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Abstract  
 
Gastric cancer (GC) is a heterogeneous disease of diverse genetic, genomic, and epigenetic 

alterations. Tumor microenvironment (TME) also contributes to the heterogeneity of GC. To 

investigate GC heterogeneity, we developed an Integrative Sequential Causality Test (ISCT) to 

identify key regulators of GC by integrating DNA methylation, copy number variation, and 

transcriptomic data. Applying ISCT to three GC cohorts containing methylation, CNV and 

transcriptomic data, 11 common methylation-driven key regulators (ADHFE1, CDO1, CRYAB, 

FSTL1, GPT, PKP3, PTPRCAP, RAB25, RHOH, SFN, and SORD) were identified. Based on 

these 11 genes, gastric tumors were clustered into 3 clusters which were associated with known 

molecular subtypes, Lauren classification, tumor stage, and patient survival, suggesting 

significance of the methylation-driven key regulators in molecular and histological heterogeneity 

of GC.  We further showed that chemotherapy benefit was different in the 3 GC clusters and 

varied depending on the tumor stage.  Both immune/stromal proportions in TME and tumor cell 

genomic variations contributed to expression variations of the 11 methylation-driven key 

regulators and to the GC heterogeneity.  
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Introduction 

Gastric cancer (GC) is the fifth most common (8.2% of the total cancer cases) type of cancer and   

one of leading causes of global cancer death
1
.  It occurs predominantly in Eastern Asian countries 

such as China, South Korea, and Japan2. In the United States, there were about 28,000 newly 

diagnosed GC patients and more than 10,000 deaths due to GC in 20173. Many factors contribute 

to the high mortality and morbidity of GC. First, no distinct signs of symptoms of the disease 

until advanced stages and, hence, it is difficult to diagnose at early stage without routine 

screening via endoscopy4. Second, GC is heterogeneous in terms of biology, histology, and 

survival, and the diversity and complexity of the disease limits clear understanding of molecular 

mechanisms underlying in tumorigenesis, tumor progression, and metastasis of GC. Several 

studies have focused on the heterogeneity of GC in histology and/or in molecular characteristics. 

Lauren classification divides gastric tumors into three types (intestinal, diffuse or mixed-

indeterminate) based on histology5.  The diffuse type tumors are associated with poorer prognosis 

and develop at earlier age, while the intestinal gastric tumors are associated with intestinal 

metaplasia and advanced age6, 7. Recent studies identified distinct molecular alterations by gene 

expression, genetics, epigenetics, and proteomics in GC8-11. The Cancer Genome Atlas (TCGA) 

GC study categorizes GC into four subtypes 1) Epstein-Barr virus (EBV) with positive infection 

by the virus, 2) Microsatellite instability (MSI), 3) Chromosomal instability (CIN), and 4) 

Genome stable (GS) tumors based on molecular features such as viral infection, DNA 

methylation, genome stability, and mutation burden10.  

 DNA methylation alteration is one of key factors contributing to GC heterogeneity. EBV 

tumors exhibit excessive increases of DNA methylation in genome-wide scale, CpG island 

methylator phenotype (CIMP)10, 12. MSI GCs also show CIMP pattern while the level of hyper-

methylation is lower than tumors in EBV group10, 13. GC clusters based on DNA methylation 

alterations such as CIMP were associated with clinical outcomes9.  Also, it has been shown that 
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genes involved in cancer-related pathways are more frequently affected by DNA methylations 

than by genetic alterations14. While these studies suggest a significant role of DNA methylation in 

gastric tumorigenesis and progression, detailed molecular mechanisms altered by DNA 

methylation changes are not well understood.  

 Copy number variation (CNV), a form of genomic alteration including amplification, or 

deletion of one or more sections of a chromosome, has a significant role in GC tumorigenesis15, 16. 

Previous studies8, 17, 18 identify multiple CNV regions in GC, including gains of 3p22, 4q25, 8q24, 

11p13, and 20q13 and losses of 1p36 and 9p21. It has also been shown that the number of CNV 

occurrences is higher in patients with metastasis than in patients without metastasis17. Deng et 

al.18 identify 13 genomic amplifications and 9 deletions containing multiple cancer related genes 

such as MYC, KRAS, CDK6 or CDKN2A/B. Wang et al.8 integrate multi-omics data and identify 

consistent chromosomal changes in previous studies including gains on chromosomes 1q, 5p, 7, 

9, 12 and 20 and losses on 1p, 3p, 4, 5q, 9p, 17p, 18q, 19p, 21, and 22. While an increasing 

number of CNV regions have been identified in GC, it is still not fully understood how the 

associated genes impact tumorigenesis and progression of GC19, 20.  

 The histological, molecular, and genomic heterogeneity is further convoluted with 

heterogeneity in the tumor microenvironment (TME)21, 22. Cancer, immune, and stromal cells 

have distinct transcriptomic, genomic, and epigenetic patterns.  In bulk tissue transcriptomic data, 

gene expression correlations may be due to TME heterogeneity or genomic heterogeneity (co-

localized in deletion or amplification blocks) instead of transcriptional co-regulations, which 

hinder our understanding biology of GC.  Also, the heterogeneity in TME is associated with 

prognosis or drug response.  For example, higher proportion of immune cells in the tumor 

microenvironment is associated with better survival23-25 and better response to checkpoint 

blockade immunotherapies26-28. On the other hand, a higher proportion of stromal cells is 

associated with worse survival29, especially in GC30-32, and worse response to checkpoint 
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blockade immunotherapies33. However, molecular connections of TME with different GC 

heterogeneities have not been systematically examined.  

Here we describe an integrative causal model for identifying potential regulatory 

mechanisms in GC and their relationship with GC heterogeneity by integrating multi-omics data 

including gene expression, DNA methylation, and CNV profiles. Previously, we modeled a 

causality test as an empirical Bayesian estimation of the significance of cis DNA methylation 

regulated genes affecting other genes (trans)34. The previous causal model considered only one 

factor in gene expression regulation while there are multiple elements in the complex 

transcriptional regulation mechanisms. Therefore, we propose a new model here, Integrative 

Sequential Causality Test (ISCT), simultaneously considering transcriptional regulations driven 

by CNVs and methylation variations. We use the cis-association with promoter methylation 

and/or copy number alterations as priors and test whether the trans-associations are mediated 

through expression of cis-genes. (Figure 1A). Then, key regulators are inferred based on the 

number of downstream genes (Figure 1B). We applied ISCT to three GC cohorts (Supplementary 

Table 1) in which DNA methylation, CNV, and gene expression data were available, and 

highlighted key regulators and their downstream genes (Figure 1C). Eleven methylation-driven 

key regulators (ADHFE1, CDO1, CRYAB, FSTL1, GPT, PKP3, PTPRCAP, RAB25, RHOH, SFN, 

and SORD) were identified in all three datasets.  Based on the common methylation-driven key 

regulators, GC samples were divided into three groups, each with distinct clinical outcome. The 

findings were validated in five independent GC cohorts (Supplementary Table 1). Among the 11 

common methylation-driven key regulators, FSTL1 expression was significantly associated with 

survival in 5 out of 7 datasets in which survival information were available.  In GC cell lines, 

FSTL1 was regulated epigenetically, and its correlated genes in cell lines were significantly 

enriched for its downstream genes inferred in bulk tissue profiles, consistent with a potential key 

regulator role of FSTL1 in cell lines. To dissect the sources of gene expression variations of the 

11 common methylation-driven key regulators, cellular compositions of bulk tissues were 
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computationally inferred and their relationships with key regulators were investigated in the 

context of heterogeneity of gastric cancer (Figure 1C). FSTL1 expression was highly correlated 

with the stromal cell fraction, suggesting both tumor intrinsic signals and variations in stromal 

cells in TME could regulate tumor cells.   
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Results 

Comparison of ISCT and mediation tests on simulated datasets 

Integrative Sequential Causality Test (ISCT) is developed for simultaneously identifying 

transcriptional regulations driven by CNVs and methylation variations. The ISCT approach and 

mediation tests35, 36 share some similarities in identifying relationships of gene expression 𝑔 

causally regulated by DNA methylation 𝑚 and CNV 𝑐  (Figure 1A). ISCT assumes sequential 

events occur in biology (Methods) while mediation tests take DNA methylation and CNV data as 

covariates without making any assumption. To systematically compare the performance of each 

method in identifying causal transcriptional regulations, we simulated two datasets, one based on 

a causal/mediation model and one based on an independent model according to the correlation 

distributions of the HKU dataset (detailed in Methods). We applied ISCT and two mediation tests 

to detect the underlying causal/mediation relationships.  For the mediation tests, we conducted 

Baron and Kenny’s mediation test36 (referred to as “mediation test” in the following text and 

figures) to test for complete mediation, corresponding to the causal path tested in the ISCT 

approach; we also conducted the Sobel test37 to assess the significance of mediation effect, which 

does not necessarily guarantee complete mediation. In the dataset simulated based on a causal 

model (simulation #1), ISCT identified  91.7% of pairs as significant while the mediation test and 

the Sobel test identified 39.2% and 23.7% as significant, respectively (Figure 2A). In the dataset 

simulated based an independent model (simulation #2), the false positive rate of ISCT estimated 

by the proportion of simulated independent pairs tested significant was 0.46% while the false 

positive rates of the mediation test and the Sobel test were 0.40% and 0.31%, respectively 

(Supplementary Figure 1A). Therefore, the ISCT method demonstrated significantly higher 

power in detecting causal pairs comparing with other mediation tests while the false positive rate 

was well-controled under 0.5% similar to the other mediation tests. 
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To systematically investigate the scenarios where these methods differ, we conducted 

further simulation studies given certain correlation levels among the variables to investigate the 

performance of each method under each specific scenario. We performed two additional 

simulations (simulations #3 and #4). In simulation #3, we randomly selected 10,000 cis-trans 

pairs from the HKU cohort with significant cis- and trans-relationships (detailed in Methods). 

This data-generating process mimiced the effect of a mediator38, by leaving the correlation 

between the dependent and the independent variables to vary. The power to identify causal 

relationships increased as the strength of the correlation between the dependent and the 

independent variables increased (Figure 2B). The ISCT method consistently outperformed the 

mediation test and the Sobel test with higher detection power at all correlation levels. At the 

correlations between the dependent and the independent variables  range 0.3~0.6 (Figure 2B), the 

Sobel test had the lowest detection power; the mediation test had minimal power at the 

correlation level of 0.3, around 40% power at the correlation level of 0.4, and reached over 85% 

power at the correlation level of 0.5; while ISCT had >75% power at the correlation level of 0.3, 

around 90% power at the correlation level of 0.4, and reached over 95% power at the correlation 

level of 0.5 (Figure 2B). These results suggested that the ISCT method was better powered in 

detecting causal pairs at lower correlation levels, where most pairs in the HKU cohort were 

observed (Figure 2C).  

To investigate the performance of the two methods in the presence of colinearity, we 

simulated a fourth dataset (simulation #4, detailed in Methods). At  the correlation between the 

dependent variable and the mediator around 0.5, the power of both mediation methods dropped 

with the increase in colinearity, and the drop in power with colinearity  was more drastic when 

the correlation was around 0.4~0.5 (Figure 2D). In contrast, the power of  ISCT did not decrease 

with the increase in colinearity (Figure 2D). The results from simulations suggest that ISCT 

considering sequencial biological events in the model outperform typical mediation methods with 

higher detection power in the presence of colinearity.  
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Methylation-driven key regulators  

Both methylation and CNVs play a significant role in GC tumorigenesis and progression and 

should be simultaneously considered in transcriptional regulation as modeled in ISCT (Figure 

1A).  

