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Abstract 24 

The rapid advancement of single cell technologies has shed new light on the complex 25 

mechanisms of cellular heterogeneity. However, compared with bulk RNA sequencing 26 

(RNA-seq), single-cell RNA-seq (scRNA-seq) suffers from higher noise and lower 27 

coverage, which brings new computational difficulties. Based on statistical 28 

independence, cell-specific network (CSN) is able to quantify the overall associations 29 

between genes for each cell, yet suffering from a problem of overestimation related to 30 

indirect effects. To overcome this problem, we propose the “conditional cell-specific 31 

network” (CCSN) method, which can measure the direct associations between genes 32 

by eliminating the indirect associations. CCSN can be used for cell clustering and 33 

dimension reduction on a network basis of single cells. Intuitively, each CCSN can be 34 

viewed as the transformation from less “reliable” gene expression to more “reliable” 35 

gene-gene associations in a cell. Based on CCSN, we further design network flow 36 

entropy (NFE) to estimate the differentiation potency of a single cell. A number of 37 

scRNA-seq datasets were used to demonstrate the advantages of our approach: (1) one 38 

direct association network for one cell; (2) most existing scRNA-seq methods designed 39 

for gene expression matrices are also applicable to CCSN-transformed degree matrices; 40 

(3) CCSN-based NFE helps resolving the direction of differentiation trajectories by 41 

quantifying the potency of each cell. CCSN is publicly available at 42 

http://sysbio.sibcb.ac.cn/cb/chenlab/soft/CCSN.zip. 43 

 44 
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Introduction 49 

With the development of high-throughput single-cell RNA sequencing (scRNA-seq), 50 

novel cell populations in complex tissues [1-5] can be identified and the differentiation 51 

trajectory of cell states [6-8] can be obtained, which opens a new way to understand the 52 

heterogeneity and transition of cells [9-11]. However, compared to traditional bulk 53 

RNA-seq data, the prevalence of high technical noise and dropout events is a major 54 

problem in scRNA-seq [12-17], which raises substantial challenges for data analysis. 55 

Many computational methods were proposed to improve the identification of new cell 56 

types [18-21]. Meanwhile, imputation is an effective strategy to transform the dropouts 57 

to the substituted values [22-26]. However, most of these methods mainly analyze 58 

mRNA expression/concentrations, while the information of gene-gene interactions (or 59 

their network) is ignored. 60 

Recently, a network-based method, cell-specific network (CSN), was proposed to 61 

perform network analysis for scRNA-seq data [27], which elegantly infers a network 62 

for each cell and successfully transforms the noisy and “unreliable” gene expression 63 

data to the more “reliable” gene association data. The network degree matrix (NDM) 64 

derived from CSN can be further applied in downstream single cell analyses, which 65 

performs better than traditional expression-based methods in terms of robustness and 66 

accuracy. CSN is able to identify the dependency between two genes from single-cell 67 

data based on statistical independence. However, CSN suffers from a problem of 68 

overestimation on gene-gene associations, which include both direct and indirect 69 

associations due to interactive effects from other genes in a network. In other words, a 70 

gene pair without direct association can be falsely identified to have a link just because 71 

they both have true associations with some other genes. Thus, the gene-gene network 72 

of a cell constructed by CSN may be much denser than the real molecular network in 73 
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this cell, in particular when there are many complex associations among genes.  74 

To overcome this shortcoming of CSN, we introduce a novel computational method 75 

to construct a conditional cell-specific network (CCSN) from scRNA-seq data. 76 

Specifically, CCSN identifies direct associations between genes by filtering out indirect 77 

associations in the gene-gene network based on conditional independence. Thus, CCSN 78 

can transform the original gene expression data of each cell to the direct and robust 79 

gene-gene association data (or network data) of the same cell. In this paper, we first 80 

demonstrate that the transformed gene-gene association data not only are fully 81 

compatible with traditional analyses such as dimension reduction and clustering, but 82 

also enable us to delineate the cell-specific network topology and its dynamics along 83 

developmental trajectories. Then, by defining the network flow entropy (NFE) on the 84 

gene-gene association data of each cell based on CCSN, we estimate the differentiation 85 

potency of individual cells. We show that NFE can illustrate the lineage dynamics of 86 

cell differentiation by quantifying the differentiation potency of cells, which is also one 87 

of the most challenging tasks in developmental biology. 88 

 89 

Methods 90 

Assuming that x and y are two random variables, and z is the third random variable. If 91 

x and y are independent, then 92 

    				𝑝(𝑥)𝑝(𝑦) = 𝑝(𝑥, 𝑦)                            (1) 93 

where 𝑝(𝑥, 𝑦) is the joint probability distribution of x and y; 𝑝(𝑥) and 𝑝(𝑦) are the 94 

