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ABSTRACT	16	

Understanding	the	complex	information	stored	in	a	genome	remains	challenging	17	

since	multiple	connected	regulatory	mechanisms	act	at	various	scales	to	determine	18	

function.	Increased	comprehension	of	genome	function	at	scales	beyond	contiguous	19	

nucleotides	will	help	understand	genetic	diseases,	the	emergence	of	pathogenesis,	20	

and	more	broadly	the	genomics	of	adaptation.	Here	we	report	the	analysis	of	DNA	21	

methylation,	histone	modification,	and	DNA	accessibility	in	the	plant	pathogenic	22	

vascular	wilt	fungus	Verticillium	dahliae.	Functional	analysis	details	that	DNA	23	

methylation	is	restricted	to	repetitive	elements,	such	as	transposable	element	DNA,	24	

but	interestingly	only	some	repetitive	DNA	is	methylated.	This	incomplete	DNA	25	

methylation	is	associated	with	repetitive	DNA	residing	in	specific	compartments	of	26	

the	genome	that	were	previously	defined	as	Lineage-Specific	(LS)	regions.	These	27	

regions	are	hypervariable	between	V.	dahliae	isolates	and	contain	genes	that	28	

support	host	colonization	and	adaptive	traits.	LS	regions	are	associated	with	H3	Lys-29	

27	methylated	histones	(H3K27me3),	and	repetitive	DNA	within	LS	regions	are	30	

more	transcriptionally	active	and	have	increased	DNA	accessibility,	representing	a	31	

hybrid	chromatin	state	when	compared	to	repetitive	regions	within	the	core	32	

genome.	We	used	machine	learning	algorithms	trained	on	epigenetic	and	DNA	33	

accessibility	data	to	predict	LS	regions	with	high	recall,	identifying	approximately	34	

twice	as	much	LS	DNA	in	the	V.	dahliae	genome	as	previously	recognized.	35	

Collectively,	these	results	characterize	LS	regions	in	an	intermediate	chromatin	36	

state	and	provide	evidence	that	links	chromatin	features	and	genome	architecture	37	

to	adaptive	regions	within	the	genome.		 	38	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921486
http://creativecommons.org/licenses/by/4.0/


	 3	

INTRODUCTION	39	

Genomes	are	not	randomly	organized	and	comprise	complex	information	beyond	40	

their	linear	nucleic	acid	sequence	1.	While	scientific	understanding	of	genome	41	

biology	continues	to	grow,	significant	efforts	in	the	past	decade	have	focused	on	42	

sequencing	new	species	and	additional	genotypes	of	those	species	2.	However,	there	43	

is	a	great	need	to	decode	the	complex	information	stored	in	these	genomes,	to	44	

understand	genomic	responses	over	various	time	scales,	and	ultimately	to	more	45	

fully	understand	how	genotypes	lead	to	phenotypes.	With	the	growing	number	of	46	

high-quality,	highly	contiguous	genome	assemblies	it	is	possible	to	analyze	genome	47	

organization	into	chromosomes	at	high	resolution	3.	Present	day	genome	48	

organization	reflects	evolutionary	solutions	to	the	challenges	of	information	49	

processing	and	adaptation;	a	genome	must	faithfully	pass	vast	amounts	of	50	

information	across	cell-cycles	and	reproduction,	packaged	into	limited	physical	51	

space,	while	achieving	correct	access	to	the	information	in	response	to	52	

developmental,	environmental	or	chemical	signals.	In	addition,	there	needs	to	be	53	

appreciable	stochastic	genetic	variation	to	ensure	that	phenotypic	variation	is	54	

present	for	unknown	future	events.	Organisms	undergoing	mainly	asexual	55	

reproduction	face	an	additional	evolutionary	constraint	as	they	must	generate	this	56	

genetic	variation	in	the	absence	of	meiotic	recombination	4.	Many	economically	57	

important	fungal	plant	pathogens	are	either	asexual	or	undergo	more	frequent	58	

asexual	reproduction	compared	to	sexual	reproduction	5.	Interestingly,	fungal	59	

pathogens	are	subject	to	additional	evolutionary	pressure	from	their	hosts,	as	host-60	