1) cis regulation driven by DNA methylation  

We first investigated cis transcriptional regulations of  𝑔𝑥 by DNA methylation in their promoter 

regions 𝑚𝑥 and CNV alteration 𝑐𝑥 based on a linear regression model, 𝑔𝑥  ~ 𝑚𝑥 + 𝑐𝑥 for gene 𝑥 

(detailed in Methods). At FDR<0.05, 7,917, 46,459, and 1,536 cis-methylation probes whose 

methylation levels were negatively correlated with the corresponding gene expression levels, 

which were summarized to 2,915, 11,880, and 1,119 cis-methylation genes, in the HKU, TCGA, 

and Singapore datasets, respectively. Among them, 474 cis-methylation genes were common 

among all three datasets (Figure 3A), which were enriched for signatures of 

ESTROGEN_RESPONSE_LATE and ESTROGEN_RESPONSE_EARLY in Hallmark gene sets 

from MSigDB (p=1.1×10-11 and 2.3×10-5, respectively). It is known that there is a higher GC risk 

in men than in women39 and estrogen plays an important role in GC tumorigenesis and 

progression40. We tested whether the methylation levels of the cis-methylation genes enriched for 

estrogen signatures were associated with the sex of patients, but this was not the case 

(Supplementary Figures 2A&B). In addition, most of them (17 and 24 out of 33 genes in HKU 

and Singapore dataset, respectively) were differentially methylated (t-test FDR<0.01) between 

tumor and adjacent normal tissues (Supplementary Figure 2C). Our result suggests that the 

estrogen response pathway is regulated at the epigenetic level.  

2) trans regulations associated with DNA methylation 

For each cis-methylation probe, we collected trans-methylation genes whose expression levels 

significantly correlated with the methylation variations (detailed in Methods). At the FDR<0.05, 

695,696, 70,636,038, and 870,242 trans-methylation genes were identified in the HKU, TCGA, 
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and Singapore datasets, respectively. The trans-methylation regulations significantly overlapped 

among different datasets (Figure 3B). Based on background of commonly significant cis-

methylation genes among the three dataset, 70% and 66% of trans regulated gene pairs in HKU 

and Singapore were shared with the ones identified in the TCGA (FET Fold Enrichments (FEs)= 

2.3 and 2.1 with p<1.0×10-256 for HKU and Singapore, respectively). While with smaller 

percentage (about 5% and 18%), the trans–methylation gene pairs based on the HKU and 

Singapore dataset, respectively, were also significantly shared (FET FE=4.3 and p<1.0×10-256). 

Moreover, for the common trans-methylation gene pairs among different cohorts, the directions 

of the trans association were consistent (Figure 3C) suggesting similar impacts of methylation 

variations on the trans genes.  

3) Causal relationships driven by DNA methylation variations 

After identifying cis- and trans- methylation genes, we further tested putative causal relationships 

between cis- and trans-methylation genes by testing whether a cis-methylation gene and a trans-

methylation gene were independent given the expression of cis-genes (Methods). With the 

independence test p-value cutoff >0.01, 102,522, 19,085,499, and 353,576 causal gene pairs were 

identified in the HKU, TCGA and Singapore datasets, respectively (Supplementary Figure 3).  

4) Comparison of causal pairs based on ISCT and mediation tests 

We took the HKU cohort as an example to investigate the difference between the causal 

relationships detected by ISCT and mediation test. Out of the 994,896 candidate cis-trans probe 

pairs, 143,332 pairs (summarized to 102,522 gene pairs) were identified as causal by ISCT while 

53,267 pairs were identified as causal relationships with full mediation by Baron and Kenny’s 

mediation test.  The majority of the causal pairs identified by Baron and Kenny’s mediation test 

were identified by the ISCT approach as well (Supplementary Figure 1B). To further investigate 

the scenarios where the two methods differ, we examined the distribution of gene expression 

correlations for the cis-trans gene pairs detected by each method. Both methods require a 

significant correlation between 𝑔𝑥  and 𝑔𝑦
∗  to detect a causal relationship, whereas the ISCT 
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method was able to detect more pairs with significant causal relationships at a lower correlation 

level (Figure 2). In addition, the causal pairs detected by ISCT contained a higher faction of pairs 

with strong anti-correlations between 𝑔𝑥  and 𝑚𝑥 , suggesting a possible power increase in the 

presence of colinearity. 

5) Methylation-driven key regulators 

We next assessed whether there were any regulators whose methylation variations casually 

regulated expression levels of many other genes in trans (downstream genes), which were defined 

as methylation-driven key regulators (Methods). The number of downstream genes causally 

associated with each of cis-methylation genes followed a scale-free distribution (Supplementary 

Figure 4); most cis-methylation genes regulated a small number of downstream genes while a few 

cis-methylation genes regulated a large number of downstream genes. At the cutoffs based on 

reflection points (detailed in Methods, Figure 3D), 221, 2,049, and 226 methylation-driven key 

regulators were identified in the HKU, TCGA, and Singapore datasets, respectively. Among 

them, 232 were identified in at least two datasets and 11 were identified in all three datasets 

(Figure 3E and Supplementary Table 2). The 11 common methylation-driven key regulators were 

located on multiple chromosomes, chr1 (RAB25 and SFN), chr3 (FSTL1), chr4 (RHOH), chr5 

(CDO1), chr8 (ADHFE1 and GPT), chr11 (CRYAB, PKP3, and PTPRCAP), and chr15 (SORD).  

6) Downstream genes of the methylation-based key regulators 

For each key regulator, its downstream genes were further split into two groups; ones positively 

or negatively correlated with expression of the regulators. The downstream genes were 

significantly overlapped among all three datasets with consistent direction of regulations 

(Supplementary Table 2) suggesting similar impacts of the key regulators. We further determined 

downstream genes of the 11 common methylation-driven key regulators commonly identified at 

least in two datasets (Supplementary Table 3). Interestingly, the 11 methylation-driven key 

regulators shared similar set of their downstream genes (Figure EV1A). We performed functional 

enrichment test of the downstream genes of the methylation-driven key regulators against 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

signature sets in MSigDB databases41, 42. The downstream genes of multiple methylation-driven 

key regulators were commonly enriched for three groups of Hallmark gene sets (Figure EV1B). 

One group of downstream genes, which were positively regulated by FSTL1, CRYAB, CDO1, and 

ADHFE1 and negatively regulated by PKP3, SORD, GPT, RAB25, and SFN expression, was 

enriched for genes involved in EMT, MYOGENESIS (FET p-values=2.3×10-15 and 5.5×10-14, 

respectively for positively regulated downstream genes of FSTL1) while their anti-correlated 

downstream genes were enriched for cell cycle related functions such as E2F_TARGETS, 

G2M_CHECKPOINT, and MITOTIC_SPINDLE (FET p-values=4.8×10-24, 9.7×10-14 and 5.6×10-

6, respectively for negatively regulated downstream genes of FSTL1) . The downstream genes 

positively regulated by gene expression of RHOH and PTPRCAP were enriched for immune 

related functions such as INFLAMMATORY_RESPONSE, ALLOGRAFT_REJECTION, and 

INTERFERON_GAMMA_RESPONSE (for positively regulated downstream genes of RHOH p-

values=5.2×10-18, 3.2×10-37, and 1.5×10-16, respectively).  

 

GC subtypes based on methylation-driven key regulators 

Methylation-driven key regulators were correlated in GC 

Based on gene expression similarity, the 11 common methylation-driven key regulators were 

clustered into two anti-correlated groups with CDO1, CRYAB, FSTL1, ADHFE1, RHOH, and 

PTPRCAP in one group and GPT, SORD, PKP3, RAB25 and SFN in the other (Figure 4A). The 

first group was further separated into two gene clusters in which CDO1, CRYAB, FSTL1, and 

ADHFE1 (G1) were co-expressed while RHOH and PTPRCAP (G2) were closely expressed. Five 

genes in the other group, GPT, SORD, PKP3, RAB25, and SFN (G3), were also highly correlated 

with one another. These patterns were consistently observed across all GC cohorts in the study 

(Figure 4A).  

 

Tumor clusters based on the gene expression of methylation-driven key regulators  
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Tumor samples were clustered by k-means clustering into three groups based on the similarity of 

the expression of the 11 common methylation-driven key regulators (Figure 4B). The three 

groups, C1 to C3, showed increasing expression levels of genes in G1 and G2, while decreasing 

expression of genes in G3 and the samples in all GC datasets were clustered in a similar manner 

(Figure 4B). Samples in the groups C1 and C3 showed opposite expression patterns for the genes 

in G1 and G3. C2 samples showed intermediate expression of genes in G1 and G3 (Figure 4B).  

 Then, we investigated whether the tumor clusters based on key methyl regulator 

expression levels were associated with previously known molecular features of GC. The tumor 

clusters were significantly overlapped with Lauren classifications (Figure 4C and Supplementary 

Table 4). The C1 cluster was enriched for the intestinal subtype in all datasets except for CPTAC 

dataset in which most of samples are the diffuse subtype (FET FEs= 2.77, 1.5, 2.07, 1.97, and 

1.99 and p-values= 4.5×10-8, 1.1×10-5, 0.0003, 2.8×10-7, and 0.005 in HKU, TCGA, Singapore 

ACRG, and Australia datasets, respectively). On the other hands, the C3 group was enriched for 

diffuse subtype (FET FEs= 1.75, 6.01, 3.14, 1.93, and 2.99 and p-values= 0.05, 6.0×10-17, 4.9×10-

5, 3.3×10-5, and 3.9×10-5 in HKU, TCGA, Singapore, ACRG, and Australia datasets, respectively).  

In addition, tumors in C1 significantly overlapped with the MSI and CIN subtype in 

TCGA (FET FEs=2.17 and 1.3, p-values=0.003 and 0.02, respectively), the proliferative subtype 

in Singapore and Australia datasets (FET FEs=7.74 and 4.69, p-values=2.8×10-10 and 1.4×10-7, 

respectively), and also the MSS/TP53- subtype in ACRG (FET FE=1.83, p-value=0.009), and 

Immunogenic subtypes in CPTAC dataset (FET FE=2.11 with p-value=0.04). Tumors in C2 

significantly overlapped with the metabolic subtype in Singapore and Australia datasets (FET 

FEs=2.58, 12.19, p-values=0.03, 4.5×10-6, respectively). Tumors in the C3 were enriched for GS 

subtype in the TCGA dataset (FET FE=5.37, p-value=8.6×10-12). Interestingly, the C3 cluster was 

also highly enriched for mesenchymal-like subtype tumors in Singapore, ACRG, and Australia 

(FET FEs=18.08, 27.5, and 9.6, p-values=3.9×10-8, 7.8×10-27 and 2.4×10-13, respectively). While 

a previous study reported the TCGA GS subtype was not equivalent to the ACRG MSS/EMT 
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subtype43, 44, our results suggest that they shared similar molecular features characterized by the 

11 methylation-driven key regulators.  

 The C1-3 clusters were also associated with tumor stages in TCGA, Singapore, ACRG, 

and Yonsei datasets (Figure 4C and Supplementary Table 4). The results were consistent with 

previous reports that mesenchymal-like GC tumors were associated with diffuse type and more 

advanced tumors while the proliferative subtype was associated with intestinal type10, 43, 45. Taken 

all together, these results further suggest significant roles of the methylation-driven key regulators 

in the heterogeneity of GC tumors. 

 

Survival differences among the tumor clusters   

The clusters based on the methylation-driven key regulators showed prognostic differences 

(Figure 4D). In general, patients in the C1 group had better survival than ones in the C3 and the 

C2 group had intermediate survival, whether more closely to C1 or C3 depending on their 

similarity of expression patterns of the methylation-driven key regulators (Figure 4B).  The 

survival differences between tumors in the C1 and C3 were statistically significant in TCGA, 

Singapore, ACRG, and Yonsei datasets (Likelihood Ratio (LR) test p-values=0.04, 0.03, 2.3×10-7, 

and 0.0008, respectively). In HKU and SMC datasets, the C1 and C3 clusters showed different 

survival compared to each other, while LR test p-values were not significant. The clusters were 

not associated with patients’ survival in the Australia datasets. It was worthy to note that the 

patients in Australia dataset were mixed with or without 5-FU treatment which showed 

significant survival differences within the same subtypes45. Combining all results above, the 

methylation-driven key regulators classify samples into three groups, which well agreed with 

molecular and histological heterogeneity as well as differences in clinical outcomes of gastric 

cancer.  