marginal probability distributions of x and y.  95 

If x and y with the condition z are conditionally independent, then 96 

                  𝑝(𝑥|𝑧)𝑝(𝑦|𝑧) = 𝑝(𝑥, 𝑦|𝑧)                         (2) 97 

where 𝑝(𝑥, 𝑦|𝑧) is the joint probability distribution of x and y with the condition z, 98 
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𝑝(𝑥|𝑧)  and 𝑝(𝑦|𝑧)  are conditionally marginal probability distributions. Note that 99 

eqns. (1)-(2) are both necessary and sufficient conditions on mutual independence and 100 

conditional independence, respectively. 101 

Here we define 102 

      𝜌,-	 = 𝑝(𝑥, 𝑦) − 𝑝(𝑥)𝑝(𝑦).                        (3) 103 

                𝜌,-|/	 = 𝑝(𝑥, 𝑦|𝑧) − 𝑝(𝑥|𝑧)𝑝(𝑦|𝑧).                    (4) 104 

The original CSN method [27] uses 𝜌,-  to distinguish the independency and 105 

association between x and y (File S1 Note 1). However, if two independent variables x 106 

and y are both associated with a third random variable z, 𝜌,- cannot measure the direct 107 

independency because there is an indirect association between x and y. In other words, 108 

the associations defined by CSN or eqn. (3) include both direct and indirect dependency, 109 

thus resulting in the overestimation on gene-gene associations. To overcome this 110 

problem of CSN, we develop a novel method, conditional cell-specific network 111 

(CCSN), which measures the direct gene-gene associations based on the conditional 112 

independency 𝜌,-|/ , i.e. eqn. (4), by filtering out the indirect associations in the 113 

reconstructed network. The computational framework of CCSN is shown in Figure 1, 114 

and is described in the next sections.  115 

Probability distribution estimation 116 

We numerically estimate the value of 𝜌,-|/ by making a scatter diagram based on gene 117 

expression data. Suppose there are m genes and n cells in the data. We depict the 118 

expression values of gene x, gene y and the conditional gene z in a three-dimensional 119 

space (Figure S1 A-G), where each dot represents one cell. First, we draw two parallel 120 

planes which are orthogonal with z axis near the dot k to represent the upper and lower 121 

bounds of the neighborhoods of	𝑧0. And the number of dots in the space between the 122 
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two parallel planes (i.e. the neighborhood of	𝑧0) is	𝑛/
(0) (Figure S1 D). Now we get a 123 

subspace on condition of gene z. Then, we draw other four planes near the dot k, where 124 

two planes are orthogonal with x axis and the other two planes are orthogonal with y 125 

axis. We can get the neighborhoods of	(𝑥0, 𝑧0), (𝑦0, 𝑧0) and (𝑥0, 𝑦0, 𝑧0) according 126 

to the intersection space of six planes (Figure S1 E-G), where the numbers of dots 127 

are	𝑛,/
(0),	𝑛-/

(0) and	𝑛,-/
(0) ,	respectively. Then, we can get the estimation of probability 128 

distributions: 129 

p(<)(x, y|z) ≈ 	
	@ABC
(D)

	@C
(D) ,   	p(<)(x|z) ≈ 	@AC

(D)

	@C
(D),   	p(<)(y|z) ≈

	@BC
(D)

	@C
(D) 130 

Based on eqn. (4), we construct a statistic 131 

𝜌,-|/
(0) =

	EFGH
(I)

	EH
(I) −

	EFH
(I)	EGH

(I)

	EH
(I)J

                            (5) 132 

to measure the conditional independence between gene x and gene y on the condition 133 

of gene z in cell k. And when gene x and gene y given gene z are conditionally 134 

independent, the expectation 𝜇,-|/
(0)  and standard deviation 𝜎,-|/

(0) 	 (File S1) of the 135 

statistic 𝜌,-|/
(0) 	can be obtained:  136 

𝜇,-|/
(0) = 0 137 

𝜎,-|/
(0) = N

𝑛,/
(0)𝑛-/

(0). P𝑛/
(0) − 𝑛,/

(0)Q. (𝑛/
(0) − 𝑛-/

(0))

𝑛/
(0)RP𝑛/

(0) − 1Q
 138 

Then, we normalize the statistic as  139 

𝜌T,-|/
(0) =

𝜌,-|/
(0) − 𝜇,-|/

(0)

𝜎,-|/
(0)  (6) 

