 2 and Supplementary Information) were 
performed for the IMmotion150, VanAllen, Hugo, Riaz and Miao cohorts (with RNA-Seq data 
available) based on ssGSEA analyses (79) of the Teff gene signature (80) to focus on the top 60% 
patients, and also performed for the Hellmann cohort based on PD-L1 IHC level with a cutoff on 
IHC readings (which are given in integers by the original report for 69 patients) chosen such that 
the top subset is closest to 60% of the whole cohort. For cases in which multiple types of 
treatment outcomes were recorded in a cohort, we used the primary criterion employed by the 
original publications. Patient samples that were analyzed but were not shown in Fig. 2 (e.g. 
IMmotion150 patients on the sunitinib arm) were shown in Supplementary Information. 

Statistical analyses 

All computations and statistical analyses were carried out in the R computing environment. For 
all boxplots appearing in this study, box boundaries represent interquartile ranges, whiskers 
extend to the most extreme data point which is no more than 1.5 times the interquartile range, 
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and the line in the middle of the box represents the median. For association of CSiN, neoantigen 
load and the fitness model with binary/categorical response variables, we tested the association 
of the dichotomized CSiN scores with the ordered response categories (e.g. CR->PR->SD->PD) 
using an ordinal Chi-Square test. The three types of predictive scores are each split on the 
median within each cohort, to ensure comparability and avoid the scaling problem. The 
alternative hypothesis is that patients with better response and survival outcome are more likely 
to have higher CSiN scores. We employed the chisq_test function in the R coin package for this 
purpose. For survival-type analysis, we adopted the log-rank test for evaluating whether patients 
with higher CSiN scores had better prognosis. T cell infiltrations and activation of the IFN-
gamma signature were predicted using the single sample gene set enrichment analysis (ssGSEA) 
method (79). ssGSEA analysis was performed using the R GSVA package by calling the gsva 
function with parameter method="ssgsea" and rnaseq=T (81). The forest plot was performed by 
the forest_model function in the R forestmodel package. For model comparison, 5,000 bootstrap 
resamples of each cohort were generated, and each resample was used to evaluate the predictive 
or prognostic performance of CSiN, neoantigen load and the neoantigen fitness score. The P 
values of 5,000 bootstraps of each approach were compared using two-sided Wilcoxon signed-
rank test.  

Supplementary Materials 

Fig. S1 Predictive power of neoantigen load.  

Fig. S2 Predictive power of the neoantigen fitness model.  

Fig. S3 Association of CSiN (a) , neoantigen loads (b) and neoantigen fitness (c) with IL2/SAbR 
treatment response in ccRCC patients.  

Fig. S4 Prognostic power of neoantigen load.  

Fig. S5 Prognostic power of the neoantigen fitness model. 

Fig. S6 Association of CSiN, neoantigen loads and neoantigen fitness with prognosis of pediatric 
ALL patients and LIHC patients.  

Fig. S7 Cartoon showing the workflow of calculation of CSiN scores. 

Sup. Table 1 The patient cohorts used in this study. 

Sup. Table 2 Processed mutation, expression and neoantigen data of the IL2 cohort 

Sup. Table 3 P values and False Discovery Rates of the tested cohorts shown in Fig. 2 and Fig. 
3 

Sup. Table 4 Raw Data Table of some data used in Fig. 1, Fig. 2, and Fig. 3 

Supplementary Information A comprehensive explanation of the CSiN score and additional 
characterization of CSiN score. 
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found in Sup. Table 2. 

