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Abstract 
We report the development of MHC*IMP, a method for imputing non-classical HLA and other genes in 
the human Major Histocompatibility Complex (MHC). We created a reference panel for 25 genes in the 
MHC using allele calls from Whole Genome Sequencing data, combined with SNP data for the same 
individuals. We used this to construct an allele imputation model, MHC*IMP for each gene. Cross-
validation showed that MHC*IMP performs very well, with allele prediction accuracy 93% or greater for 
all but two of the genes, and greater than 95% for all but four. 

Introduction 
The Major Histocompatibility Complex (MHC), located on chromosome 6 from 6p22.1 to 6p21.3, is the 
genetic locus most widely associated with human diseases (Price et al., 1999). This is likely due to the 
density of genes related to the immune system in the region. The MHC contains the Human Leukocyte 
Antigen (HLA) genes. HLA alleles are responsible for determining transplant compatibility, and have 
been found to be associated with numerous diseases and conditions, for example: autoimmune diseases 
(e.g. multiple sclerosis (Moutsianas et al., 2015; Sawcer et al., 2011), ankylosing spondylitis (Evans et al., 
2011), psoriasis (Gudjonsson et al., 2003; Strange et al., 2010), rheumatoid arthritis (Han et al., 2014; 
Raychaudhuri et al., 2012)), communicable diseases (e.g. cerebral malaria (Hirayasu et al., 2012), HIV 
(Martin et al., 2007; Ramsuran et al., 2018)), cancer (e.g. Hodgkin lymphoma (Moutsianas et al., 2011), 
chronic lymphocytic leukemia (Gragert et al., 2014)), and adverse drug reactions (Bharadwaj et al., 
2012). 

Study of immunogenetic disease associations has been greatly facilitated by imputation methods for the 
alleles of the classical HLA genes: HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, 
HLA-DRA, and HLA-DRB1. These methods allow alleles to be imputed on the basis of Single-Nucleotide 
Polymorphisms (SNPs). SNP identification using arrays remains significantly cheaper than Whole 
Genome Sequencing (WGS), and SNP-genotyped datasets thus continue to have larger sample sizes 
(Sudlow et al., 2015). 
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The first HLA imputation method, HLA*IMP (A. T. Dilthey et al., 2011; Leslie et al., 2008), has been 
widely used in association studies (Evans et al., 2011; Fairfax et al., 2012; Moutsianas et al., 2011; 
Sawcer et al., 2011; Strange et al., 2010). Other approaches have subsequently been developed, 
including HLA*IMP:02 (A. Dilthey et al., 2013), HIBAG (Zheng et al., 2013), SNP2HLA (Jia et al., 2013), and 
HLA*IMP:03 (Motyer et al., 2016). 

To date, however, there are no methods for imputation of non-classical HLA and other MHC genes. 
These non-classical HLA and other genes are important. For example, HLA-E plays an important role in 
the recognition of cells by Natural Killer (NK) cells (Braud et al., 1998). HLA-E has been associated with 
diseases such as psoriasis (Zeng et al., 2013), bacterial infection (Tamouza et al., 2005), and leukemia (Xu 
et al., 2019). HLA-G expression has been associated with Crohn’s disease and ulcerative colitis (Rizzo et 
al., 2007). HLA-F has been associated hepatitis B and hepatocellular carcinoma (Zhang et al., 2012), and 
also with systemic lupus erythematosus (Jucaud et al., 2016). HLA-H variants are thought to be 
responsible for genetic haemochromatosis (Datz et al., 1997). 

The MIC (Major Histocompatibility Class I Chain-Related) genes, of which MICA and MICB are the non-
pseudogenes, are located in the MHC, but differ significantly from the classical HLA class I genes in their 
expression and products, and are highly polymorphic. They encode ligands for NK cell receptor NKG2D 
(Stephens, 2001). An association has been reported between MICA and MICB variants and enhanced 
susceptibility to leprosy (Tosh et al., 2006). They have also been associated with leukemia (Baek et al., 
2018),  and psoriasis (Choi et al., 2000; Romphruk et al., 2004). 

The TAP (Transporter associated with Antigen Processing) genes TAP1 and TAP2, located in the MHC, 
have been associated with several diseases. For example, TAP1 and TAP2 polymorphisms have been 
associated with ankylosing spondylitis (Feng et al., 2009) An association with psoriasis has also been 
suggested (Pyo et al., 2003). 