If gene x and y are conditionally independent on the condition of gene z, it can be proved 140 

that the normalized statistic follows the standard normal distribution (File S1 Note 1 141 
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and Figure S2), and it is less than or equal to 0 when gene x and y are conditionally 142 

independent (File S1 Note 2). 143 

 144 

Constructing conditional cell-specific network for each cell 145 

To estimate the conditional independency of gene x and gene y given the conditional 146 

gene z in cell k, we use the following hypothesis test: 147 

𝐻V(𝑛𝑢𝑙𝑙	ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠):	gene x and gene y are conditionally independent given gene z in 148 

cell k. 149 

𝐻`(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠): gene x and gene y are conditionally dependent given 150 

gene z in cell k. 151 

If 𝜌T,-|/d
(0) , the normalized statistic, is larger than 𝒩f (significance level	α,	𝒩f	is the 152 

alpha quantile of the standard normal distribution), the null hypothesis will be rejected 153 

and then 𝜔,-|/
(0) = 1	(𝜔,-|/

(0)  is the edge weight of genes x and y on condition of gene z ). 154 

𝜔,-|/
(0) = i10	

gene	x	and	y	are	directly	dependent	given	gene	z
		gene	x	and	y	are	conditionally	independent	given	gene	z				 (7) 

All gene pairs can be tested if they are conditionally independent given gene z in cell 155 

k. And the conditional cell-specific network (CCSN) 𝐶/
(0) given conditional gene z is 156 

obtained for cell k. 157 

Then, to estimate the direct association between a pair of genes in a cell, 158 

theoretically we should use all the remaining m-2 genes as conditional genes, which is 159 

computationally intensive. Suppose there are m genes in our analysis, then m*(m-1)/2 160 

gene pairs should be tested. Fortunately, a molecular network is generally sparse, which 161 

means that a pair of genes (i.e. genes x and y) are expected to have a very small number 162 

of commonly interactive genes (as conditional genes z). In other words, numerically we 163 

can use a small number of conditional genes to identify the direct association between 164 
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a pair of genes in a cell, which can significantly reduce the computational cost (File S1 165 

Note 3, Table S1). For each gene pair in a cell, we choose G (1≤G≤m-2) genes as the 166 

conditional genes to test if the gene pair is conditionally independent or not. Generally, 167 

the conditional genes may be the key regulatory genes in a biological process, such as 168 

transcription factors and kinases. From a network viewpoint, these genes are usually 169 

hub genes in the gene-gene network, and the network degrees of these genes would be 170 

higher.  171 

Practically, the conditional genes could be obtained from many available methods, 172 

such as highly expressed genes, highly variable genes, key transcription factor genes, 173 

or the hub genes in the CSN, and so on. For the CCSN method, the conditional gene 174 

sets were defined by CSN. The following two steps were used to obtain the conditional 175 

genes although other appropriate schemes can also be used: 176 

1. For a given cell, we first construct a CSN without the consideration of conditional 177 

genes, where the edge between gene x and gene y in cell k is determined by the 178 

following hypothesis test: 179 
H0(null hypothesis): gene x and gene y are independent in cell k. 180 
H1(alternative hypothesis): gene x and gene y are dependent in cell k. 181 

The statistic 𝜌,- can be used to measure the independency of genes x and y (File S1 182 

Note1). If 𝜌,- is larger than a significant level, we will reject the null hypothesis and 183 

edgexy (k) = 1, otherwise edgexy (k) = 0. 184 

𝑒𝑑𝑔𝑒,-
(0) = i10	

𝑔𝑒𝑛𝑒	𝑥	𝑎𝑛𝑑	𝑦	𝑎𝑟𝑒	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
				𝑔𝑒𝑛𝑒	𝑥	𝑎𝑛𝑑	𝑦	𝑎𝑟𝑒	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡					 185 

Then we use Dz
(k) to measure the importance of conditional gene z in cell k: 186 

Dz
(k)=r edgezy

(k)
M

y=1,y≠z
 (8) 

Eqn. (8) means that if a gene is connected to more other genes, this gene is more 187 

important. 188 
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2. For a given cell k, we choose the top 𝐺	(𝐺 ≥ 1)	largest ‘importance’ genes as the 189 

conditional genes. 190 

We assume that the conditional gene set is {𝑧v, g = 1,2,3,⋯ , G} , and the 191 

conditional cell-specific network (CCSN) 𝐶/d
(0) is obtained for cell k given conditional 192 

gene 𝑧v. The CCSNs of the cell k on the condition of gene set {𝑧v, g = 1,2,3,⋯ , G} 193 

are {𝐶/|
(0),	𝐶/J

(0),⋯ , 𝐶/}
(0)}. Then, we use 194 

 �̅�0 =
`
�
∑ 𝐶/d

(0)�
v�` 	= P𝑐��

(0)Q	                      (9) 195 

to represent the degrees of gene-gene interaction network of cell k, where 𝑐��
(0)	for 196 