Figures: 

Fig. 1 Motivation for CSiN. (A) Illustration showing the motivation of examining pairings of 
neoantigens and the tumor mutations with which they are associated. We demonstrated two fake 
patients, one with an unfavorable distribution and the other with a favorable distribution of 
neoantigens. But the mutations and neoantigens shown are taken from real data. The outermost 
circle indicates the whole tumor. Each circle indicates a population of tumor cells with certain 
mutations. Each different color indicates a distinct mutation, and the area of each circle indicates 
the proportion of cells having the mutation. For the formula, on the left of each multiplication 
sign “x”, is the normalized VAF, and on the right of each “x” is the normalized per-mutation 
neoantigen load. The colorings in the formula correspond to the tumor mutations shown above 
with the same colorings. The two bigger tables on the right show the neoantigen sequences, 
registers (“Dist”), and the HLA alleles for each neoantigen. For neoantigens of missense 
mutations, “Dist” refers to the distance between the altered amino acid and the left end of 
neoantigen; for neoantigens of insertions/deletions and stoploss mutations, “Dist” refers to the 
distance between the left end of the mutation and the left end of neoantigen. The “+” sign 
indicates the left end of neoantigen is on the right of the altered position and vice versa. (B) The 
distribution of the CSiN scores in the RCC, LUAD, LUSC, and SKCM cohorts. T-tests were 
used for comparison of CSiN scores between different subtypes of the same tumor cohort. (C) A 
scatterplot showing the relationship between CSiN and the expression level of the IFN-gamma 
signature in the RCC cohort. Spearman correlation between them is shown. (D) Heatmaps of the 
pairwise Spearman correlations of the CSiN, mutation load, neoantigen load, and the 
transcriptomics-based features are shown for the RCC, LUAD, LUSC and SKCM cohorts, which 
are calculated as in (D).  

Fig. 2 Association of CSiN with checkpoint inhibitor treatment response. (A) The VanAllen 
cohort. 11 patients with clinical benefit (response group), 6 patients with long-term survival with 
no clinical benefit (long-survival) group, and 20 patients with minimal or no clinical benefit 
(nonresponse) group. (B) The Snyder cohort. 27 patients with DCB, and 34 patients with NDB. 
(C) The Riaz cohort. 3 patients with complete response (CR), 12 patients with partial response 
(PR), 23 patients with stable disease (SD), and 27 patients with progressive disease (PD). (D) 
The Hugo cohort. 3 patients with complete response, 10 patients with partial response, and 13 
patients with progressive disease. (E) The Miao cohort. 12 patients with clinical benefit, 8 
patients with intermediate benefit, and 13 without clinical benefit. (F) The IMmotion150 cohort. 
There were 8 patients with CR, 15 patients with PR, 16 patients with SD, and 16 patients with 
PD. These patients were treated with atezolizumab and possess high Teff signature expression. 
(G) The Hellmann cohort. There were 23 PD-L1+ (IHC>=3) patients with DCB, and 16  PD-L1+ 
patients with NDB. (H) The Acquired cohort. There were 8 patients with short term progression 
(progression<12 month) and 6 patients with sustained response (progression>12 month). (I) The 
Rizvi cohort. 11 patients with DCB and 15 patients with NCB. Biopsy and genomics data were 
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obtained close to time of progression for all patients, while baseline biopsies were lacking for 
many patients. For (A)-(I), we tested the association of the dichotomized CSiN scores with the 
ordered response categories using an ordinal Chi-Square test. (J) Boxplots of bootstrap P values 
evaluating the robustness of the predictive performance of CSiN, neoantigen load and the 
neoantigen fitness score, with each P value generated from a bootstrap resample of each cohort. 
Two-sided Wilcoxon signed-rank test was used to compare the bootstrap P values. NS: P>0.01, 
*: P=0.01-0.05, **: P=0.001-0.01, ***: P=0.0001-0.001, ****:P<0.0001.  