In this paper we present a method for imputing the alleles of multiple genes in the MHC. In particular, 
we focus on the imputation of non-classical HLA and other MHC genes (e.g. MICA, MICB, TAP1, and 
TA2). The classical HLA genes are also imputed. The method is based on prior work imputing classical 
HLA genes (A. Dilthey et al., 2013; A. T. Dilthey et al., 2011; Leslie et al., 2008; Motyer et al., 2016), and 
KIR gene copy number (Vukcevic et al., 2015). The imputation is done by using a random forest model 
(Breiman, 2001) to predict the allele for each gene for each haplotype. 

Reference Panel 
SNP Data 
The SNP data used in the construction of the reference panel for this study was drawn from two 
sources, both reported in previous studies: “UCSF” (Yan et al., 2018) and “University of Dundee” 
(Nititham et al., 2018). 

For all individuals from these sources, saliva samples were obtained. Both the psoriasis cases and 
healthy controls were genotyped on the Affymetrix UK Biobank platform. SNPs were called using 
Affymetrix Power Tools 1.18.0 using the parameters set out in the Affymetrix Best Practices Workflow 
document (Affymetrix, 2011) 

This produced a panel of 3028 individuals in total, as shown Table 1. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 25, 2020. ; https://doi.org/10.1101/2020.01.24.919191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919191


Table 1. SNP data sources 

Dataset Number of Individuals 
UCSF 1523 
University of Dundee 1505 

 

Allele calls 
In order to build imputation models for the MHC genes, allele calls are needed for the individuals in the 
reference panel. 500 individuals were selected for sequencing, for most of whom we also had SNP data. 
These majority of these were individuals of European ancestry with a diagnosis of plaque psoriasis, as 
confirmed by a dermatologist, with a small number (15) of healthy controls. 

The sequencing of the MHC region for these individuals was done using targeted sequencing by BGI 
Genomics. Alleles for genes in the MHC region were called from this sequence data using the SOAP-HLA 
program (Cao et al., 2013). These tools have previously been employed to develop an MHC reference 
panel of Han Chinese individuals (Zhou et al., 2016).  

Combining SNP data and allele calls 
In order to create a reference panel for training the imputation models, we needed individuals for whom 
we had both SNP data and allele calls. There were 419 candidate individuals in the SNP datasets. After 
removing duplicates, triplicates, and first-degree relatives, 401 remained. These 401 individuals 
constitute the reference panel used to train the imputation models. A merged set of PLINK-format files 
was created with the unphased genotypes for these individuals (PLINK v1.90b6.9, (Purcell et al., 2007)). 

Phasing of alleles and SNP data 
Allele encoding with PARSNPs 
The imputation model requires phased data – we need to know which allele is associated with which 
haplotype (and thus particular SNP backgrounds). It is thus necessary not only to phase the SNP data, 
but to encode the allele information (as called from the sequence data) so that it is phased with the 
SNPs. This was done by encoded the alleles using a novel method: PARSNPs (Pseudo-Allele-
Representing-SNPs). PARSNPs encode alleles using error-correcting codes, rather than the “one-hot” 
representation often used. 

In a one-hot encoding, alleles are encoded using a string of bits which are all zero except for the 𝑛th bit 
representing the presence of the 𝑛th allele (a mapping from alleles to integers is required). This means 
that for all allele encodings that differ only in two bits – the vast majority of the bits are zero for all 
alleles. Phasing methods rely on switches that result in haplotypes not present in the data being phased 
(and possibly a reference panel) being improbable. One-hot encoding provides almost no such penalty: 
in most of the encoding of the allele, a switch from one long string of zeros to another is undetectable. 
This can result in the ones representing the two alleles for the individual being phased onto the same 
haplotype. 

The motivation for PARSNPs is to minimise switch errors of this kind by using an allele encoding that 
guarantees that a switch in the middle of an encoded allele leads to haplotype that is not present in the 
data being phased – and thus recognizable as highly unlikely by the phasing algorithm. This is achieved 
by using error-correcting codes. Error-correcting codes allow a minimum Hamming distance (number of 
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different bits) between valid codewords to be specified. As all allele encodings are valid codewords, a 
sequence of multiple switch errors would be required to lead to another bit sequence present in the 
data being phased. This reduces the chance of switch errors during phasing of the encoded allele. 

The use of error correcting codes for allele encoding also allows phasing errors to be detected in 
multiple ways: switch errors often result in invalid codewords, as well as mismatches with known alleles 
for the individual. 