𝑖, 𝑗 = 1,⋯ ,𝑚 is the (i,j) element of the matrix �̅�0. 197 

For scRNA-seq data with all n cells, we can construct n CCSNs, which can be used 198 

for further dimension reduction and clustering. In other words, instead of the originally 199 

measured gene expression data with n cells, we use the n transformed CCSNs for further 200 

analysis. In addition, each CCSN is a network for a cell, which can be used for network 201 

analysis (gene regulations and network biomarkers) on the basis of a single cell.  202 

Network degree matrix from CCSN 203 

CCSNs could be used for various biological studies by exploiting the gene-gene 204 

conditional association network from a network viewpoint. We transform eqn. (9) to a 205 

conditional network degree vector based on the following transformation 206 

  𝑣�0 = 	∑ 𝑐��
(0)�

��`                                 (10)    207 

Then, for {�̅�`, �̅��,⋯ , 𝐶E̅}, an m*n matrix CNDM is obtained.  208 

  CNDM = (𝑣�0)				with	𝑖 = 1,⋯ ,𝑚; 𝑘 = 1,⋯ , 𝑛                 (11) 209 

The matrix has the same dimension with the gene expression matrix (GEM), i.e. 210 

GEM= (𝑥�0)		with	𝑖 = 1,⋯ ,𝑚; 𝑘 = 1,⋯ , 𝑛 , but CNDM can reflect the gene-gene 211 
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direct association in terms of interaction degrees. Moreover, this CNDM matrix after 212 

normalization could be further analyzed by most traditional scRNA-seq methods for 213 

dimension reduction and clustering analysis. The input/output settings as well as 214 

application fields of our CCSN method are listed in File S1 Note 4. 215 

Network analysis of CCSN 216 

The relationship between gene pairs can be obtained by CCSN at a single cell level. 217 

CCSN also provides a new way to build gene-gene interaction network for each cell. 218 

And the CNDM derived from CCSN can be further used in dimension reduction, 219 

clustering and network flow entropy analysis by many existing methods. 220 

Dimension reduction  221 

We used principal component analysis (PCA) [28] and t-distributed stochastic neighbor 222 

embedding (t-SNE) [29] which respectively represent linear and nonlinear methods, to 223 

perform dimension reduction on public scRNA-seq datasets with known cell types. 224 

Clustering  225 

To validate the good performance of CCSN in clustering analysis, several traditional 226 

clustering methods such as K-means, Hierarchical cluster analysis, and K-medoids 227 

were applied to clustering analysis. Furthermore, state-of-the-art scRNA-seq data 228 

clustering methods such as SC3, SIMLR and Seurat [20, 30, 31] were also used for 229 

comparison.  230 

Network flow entropy analysis.  231 

Quantifying the differentiation potency of a single cell is one of the important tasks in 232 

scRNA-seq studies [15, 32, 33]. A recent study developed SCENT [34], which uses 233 

protein-protein interaction (PPI) network and gene expression data as input to obtain 234 

the potency of cells. However, SCENT depends on the PPI network, which may ignore 235 

many important relationships between genes in specific cells. In this paper, we 236 
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developed network flow entropy (NFE) to estimate the differentiation potency of a cell 237 

from its CSN or CCSN network, which is constructed for each cell. The normalized 238 

gene expression profile and CSN/CCSN is used when we compute the network flow 239 

entropy.  240 

Estimating NFE requires a background network, which could be provided by CSN 241 

or CCSN. Based on CSN or CCSN, we could know whether or not there is an edge 242 

between gene i and gene j. We assume that the weight of an edge between gene i and 243 

gene j, 𝑝�� is proportional to the normalized expression levels of gene i and gene j, that 244 

is 	𝑝�� ∝ 	 𝑥�𝑥�  with ∑ 𝑝�� = 1�
��` . These weights are interpreted as interaction 245 

probabilities. Then, we normalize the weighted network as a stochastic matrix, P=(𝑝��) 246 

with 247 

   𝑝�� =
,�

∑ ,II∈�(�)
= ,�

(�,)�
        for i, j=1, …, m 248 

where 𝐸(𝑖) contains the neighbours of gene i, and A is the CSN or CCSN (𝐴�� = 1 if 249 

i and j are connected, otherwise 𝐴�� = 0). 250 

And then, we define the NFE as:  251 

  NFE = 	−∑ 𝑥�𝑝��log	(𝑥�𝑝��)�,�                       (12) 252 

where 𝑥� is the normalized gene expression of gene i. From the definition, NFE is 253 

clearly different from network entropy. 254 

 255 

Data availability 256 

Twelve scRNA-seq datasets and one bulk RNA-seq dataset [15, 35-41] were used to 257 

validate our CCSN method. The numbers of cells in these datasets range from 100 to 258 

20,000. Table S2 gives a brief introduction of these datasets. 259 
 260 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 26, 2020. ; https://doi.org/10.1101/2020.01.25.919829doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.25.919829