pathogen	interactions	create	dynamical	systems	with	shifting,	yet	near-constant	61	

selective	pressure	on	the	two	genomes	6.	These	attributes	make	plant-fungal	62	

interactions	a	particularly	interesting	system	to	study	aspects	of	genome	evolution	63	

and	genome	organization	7,8.	64	

	65	

Plant	invading	microbes	use	effectors	to	suppress,	avoid	or	mitigate	the	plant	66	

immune	system	9,10.	Plants	in-turn	use	a	variety	of	plasma-membrane	bound	and	67	

cytoplasmic	receptors	to	recognize	invasion,	through	recognition	of	the	effector	or	68	
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its	biochemical	activity,	creating	a	strong	selective	pressure	on	the	microbe	to	69	

modify	the	effector	or	its	function	to	alleviate	recognition	11,12.	The	plant	pathogenic	70	

fungus	Verticillium	dahliae	causes	vascular	wilt	diseases	on	hundreds	of	plant	hosts.	71	

V.	dahliae	is	presumed	asexual	and	generates	genomic	diversity	in	the	absence	of	72	

sexual	recombination	through	large-scale	chromosome	re-arrangements	and	73	

segmental	duplications	13-16.	The	regions	undergoing	such	duplications	and	re-74	

arrangements	are	hypervariable	between	V.	dahliae	isolates,	and	consequently	have	75	

been	referred	to	as	Lineage-Specific	(LS)	regions.	These	LS	regions	are	enriched	for	76	

in	planta	expressed	genes	and	harbor	many	effector	genes	contributing	to	host	77	

infection	14,17,18.	Similar	non-random	genomic	arrangement	of	effectors	have	been	78	

reported	across	diverse		plant	pathogenic	fungal	and	oomycete	genomes	14,19-25.	One	79	

summary	of	these	observations	is	referred	to	as	the	two-speed	genome,	in	which	80	

repeat-rich	regions	harboring	effectors	evolve	more	rapidly	than	genes	outside	81	

these	regions	26.	82	

	83	

Previous	research	in	various	plant-associated	fungi	has	established	a	link	between	84	

posttranslational	histone	modifications	and	transcriptional	regulation	of	adaptive	85	

trait	genes.	These	genes	include	effectors	that	facilitate	host	infection,	and	86	

secondary	metabolite	(SM)	clusters	that	code	for	genes	that	produce	chemicals	87	

important	for	niche	fitness	27.	By	removing	or	reducing	enzymes	responsible	for	88	

particular	repressive	histone	modifications,	such	as	di-	and	trimethylation	of	Lys9	89	

and	Lys27	residues	of	histone	H3	(H3K9me2/3	and	H3K27me2/3),	a	90	

disproportionally	high	number	of	effector	and	SM	cluster	genes	are	derepressed,	91	

although	a	direct	role	of	these	marks	in	transcriptional	control	was	not	92	

demonstrated	28-30.	However,	evidence	from	the	fungus	Epichloe	festucae	that	forms	93	

a	mutualistic	interaction	with	its	grass	host	Lolium	perenne	indicates	that	direct	94	

transcriptional	regulation	through	histone	modification	dynamics	is	possible	31.	95	

Although	there	are	clear	indications	that	the	epigenome	(i.e.	heritable	chemical	96	

modifications	to	DNA	and	histones	not	affecting	the	genetic	sequence)	plays	a	role	in	97	
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adaptive	gene	regulation,	additional	evidence	is	needed	to	fully	understand	this	98	

phenomenon.		99	

	100	

Epigenetic	modifications	influence	chromatin	structure,	defined	as	the	DNA-RNA-101	

protein	interactions	giving	DNA	physical	structure	in	the	nucleus	32,33.	This	physical	102	