Fig. 3 Association of CSiN with overall survival of patients. (A-E) Kaplan-Meier estimator was 
used to visualize patient overall survival. P values for logrank tests are shown. (A) The RCC 
cohort. (B) The LUAD cohort. (C) The LUSC cohort. (D) The SKCM cohort. (E) The patients 
identified as having “High T cells” are extracted from each cohort, combined, and tested 
together. The top 140 RCC patients, 100 LUAD patients, 100 SKCM patients, and 40 LUSC 
patients with the highest T cell infiltration were designated as having “High T cells”, according 
to their order of immunogenicity (82). The high and low CSiN score designations follow those in 
(A-D). (F) Forest plot for the coefficients of the multivariate CoxPH analysis of the combined 
cohort in (D). Disease type, pathological stage, gender, age and the binarized CSiN were 
included as covariates. The dotted line shows the no effect point. 95% Confidence intervals were 
shown as bars. (G) Boxplots of bootstrap P values evaluating the robustness of the prognostic 
performance of CSiN, neoantigen load and the neoantigen fitness score, with each P value 
generated from a bootstrap resample of each cohort. Two-sided Wilcoxon signed-rank test was 
used to compare the bootstrap P values. *: P=0.01-0.05, **: P=0.001-0.01, ***: P=0.0001-0.001, 
****:P<0.0001.  

Supplementary Materials: 

Fig. S1 Predictive power of neoantigen load. The analyses are the same as in Fig. 2, except that 
neoantigen loads are considered.  

Fig. S2 Predictive power of the neoantigen fitness model. The analyses are the same as in Fig. 2, 
except that neoantigen fitness model is considered.  

Fig. S3 Association of CSiN (A) , neoantigen loads (B) and neoantigen fitness (C) with 
IL2/SAbR treatment response in ccRCC patients. 3 patients with complete response (CR), 1 
patient with partial response (PR), and 2 patients with stable disease (SD) for more than 6 
months form the DCB group. 3 patients with stable disease (SD) less than 6 months and 7 
patients with progressive disease (PD) form the NCB group.  

Fig. S4 Prognostic power of neoantigen load. The analyses are the same as in Fig. 3, except that 
neoantigen loads are considered.  

Fig. S5 Prognostic power of the neoantigen fitness model. The analyses are the same as in Fig. 3, 
except that neoantigen fitness model is considered.  

Fig. S6 Association of CSiN, neoantigen loads and neoantigen fitness with prognosis of pediatric 
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ALL patients and LIHC patients. P values for logrank tests are shown. (A-C) 103 pediatric and 
young adult T-lineage acute lymphoblastic leukemia patients were analyzed. (D-F) 292 TCGA 
LIHC patients were analyzed. The top 40 LIHC patients were designated as having “High T 
cells”, as LIHC is less immunogenic than the other tumor types investigated in this study. 

Fig. S7 Cartoon showing the workflow of calculation of CSiN scores. 

Sup. Table 1 The patient cohorts used in this study. 

Sup. Table 2 Processed mutation, expression and neoantigen data of the IL2 cohort 

Sup. Table 3 P values and False Discovery Rates of the tested cohorts shown in Fig. 2 and Fig. 
3 

Supplementary Information A comprehensive explanation of the CSiN score and additional 
characterization of CSiN score. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.23.917625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Calibrated neoantigen effect=1.98

( 8x +

Calibrated neoantigen effect=4.05

B

C        

RCC (N=366)  LUAD (N=427)   LUSC (N=389)   SKCM (N=401)

RCC
ccRCC

nccRCC
LUAD

Proximal inflammatory

Proximal proliferative

Terminal re
spiratory unit

LUSC

Basal subtype

Classical subtype

Prim
itive subtype

Secretory subtype
SKCM

Triple WT

BRAF Hostpot M
utants

NF1 Any Mutants

RAS Hotspot M
utants

RCC  LUAD SKCMLUSC
IFN-gamma

PD1
PDL1

CTLA−4

Mutation load

CSiN

CD8

-2
.5

   
   

   
0 

   
   

   
2.

5 
   

   
  5

P=0.003

Neoantigen load

IF
N-

ga
m

m
a

PD
1

PD
L1

CT
LA
−4

M
ut

at
io

n 
lo

ad CS
iN

CD
8

Ne
oa

nt
ig

en
 lo

ad

IF
N-

ga
m

m
a

PD
1

PD
L1

CT
LA
−4

M
ut

at
io

n 
lo

ad CS
iN

CD
8

Ne
oa

nt
ig

en
 lo

ad
IF

N-
ga

m
m

a
PD

1
PD

L1
CT

LA
−4

M
ut

at
io

n 
lo

ad CS
iN

CD
8

Ne
oa

nt
ig

en
 lo

ad
IF

N-
ga

m
m

a
PD

1
PD

L1
CT

LA
−4

M
ut

at
io

n 
lo

ad CS
iN

CD
8

Ne
oa

nt
ig

en
 lo

ad20
00

 
60

00
   

   
 1

00
00

IF
N
−

ga
m

m
a 

S
ig

na
tu

re
 (s

sG
S

E
A

)