 

12 
 

Results  261 

Visualization and clustering of scRNA-seq datasets with CNDM 262 

Characterizing the cell heterogeneity is one of the important tasks for scRNA-seq data 263 

analysis. To test whether CCSN-transformed network data can help segregate cell types, 264 

we performed dimension reduction and clustering on the CNDMs of gold-standard 265 

scRNA-seq datasets, using algorithms widely employed in scRNA-seq studies. The 266 

numbers of conditional genes used in CCSN construction were listed in Table S2.  267 

For visualizing the structure of these datasets in a two-dimensional space, we used 268 

the representative linear and nonlinear dimension reduction methods, principle 269 

component analysis (PCA) [42] and t-distributed stochastic neighbor embedding (t-270 

SNE) [29], respectively. As shown in Figure 2 and Figure S3, CNDMs can separate 271 

different cell types clearly in the low-dimensional space by both PCA and t-SNE. 272 

Notably, they generally perform even better than GEM (Figure 2, Figure S3). Hence, 273 

the network data of CNDMs contain sufficient information for separating cell types in 274 

scRNA-seq datasets.  275 

To quantitatively evaluate the power of CNDMs in cell type identification, we 276 

performed clustering on CNDMs and computed the adjusted random index (ARI) for 277 

each dataset based on the background truth (File S1 Note 5). As shown in Table 1 and 278 

Figure S4, CNDMs perform obviously better than GEM on all datasets, either without 279 

or with dimension reduction with t-SNE. These provide a strong support of the notion 280 

that the CCSN-transformed network data are highly informative for characterizing 281 

single cell populations. Interestingly, when further compared to NDM, CNDMs also 282 

show a good performance (Table 2 and Figure S5).  283 

   To further evaluate CCSN for larger datasets, the Tabula Muris droplet1 dataset [41] 284 
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comprising more than 20,000 cells from three tissues (bladder, trachea, and spleen) 285 

were tested. The Seurat package was used to perform dimension reduction and 286 

clustering analysis on the CNDM [31]. The cells are clearly segregated into three 287 

dominant groups on the t-SNE map, which are largely defined by their cell origins (ARI 288 

= 0.73 and Figure S6). This indicates that CCSN can be effectively extended to larger 289 

datasets in addition to the relatively small gold standard datasets benchmarked above. 290 

CCSN reveals network structure and dynamics on a single cell basis  291 

In this paper, we apply CCSN to Wang dataset [39], which comes from a study of neural 292 

progenitor cells (NPCs) that differentiate into mature neurons. The dataset contains six 293 

time points over a 30-day period.  294 

The CSN and CCSN are performed on a single cell (Day 0, RHB1742_d0) using 295 

195 transcription factors which are differentially expressed across all the cell 296 

subpopulations and all time points. In CCSN, two genes (HMGB1 and SOX11) of high 297 

coefficients of variation (CV) are chosen as the conditional genes. The results (Figure 298 

3A) illustrate that the network of CCSN are much sparser than the network of CSN. 299 

There are three modules in the CCSN, while there is only one dense network in the 300 

CSN. Furthermore, three hub genes are obtained in three modules in CCSN. One of the 301 

hub genes is ASCL1 which plays an important role in neural development [13, 43]. Thus, 302 

by removing indirect associations, CCSN can extract a more informative network 303 

structure than CSN, which could improve the characterization of key regulatory factors 304 

in individual cells. 305 

CCSN also reveals the network dynamics over the differentiation trajectory. As 306 

illustrated in Figure 3B, a core neural differentiation network composed of eight 307 

regulatory genes is dynamically modulated through the temporal progression of NPC 308 

differentiation. At day 0, the associations among these genes are the strongest, 309 
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consistent with the high potency of progenitor cells. As NPC differentiates, the network 310 

becomes much sparser, suggesting more specified cell fates. In addition, when 311 

constructing CCSN from all genes, the degrees of MEIS2, PBX1 and POU3F2 are also 312 

larger in day 0 and quickly decreases afterwards (Figure 3C), indicating that these genes 313 

are highly connected with other genes in NPCs, consistent with their known important 314 

roles in early differentiation of neural progenitor cells [39].  315 

Both theoretically and computationally, CCSN can also construct a gene-gene 316 

network for a single bulk RNA-seq sample, in addition to a single cell. To validate this 317 

biologically, we apply CCSN to the TCGA lung adenocarcinoma (LUAD) RNA-seq 318 

dataset. The t-SNE plot based on CNDM reveals two obvious clusters, which 319 

respectively corresponding to normal adjacent lung tissues and lung tumors (Figure 320 

S8A), supporting the effective application of CCSN to bulk RNA-seq data as well. 321 