Each field of the allele representation was encoded separately, using a 16-bit integer (two bytes) to 
represent each of the five possible allele fields (the last being alphabetic) in the current HLA 
nomenclature (Marsh et al., 2010). This representation is then encoded using an [8,4] Hamming code for 
each byte of each field, guaranteeing a Hamming distance of 4 between valid codewords (Hamming, 
1950).1 This results in 32 bits per field, giving a 160 bit PARSNP representation of each allele.2 The binary 
representation can be mapped to DNA bases if that is required by the phasing software (e.g. 1 mapped 
to ‘A’, and 0 mapped to ‘G’). 

The PARSNP representations of the alleles were embedded in the genotype data by finding the first 
location with a 160bp gap available (i.e. no SNPs in the data at those positions), starting from the centre 
of the gene. The PARSNPs are given SNP IDs of PARSNP𝑛 (where 𝑛 is the bit number in [0, 160]) and SNP 
positions in bp in sequence from the insertion position. This approach guarantees no collisions between 
valid SNP IDs or SNP positions in the data, and that the PARSNP representation is embedded in the SNP 
background of the gene with which it should be phased. 

Quality Control 
Duplicate and monomorphic SNPs were removed before phasing, as were SNPs with more than 10% 
missing data. 

Phasing 
Phasing was then done with SHAPEIT v2.r904 (Delaneau et al., 2012). There is no external reference 
panel available for the non-classical HLA alleles used in this study. Given this, and the relatively small 
size of our dataset, it was expected that a significantly higher number of iterations than the default 
would be required for the phasing to converge. Varying numbers of iterations were tried, from the 
default of 20 through 80, 160, 320, to 3200. This was repeated 10 times for each number of iterations. 
Analysis showed that the rate of detectable phasing errors did not decrease beyond 320 iterations. 
Consequently, one of the 320 iteration phasing runs was picked at random for subsequent use. 

 
1 Encoding each field separately is simple and easy to interpret, but has the disadvantage that switch errors at field 
boundaries are not greatly penalized – a switch to another valid codeword (encoding a different value for the 
following field) is possible. Indeed the few errors observed in allele phasing were much more frequently of this 
type than a mid-codeword switch, as expected. This issue could be address by using an encoding with a single 
codeword for each allele, with a specified minimum Hamming distance between valid codewords. There would 
thus be no positions at which a switch would not be penalised. Reed-Solomon Codes provide one way of doing this 
(Reed & Solomon, 1960). 
2 This is more compact than a one-hot representation if there are more than 160 possible alleles – which is the 
case for some HLA genes. Moreover, the representation is unique – it does not depend on how many alleles are 
present in the particular dataset (as one-hot encoding typically does). If there are no alleles with the numeric value 
of a field greater than 255, the most significant byte will be constant, and thus removed before phasing as 
monomorphic. 
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Creation of training data for imputation models 
A separate training data set was constructed for each gene as follows. First, the allele for each haplotype 
was determined by decoding the embedded PARSNPs from the haplotype SNPs in the phased data. The 
PARSNPs were then removed from the SNP data. individuals with decoding errors missing allele calls, or 
alleles called at lower than two field resolution were removed from the training set for that gene. 

The allele was then truncated to the desired resolution (two field) for imputation. Any genes found to be 
monomorphic at two field resolution were discarded. HLA-V was discarded as a result of this process.  

For each gene, the SNPs in a window extending 50,000 bp either side of the start and end of the gene 
were extracted.3 

This resulted in a training dataset with the properties shown in Table 2. 

Table 2. MHC*IMP training data at two-field resolution 

Gene # of alleles # of individuals # of SNPs 
HLA-A 28 396 1590 
HLA-B 49 392 2584 
HLA-C 25 393 2690 
HLA-DMA 2 396 1853 
HLA-DMB 3 395 1944 
HLA-DOA 2 397 1781 
HLA-DOB 5 391 2261 
HLA-DPA1 6 397 1729 
HLA-DPB1 23 396 1731 
HLA-DQA1 16 396 2413 
HLA-DQB1 16 397 2433 
HLA-DRA 2 397 2164 
HLA-DRB1 36 395 2355 
HLA-E 2 397 1548 
HLA-F 3 397 1568 
HLA-G 6 383 1619 
HLA-H 8 388 1626 
HLA-J 2 397 1565 
HLA-K 3 390 1615 
HLA-L 2 397 1464 
HLA-P 3 397 1614 
MICA 10 174 2583 
MICB 7 236 2489 
TAP1 5 397 2180 
TAP2 5 397 2239 
 