structure	affects	how	DNA	is	organized	in	the	nucleus	and	DNA	accessibility.	103	

Methylation	of	H3K9	and	H3K27	are	hallmarks	of	heterochromatin;	DNA	that	is	104	

tightly	compacted	in	the	nucleus	34-37.	H3K9	methylation	is	not	only	associated	with	105	

controlling	constitutive	heterochromatin,	but	also	tightly	linked	with	DNA	cytosine	106	

methylation	(mC),	which	serves	as	an	epigenetic	mark	contributing	to	107	

transcriptional	silencing	38.	A	single	DNA	methyltransferase	gene,	termed	Dim2,	108	

performs	cytosine	DNA	methylation	in	the	saprophytic	fungus	Neurospora	crassa	39.	109	

Histone	methylation	at	H3K9	directs	DNA	methylation	by	DIM2	through	another	110	

protein,	termed	heterochromatin	protein	1	(HP1),	which	physically	associates	with	111	

both	DIM2	and	H3K9me3	40,41.	Some	fungi	possess	a	unique	pathway	to	limit	the	112	

expansion	of	repetitive	DNA	such	as	transposable	elements	through	repeat-induced	113	

point	mutation	(RIP),	a	mechanism	that	specifically	mutates	repetitive	DNA	in	the	114	

genome	during	meiosis	and	induces	heterochromatin	formation	42,43.	The	mutations	115	

occur	at	methylated	cytosines	resulting	in	conversion	to	thymines	(C	to	T	mutation)	116	
44.	H3K27	methylation	is	associated	with	heterochromatin	that	is	thought	to	be	117	

more	flexible	in	its	chromatin	status	and	exist	as	bivalent	chromatin	that	may	be	118	

either	transcriptionally	repressed	or	active	depending	on	developmental	stage	or	119	

environmental	cues	45-48.	The	deposition	of	H3K27me3	is	controlled	by	a	histone	120	

methyltransferase	that	is	a	member	of	a	complex	of	proteins	termed	Polycomb	121	

Repressive	Complex	2	(PRC2),	with	orthologs	of	the	core	machinery	present	across	122	

many	eukaryotes	36,49.		123	

	124	

In	addition	to	heterochromatin	playing	a	role	in	transcriptional	regulation	in	125	

filamentous	fungi,	epigenetic	marks	contributing	to	chromatin	may	influence	126	

genome	evolution	50.	In	N.	crassa,	DNA	is	physically	arranged	in	the	nucleus	127	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921486
http://creativecommons.org/licenses/by/4.0/


	 6	

corresponding	to	heterochromatic	and	euchromatic	domains,	with	strong	inter-	and	128	

intra-heterochromatin	DNA-DNA	interactions	reported	51,52.	Recent	experimental	129	

evidence	using	Zymoseptoria	tritici,	a	fungal	pathogen	of	wheat,	suggests	that	130	

H3K27me3	promotes	genomic	instability	53.	In	the	oomycete	plant	pathogens	131	

Phytophthora	infestans	and	Phytophthora	sojae	a	clear	association	exists	between	132	

gene-sparse	and	transposon-rich	regions	of	the	genome	and	the	occurrence	of	133	

adenine	N6-methylation	(6mA)	54.	Collectively	these	examples	point	towards	an	134	

unexplained	connection	between	the	epigenome,	genome	architecture,	and	adaptive	135	

evolution.	To	examine	the	hypothesis	that	epigenetic	modifications	influence	the	136	

adaptive	LS	regions	of	V.	dahliae,	we	performed	a	series	of	genetic,	genomic,	and	137	

machine	learning	analyses	to	characterize	these	regions	in	greater	detail.	138	

	139	

RESULTS	140	

DNA	cytosine	methylation	occurs	at	transposable	elements	141	

To	understand	the	role	of	DNA	methylation	in	V.	dahliae,	whole-genome	bisulfite	142	

sequencing,	in	which	unmethylated	cytosine	bases	are	converted	to	uracil	while	143	

methylated	cytosines	remain	unchanged	55,56,	was	performed	in	the	wild-type	and	a	144	

heterochromatin	protein	1	deletion	mutant	(Dhp1).	The	overall	level	of	DNA	145	

methylation	in	V.	dahliae	is	low,	with	an	average	weighted	methylation	percentage	146	