Moreover, the EGFR pathway, a well-known oncogenic driver pathway for LUAD [44-322 

46], is densely connected in tumor samples but not in benign tissues, as illustrated in 323 

the representative single-sample EGFR networks (Figure S8 B), and the CCSN degrees 324 

of EGF and EGFR in each normal and tumor samples (Figure S8 C). These data 325 

demonstrate that CCSN well extends to single sample bulk RNA-seq data analysis and 326 

uncovers important biological connections related to disease states. 327 

CCSN-based network flow entropy analysis  328 

To quantify the differentiation state of cells, we further develop a new method “network 329 

flow entropy” (NFE) to estimate the differentiation potency of cells by exploiting the 330 

gene-gene network constructed by CCSN. 331 

To assess the performance of NFE, we apply it to two datasets. In Wang dataset [39], 332 

there are 484 cells with 6 stages (day 0, day 1, day 5, day 7, day 10, day 30) and the 333 

CCSNs with one conditional gene are used to compute the network flow entropy. We 334 
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compared NPC (at Day 0 and Day 1) with mature neurons (at Day 30) (Figure 4A). In 335 

Yang dataset [38], we compared the cells in day 10 with day 17 in differentiation of 336 

mouse hepatoblasts (Figure 4B) and the CSN was used to compute the network flow 337 

entropy. In both datasets, NFE assigns significantly higher scores to the progenitors 338 

than the differentiated cells (one-sided Wilcox rank sum test, p-value = 3.756e-19 in 339 

Yang dataset, p-value = 2.062e-12 on Wang dataset).          340 

To further validate NFE, we generated a three-dimensional representation of the 341 

cell-lineage trajectory for the Wang dataset. In the time-course differentiation 342 

experiment of NPCs into neurons [39], NFE correctly predicted a gradual decrease in 343 

differentiation potency (Figure 5). Therefore, NFE is effectively applicable to single 344 

cell differentiation studies and highly predictive of developmental states and directions. 345 

 346 

Discussion 347 

Estimating functional gene networks from noisy single cell data has been a challenging 348 

task. Motivated by network-based data transformation, we have previously developed 349 

CSN to uncover cell-specific networks and successfully applied it to extract 350 

biologically important gene interactions. However, CSN does not distinguish direct and 351 

indirect associations and thus suffers from the so-called overestimation problem. In this 352 

study, we propose a more sophisticated approach termed CCSN, which constructs 353 

direct gene-gene associations (network) of each cell by eliminating false connections 354 

introduced by indirect effects.  355 

CCSN can transform GEM to CNDM for downstream dimension reduction and 356 

clustering analysis. These allow us to identify cell populations, generally better than 357 

GEM in the datasets tested above. In addition, CCSN also shows good performance 358 

when compared to CSN. Moreover, we can construct one direct gene-gene association 359 
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network by one cell based on CCSN. From the networks of the individual cells, we can 360 

obtain the dynamically changed networks. In Figure 3C, the CCSNs of these cells 361 

dynamically changed at different time points, and the network at day 0 shows the 362 

strongest associations. Moreover, the hub genes of the networks constructed by CCSN 363 

method may play an important role in biological processes. In Figure 3A, the hub genes 364 

of three modules in the network constructed by CCSN play a vital role in neural 365 

development. These clearly demonstrate the advantages of CCSN. Furthermore, we 366 

develop a new NFE index which can accurately estimate the differentiation potency of 367 

a single cell. And the results show that NFE performs well in distinguishing various 368 

cells of differential potency. 369 

Nonetheless, the computational cost of CCSN generally increases by G times 370 

comparing with the original CSN due to G conditional genes. Thus, a parallel 371 

computation scheme is desired to reduce the computation time. Also, CCSN is not 372 

designed to construct the causal gene association networks, and the directions of the 373 

gene associations cannot be obtained. These could be our future research topics. 374 
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 506 

Figure legends 507 

Figure 1  Overview of CCSN  508 

The input data is gene expression matrix 𝐸�∗E (The orange column represents the cell 509 

k). (1) The normalized statistics 𝜌T,-|/
(0)  of each gene pair gene x and gene y given a 510 

conditional gene z for each cell k. 𝜌T,-|/
(0)  can be used to measure the direct gene-gene 511 

associations. (2) Hypothesis testing of the normalized statistic 𝜌T,-|/
(0) . The significance 512 

level of hypothesis testing is α and 𝒩f	is the alpha quantile of the distribution. When 513 

𝜌T,-|/
(0) > 𝒩f, gene x and gene y are conditionally independent given the gene z in cell 514 

k, 𝑤,-|/
(0)  = 0, else 𝑤,-|/

(0)  = 1. (3) Constructing conditional cell-specific network for 515 

each gene pair for cell k and for the conditional gene set 	𝒵 = {𝑧`, 𝑧�,⋯ , 𝑧�} . (4) 516 