 

Chemotherapy response differences among tumor clusters  
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A recent study reported by Oh et al. showed distinct genomic features between epithelial and 

mesenchymal phenotype (EP and MP) of gastric tumors46. They used a set of 299 signature genes, 

which included FSTL1 and GPT, to classify gastric tumors into two groups. When comparing the 

tumor clusters based on the 11 methylation-driven key regulators with their EP/MP results using 

overlapping samples in the TCGA and ACRG datasets, C1 and C3 almost exclusively overlapped 

with EP and MP, respectively (Figures 5A, details in Appendix, Supplementary Table 5). This is 

consistent with the result that the positively regulated downstream genes of FSTL1 were enriched 

for EMT pathways (FET p-values=2.3×10-15, EV1B). We analyzed the 4 additional GC datasets 

used in Oh et al study (Methods), and tumor clusters based on the 11 methylation-driven key 

regulators showed similar associations with EP and MP groups (Figures 5B&C, Supplementary 

Table 5). These results are consistent with our previous observation that C3 tumors were 

significantly associated with invasive or mesenchymal subtype of tumors in the Singapore and 

Australia datasets (Figure 4C and Supplementary Table 4). The tumors in C1 and C3 groups 

showed significant differences in overall survival as well as recurrence free survival (Figures 

5D&E) consistently with distinct survival patterns between EP and MP groups46.  These results 

suggest that the epithelial/mesenchymal phenotype can be largely explained by our methylation-

driven key regulators. 

Oh et al reported that adjuvant chemotherapy (CTX) was effective exclusively for EP 

tumors46. Following their procedure, we combined patients from KUGH, YUSH, and KUCM 

datasets, observed differences in the recurrence free survival between patients with and without 

CTX were significant only for C1 group (p=0.039) but not for C2 and C3 groups (p=0.44 and 

0.12, respectively, Figure 6A), and similarly significantly in the EP cluster not in MP cluster 

(p=0.009 and 0.98, respectively, Figure 6A) as reported by Oh et al. 

However, in each tumor cluster (C1-3 clusters by our method or EP/MP cluster by Oh et 

al), there was a mixture of tumors at different stages with poor survival for patients of advanced 

stage tumors (Figure 6B). When examining tumors according to molecular clusters and stages, 
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patients benefited from CTX only when tumors were in the C1 cluster and at Stage III (p=0.006)  

based on our clustering method or in the EP cluster and at Stage III (p=0.004) based on Oh et al 

(Figures 6C-E). There might be CTX treatment benefit for tumors in the C3 cluster and at Stage II 

(p=0.11) or at stage III (p=0.08).  These results suggest strong needs for personalizing treatment 

decision based on molecular phonotype as well as tumor stage.   

 

Clinical significance of the methylation-driven key regulators  

Next, we associated the expression levels of the methylation-driven key regulators in tumors with 

patients’ survival and tumor stages in the 7 datasets (3 integrative datasets and 4 gene expression 

validation datasets except for CPTAC) and strong associations between them were observed with 

consistent directions among multiple datasets (Figures 7A&B, Supplementary Table 6). The 

increased expressions of the G1 genes (CDO1, CRYAB, FSTL1, and ADHFE1) were significantly 

associated with poor prognosis as well as advanced tumor stages in multiple datasets. A recent 

study showed that CRYAB overexpression induced invasion and migration via EMT in gastric 

cancer cells47.  FSTL1 expression showed the most consistent and strongest association with both 

survival and tumor stages within 5 datasets (survival: p-values=0.0002, 1.1×10-6, 0.02, 0.0004, 

and 0.04 for Singapore, ACRG, Australia, Yonsei and SMC datasets, respectively; tumor stages: 

p-values= 0.0003, 0.01, 6.9×10-5, 0.002, and 9.3×10-5 for HKU, TCGA, Singapore, ACRG, and 

Yonsei datasets, respectively). FSTL1 was reported as a key mediator in immune dysfunction 

driven by metastasis and aging in mouse cancer models48 but no functions of it in gastric cancer 

was reported previously.  

On the other hand, the expression levels of the G3 genes (GPT, SORD, PKP3, RAB25, 

and SFN) were associated with good prognosis and early stages (Figures 7A&B, Supplementary 

Table 6).  It has been shown that loss of PKP3 protein expression indicated an invasive 

phonotype by comparing immunohistochemistry of PKPs in gastric tumor and normal gastric 
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tissues49. Functional roles of other tumor suppressor like genes such as GPT, SORD, and SFN in 

GC have not been addressed before.  

We further compared the downstream genes of the methylation driven key regulators 

(Supplementary Table 3) with gastric cancer survival defined based on ACRG dataset and 

progression signature based on early and advanced GC profiles in the Vecchi et al. study50 

(Methods). These signatures were further split into “good” or “poor” according to the direction of 

their associations with patient survival (Supplementary Table 7). Most of the methylation-driven 

key regulators, except for RHOH and PTPRCAP, were survival-associated genes and their 

downstream genes were also significantly overlapped with survival signatures (FET p-value < 10-

20, Figure 7C). The downstream genes were also consistently associated with gastric cancer 

progression signatures (Figure 7C). It is worth to note that downstream genes of FSTL1 showed 

the strongest association with both survival and progress signatures among all methylation-driven 

key regulators, which was consistent with our observations that FSTL1 expression was 

significantly associated with poor survival and tumor stages in multiple GC datasets (Figures 

7A&B, Supplementary Table 6).  

 

Tumor intrinsic variations of the methylation-driven key regulators in cancer cells 

Tumor-stroma interactions in GC are associated with prognosis30-32 and contribute to molecular 

heterogeneity21. Hence, we investigated whether variations of the methylation-driven key 

regulators were from tumor cells or associated with TME. First, we checked the methylation and 

expression levels of the 11 methylation-driven key regulators in CCLE gastric cancer cell lines51, 

52. Based on gene expression of CCLE cancer cell lines, FSTL1 was the only gene in the G1 

group having largely varying expression among 36 cell lines while others such as CDO1, CRYAB, 

and ADHFE1 were not highly expressed (Figure 8A). Interestingly, FSTL1 expression increased 

in tumor tissues compared to non-tumor gastric tissues consistently in TCGA and HKU datasets 

while the other three showed an opposite pattern (Figure EV2). Considering their expressions had 
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highly correlated each other (Figure 4A), FSTL1 expression might be derived more from tumor 

cell variations than CDO1, CRYAB, and ADHFE1. Especially, CDO1 was low expressed in 

cancer cells (log2(RSEM)<1 in 34 out 36 cell lines) suggesting pro-tumor progression property of 

CDO1 might be not from tumor cells but other factors. Among the genes in the G3 group (GPT, 

SORD, PKP3, RAB25, and SFN), which tumor-suppressor like properties were observed in, GPT 

was less expressed than others (Figure 8A) as well as down-regulated expression in tumor tissues 

from non-tumor gastric tissues (Figure EV2). These results suggest that the source of expression 

variations of the methylation-driven key regulators was not the same even though their 

expressions were highly correlated in bulk tissues.  

 The CCLE methylation data within 1kb from TSS for the methylation-driven key 

regulators showed opposite patterns from the gene expression (Figure 8B). Four methylation-

driven key regulators (ADHFE1, FSTL1, GPT, and SFN) were anti-correlated between the 

methylation level and gene expression (Figure 8C) suggesting that these genes were suppressed 

by promoter methylation in gastric cancer cells.  

 Furthermore, to test whether the transcription of downstream genes was driven by 

expression variations of the methylation-driven key regulators in gastric cancer cells, we 

compared the gene expression of the methylation-driven key regulators and their downstream 

genes in GC cell lines in two different ways. First, we identified significantly correlated genes 

with the 4 methylation-driven key regulators (FSTL1, ADHFE1, GPT, and SFN), which were cis-

regulated by their promoter methylation level in GC cell lines (Figure 8C), then compared the 

downstream genes based on bulk tissue data and correlated genes based on cell line data. The 

downstream genes of the all of the 4 methylation-driven key regulators significantly enriched for 

genes significantly correlated with the corresponding key regulators in the CCLE GC cell lines 

and also the directions of the associations were consistent for all 4 genes (Figure 8D). Next, we 

also compared the distribution of the tumor intrinsic correlation between the methylation-driven 

key regulators with their downstream genes with that of background genes. The downstream 
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genes showed clear different associations with their key regulators compared to background 

genes with consistent direction of correlation (Figure 8E). The cumulative distributions of the 

correlation coefficients were compared between the downstream genes and background genes via 

Kolmogorov-Smirnov (KS) Tests and all comparisons were statistical significant (KS-test D=0.27 

and 0.39 with p-values=3.7×10-30 and 7.4×10-96 for positively and negatively regulated 

downstream genes of FSTL1, Supplementary Figure 5).  

 These results suggest that the expression of the methylation-driven key regulators was 

cis-regulated by their promoter region methylation and the putative causal relationships with their 

downstream genes were partially driven by tumor intrinsic variations of the genes.  

 

Influence of TME on the methylation-driven key regulators 

Next, we examined cellular compositions of the bulk gastric tumors based on gene expression and 

DNA methylation (MethylCIBERSORT)53 (Methods). Cell proportions based on gene expression 

and DNA methylation profiles were similar (Pearson correlation p=2.3×10-37, 3.9×10-58, and 

6.4×10-48 for immune, stromal, and cancer cells, respectively, Figure EV3). The expression levels 

of the 11 methylation-driven key regulators were significantly correlated with cell compositions 

(Supplementary Figure 6). The genes in the G1 group (CDO1, CRYAB, FSTL1, and ADHFE1) 

were highly associated with stromal proportions while ones in the G2 group (RHOH and 

PTPRCAP) were significantly correlated with immune proportions. The expression levels of the 

G3 genes (GPT, SORD, PKP3, RAB25, and SFN) were anti-correlated with stroma and immune 

proportions.  

Next, we investigated the distribution of cellular compositions in the tumor clusters. In 

general, the immune and stromal cell proportions increased from the C1 to the C3 clusters while 

cancer cell proportions decreased (Supplementary Figure 7). Furthermore, the cellular 

compositions were tested for their association with patients’ survival (Supplementary Table 8). 

As the stromal proportions were correlated with the expression of the methylation-driven key 
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regulators in the G1 group, they were significantly associated with poor survival in multiple 

datasets (Hazard Ratios (HRs)= 1.41, 1.62, 1.35 and 1.22, p-values= 0.008, 5.4×10-8, 2.4×10-6 and 

0.02 for Singapore, ACRG, Yonsei and SMC, respectively) consistently with previous reports 

showing poor survival associated with higher tumor-stroma interactions30-32.  

As the methylation-driven key regulators potentially regulated a large number of 

downstream genes in each dataset (Figure 3D) and the methylation-driven key regulators were 

highly correlated with cell type proportions, we also tested whether the downstream genes were 

influenced by cell type proportion as well. Indeed, downstream target genes showed stronger 

association with cell type proportions compared to other trans genes suggesting influence of 

TME in the causality test (Appendix and Supplementary Figure 8). The results based on the 

CCLE cancer cell lines as well as cell type proportions together suggest that the transcription 

regulations of the methylation-driven key regulators on their downstream genes were influenced 

by both TME and intrinsic variations of cancer cells.  