 
3 Larger window sizes were investigated, but the same – or sometimes worse, for very large windows – 
performance was observed. This is perhaps unsurprising with a small training set and a complex model capable of 
learning spurious correlations between alleles and distant SNPs. 
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Creation of cross-validation folds 
In the absence of an independent reference dataset, 𝑘-fold cross-validation was used to evaluate the 
performance of our models (Devijver & Kittler, 1982). In 𝑘-fold cross validation, the dataset is split into 𝑘 
partitions (folds). Each fold is used as the test data for a model constructed using the other 𝑘	 − 1 folds 
as the training data. 

To partition training data into 𝑘 folds (we did three and five), for each MHC gene we first checked that 
we had at least 𝑘 instances of each allele. If not, that gene would be excluded from the experiment. This 
is because we must not have monomorphic folds, and we would to have a chance of at least one 
instance of each allele in each fold. This bound guarantees that an assignment without monomorphic 
folds is possible, as is an allele instance in each fold (though of course this is not guaranteed). This 
criterion resulted in gene HLA-J being excluded at both the three- and five-fold levels, and gene HLA-
DPA1 being excluded when five-fold cross-validation was used. 

Individuals were then uniformly randomly assigned to one of the 𝑘 folds. If any of the resulting folds was 
monomorphic, the assignment process was repeated until this was not so. 

Model Construction 
For each gene, a random forest model (Breiman, 2001) was created to impute the allele for that gene 
for a haplotype. A random forest consists of a large number of decision trees (𝑛𝑡𝑟𝑒𝑒), each of which is 
constructed using an independently drawn subset of training data (bagging). At each node of the tree, a 
number (𝑚𝑡𝑟𝑦) of predictor variables (here SNPs) is considered in order to decide which branch to 
follow. Eventually a leaf of the tree is reached, which corresponds to the decision made (here the allele 
predicted). In order to make a prediction using a random forest, the predictions of all the trees in the 
ensemble are treated as votes for alleles. The fraction of votes for each allele can also be treated as a 
probability distribution. 

We used the R randomForests package implementation of Breiman’s random forest model (Liaw & 
Wiener, 2002), with parameters: 

𝑛𝑡𝑟𝑒𝑒	 = 	max/100, 2
𝑛ℎ𝑎𝑝𝑠
2 89 

𝑚𝑡𝑟𝑦	 = 	max :50, <
𝑛𝑠𝑛𝑝𝑠
3

>? 

Where 𝑛ℎ𝑎𝑝𝑠 is the number of haplotypes, and 𝑛𝑠𝑛𝑝𝑠 the number of SNPs, in the training data for the 
gene. Experiments showed that performance was not sensitive to these parameters. 

Results and Discussion 
We show and discuss results for five-fold cross-validation. In calculating accuracies for the model for 
each gene for each fold, “impossible” alleles (i.e. those not present in the training data for that fold) 
were excluded. 
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Overall Performance 
Figure 1 shows a summary of the overall allele prediction performance of our imputation models 
averaged across the 𝑘 folds. The numerical data is shown in Table 3. Three performance measures are 
shown for the model for each gene: mean accuracy on the test data, mean accuracy on the training 
data, and average out-of-bag (OOB) accuracy, where accuracy is the percentage of alleles correctly 
predicted by the model from the SNP data. Genes are shown in order of increasing average number of 
alleles in the training data. We will focus on the accuracy on the test data in the discussion that follows. 
The performance on the training data is shown because it gives an indication of the extent to which the 
relationship between SNPs and alleles is “learnable” by the models.4 The average OOB accuracy gives an 
indication of the generalization performance of individual trees in the ensemble – the performance of 
the ensemble is expected generally to be better than that of individual trees. 

 

Figure 1. Overall Mean Cross-Validation Performance of MHC*IMP for each gene. Genes on the x-axis are 
in order of increasing average number of alleles in the training data for each of the five folds used for 
validation (that number is shown after the colon). The classical HLA genes, for which previous imputation 
methods exist, are shown in ochre; those from the extended MHC are in black. “Average OOB” indicates 
the average Out-Of-Bag error of individual trees in the random forest model for each gene. 

Mean accuracy of MHC*IMP on the test data is 93% or greater for all but two of the 23 genes, and 
greater than 95% for all but four. In the context of previous methods for HLA imputation this is excellent 
performance given the size of the training set. 