Integrating the conditional cell-specific network of conditional gene set Z. For each cell, 517 
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we repeat the steps (1) – (4). Finally, we get a conditional degree matrix CNDM which 518 

has the same dimension as gene expression matrix E. The CNDM can be used in 519 

clustering, visualization and differentiation potency analysis. 520 

 521 

Figure 2  CNDM for visualization of scRNA-seq data  522 

The datasets are dimensionally reduced by t-SNE and cell types are encoded by 523 

different colors. 524 

 525 

Figure 3  CCSN uncovers network topology and dynamics for single cells  526 

A. The cell specific network (CSN) and conditional cell specific network (CCSN) of 527 

the same single cell from the Wang dataset. The same genes are used in network 528 

construction. B. CCSNs of 8 core genes for representative single cells. C. CCSN 529 

degrees of MEIS2, PBX1 and POU3F2 along six time points of the neuronal 530 

differentiation. 531 

Figure 4  Network flow entropy analyses for differentiated cells and progenitors 532 

A. Network flow entropy between NPCs (at 0 and 1 day) and mature neurons (at 30 533 

day). B. Network flow entropy between cells at day 10 and day 17 during differentiation 534 

of mouse hepatoblasts. P-value is from one-sided Wilcoxon rank-sum test. 535 

Figure 5  The differentiation landscape of neural progenitor cells into mature 536 

neurons 537 

The 3-dimensional plot shows the NFE of single cells gradually decrease along the 538 

differentiation time-course of neural progenitor cells (day 0) into mature neurons (day 539 

30). The z axis represents the NFE. The x axis and y axis are the two components of t-540 

SNE.  541 

 542 

Tables 543 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 26, 2020. ; https://doi.org/10.1101/2020.01.25.919829doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.25.919829


 

22 
 

Table 1  The comparison of CNDM and GEM in clustering of scRNA-seq data 544 

Note: The performance of clustering is evaluated by ARI. Hierarchical (t-SNE) and k-545 
means (t-SNE) indicates clustering after t-SNE. 546 

 547 

Table 2  The comparison of CNDM with NDM in clustering analysis 548 

Note: The performance of clustering is evaluated by ARI.  549 
 550 

Supplementary material 551 

File S1  CCSN additional implementation details 552 

Figure S1  Scatter diagram of the expression values of gene x, gene y and gene z 553 

for cell k  554 

(A) the red plot k represents the cell k and x axis, y axis and z axis represent the 555 

expression levels of gene x, gene y and gene z. gene z respectively. Gene z is set as 556 

the conditional gene. n is the number of cells in the dataset. (B) The two parallel light 557 

shadow planes 𝑃,`,	𝑃,�, where x-axis is orthogonal with two planes. The dots are 558 

contained in the space between the two planes are the neighbors of 𝑥0 and the 559 

number of the dots is	𝑛,
(0). (C) The two parallel light shadow planes 𝑃-`,	𝑃-�, where y-560 

axis is orthogonal with two planes. The dots are contained in the space between the 561 

two planes are the neighbors of 𝑦0	 and	the number of the dots is	𝑛-
(0). (D) The two 562 

parallel light shadow planes 𝒫/`, 𝒫/�, where z-axis is paralleled with the two planes. 563 

The dots contained in the space between the two planes are the neighbors of 𝑧0,	and	564 

the number of the dots is	𝑛/
(0). (E)The intersection of the four parallel light shadow 565 

planes 𝑃,`,	𝑃,�, 𝒫/`, 𝒫/� is the space which is surrounded by the green lines. The 566 

number of dots which are contained in the space is 𝑛,/
(0). (F)The intersection of the 567 
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four parallel light shadow planes 𝑃-`,	𝑃-�, 𝒫/`, 𝒫/� is the space which is surrounded 568 

by the green lines. The number of dots which are contained in the space is 𝑛-/
(0). (G) 569 

The intersection of the six parallel shadow planes 𝑃,`,	𝑃,�, 𝑃-`,	𝑃-�, 𝒫/`, 𝒫/� is the 570 

space which is surrounded by the green lines. The number of dots which are contained 571 

in the space is 𝑛,-/
(0) . 572 

 573 

Figure S2  The comparison of standard normal distribution and the distribution 574 

of 𝝆¢𝒙𝒚|𝒛
(𝒌)   575 

The density function is calculated by kernel density estimation based on 20,000 plots, 576 

and 𝑛,, 𝑛-, 𝑛/ are equal to 0.2n. The gene x and gene y are conditional independent 577 

given gene z. 578 

 579 

Figure S3  Performance comparison of GEM and CNDM 580 

PCA was applied for visualization and different colors represent different cell types. 581 