Taken all results together, tumor cells and their interactions with TME may drive 

molecular and cellular heterogeneity of gastric cancer which, in turn, leads to heterogeneity of 

clinical outcomes of GC patients. 
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Discussions 

Gastric cancer is of highly heterogeneous molecular and histological features. These molecular 

and cellular heterogeneities were driven by complex and diverse genomic and epigenetic 

alterations occurred during tumorigenesis and progression of gastric cancer. We integrated DNA 

methylation, CNV, and gene expression data to understand these heterogeneities, and developed 

the ISCT procedure to infer causal relationships between a pair of cis-methylation gene and trans 

genes. Among the numerous numbers of significantly associated cis-trans gene pairs, ISCT 

identified potential causal gene pairs whose significant associations were mediated by expression 

of cis genes that were driven by methylation variations. Based on simulation studies, we showed 

that ISCT outperformed mediation tests with consistently higher detection power and was robust 

against to colinearity problems. It is not trivial to systematically evaluate the performance of 

ISCT in empirical data, thus we focused only on coherent common observations from the three 

multi-omics GC datasets (HKU, TCGA, and Singapore). In addition, we collected gene 

expression data from multiple independent GC cohorts to cross-validate our observations.  

By applying ISCT, we identified 11 methylation-driven key regulators common from all 

three datasets. These genes were further grouped into three groups based on their gene expression 

similarity (Figure 4A): G1 (CDO1, CRYAB, FSTL1, and ADHFE1), G2 (RHOH and PTPRCAP), 

and G3 (GPT, PKP3, RAB25, SFN, and SORD). The G1 genes showed strong association with 

poor survival while the expression of G3 was associated with good prognosis (Figure 7).  

Based on expression of the 11 methylation-driven key regulators, GC samples were 

grouped into three clusters (C1 to C3) which showed distinct molecular or clinical features 

(Figure 4). Samples in C3 cluster were significantly enriched for diffuse type tumors in all 

datasets while samples in C1 were for intestinal type ones. In addition, C3 samples were enriched 

for the GS subtype defined in TCGA cohort. While MSI tumors were well known to have CIMP 

features54, there was no previously reported association between methylation with GS tumors. 
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The C3 samples were also enriched for mesenchymal-types (or invasive) features determined in 

Singapore, ACRG, Australia, and CPTAC cohorts. Interestingly, we observed correlation of the 

sample clusters and tumor stage, and samples in C3 showed enrichment for advanced stages and 

also worst survival outcomes in multiple cohorts (HKU, TCGA, Singapore, ACRG, Yonsei and 

SMC dataset, Figure 4D). Previous studies about DNA methylation in GC mostly focused on 

molecular subtypes defined based on CIMP status9, 12, 55 but the association of CIMP tumors with 

clinicopathological features were not well agreed in all studies. ISCT enables us to identify 

methylation-driven key regulators. The associations of the key methylation-driven regulators with 

molecular and clinical features were consistent across multiple independent GC cohorts 

(Supplementary Tables 4 and 6).  

Comparing tumor clusters based on methylation-driven key regulators with reports by Oh 

et al., the C1 and C3 tumors were enriched for EP and MP, respectively. Moreover, we showed 

the adjuvant chemotherapy sensitivity in C1-3 or EP/MP clusters was stage dependent, suggesting 

significance of considering not only molecular features but also progression of tumors when 

treating GC patients.   

Some of the methylation-driven key regulators were reported to play a significant role in 

GC. Chen et al. showed that overexpression of CRYAB induced EMT, migration, and invasion of 

gastric cancer cells in vitro and in vivo as well as reversing these phenomena by silencing 

CRYAB47. In addition, they showed strong associations between CRYAB expression and cancer 

metastasis and survival outcomes in patients. These results were consistent with our results 

suggesting CRYAB as a potential oncogene regulating EMT associated genes (Figure 7 and Figure 

EV1B). Demirag et al. investigated IHC of plakophilins in gastric adenocarcinoma and normal 

gastric tissues and reported low PKP3 protein levels were correlated to the node number, tumor 

stages, and poor prognosis in gastric carcinoma49, which was consistent with our result that PKP3 

was associated with good survival and down-regulated in advanced stages. ADHFE1 was 

reported as an oncogene by inducing metabolic reprogramming in breast cancer56, but no previous 
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association with gastric cancer was reported. Interestingly, Oh et al. also observed upregulation of 

IGF1 coupled with promoter region hypomethylation in mesenchymal gastric tumors and showed 

inhibition of IGF1 reduced tumor growth in mesenchymal type tumor cells46. IGF1 was identified 

as one of methylation-driven key regulators in the Singapore and TCGA dataset (Supplementary 

Table 2).  

Contrary to those positive controls, the observation with Cysteine dioxygenase type 1 

(CDO1) was not consistent with previous reports. Hao et al. showed that suppressing CDO1 

increased ferroptosis resistance in human gastric cancer cells and tumors in CDO1 knockdown 

mice grew faster compared to controls57. Harada et al. reported hypermethylation of CDO1 

promoter as an independent prognostic marker in gastric cancer58. This discrepancy could be 

explained by very low expression in cancer cells (Figure 6A), downregulated expression in 

tumors compared to normal tissues (Figure EV2), and strong association of CDO1 expression 

with stromal proportions (Supplementary Figure 6), together suggesting that the CDO1 

expression in bulk tumors was mainly determined by stroma cell proportion, which is an 

independent prognostic factor in GC30.  

Other methylation-driven key regulators have not been previously associated with gastric 

cancer. Follistatin like 1 (FSTL1) was associated with tumor cell proliferation, migration, and 

invasion in several other cancers including lung, colon, breast and renal cell carcinoma59-62, but 

had not distinctively been linked with gastric cancer.  Our results suggest FSTL1 as a potential 

novel oncogene in gastric cancer based on its over-expression in tumor samples and strong 

association with patients’ survival and tumor stages in multiple GC datasets (Figure 7, 

Supplementary Table 6). While FSTL1 expression in the bulk was also strongly correlated with 

stromal proportions like CDO1 (Supplementary Figure 6), FSTL1 expression was associated with 

its promoter methylation in gastric cancer cells (Figure 8A-C). Moreover, FSTL1 and its 

downstream genes were significantly correlated within cancer cells (Figure 8D&E). These 

observations suggest that FSTL1 expression is governed by both tumor intrinsic variation as well 
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as TME. On the other hand, Glutamic-Pyruvic Transaminase (GPT) showed exact opposite 

patterns from FSTL1. The GPT expression was suppressed by hypermethylation in tumors 

compared to normal tissues and was associated with good survival, suggesting its role as a tumor 

suppressor gene (Figure 7, Supplementary Table 6). GPT is known to play an important role in 

the intermediary metabolism of glucose and amino acids but was reported to be associated liver 

diseases63. While there were no literatures about GPT in gastric cancer, its expression was 

associated with good survival in liver and rectal cancer 

(https://www.proteinatlas.org/ENSG00000167701-GPT).  

FSTL1 and GPT expression levels were regulated by its promoter methylation in gastric 

cancer cells (Figure 8C). Even though the expression levels of the methylation-driven key 

regulators in bulk tumors were significantly associated with immune or stromal proportions in 

TME, genes correlated with methylation-driven key regulators in GC cell lines significantly 

overlapped with their downstream target genes inferred using ISCT from bulk tissue data  

(Figures 8D&E). These results suggest that tumor-TME interactions contribute to expression 

variations of methylation-driven key regulators such as FSTL1 and GPT, which in turn give rise 

to the molecular and histological heterogeneity of gastric cancer. Further investigation in co-

cultured system might elucidate detail roles of these genes in tumor-stroma interaction.  

While our main interests are on methylation-driven key regulators, CNV alterations also 

play important roles in tumorigenesis and progression of GC. Using ISCT, 39 common CNV-

driven key regulators were identified (details in Appendix, Supplementary Figures 9 and 10). 

Most of these key CNV regulators were located in chromosomes 20 and 8 where the gain of DNA 

copy in these locations was known in several of previous GC studies19, 64-66. These genes located 

in the chromosome 20 were significantly amplified specifically for CIN tumors, in which no clear 

methylation features were associated. Indeed, no CNV-driven key regulator overlapped with the 

methylation-driven key regulators. Interestingly, the downstream genes of the CNV-driven key 

regulators were shared with those of the methylation-driven key regulators (Appendix, 
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Supplementary Figure 11). These suggest the different tumorigenic pathways through 

methylation or copy number alterations may have similar downstream effects.  

In this study, we reported 11 genes as methylation-driven key regulators identified based 

on ISCT. These genes characterize diverse heterogeneities of GC showing distinct molecular, 

cellular, and histological features as well as clinical outcomes. They were also associated with 

cell type proportions suggesting their roles in TME interactions. Further investigations for their 

molecular functions especially FSTL1 may reveal their novel roles in tumorigenesis and 

progression of GC that will enhance better diagnosis, prognosis, or treatment of GC patients.   
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Materials and Methods 

GC Datasets used in integrative causal modeling 

Three GC cohorts from Hong Kong University (HKU), TCGA Stomach adenocarcinoma 

(TCGA), and University of Singapore (Singapore), which contain gene expression, methylation, 

and CNV profiles, were used in this study. The HKU dataset was deposited in European Genome-

phenome Archive with the study ID EGAS000010005978. The molecular data for the TCGA 

cohort10 were downloaded from TCGA data portal (https://gdc.cancer.gov). The Singapore 

dataset was downloaded from Gene Expression Omnibus (GEO) with accession numbers 

GSE306019, GSE1546067, and GSE3116818 for methylation, gene expression and CNVs, 

respectively. Prior to our integrative analysis, we excluded Epstein-Barr virus (EBV) positive 

samples (6 out of 98, 24 out of 235, and 5 out of 91 in HKU, TCGA, and Singapore cohorts, 

respectively) according to their annotation as EBV positive GC have unique and distinct DNA 

hyper-methylation patterns68. Sample alignment procedure69 was applied to confirm that different 

types of molecular data pertaining to the same individuals were matched (details in Appendix) 

and 92, 211, and 86 samples in the HKU, TCGA, and Singapore datasets, respectively, were 

finally selected for the integrative analyses. Clinical information of the three datasets is shown in 

Supplementary Table 1.  

 

Independent GC datasets for validations 

Five independent cohorts with gene expression profiles were used for validating our observations 

based on integrative analysis: 1) Microarray profiles of 300 GC tumors from the Asian Cancer 

Research Group (ACRG) were downloaded from GEO with accession number GSE6225443; 2) A 

microarray dataset of 70 GC patients from Australian cohort (Australia) was downloaded from 

GEO with accession number GSE3580945; 3) A RNAseq profiling dataset described in a 

proteogenomic paper by Mun et al. (CPTAC) consisting of 80 patients with early onset gastric 
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cancers was downloaded from GEO with accession number GSE12240170; 4) A microarray 

dataset from Yonsei hospital (Yonsei) consisting of 433 GC patient samples collected during 

2000-2010 was downloaded from GEO with accession number GSE84437; 5) A microarray 

dataset consisting of 432 formalin-fixed paraffin-embedded (FFPE) tissues from Samsung 

Medical Center (SMC) was downloaded from GEO with accession number GSE2625370. For 

each dataset, EBV positive tumors were removed prior to following analysis. For ACRG, 

Australia, and CPTAC dataset, which the EBV status of the samples was available, final 221, 69, 

and 74 samples were selected. For Yonsei and SMC dataset without EBV status information, 

samples were clustered based on gene expression of the EBV signature genes71 and no samples 

were filtered out in Yonsei but 57 samples were removed in SMC dataset (details in the 

Appendix). The demographics of these validation datasets are also listed in Supplementary 

Table1.   

Four more gene expression datasets from the study by Oh et al.46 were additionally used 

to investigate the association between methylation-driven key regulators and 

epithelial/mesenchymal phenotypes. The processed microarray data are available in GEO with 

accession number GSE26899 for KUGH, GSE26901 for KUCM, GSE13861 for YUSH, 

GSE28541 for MDACC. The EP/MP subtype for each tumor is downloaded from supplementary 

tables of their paper published at Nature Communication in 201846.   