(calculated	as	the	number	of	reads	supporting	methylation	over	the	number	of	147	

cytosines	sequenced)	at	CG	dinucleotides	of	0.4%	(Table	1).	The	fractional	CG	148	

methylation	level	(calculated	as	the	number	of	cytosine	positions	with	a	methylated	149	

read	over	all	cytosine	positions)	is	higher,	averaged	to	9.7%	over	10	kb	windows.	150	

Weighted	and	fractional	cytosine	methylation	(mC)	levels	are	statistically	151	

significantly	higher	in	the	WT	compared	to	the	Dhp1	mutant	for	all	cytosine	contexts	152	

(Table	1,	Supplemental	Fig.	S1A	and	B).	This	result	is	consistent	with	the	153	

requirement	of	HP1	for	DNA	methylation	in	N.	crassa	40.	To	understand	DNA	154	

methylation	in	the	context	of	the	functional	genome,	DNA	methylation	was	analyzed	155	

over	genes,	promoters,	and	transposable	elements	(TE).	Despite	statistically	156	

significant	differences	between	WT	and	Dhp1	for	gene	and	promoter	methylation,	157	
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the	bisulfite	sequencing	data	shows	virtually	no	DNA	methylation	at	these	two	158	

features	(Fig.	1A).	We	attribute	the	difference	to	a	marginal	set	of	elements	having	a	159	

real	difference	between	the	genotypes,	but	the	biological	significance	is	likely	160	

negligible	(Fig.	1A).	In	contrast,	there	is	a	much	higher	degree	of	methylation,	and	a	161	

notable	difference	between	wild-type	and	Dhp1	methylation	levels	at	TEs	(Fig.	1A,	162	

bottom	panel),	with	the	average	CG	methylation	level	being	five	times	higher	in	the	163	

wild-type	strain.		164	

	165	
Table	1.	Summary	of	DNA	methylation	in	Verticillium	dahliae	wild-type	(WT)	and	166	
heterochromatin	protein	1	deletion	mutant	(Dhp1)	as	measured	by	whole	genome	167	
bisulfite	sequencing	calculated	over	10	kb	non-overlapping	windows.	168	

Genotype	
Avg.	

Weighted	
mCG	

Avg.	
Weighted	
mCHG	

Avg.	
Weighted	
mCHH	

Avg.	
Fraction	
mCG	

Avg.	
Fraction	
mCHG	

Avg.	
Fraction	
mCHH	

WT	 0.0040	 0.0037	 0.0034	 0.097	 0.097	 0.088	
Dhp1	 0.0030	 0.0030	 0.0032	 0.082	 0.083	 0.079	

Avg.	Weighted,	The	average	of	total	methylated	cytosines	in	a	given	context	divided	169	
by	total	cytosines	in	that	context	in	a	10	kb	windows;	Avg.	Fraction,	The	total	170	
cytosines	positions	with	a	read	supporting	methylation	divided	by	total	cytosines	in	171	
a	specific	context	in	a	10	kb	window;	mCG,	methylated	cytosine	residing	next	to	a	172	
guanine;	mCHG,	methylated	cytosine	residing	next	to	any	base	that	is	not	a	guanine	173	
next	to	a	guanine;	mCHH,	methylated	cytosine	residing	next	to	any	two	bases	that	174	
are	not	a	guanines.		175	
	176	

To	further	analyze	DNA	methylation	levels	and	confirm	that	the	low	DNA	177	

methylation	levels	in	the	wild-type	strain	are	indeed	different	than	those	in	Dhp1,	CG	178	

DNA	methylation	levels	were	plotted	in	10	kb	windows	across	individual	179	

chromosomes.	These	plots	clearly	show	that	DNA	methylation	is	not	continuously	180	

present	across	the	V.	dahliae	genome,	and	DNA	methylation	is	significantly	different	181	

between	wild-type	and	Dhp1	(Fig.	1B,	C).	Furthermore,	regions	in	the	genome	with	182	

higher	densities	of	TEs	and	lower	gene	numbers	have	higher	levels	of	DNA	183	

methylation,	consistent	with	the	global	DNA	methylation	summary	(Fig.	1B	and	C).	184	