 
4 The fact that test fold performance is most frequently better than training set performance may be an artefact of 
the fact that rare (and thus hard to learn) alleles are more likely be present in the larger training dataset (the 
number of haplotypes is perhaps small enough that the fact that there can’t be fractional instances matters). If all 
instances of a rare allele end up in training set, they are excluded from test set performance calculations. 
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Performance generally decreases as the number of alleles increases, as would be expected – the larger 
than number of alleles, the fewer instances of each will appear in the training set. We would expect 
performance to improve when a larger reference dataset is available. 

There are two outliers: HLA-DRB1 and TAP2, though even for these mean allele prediction accuracy is 
greater than 80%. HLA-DRB1 has been found to be one of the classical HLA genes more difficult to 
impute in previous studies (Motyer et al., 2016). It is possible that copy number variation in the HLA-DRB 
genes may confound either the allele calls from sequence data, or the SNP background in the 
neighbourhood of HLA-DRB1 (Doxiadis et al., 2012). TAP2 is discussed below. 

Figure 2 shows the prediction accuracy of MHC*IMP on each of the five cross-validation folds, as well as 
the means that were shown in Figure 1. This gives an insight into the variance of the performance on the 
various folds. In general, the variance increases with the number of alleles. Again, HLA-DRB1 is an 
outlier, with by far the greatest variance. For all but the two outliers, HLA-DRB1 and TAP2, the accuracy 
on the worst fold is greater than 90%. In the application of MHC*IMP to a new data set, the entire 
reference panel would be used in training, and accuracy would be expected to be better than that 
obtained with 𝑘	 − 1 folds. 

 

Figure 2. Performance of MHC*IMP on each of the five folds for each gene, and the means. Genes on the 
x-axis are in order of increasing average number of alleles in the training data data for each of the five 
folds used for validation (that number is shown after the colon). The classical HLA genes, for which 
previous imputation methods exist, are shown in ochre; those from the extended MHC are in black. 
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Per Gene Performance 
We will now discuss the performance on several individual genes in more detail. We will consider a 
“typical” case, HLA-C, and the two outliers, HLA-DRB1 and TAP2. 

A typical case, HLA-C 
Figure 3 shows the mean test and training set performance of MHC*IMP for gene HLA-C for each allele. 
Accuracy is excellent almost everywhere – the fraction of test instances correct (green) and training 
instances correct (blue) is close to 100%, except where there are very few instances of the alleles 
training data. 

 

 

Figure 3. Mean per allele prediction performance for gene HLA-C. 

Examining confusion matrices makes what is happening clearer. For example, Figure 4 shows the errors 
that were made for HLA-C when fold 4 was used as the test set: 

• One of the six HLA-C*03:04 instances is called as the more frequent HLA-C*03:03. 
• The single HLA-C*04:34 instance is called as the relatively frequent HLA-C*04:01. There were 

extremely few instances of HLA-C*04:34 in the training data. 
• The impossible HLA-C*15:13 instance is called as HLA-C*15:02. 
• Both the HLA-C*17:03 instances are called as HLA-C*17:01. There were extremely few instances 

of either allele in the training data. 

In summary, when the calls are wrong, they are still correct at one field resolution, and tend to the more 
common allele with that first field. Incorrect calls tend to occur when there are very few instances of the 
allele in the training data. Performance could thus be expected to improve with a larger reference panel. 

ExtMHC−IMP cross−validation performance for gene HLA−C, agregated across 5 folds
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Figure 4. Confusion Matrix for gene HLA-C, with fold 4 as the test data. The histogram at the top of the 
figure shows the number of instances of each allele in the training data, the colour indicating the training 
set accuracy for that each allele. The matrix cells show the test data counts for each non-zero cell, with 
the colour indicating the fraction of called alleles corresponding to the known reference alleles for the 
test data. “Impossible” alleles are labelled in red (here allele HLA-C*15:13 was not present in the training 
data, and thus could not possibly be called correctly). 

A difficult case, HLA-DRB1 
Figure 5 shows the mean test and training set performance of MHC*IMP for gene HLA-DRB1 for each 
allele. There are multiple alleles where performance is poor (i.e. a larger fraction of bar is pink (test 
data) or orange (training data). In all such cases, performance is (approximately) equally poor on both 
test and training data.  
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Figure 5. Mean per allele prediction performance for gene HLA-DRB1. 