RCC

A

Tumor Mutations

Tumor Mutations

0.05
(0.05+0.2+0.4)/3 (2+4+8)/3

4x0.2
(0.05+0.2+0.4)/3 (2+4+8)/3

2x0.4
(0.05+0.2+0.4)/3 (2+4+8)/3

)+

( 2x +0.05
(0.05+0.2+0.4)/3 (2+4+8)/3

4x0.2
(0.05+0.2+0.4)/3 (2+4+8)/3

8x0.4
(0.05+0.2+0.4)/3 (2+4+8)/3

)+

“Unfavorable Distribution”

“Favorable Distribution”

Patient

NeoantigensPatient

Neoantigens

C
S

iN

-2 -1 1 20
0 0.2  0.6    1

D        

Vaf

0.4

0.2

0.05

FQETPAGL

KKYEYNTQF

KKYEYNTQFQ

KYEYNTQF

AIHAKTHSL

DEAIHAKTHSL
EAIHAKTHSLR

EAIHAKTHSL

EQDEAIHAK

LSCHLNNLLSSRKLM

TPMTPEQDE

TPMTPEQDEA

GKKYEYNTQF

AIHAKTHSL

0

+7

-3

-2
-2

-1

+2

+2

0

+1

+1

-2
-7

-7

HLA-DRB1*01:02

HLA-A*02:02

HLA-C*07:02

HLA-B*14:01

HLA-C*07:02

HLA-C*07:02

HLA-B*07:02

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01
HLA-B*07:02

HLA-B*07:02

Neoantigen Dist MHC allele

Mutation

Chr11 130915893 G->A

Chr5 68293754 TTAC->T

Chr12 67657382 GCA->G

Vaf

0.4

0.2

0.05

AIHAKTHSL

EAIHAKTHSLR

EAIHAKTHSL

EQDEAIHAK

TPMTPEQDE

GKKYEYNTQF
KKYEYNTQF

KKYEYNTQFQ

KYEYNTQF

AIHAKTHSL

LSCHLNNLLSSRKLM

FQETPAGL

DEAIHAKTHSL

TPMTPEQDEA

+2

+2

0

+1
+1

-2

-7

-7

-3

-2

-2

-1
0

+7

HLA-B*07:02

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01

HLA-B*14:01

HLA-B*07:02

HLA-B*07:02

HLA-C*07:02

HLA-B*14:01

HLA-C*07:02

HLA-C*07:02
HLA-DRB1*01:02

HLA-A*02:02

Neoantigen Dist MHC allele

Mutation

Chr5 151184401 AG->A

Chr6 43770966 TAG->T

Chr14 68790160 C->G

Spearman
Correlation

r=0.108

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.23.917625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 CR PR              SD                       PD

Riaz cohortVanAllen cohort

Complete Partial  Progressive

p=0.043

Hugo cohort

Bene�t Intermediate No bene�t

p=0.036

Miao cohort

DCB NDB

p=0.007

Hellmann cohort

Sustained response Short term progression

p=0.015

Acquired cohort

DCB                               NDB

p=0.058

Rizvi cohort

High CSiNLow CSiN

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

Neoantigen 
Load

CSiN Neoantigen
Fitness

Bo
ot

st
ra

p 
P 

va
lu

e

Riaz cohort

VanAllen cohort

Hugo cohort

Miao cohort

Hellm
an cohort

Acquired cohort

Rizvi cohort

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

IMmotion150 cohort

Snyder cohort

0 
 

0.
2 

 
0.

4 
 

0.
6 

   
 

 
0.