 

Data preprocessing 

For the gene expression data in HKU, profiled on Illumina HT12v4, probe level data was 

obtained from median summarization over background corrected bead level data from Illumina 

Genome Studio, followed by quantile normalization on log (base 2) transformed probe intensity. 

Multiple probes for a gene were summarized (median) into gene level data after non-performing 

probes were excluded. For the RNAseq data from TCGA, RNA-Seq by Expectation-

Maximization (RSEM) data downloaded and gene level expression was obtained from log 
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transformation. For the Singapore dataset, profiled by Affymetrix UG U133A platform, probe 

intensity was normalized by a standard affy function, Robust Multi-array Average (RMA), with 

log transformation. For the five validation cohorts, we used the “getGEO” function from 

GEOquery package to download gene expression data as deposited in GEO database72.  

To associate DNA methylation and gene expression, we focused on methylation 

variations within gene promoter regions. NCBI RefSeq annotation was downloaded in gtf format 

and methyl probes located within 10kb upstream from Transcription Starting Sites were selected. 

Since the methylation values were not normally distributed as gene expression or copy numbers73, 

beta values of each CpG probe were transformed based on rank-based normal transformation 

using the “rntransform” function embedded in GenABEL package (Supplementary Figure 12)74. 

For the CNV profiles, Circular binary segmentation (CBS)75 of the log R ratio values was 

used for all three dataset. Then each segment value was mapped to gene levels based on 

coordinate information of RefSeq reference annotation as mapping of methyl probes.  

Detail information of molecular data platforms and the final number of features used in this study 

is summarized in Supplementary Table 9.  

 

An Integrative Sequential Causality Test (ISCT) for causal regulations by DNA methylation, and 

CNVs  

Previously, we developed a causality test for modeling transcription regulations by promoter 

region methylations34. As transcriptional regulations occur at multiple levels simultaneously, here 

we describe a model for transcriptional regulations by methylation and CNVs in both cis and 

trans (Figure 1A). Given a cis-regulated gene 𝑥, (𝑔𝑥~ 𝑚𝑥 + 𝑐𝑥) and a trans-regulated gene 𝑦, 

(𝑔𝑦 ~ 𝑚𝑥  | 𝑚𝑦 , 𝑐𝑦), where 𝑔𝑥  and 𝑔𝑦  are expression levels, 𝑐𝑥  and 𝑐𝑦  are corresponding copy 

number variations, and 𝑚𝑥  and 𝑚𝑦  are promoter region methylation levels of gene 𝑥  and 𝑦 , 

respectively, the causal relationship between cis gene expression and trans gene expression holds 
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when the trans-regulation can be completely explained by the cis gene expression. In other words, 

we hypothesize that the trans relationship (𝑔𝑦 ~ 𝑚𝑥  | 𝑚𝑦 , 𝑐𝑦) arises from the probability chain 

𝑝(𝑚𝑥 → 𝑔𝑥 → 𝑔𝑦|𝑐𝑥 , 𝑚𝑦 , 𝑐𝑦), which can be decomposed as a production of probabilities of a 

chain of statistical tests as below. The causal relationship is significant when the trans 

relationship (𝑔𝑦 ~ 𝑚𝑥  | 𝑚𝑦 , 𝑐𝑦)  becomes non-significant after conditioning on the cis-gene 

expression 𝑔𝑥, in which case the trans relationship between 𝑚𝑥 and 𝑔𝑦 is “caused” by 𝑔𝑥. 

Similar to the mediation test outlined by Baron and Kenny36, the causality test can be 

broken down into steps: (1) the cis regulation: can be modeled as a linear regression 𝑔𝑥  ~ 𝑚𝑥 +

𝑐𝑥; (2) the trans association between 𝑔𝑦 and 𝑚𝑥: instead of being modeled as a linear regression 

𝑔𝑦 ~ 𝑚𝑥 + 𝑚𝑦 + 𝑐𝑦 , was modeled in a sequential process: we accounted cis regulations 

𝑔𝑦~ 𝑚𝑦 + 𝑐𝑦  and identified residual variance that could not be explained by cis regulation 

𝑔𝑦
∗ = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑔𝑦 ~ 𝑚𝑦 + 𝑐𝑦) , then we modeled the trans association as 𝑔𝑦

∗ ~𝑚𝑥 ; (3) the 

association between 𝑔𝑥  and 𝑔𝑦 : was modeled similarly as 𝑔𝑦
∗ ~𝑔𝑥 ; (4) the conditional 

independence (the indirect effect) between 𝑚𝑥  and 𝑔𝑦|𝑚𝑦 , 𝑐𝑦  was modeled in a sequential 

procedure: identifying the residual variance that could not be explained by 𝑔𝑥  as 𝑔𝑦
∗∗ =

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑔𝑦
∗  ~ 𝑔𝑥) then the conditional independence was assessed as 𝑔𝑦

∗∗~𝑚𝑥 + 𝑐𝑥 instead of a 

standard linear regression 𝑔𝑦~𝑚𝑥 + 𝑐𝑥 + 𝑔𝑥 + 𝑚𝑦 + 𝑐𝑦.  As we previously described causal 

relationship between promoter region methylation and trans gene expression34, 𝑝(𝑚𝑥 → 𝑔𝑥 →

𝑔𝑦|𝑐𝑥 , 𝑚𝑦 , 𝑐𝑦) was mainly determined by 𝑝(𝑚𝑥 ⊥ 𝑔𝑦|𝑔𝑥 , 𝑚𝑦,𝑐𝑦) given significant cis and trans 

relationships for gene 𝑥 and 𝑦 (FDR<0.05).  

Similarly, the causal relationship between a cis CNV gene 𝑥  and a trans gene 𝑦 was 

modeled as 𝑝(𝑐𝑥 → 𝑔𝑥 → 𝑔𝑦|𝑚𝑥 , 𝑚𝑦 , 𝑐𝑦). 

 

Comparison with mediation tests 
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A mediation test is an alternative to the ISCT for testing causal relationships between the cis gene 

methylation and trans gene expression. In a mediation model, the cis methylation 𝑚𝑥  can be 

perceived as the independent variable, the trans gene expression 𝑔𝑦 is the dependent variable, and 

the cis gene expression 𝑔𝑥  is the potential mediator. Various mediation test methods exist for 

testing whether the relationship between the independent variable and the dependent variable is 

mediated through the potential mediator. One of the most widely used approaches to test for 

mediation is the causal steps method35, 36, 76, which evaluates three regression models: the first one 

assesses whether the independent variable affects the mediator by regressing the mediator on the 

independent variable; the second one assesses whether the independent variable affects the 

dependent variable by regressing the dependent variable on the independent variable; the third 

one assesses whether the mediator affects the dependent variable when the independent variable 

is controlled by regressing the dependent variable on both the independent variable and the 

mediator. The mediation effect is established if all three regressions show significant 

relationships, and the effect of the independent variable on the dependent variable is reduced in 

its absolute size after controlling for the mediator. Moreover, if the independent variable shows 

no effect on the dependent variable in the third regression, the mediation is full. Another method 

to test for mediation is the Sobel test,37 which evaluates the significance of the mediation 

(indirect) effect by comparing its magnitude divided by its estiamted standard error of 

measurement to a normal distribution. The Sobel test is known to be conservative77 because of its 

normal approximation of the test statistic. Nevertheless, both mediation tests are expected to be 

underpowered in testing whether the association between the independent variable 𝑚𝑥 and the 

dependent variable 𝑔𝑦  is (completely) mediated through the mediator 𝑔𝑥 , given that cis-

regulation indicates colinearity between the mediateor 𝑔𝑥 and the independent variable 𝑚𝑥. The 

ISCT approach, on the other hand, assigns variances to each variable according to the sequence of 

biological events so that it does not suffer from the colinearity problem. For example, in an 
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extreme case where 𝑔𝑥 and 𝑚𝑥 are perfectly correlated, both coefficients will be non-significant 

in the regression 𝑔𝑦
∗  ~ 𝑔𝑥 + 𝑚𝑥 , giving non-significant result for the mediation test; whereas 

given significant trans-regulation between 𝑔𝑦
∗  and 𝑚𝑥, the first regression in the ISCT approach 

𝑔𝑦
∗  ~ 𝑔𝑥will give significant coefficient for 𝑔𝑥, and the second regression 𝑔𝑦

∗∗ ~ 𝑚𝑥 will give a 

non-significant coefficient for 𝑚𝑥 , resulting in a significant case for the sequential regression 

approach. In reality, most of the 𝑔𝑥 and 𝑚𝑥  tested for mediation or causality are not perfectly 

correlated but may be highly correlated as a significant cis-regulation for the pair is required. 

Therefore, the mediation test is expected to give overly conservative results because of its 

reduced power in the presence of colinearity, while the ISCT approach is expected to be better 

powered in detecting the causal relationships.  

  

Simulations for comparing ISCT and mediation tests 

To estimate the power and the false postive rate of each method to detect the underlying 

causal/mediation relationships, we conducted two simulation studies based on a causal model and 

an independent model.  

1) Simulation #1: 

We randomly selected 10,000 causal pairs from the HKU cohort with significant cis- and trans-

relationships that were tested significant by ISCT. We preserved the values of the independent 

variable 𝑚𝑥 and the potential mediator 𝑔𝑥 (and the covariates 𝑐𝑥, 𝑚𝑦), and simulated 𝑔𝑦
∗   based 

on the mediator 𝑔𝑥  so that 𝑔𝑦
∗  is correlated with 𝑔𝑥 at the same correlation level between 𝑔𝑥 and 

the original 𝑔𝑦
∗  values in the HKU cohort, then 𝑔𝑦  is calculated from the simulated 𝑔𝑦

∗  and its 

original regression coefficient. This data-generating process mimiced the effect of a mediator38, 

by leaving the correlation between the dependent variable and the independent variable 𝑐𝑜𝑟(𝑔𝑦,

𝑚𝑥) to vary solely as a result of the causal path from 𝑚𝑥 →  𝑔𝑥  →  𝑔𝑦. We selected simulated 𝑔𝑦 
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values showing significant trans-relationship with 𝑚𝑥, then applied both ISCT and two mediation 

tests to detect the underlying causal/mediation relationships. 

2) Simulation #2: 

We randomly selected 10,000 non-causal pairs from the HKU cohort with significant cis- and 

trans-relationships that were tested non-significant by ISCT. We preserved the values of the 

independent variable 𝑚𝑥 and the potential mediator 𝑔𝑥 (and the covariate 𝑐𝑥), and simulated 𝑚𝑦 

based on 𝑚𝑥 at a correlation level sampled from the correlation distribution between methylation 

levels of a meth-probe and that of its trans-associated gene’s most associated meth-probe in the 

HKU cohort, then simulated the dependent variable 𝑔𝑦 based on 𝑚𝑦  at a correlation level 

sampled from the correlation distribution between all genes and their most associated meth-

probes in the HKU cohort. This data-generating process mimiced a trans relationship resulting 

from a path independent of 𝑔𝑥 : 𝑚𝑥 →  𝑚𝑦  →  𝑔𝑦 . We selected simulated 𝑔𝑦  values showing 

significant trans-relationship with 𝑚𝑥, then applied both ISCT and two mediation tests to detect 

the underlying causal/mediation relationships. 

Furthermore, we performed two additional simulation studies given certain correlation 

levels among the variables to investigate the performance of each method under each specific 

scenario in the presence of colinearity. 