In this case, the confusion matrices shed little light – except that, as expected, poorer performance 
generally occurs for alleles with fewer training instances. Figure 6 shows the errors that were made for 
gene HLA-DRB1 when fold 2 was used as the test set. Whilst for some groups of alleles, incorrect calls 
are still correct at one field resolution (e.g. HLA-DRB1*14 and HLA-DRB1*16), this is not the case of the 
alleles HLA-DRB1*04, HLA-DRB1*07, HLA-DRB1*08, HLA-DRB1*09, HLA-DRB1*11, and HLA-DRB1*12. 

This suggests that either there is insufficient variation in the SNPs in reference panel for the model to 
capture the differences between these alleles, or that the calls for some alleles in the reference panel 
itself are incorrect. 

ExtMHC−IMP cross−validation performance for gene HLA−DRB1, agregated across 5 folds
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Figure 6. Confusion Matrix for gene HLA-DRB1, with fold 2 as the test data. See explanation of figure 
structure for Figure 4. 

A difficult case, TAP2 
Figure 7 shows the mean test and training set performance of MHC*IMP for gene TAP2 for each allele. 
Performance on test and training data is again essentially identical. Allele TAP2*01:02 is evidently very 
hard to learn from our reference panel. Allele TAP2*01:03 is rare and apparently unlearnable here. 
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Figure 7. Mean per allele prediction performance for gene TAP2. 

Figure 8 shows the errors that were made for gene TAP2 when fold 2 was used as the test set. 

• 5 of the 13 test instances are called as the much more common TAP2*01:01 
• the 2 TAP2:01:03 instances are called as TAP2:01:02, as are 3 of the 42 TAP2*02:01 instances 
• 2 TAP2*01:02 instances are called as TAP2*02:01 – the confusion goes in both directions 

It is difficult to draw conclusions here, except that the great majority of instances of the common alleles 
(TAP2*01:01, TAP2*01:04, and TAP2*02:01) are called correctly. TAP*01:02 is decidedly odd: it is the 
most common allele for others to be called as incorrectly, and yet it is only called correctly itself ~50% of 
the time. We can only conclude that our reference panel contains insufficient, or even contradictory, 
information for this gene. 

ExtMHC−IMP cross−validation performance for gene TAP2, agregated across 5 folds
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Figure 8. Confusion Matrix for gene TAP2, with fold 2 as the test data. See explanation of figure structure 
for Figure 4. 

Conclusion 
We created a reference panel consisting of 401 individuals for 25 genes in the MHC using allele calls 
from WGS data, combined with SNP data for the same individuals. We used this to construct an allele 
imputation model, MHC*IMP for each gene. Cross-validation showed that MHC*IMP performs very well, 
with allele prediction accuracy 93% or greater for all but two of the genes, and greater than 95% for all 
but four. We expect the performance of the MHC*IMP approach to improve still further when a larger 
reference panel is available. 
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Supplementary Data 
Table 3. Overall Mean Performance of MHC*IMP Models 

Gene Training data 
accuracy 

Test data 
accuracy 

Average OOB 
accuracy 

# Training 
alleles 

# Testing 
alleles 

HLA-A 96.9 97.5 96.7 27 20 
HLA-B 92.9 94.8 92.4 47.2 33.6 
HLA-C 98.2 98 97.9 24.2 18.4 
HLA-DMA 99.9 99.9 99.8 2 2 
HLA-DMB 99.8 99.9 99.8 3 3 
HLA-DOA 100 100 100 2 2 
HLA-DOB 99.6 99.6 99.6 5 5 
HLA-DPB1 95.4 95.8 95 22.6 18.8 
HLA-DQA1 97.3 97.8 97.2 15.8 13.6 
HLA-DQB1 97.1 97 97 15.8 14.8 
HLA-DRA 100 100 100 2 2 
HLA-DRB1 82.8 83.9 81.9 35 26.8 
HLA-E 100 100 100 2 2 
HLA-F 100 100 99.9 3 2.8 
HLA-G 98 97.5 98 6 5.6 
HLA-H 93.2 93 93.2 8 7.4 
HLA-K 97.1 97.3 96.9 3 3 
HLA-L 100 100 100 2 2 
HLA-P 99.2 99.1 99.2 3 3 
MICA 97 97 97 9.8 8.8 
MICB 98 98 98 7 6.4 
TAP1 98.4 98.2 98.3 5 4.6 
TAP2 86.2 86.4 85.9 5 5 
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