8 
1

DCB                           NDB

Snyder cohort

CR                PR              SD        PD

IMmotion150 cohort

� �

� � �

� � �

�

N=    27                              34                                
Response Long-survival Nonresponse

N= 11 6        20

CS
iN

 L
ev

el
 P

ro
po

rt
io

n
p=0.009 p=0.034p=0.033

�

****

****

p=0.028

N=    3        10                       13                               

       N=       23                        16     

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

CS
iN

 L
ev

el
 P

ro
po

rt
io

n

  N=   3   12               23                       27

N=     12           8            13                      N=  8                  15              16          16

N=       8                                   6        N=    11                                   15

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

0 
   

   
 0

.2
   

   
   

0.
4 

   
   

 0
.6

   
   

  0
.8

   
   

   
 1

**** ****

******** ****

**** ****

****

**** ****

**** ***********

**** ****

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.23.917625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lung squamous cell carcinomaRenal cell carcinoma Lung adenocarcinoma

Time from diagnosis (month)

Neoantigen 
load

CSiN

Neoantigen
�tness0 

   
  0

.2
0.

4
0.

6
0.

8
1.

0

Bo
ot

st
ra

p 
P 

va
lu

e

RCC cohort SKCM cohort

**** **** **** ****
**** **** **** ****

Su
rv

iv
al

 P
ro

po
rt

io
n

Su
rv

iv
al

 P
ro

po
rt

io
n

Su
rv

iv
al

 P
ro

po
rt

io
n

Su
rv

iv
al

 P
ro

po
rt

io
n

Su
rv

iv
al

 P
ro

po
rt

io
n

Stage

Gender

Age

CSiN

Type

I
II
III
IV
Female
Male
<70
>=70
High 
Low 
RCC
LUAD
LUSC
SKCM

Reference
1.69 (0.86, 3.35)
2.22 (0.92, 5.32)
3.99 (1.73, 9.21)
Reference
0.82 (0.44, 1.54)
Reference
1.85 (1.03, 3.33)
Reference
3.18 (1.69, 6.01)
Reference
1.53 (0.61, 3.85)
1.77 (0.66, 4.73)
0.42 (0.16, 1.07)

0.129
0.075
0.001

0.540

0.039

<0.001

0.363
0.257
0.069

Variable p

   0.2  0.5 1 2    5

� � �

� � �

�

Low CSiN; Low T cells
Low CSiN; High T cells
High CSiN; Low T cells
High CSiN; High T cells

Low CSiN; Low T cells
Low CSiN; High T cells
High CSiN; Low T cells
High CSiN; High T cells

Low CSiN; Low T cells
Low CSiN; High T cells
High CSiN; Low T cells
High CSiN; High T cells

Low CSiN; Low T cells
Low CSiN; High T cells
High CSiN; Low T cells
High CSiN; High T cells

Low CSiN

High CSiN

Time from diagnosis (month) Time from diagnosis (month)

Time from diagnosis (month) Time from diagnosis (month)

  Skin melanoma                                        Combined cohort

0      10       20     30     40      50       60     70     0      10       20     30     40      50       60     70     0      10       20     30     40      50       60     70     

0      10       20     30     40      50       60     70     0      10       20     30     40      50       60     70     

0 
    

    
0.

2 
    

 0
.4

    
  0

.6
    

  0
.8

    
  1

.0
  

Hazard Ratio

LUAD cohort LUSC cohort

p=0.01 p=0.036 p=0.024

p=0.038 p=0.000038

0 
    

    
0.

2 
    

 0
.4

    
  0

.6
    

  0
.8

    
  1

.0
 

0 
    

    
0.

2 
    

 0
.4

    
  0

.6
    

  0
.8

    
  1

.0
  

0 
    

    
0.

2 
    

 0
.4

    
  0

.6
    

  0
.8

    
  1

.0
 

0 
    

    
0.

2 
    

 0
.4

    
  0

.6
    

  0
.8

    
  1

.0
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.23.917625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917625
http://creativecommons.org/licenses/by-nc-nd/4.0/