3) Simulation #3: 

We randomly selected 10,000 cis-trans pairs from the HKU cohort with significant cis- and 

trans-relationships. We preserved the values of the independent variable 𝑚𝑥 (and the covariate 

𝑐𝑥 ) and the potential mediator 𝑔𝑥 , and generated the dependent variable 𝑔𝑦
∗  so that 𝑔𝑦

∗  is 

correlated with the mediator 𝑔𝑥 at given correlation levels. Then we selected cis-trans pairs and 

applied ISCT and two mediation tests to detect the underlying causal/mediation relationships. 

4) Simulation #4:  
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We randomly selected 1,000 cis-trans pairs from the HKU cohort, and preserved the values of the 

independent variable 𝑚𝑥 (and the covariate 𝑐𝑥), and simulated the potential mediator 𝑔𝑥 
so that 

𝑔𝑥 
correlated with the independent variable 𝑚𝑥 at a pre-specified correlation level 𝑐𝑜𝑟(𝑔𝑥 , 𝑚𝑥), 

then simulated the dependent variable  so that  the correlation between the dependent variable and 

the mediator  at a pre-specified level. Then we selected cis-trans pairs and applied ISCT and two 

mediation tests to detect the underlying causal/mediation relationships. 

 

Key regulator identification 

Key regulators were determined based on the number of downstream genes. For methylation-

driven key regulators, causal relationships between cis and trans genes were assessed based on 

individual methylation probes, summarized at gene levels as there were multiple methylation 

probes profiled in the promoter regions of each individual gene. Cis methylation and CNV genes 

were sorted based on the number of their downstream genes. Then key regulators were defined as 

ones whose numbers of downstream genes were significantly higher compared to others. The 

cutoff for defining key regulators in each dataset was set based on the reflection point from 

numbers of downstream genes for each regulator78, 79.  

 

GC related signatures 

GC progress signatures were defined as up and down-regulated genes in advanced GCs compared 

to early stage ones50. GC survival associated genes were derived based on Asian Cancer Research 

Group (ACRG) GC cohort43, which includes only gene expression67. Only samples with living 

without recurrence or samples with death due to disease were used to define survival signatures.  

The association of expression of each gene with survival information was tested using a Cox 

regression model as 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ~ 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 . In total, 3375 GC survival 

associated genes were identified as FDR<0.01. 
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Functional analysis 

To identify enriched function among a set of selected genes, a collection of Hallmark gene sets, 

curated gene sets, and GO terms in Molecular Signatures Database (MSigDB) were used42. The 

significance of the overlap with query genes was tested via the Fisher’s exact test (FET).  

 

Survival analysis 

Clinical information for samples in all datasets was downloaded from their corresponding papers 

or GEO database. Cancer specific survival (CSS) was available for HKU, TCGA, and ACRG 

datasets and recurrence free survival was used for SMC dataset. For Singapore, Australia, and 

Yonsei datasets, overall survival (OS) was used. CPTAC dataset was omited for survival analysis 

because the events occurred in only 9 samples out of 74 samples, so that it was not sufficient to 

perform survival analysis in the CPTAC dataset. For univariate survival analysis with age and 

gender as covariates was used as 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ~ 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑓𝑎𝑐𝑡𝑜𝑟, where factors were gene 

expression, cell type proportions, or clusters. R package “survival” was used for the survival 

analysis.  

 

Cell component decomposition  

CIBERSORT80 (https://cibersort.stanford.edu/) was used to decompose cell components into 

immune, stromal and cancer proportions. For the immune references, the original LM22 data was 

used and proportions of individual 22 immune cell types were summed up to immune 

proportions. For stroma and cancer cells references, we downloaded microarray CEL files 

(Affymetrix HG_U133+2) of 6 stomach fibroblasts (3 submucosal and 3 subperitoneal 

fibroblasts) from GSE6362681 and 36 stomach carcinoma cells from Cancer Cell Line Cyclopedia 

(CCLE)51 (https://portals.broadinstitute.org/ccle). The cell profiles were processed to generate a 

signature matrix by comparing one cell type versus all other cell types. And the signature matrix 

was used to the proportions of immune, fibroblast, and cancer cells in samples of the 8 GC 
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cohorts (3 primary and 5 validation datasets). Cell type proportions based on DNA methylation 

were downloaded from MethylCIBERSORT53 results page 

(https://zenodo.org/record/3242689#.XQ0S9vlKjOR).  
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Figure Legends 

 
Figure 1. Overview of the study 

A. ISCT: Given, cis- and trans- relationship among DNA methylation, CNV, and gene 

expression, the causal relationship between methylation status of gene i ( 𝑚𝑖 ) and 

expression of gene j (𝑔𝑖) is tested. The local methylation and CNV status of trans genes 

are also considered in the model using 𝑔𝑗
∗ instead of 𝑔𝑗.  

B. The definition of key regulator x: A cis gene x causally regulates significantly larger 

number of downstream genes above cutoff determined from a tangent line.  

C. Overall procedures of meta-analysis using ISCT and cell type deconvolution analysis 

from the three integrative datasets as well as the five gene-expression validation datasets.  

 

 

Figure 2. Simulation results to compare ISCT to mediation test 

A. The true positive rate of each test estimated by the proportion of simulated causal pairs 

tested significant. 

B. For each pre-specified correlation level between 𝑔𝑥 and 𝑔𝑦
∗ , the dashed line shows the 

proportion of the simulated 𝑔𝑦
∗ ’s showing significant trans relationship with 𝑚𝑥 ; the 

yellow line shows the proportion detected by the Sobel mediation test with significant 

mediated relationship; the blue line shows the proportion detected by the mediation 

method with significant mediated relationship; the red line shows the proportion detected 

by the ISCT method with significant causal relationship. 

C. The pairwise correlation between 𝑚𝑥 , 𝑔𝑥  and 𝑔𝑦
∗  among 1) all the cis-trans gene pairs 

tested, 2) the significant pairs detected by the ISCT method, 3) the significant pairs 

detected by the mediation test, 4) the pairs detected by the ISCT method only, and 5) the 

pairs detected by the mediation test only. 

D. For each combination of a pre-specified 𝑐𝑜𝑟(𝑔𝑥 , 𝑚𝑥) and 𝑐𝑜𝑟(𝑔𝑦
∗ , 𝑔𝑥), the proportion of 

simulated 𝑔𝑥, 𝑔𝑦
∗  pairs with both significant cis and trans relationships with 𝑚𝑥, and out 

of which the proportion detected by each method with significant causal/mediation 

relationship. 

 

 

Figure 3. Identification of methylation-driven key regulators using ISCT 

A. Comparison of the number of cis methylation genes identified from three GC cohorts.  

B. Comparison of the number of trans methylation pairs identified from three GC cohorts.  

C. Comparison of the directions of trans association of common trans genes among three 

GC cohorts.  

D. Identification of methylation-driven key regulators using cutoffs determined based on 

number of downstream genes in each GC cohorts.  

E. Common methylation-driven key regulators identified from three GC cohorts.  

 

 

Figure 4. Tumor clusters based on the gene expression levels of the 11 methylation-driven 

key regulators 

A. Co-expression of the 11 methylation-driven key regulators in all GC cohorts was 

measured as Pearson correlation coefficients. CDO1, CRYAB, FSTL1, and ADHFE1 were 

clustered in one group (G1), RHOH and PTPRCAP in another (G2) and the rest (GPT, 

SORD, PKP3, RAB25, and SFN) in the other group (G3).  In the SMC datasets, RHOH 

was not profiled and NA values were colored in white.  
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B. K-mean clustering of GC tumors (k=3) based on expression levels of the methylation-

driven key regulators.  

C. The proportion of molecular subtypes, Lauren class, and tumor stages within the tumor 

clusters. The molecular subtypes were determined in the original study of each cohort. 

For the Yonsei and SMC datasets, only stage information was available.  

D. KM-plots for survival analysis (Overall survival) among the tumor clusters. The number 

of samples in each cluster is shown. Survival differences between C1 and C3 were 

measured as likelihood ratio test p-values. For the HKU datasets, patients with palliative 

treatments were removed for survival analysis.  

 

Figure 5. Tumor clusters based the 11 methylation-driven key regulators overlap with 

epithelial/mesenchymal phenotypes 

A. Comparison of the tumor clusters based on the 11 methylation-driven key regulators 

(Figure 4B) with Epithelial/Mesenchymal subtypes determined in Oh et al.’s report46. 

Barplot showing overlapping rate (Supplementary Table 5) between two clustering 

results in TCGA and ACRG datasets. 

B. K-mean clustering of GC tumors (k=3) based on expression levels of the methylation-

driven key regulators for 4 datasets not included in our study (KUGH, YUSH, KUCM, 

and MDACC).  

C. Comparison of the tumor clusters from Figure 7B with Epithelial/Mesenchymal subtypes 

determined in Oh et al.’s report46. 

D & E.  Kaplan-Meier plots showing overall survival (D) and recurrence free survival (E) of 

each cluster. P-values indicate the significance of survivals between C1 and C3. 

Recurrence free survival for MDACC was not available.KM-plots for survival analysis 

(Overall survival) among the tumor clusters. The number of samples in each cluster is 

shown. Survival differences between C1 and C3 were measured as likelihood ratio test p-

values.  

 

Figure 6. Adjuvant chemotherapy (CTX) sensitivity depending on tumor subtypes as well as 

tumor stages.  

A. Survival differences between patients with and without CTX in each group. C1-C3 

tumors based on our clustering method and EP and MP subtypes reported by Oh et al.46  

B. Survival differences among different tumor stages (II, III, and IV) in each group. 

C. Association between CTX and progression free survival at stage II.  

D. Association between CTX and progression free survival at stage III.  

E. Association between CTX and progression free survival at stage IV.  

 

Figure 7. Associations between the methylation-driven key regulators and disease 

phenotypes 

A. Univariate survival analysis based on expression of the 11 methylation-driven key 

regulators in 7 datasets. Hazard ratios with 95% confidence intervals were measured with 

corresponding p-value (Methods). The significant association is marked in red for poor 

prognosis and in blue for good prognosis.  

B. Association of expression of the 11 methylation-driven key regulators with tumor stages 

in 7 datasets. The coefficient of expression of each key regulator in a regression model 

𝑠𝑡𝑎𝑔𝑒 ~ 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  was measured with standard errors. The 

significant association is marked in red for advanced and in blue for early stages. 

C. The downstream genes were also compared with disease signatures such as survival-

associated genes from ACRG dataset and progression signatures from Vecchi et al. 

(Methods). Here, the associations with signatures with good prognostics are shown in 

blue while the ones with bad prognostics are in red.  
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Figure 8. Tumor intrinsic variations associated with the methylation-driven key regulators   

A. Distribution of gene expression (log2(RSEM)) of the methylation-driven key regulators 

in 36 CCLE gastric cancer cells. 

B. Distribution of DNA methylation level (β-value) within 1kb from TSS of the 11 

methylation-driven key regulators in 33 CCLE gastric cancer cells. β-values for RHOH 

and RAB25 were not available.  

C. Four methylation-driven key regulators (ADHFE1, FSTL1, GPT, and SFN) showing 

significant correlation between promoter methylation and gene expression in 33 CCLE 

gastric cancer cells. Spearman correlation coefficients (rho) with p-values are shown. 

D. Association between downstream genes identified based on ISCT and co-expressed genes 

for 4 methylation-driven key regulators (FSTL1, ADHFE1, GPT, and SFN) in CCLE 

gastric cancer cells. The association strengths were measured by Odd Ratios and p-value 

(-log10) from FET using common genes between CCLE and our three primary datasets 

for ISCT as gene universe (N=14581).  

E. For the 4 methylation-driven key regulators, the correlation coefficients of their 

downstream genes in CCLE cells were compared with those of the background genes. 

The red indicates density for positively regulated downstream and the blue for negatively 

regulated downstream genes. Gray indicates distribution of correlation coefficients of 

background genes. The number indicates the number of downstream genes for each key 

regulator covered in CCLE RNAseq data.  
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Expanded View Figure legends 
 

Figure EV1. Downstream target genes of the methylation-driven key regulators 

A. The overlap of downstream genes of the 11 methylation-driven key regulators. The 

significance of the overlap was measured by FET p-value (-log10(p-value)).  