 582 

Figure S4  The clustering performance of CNDM and GEM   583 

K-means, hierarchical clustering algorithm (HCA) and K-medoids were used for 584 

comparison. The data which was preprocessed by t-SNE was also performed to cluster.  585 

 586 

Figure S5  The clustering performance of CNDM and NDM 587 

K-means, hierarchical clustering algorithm (HCA) were used for comparison. The 588 

data which was preprocessed by t-SNE was also performed to cluster. 589 

 590 

 591 
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Figure S6  Visualization of 23,321 cells by t-SNE  592 

Different colors represent different tissues. 593 

 594 

Figure S7  The clustering performance of CNDM with different parameters 595 

 596 

Figure S8  CCSN analysis of TCGA-LUAD dataset  597 

A. t-SNE plots are used for visualization based on CCSN. The normal samples and 598 

tumor samples are represented by different colors. B. CCSNs of representative samples 599 

for 18 genes involved in the EGFR pathway. C. Conditional network degrees of EGF 600 

and EGGR in the normal samples and the tumor samples. 601 

 602 

Table S1  The running time of CCSN with different numbers of conditional 603 

genes 604 

 605 
Table S2   Datasets used in this study 606 
 607 
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Table 1   The comparison of CNDM and GEM in clustering of scRNA-seq data 

 

  Buettner Kolodziejczyk Grokce Chu-time Chu-type Kim 

K-means 
GEM 0.29 0.54 0.42 0.17 0.22 0.20 

CNDM 0.87 0.85 0.75 0.45 0.57 0.81 

Hierarchical 
GEM 0.32 0.49 0.47 0.22 0.22 0.12 

CNDM 0.73 0.65 0.92 0.47 0.61 0.77 

K-means (t-SNE) 
GEM 0.41 0.87 0.43 0.33 0.55 0.53 

CNDM 0.95 0.91 0.36 0.56 0.70 0.93 

Hierarchical (t-SNE) 
GEM 0.55 0.99 0.50 0.39 0.67 0.73 

CNDM 0.95 0.99 0.39 0.61 0.80 0.95 

K-medoids 
GEM 0.23 0.29 0.40 0.33 0.33 0.79 

CNDM 0.53 0.63 0.81 0.17 0.38 0.61 

SC3 
GEM 0.89 1 0.56 0.66 0.78 0.89 

CNDM 0.98 0.72 0.72 0.63 0.98 0.96 

SIMLR 
GEM 0.89 0.49 0.43 0.30 0.48 0.38 

CNDM 0.63 0.52 0.85 0.58 0.54 0.95 

Seurat GEM 0.67 0.43 0.35 0.52 0.52 0.41 

 CNDM 0.90 0.56 0.32 0.56 0.69 0.84 

Note: The performance of clustering is evaluated by adjusted random index (ARI). 
Hierarchical (t-SNE) and k-means (t-SNE) represent that the clustering analysis is 
performed after dimension-reduction by t-SNE 
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Table 2  The comparison of CNDM with NDM in clustering analysis 

 

  Buettner Kim Wang Grokce Tabula Muris 

(Aorta) 

Tabula Muris 

(Limb Muscle) 

K-means 
NDM 0.50 0.50 0.30 0.79 0.21 0.58 

CNDM 0.87 0.81 0.45 0.75 0.63 0.66 

Hierarchical 
NDM 0.69 0.59 0.38 0.95 0.12 0.65 

CNDM 0.73 0.77 0.45 0.92 0.75 0.76 

K-means (t-SNE) 
NDM 0.83 0.84 0.61 0.38 0.46 0.62 

CNDM 0.95 0.93 0.67 0.36 0.61 0.65 

Hierarchical (t-SNE) 
NDM 0.89 0.98 0.58 0.47 0.50 0.66 

CNDM 0.95 0.95 0.72 0.39 0.50 0.66 

K-medoids 
NDM 0.26 0.49 0.31 0.60 0.35 0.14 

CNDM 0.53 0.61 0.21 0.81 0.53 0.39 

SC3 
NDM 0.67 1 0.70 0.45 0.29 0.66 

CNDM 0.98 0.96 0.86 0.72 0.73 0.76 

SIMLR 
NDM 0.64 0.75 0.29 0.74 0.40 0.60 

CNDM 0.63 0.95 0.60 0.85 0.70 0.71 

Seurat NDM 0.82 0.97 0.59 0.44 0.45 0.66 

 CNDM 0.90 0.84 0.59 0.32 0.76 0.75 

Note: The performance of clustering is evaluated by adjusted random index (ARI). 
Hierarchical (t-SNE) and k-means (t-SNE) represent that the clustering analysis is 
performed after dimension-reduction by t-SNE 
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