B. The downstream genes were compared with MSigDB Hallmark gene sets and 

significantly associated gene sets (p<0.001 from multiple testing) with any downstream 

gene sets are shown.  

 

 

Figure EV2. Gene expression difference of the methylation-driven key regulators in tumors 

compared to normal tissues.  

The expression levels of the methylation-driven key regulators were compared between 

normal and tumors based on Student t-test and Wilcox Rank Sum test A. in TCGA (211 

tumors vs. 27 normal tissues) and B. in HKU (92 tumor vs. 35 normal tissues). The 

significant differences (p<0.01) are marked in red. Normal tissues are not available for 

Singapore dataset.    

 

 

Figure EV3. Comparison of cell types proportions based on DNA methylation 

(MethylCIBERSORT) and gene expression (CIBERSORT).  

The cell type proportions of 211 TCGA samples were measured based on DNA 

methylation and gene expression were compared. Pearson correlation and corresponding 

p-values were measured for immune, stromal, and cancer proportions.     

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


promoter 
methylation

C

gene expression
DNA methylation

CNV

A

m
x

cis gene

g
x

g
y

trans gene

c
x

CNV

B

cis

trans

g
x

g*
1

causally regulated genes (downstream genes)

?

ISCT

p(m
x 
-> g

x 
-> g

y 
| cis, trans)

g*
2

g*
3 g*

n

m
x

c
x

Key regulator x

● cutoff

#
 o

f 
c
a

u
s
a

lly
 

re
g

u
la

te
d

 g
e

n
e

s

Index of genes

n

Integrative 
dataset

methylation-driven
key regulators

ISCT

Validation
dataset

gene expression

cell type
deconvolution

CIBERSORT

Molecular 
subtype

Clinical significance

Functional analysis
(downstream genes)

g*
y 
=residual (g

y
~m

y
+c

y
)

m
y

c
y

Tumor intrinsic 
variation

CCLEUnsuperised clustering

Association with 
clinical features

MsigDB

1) cis associated genes
2) trans associated genes
3) causality test

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


−0.5 0.0 0.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Pr
op

 te
st

ed
 s

ig
ni

�c
an

t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
op

 w
ith

 s
ig

ni
�c

an
t t

ra
ns

cor(gy
*, gx)

A B

D

−0.5

0.0

0.5

1.0

co
rr

el
at

io
n 

co
e�

ci
en

t

All ISCT Mediation

ISCT−Mediation Mediation−ISCT
� �

�
�

�

�

� � � � �

�

�

�

� � �

� �

�
�

�

� � � � � � �

�

�

�
�

�

� �

�

�

�

� � � � �

�

�

�

�

�

�
�

�

�

�

�

�
� � � � � � �

�

�

�

�

�

Trans
ISCT
Mediation
Sobel

Trans & cis

−0.5

0.0

0.5

−0.8 −0.6 −0.4 −0.2

ISCT Mediation Sobel

0.0

0.2

0.4

0.6

0.8

1.0

co
r(

g* y, g
x)

cor(mx, gx)cor(mx, gx)cor(mx, gx) cor(mx, gx)

cor(g y
* , g x

)

cor(m x
, g x

)

cor(g y
* , m x

)

0.00

0.25

0.50

0.75

ISCT

Mediatio
n

Sobel

Tr
ue

 P
os

iti
ve

 R
at

e

Causal Model
C

−0.8 −0.6 −0.4 −0.2 −0.8 −0.6 −0.4 −0.2 −0.8 −0.6 −0.4 −0.2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


504 1910
8933

27
474

563
135

HKU TCGA

Singapore

cis methytion genesA

361728
316296 69839095

2186

15486

465161

387409

HKU TCGA

Singapore

trans methytion pairs

C

β_mx in trans (HKU)

β_
m

x in
 tr

an
s 

(T
CG

A
)

β_mx in trans (TCGA) β_mx in trans (HKU)

β_
m

x in
 tr

an
s 

(S
in

ga
po

re
)

D

E

HKU SingaporeTCGA

0
2

4
6

8
10

Index of regulators

# 
of

 tr
ag

et
 g

en
es

 (X
10

00
)

�cut=2940

0
40

0
80

0
10

00

�cut=119# 
of

 tr
ag

et
 g

en
es

Index of regulators

0
10

00
20

00
25

00

�cut=539# 
of

 tr
ag

et
 g

en
es

Index of regulators

87 111

122 93

1823

Singapore HKU

TCGA

ADAP1, ADCY4, ANTXR2, BCL2L15,BRCA1, C1R, C1orf162, CDCA5, CDCA8,
CENPN,  CEP152, CFLAR, CHFR, CHTF18, CSAG1, DBNDD1, DDR1, DUS3L,

EFNA1, ENO1, EPM2AIP1, EVI2A, EVI2B, FAM64A, FAM83H, FGF2, GAS8,
GINS2, GOLT1A, GRB7, GRHL2, HMGA1, HMGB2, HOXA10, IFFO1, INF2,

INPP1, JUP, KCNQ1OT1, KIAA0907, KIF15, LAX1, LRRC61, LTC4S,
LYL1, MAL2, MEF2D, MGAT1, MLH1, MSH5, MST1R, MXRA7,

MYO1G, NCBP2, NUP43, PCSK9, PDIA6, POU2AF1, PPP1R16B,
PPP1R1B, PRAME, PRC1, PSMB8, PSMB9, PYCRL, RAC3, RCOR2,

REEP4, RIN1, RRP12, S100A6, SALL4, SF3B4, SFMBT1, SKA1,
SLC44A4, SNORA41, SNRPG, SNTB1, SOAT2, SPAG5, SPINT1,

STMN1, TACC3, TBC1D10C, TMEM177, TOP1MT, TRAIP,
UNC93B1, USP5, VANGL2, ZNF695, ZSCAN18

11

6

ADHFE1, CDO1, CRYAB, 
FSTL1, GPT, PKP3, PTPRCAP, 
RAB25, RHOH, SFN, SORD

C1orf172, COX7A1, FAM3D, 
ODF2, STK31, TXNL4A

ACTA2, ACTG2, AGTR1, ANGPTL2, ARHGAP27, ARHGAP30, ASB2, ATP8B2, BCAP31, 
BVES, C16orf45, C1QTNF3, CALML4, CBLC, CCL20, CDCP1, CMTM3, CNKSR1, 
CPNE8, DAAM2, DDR2, DENND2D, DES, DOK5, EFS, ELF3, ELMO1, ELOVL4, 
EMILIN1, EPHA7, EVL, FAAH, FGFR1, FRK, FRZB, GAS2L3, GAS7, GPRASP1, 
GPT2, GPX7, GSTM5, GYPC, HNF4A, HOXB2, HSPB2, HTATIP2, IGF1, 
IL1RN, ISLR, LAMB3, LDB3, LDOC1, LGI4, LRRC8E, LY86, MAB21L2, 
MAMDC2, MAP1A, MAP7, MAPK13, MEG3, MEOX1, MFAP4, MRGPRF, 
MRVI1, MYOCD, NDN, NNAT, NPR2, OLFML3, PCDHB15, PDLIM4, 
PDZK1IP1, PDZRN4, PEG3, PENK, PHLDA2, PKIA, PLEKHG6, PNKD, 
POPDC2, PPP1R16A, PTPN13, PTPRH, PTPRM, RASL12, 
RTKN, S100A14, S100A16, SCRG1, SFRP1, SFRP2, SH2D3C, 
SLC22A18AS, SLC25A5, SLC39A4, SLIT2, SMPX, SOX17, 
SPG20, SPINT2, ST6GALNAC5, STAP2, STMN2, TACR2, 
TCF21, TCF4, TEX264, THBS4, TMEM88, TNS1, TOM1L1, 
TPM1, TRAF1, TRAM1L1, TUSC3, UCHL1, ZNF354C, 
ZNF415, ZNF667, ZNF671, ZNF677

B

β_
m

x in
 tr

an
s 

(S
in

ga
po

re
)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


SFN
RAB25
PKP3
SORD
GPT

RHOH
ADHFE1
FSTL1
CRYAB
CDO1

−1 1Correlation coe�cient

HKU TCGA Singapore ACRG Australia CPTACA

B
Cluster

MSI
MSS

Di�use
Intestinal
Mixed

I II
III IV

C1 C2 C3Cluster

HKU
Lauren Stage

SFN
RAB25
PKP3
SORD
GPT

PTPRCAP
RHOH

ADHFE1
FSTL1
CRYAB
CDO1

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

Time (months)

Su
rv

iv
al

C1 (n=20)
C2 (n=8)
C3 (n=18)

0 1K 2K 3K

Time (days)

C1 (n=88)
C2 (n=91)
C3 (n=32)

C1 vs C3
 p= 0.04

C1 (n=45)
C2 (n=17)
C3 (n=24)

0 50 100 150
Time (months)

p= 0.0471231771503905

0 20 40 60 80 100
Time (months)

C1 (n=102)
C2 (n=85)
C3 (n=34)

Time (days)

D HKU TCGA Singapore ACRG Australia

0 1K 2K 3K 4K

C1 (n=24)
C2 (n=24)
C3 (n=21)

Yonsei SMC

0 50 100 150
Time (months)

C1 (n=185)
C2 (n=160)
C3 (n=88)

Yonsei

0 50 100 150
Time (months)

C1 (n=85)
C2 (n=150)
C3 (n=140)

SMC

C1 vs C3
 p= 0.23

C1 vs C3
 p= 0.03

C1 vs C3
 p= 2.3X10−7

C1 vs C3
 p= 0.89

C1 vs C3
 p= 0.0008

C1 vs C3
 p= 0.12

G1

G2

G3

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Su
bt
yp
e

La
ur
en

Sta
ge

HKU TCGA Singapore ACRG Australia CPTACYonsei SMC

Molecular subtype (dataset specific)

MSI
CIN

GS
TCGA

Metabolic
Proliferative Invasive

Unstable
Singapore

MSI
MSS/TP53+ MSS/EMT

MSS/TP53-
ACRG

Metabolic
Proliferative

Invasive
Australia

Metabolic
Proliferative Invasive

Immunogenic
CPTAC

Pr
op

or
tio

n

Su
bt
yp
e

La
ur
en

Sta
ge

Su
bt
yp
e

La
ur
en

Sta
ge

Su
bt
yp
e

La
ur
en

Sta
ge

Su
bt
yp
e

La
ur
en

Sta
ge

Su
bt
yp
e

La
ur
en

Sta
ge

Sta
ge

Sta
ge

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3C1 C2 C3 C1 C2 C3

HKU TCGA Singapore ACRG Australia CPTACYonsei SMC

low highexpression (z-score)

PTPRCAP

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


C1 C2 C30.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C1 C2 C3

EP
MP

A TCGA ACRG

C1
C2
C3

Cluster

low

high

expression 
(z-score)

SFN
RAB25
PKP3
SORD
GPT

PTPRCAP
RHOH

ADHFE1
FSTL1
CRYAB
CDO1

B KUGH YUSH KUCM MDACC

C

D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

KUGH YUSH KUCM MDACC

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

O
ve

ra
ll 

Su
rv

iv
al

C1 (n=37)
C2 (n=31)
C3 (n=25)

p= 0.04

0 20 40 60 80 100

Time (months)

C1 (n=12)
C2 (n=34)
C3 (n=14)p= 0.12

0 20 40 60 80 100 120 140

Time (months)

C1 (n=47)
C2 (n=31)
C3 (n=31)

p= 0.005

0 20 40 60 80

Time (months)

C1 (n=20)
C2 (n=15)
C3 (n=5)

p= 0.03

KUGH YUSH KUCM MDACC

E

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al C1 (n=37)

C2 (n=31)
C3 (n=25)

p= 0.02

0 20 40 60 80 100

Time (months)

C1 (n=12)
C2 (n=34)
C3 (n=14)p= 0.03

0 20 40 60 80 100 120 140

Time (months)

C1 (n=47)
C2 (n=31)
C3 (n=31)

p= 0.006

KUGH YUSH KUCM

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al

0 20 40 60 80 100 120 140 0 20 40 60 80 100

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (months)

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al

0 20 40 60 80 100

0 20 40 60 80 100 120 140

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80 100

0 20 40 60

St
ag

e 
II,

 II
I, 

IV
St

ag
e 

II
St

ag
e 

III
St

ag
e 

IV
C1 tumors C2 tumors C3 tumors

B

C

D

E

0 20 40 60 80 100 120 140

EP tumors

0 20 40 60 80 100

MP tumors

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Re
cu

rr
en

ce
 F

re
e 

Su
rv

iv
al

CT
X

A

0 20 40 60 80 100 120 140

CTX (n=49)
No CTX (n=19)

0 20 40 60 80 100

CTX (n=34)
No CTX (n=12)

0 20 40 60 80 100 120 140

CTX (n=93)
No CTX (n=26)

0 20 40 60 80 100

CTX (n=37)
No CTX (n=21)

0 20 40 60 80 100

0 20 40 60 80 100 120 140

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80 100

0 20 40 60

CTX (n=47)
No CTX (n=16)

p= 0.039 p= 0.44 p= 0.12 p= 0.009 p= 0.98

II (n=18)
III (n=32)
IV (n=13)

p= 0.15

II (n=20)
III (n=30)
IV (n=18)

p= 0.001

II (n=9)
III (n=24)
IV (n=13)

p= 0.08

II (n=33)
III (n=59)
IV (n=27)

p= 0.0008 II (n=14)
III (n=27)
IV (n=17)

p= 0.04

No CTX (n=6)
CTX (n=12)

p= 0.44

No CTX (n=6)
CTX (n=14)

p= 0.99

No CTX (n=4)
CTX (n=5)

p= 0.11

No CTX (n=9)
CTX (n=24)

p= 0.24

No CTX (n=7)
CTX (n=7)

p= 0.80

No CTX (n=10)
CTX (n=17)

p= 0.50

No CTX (n=9)
CTX (n=50)

p= 0.004

No CTX (n=5)
CTX (n=19)

p= 0.08

No CTX (n=8)
CTX (n=22)

p= 0.45

No CTX (n=6)
CTX (n=26)

p= 0.006

No CTX (n=4)
CTX (n=9)

p= 0.42

No CTX (n=5)
CTX (n=13)

p= 0.19

No CTX (n=3)
CTX (n=10)

p= 0.80

No CTX (n=8)
CTX (n=19)

p= 0.06

No CTX (n=4)
CTX (n=13)

p= 0.68

Time (months) Time (months) Time (months) Time (months)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.4 0.8 1.2 1.6

HKU

SFN
RAB25
PKP3
SORD
GPT

PTPRCAP
RHOH

ADHFE1
FSTL1
CRYAB
CDO1

0.5 1.5

TCGA

0.5 1.5 2.5

Singapore

0.5 1.5

ACRG

0.5 1.0 1.5 2.0

Australia

0.6 1.0 1.4

Yonsei

0.6 1.0 1.4

SMC

−0.4 0.2 0.8

Coe�cient
−0.4 0.0 0.4

Coe�cient
−1.5 −0.5 0.5

Coe�cient
−0.6 0.0 0.4

Coe�cient
−0.6 0.0 0.4

Coe�cient
−0.4 0.0 0.4

Coe�cient
−0.4 0.0 0.4

Coe�cient

SFN
RAB25
PKP3
SORD
GPT

PTPRCAP
RHOH

ADHFE1
FSTL1
CRYAB
CDO1

A

B
Not signi�cant

p<0.05 p<0.01 p<0.001 p<0.05 p<0.01 p<0.001
Positive association Negative association

Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio

HKU TCGA Singapore ACRG Australia Yonsei SMC

>20 0 >20
-log10(FET p)

GoodPoor

Survival Progress

Po
st

iiv
e

N
eg

at
iv

e

Association with 
disease signatures

Su
rv

iv
al

Pr
og

re
ss

io
n

key 
regulators

downstream genes

Po
si

tiv
e

N
eg

at
iv

e

SFN
RAB25
PKP3
SORD
GPT

PTPRCAP
RHOH

ADHFE1
FSTL1
CRYAB
CDO1

C

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

2

4

6

8

lo
g2

(R
SE

M
)

0.0

0.2

0.4

0.6

0.8

1.0

β-
va

lu
e

CD
O

1

CR
YA

B

FS
TL

1

A
D

H
FE

1

RH
O

H

PT
PR

CA
P

G
PT

SO
RD

PK
P3

RA
B2

5

SF
N

A BGene Expression DNA methylation

C

CD
O

1

CR
YA

B

FS
TL

1

A
D

H
FE

1

RH
O

H

PT
PR

CA
P

G
PT

SO
RD

PK
P3

RA
B2

5

SF
N

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ADHFE1 in CCLE

β-
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

log2(RSEM)
0 2 4 6 8

FSTL1 in CCLE

log2(RSEM)

β-
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

GPT in CCLE

log2(RSEM)

β-
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8

SFN in CCLE

log2(RSEM)

0.0

0.2

0.4

0.6

0.8

β-
va

lu
e

rho= -0.42
p= 0.039

rho= -0.48
p= 0.005

rho= -0.48
p= 0.004

rho=-0.52
p=0.002

D

0 2 4 6

Odd-ratio

0 <10

-log10(p-value)

+ - + -

FSTL1

ADHFE1

+ -

GPT

+ -

SFN

Correlated genes in CCLE

+
-

+
-

D
ow

sn
tr

ea
m

 ta
rg

et

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

FSTL1

Cor. coe�cient

D
en

si
ty

ADHFE1

(737)
(459)

GPT
(137)
(299)

SFN
(369)
(492)

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

E

Downstream (negative) BackgroundDownstream (positive)

Cor. coe�cient Cor. coe�cient Cor. coe�cient

(532)
(844)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 >50

A -log10(FET p)

0 >10

-log10(FET p)

GPT_pos
RAB25_pos
SFN_pos
PTPRCAP_neg
RHOH_neg
SORD_pos
CRYAB_neg
ADHFE1_neg
CDO1_neg
FSTL1_neg
PKP3_pos
PTPRCAP_pos
RHOH_pos
SFN_neg
RAB25_neg
GPT_neg
ADHFE1_pos
CDO1_pos
SORD_neg
CRYAB_pos
FSTL1_pos
PKP3_neg

KR
AS

_S
IG

NA
LIN

G_
UP

IL2
_S

TA
T5

_S
IG

NA
LIN

G
TN

FA
_S

IG
NA

LIN
G_

VI
A_

NF
KB

IL6
_J

AK
_S

TA
T3

_S
IG

NA
LIN

G
CO

M
PL

EM
EN

T
AL

LO
GR

AF
T_

RE
JE

CT
IO

N
IN

FL
AM

M
AT

OR
Y_

RE
SP

ON
SE

IN
TE

RF
ER

ON
_G

AM
M

A_
RE

SP
ON

SE
ES

TR
OG

EN
_R

ES
PO

NS
E_

EA
RL

Y
CO

AG
UL

AT
IO

N
AP

IC
AL

_J
UN

CT
IO

N
UV

_R
ES

PO
NS

E_
DN

M
YO

GE
NE

SI
S

EP
IT

HE
LIA

L_
M

ES
EN

CH
YM

AL
_T

RA
NS

IT
IO

N
AD

IP
OG

EN
ES

IS
FA

TT
Y_

AC
ID

_M
ET

AB
OL

IS
M

OX
ID

AT
IV

E_
PH

OS
PH

OR
YL

AT
IO

N
ES

TR
OG

EN
_R

ES
PO

NS
E_

LA
TE

CH
OL

ES
TE

RO
L_

HO
M

EO
ST

AS
IS

GL
YC

OL
YS

IS
DN

A_
RE

PA
IR

M
ITO

TI
C_

SP
IN

DL
E

UN
FO

LD
ED

_P
RO

TE
IN

_R
ES

PO
NS

E
M

YC
_T

AR
GE

TS
_V

2
SP

ER
M

AT
OG

EN
ES

IS
M

YC
_T

AR
GE

TS
_V

1
M

TO
RC

1_
SI

GN
AL

IN
G

G2
M

_C
HE

CK
PO

IN
T

E2
F_

TA
RG

ET
S

GPT_pos
RAB25_pos

SFN_pos
PTPRCAP_neg

RHOH_neg
SORD_pos

CRYAB_neg
ADHFE1_neg

CDO1_neg
FSTL1_neg

PKP3_pos
PTPRCAP_pos

RHOH_pos
SFN_neg

RAB25_neg
GPT_neg

ADHFE1_pos
CDO1_pos
SORD_neg
CRYAB_pos
FSTL1_pos
PKP3_neg

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


NT T

CDO1 CRYAB ADHFE1 RHOH PTPRCAPFSTL1 PKP3 RAB25SFNGPT SORD

NT T NT T NT T NT TNT T NT T NT TNT TNT T NT T

4.
5

5.
5

6.
5

7.
5

H
KU

in
te

ns
ity

 (l
og

2)

6
7

8
9

10
11

7
8

9
10

11

5
6

7
8

5.
0

5.
5

6.
0

6.
5

7.
0

5
6

7
8

9

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

6.
4

6
8

10
12

6
7

8
9

10
11

4
5

6
7

8
9

5
6

7
8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

TC
G

A
 

RS
EM

 (l
og

2)

2
4

6
8

3
4

5
6

7
8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0
1

2
3

4
5

6

2
4

6
8

0
2

4
6

8

0
2

4
6

8

0
2

4
6

8
10

0
1

2
3

4
5

6

1
2

3
4

5
6

t−test p= 0.0002
w−test p= 0.0006

t−test p= 0.0004
w−test p= 0.0007

t−test p= 0.43
w−test p= 0.79

t−test p= 0.05
w−test p= 0.75

t−test p= 0.01
w−test p= 0.002

t−test p= 0.70
w−test p= 0.66

t−test p= 0.57
w−test p= 0.41

t−test p= 7.8e−10
w−test p= 7.0e−14

t−test p= 0.001
w−test p= 0.0001

t−test p= 2.2e−07
w−test p= 3.8e−08

t−test p= 0.0009
w−test p= 0.0001

t−test p= 0.96
w−test p= 0.65

t−test p= 1.5e−26
w−test p= 3.3e−13

t−test p= 0.43
w−test p= 0.39

t−test p= 0.02
w−test p= 0.05

t−test p= 0.002
w−test p= 0.003

t−test p= 5.4e−09
w−test p= 7.5e−08

t−test p= 0.07
w−test p= 0.05

t−test p= 2.5e−13
w−test p= 5.9e−16

t−test p= 8.1e−16
w−test p= 4.2e−13

t−test p= 0.10
w−test p= 0.11

t−test p= 0.71
w−test p= 0.55

NT T NT T NT T NT T NT TNT T NT T NT TNT TNT T NT T

B

A

CDO1 CRYAB ADHFE1 RHOH PTPRCAPFSTL1 PKP3 RAB25SFNGPT SORD

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

MethylCIBERSORT

CI
BE

RS
O

RT
Immune proportion

0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

MethylCIBERSORT

CI
BE

RS
O

RT

Stroma proportion

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

MethylCIBERSORT

CI
BE

RS
O

RT

Cancer proportion

r= 0.74
p= 2.3x10−37

r= 0.80
p= 6.4x10−48

r= 0.84
p= 3.9x10−58

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.920744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920744
http://creativecommons.org/licenses/by-nc-nd/4.0/