Interestingly,	these	results	show	that	while	DNA	methylation	is	only	present	at	TEs,	185	

not	all	TEs	are	methylated,	a	phenomenon	that	was	previously	described	as	‘non-186	

exhaustive’	DNA	methylation	57.	To	further	understand	this	phenomenon,	we	sought	187	
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to	identify	discriminating	genomic	features	that	could	account	for	some	TEs	not	188	

being	methylated.	The	whole-chromosome	methylation	data	suggested	a	lack	of	189	

DNA	methylation	at	previously	identified	LS	regions	(Fig.	1C,	grey	windows).	These	190	

LS	regions	were	previously	detailed	for	V.	dahliae,	and	are	characterized	as	regions	191	

that	are	highly	variable	between	isolates	of	the	species,	are	enriched	for	actively	192	

transcribed	TEs,	and	contain	an	increased	proportion	of	genes	involved	in	host	193	

virulence	13-15.	Thus,	we	tested	if	DNA	sequences	at	LS	regions	are	less	frequently	194	

methylated	by	comparing	weighted	mCG	levels	in	10	kb	bins	containing	at	least	one	195	

TE	for	core	versus	LS	regions.	This	analysis	showed	significantly	more	DNA	196	

methylation	for	core	bins,	which	cannot	be	accounted	for	by	a	simple	difference	in	197	

the	number	of	TEs	in	the	core	and	LS	regions	analyzed	(Fig.	1D	and	E).	Higher	CG	198	

methylation	levels	also	hold	true	when	analyzed	at	the	level	of	individual	TE	199	

elements	(Fig.	1F,	numbers	of	elements	in	Supplemental	Table	S1).	Collectively,	200	

these	analyses	demonstrate	that	DNA	methylation	occurs	almost	exclusively	at	TEs	201	

and,	importantly,	that	not	all	TEs	are	methylated.	This	observation	can	in	part	be	202	

explained	by	mCG	differences	for	TEs	in	the	core	versus	LS	regions.	203	

	204	
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	205	

Transposable	element	classes	have	distinct	profiles	for	genomic	and	206	

epigenomic	features		207	

To	understand	the	functional	status	of	the	various	TEs	in	the	genome,	DNA-histone	208	

modification	location	data	were	collected	using	chromatin	immunoprecipitation	209	

followed	by	sequencing	(ChIP-seq)	against	H3K9me3	and	H3K27me3,	which	allows	210	

for	the	identification	of	DNA	interacting	with	these	modified	histones.	211	

Characteristics	of	TE	sequence,	such	as	GC	percentage,	composite	RIP	index	(CRI),	212	

and	TE	age,	estimated	as	the	Jukes-Cantor	distance	to	the	consensus	sequence	of	the	213	

specific	TE	family,	were	calculated	(see	methods).	To	further	classify	genomic	214	

regions	as	eu-	or	heterochromatic,	we	performed	an	assay	for	transposase	215	

accessible	chromatin	and	sequencing	(ATAC-seq)	58.	This	method	uses	a	TN5	216	

transposase	to	restrict	physically	accessible	DNA	in	the	nucleus	and	tags	the	DNA	217	

ends	with	oligonucleotides	for	downstream	sequencing.	Transcriptional	activity	was	218	

assayed	using	RNA-sequencing.	To	analyze	all	of	these	TE	characteristics	(variables)	219	

at	once,	dimensional	reduction	with	principle	component	analysis	(PCA)	was	220	

employed,	which	facilitates	data	interpretation	on	two-dimensions	to	identify	221	

important	variables	and	their	relationships	within	large	datasets.	The	individual	TEs	222	

were	grouped	into	four	broad	classes	(Type	I	DNA	elements	and	Type	II	LTR,	LINEs,	223	

and	Unspecified	elements)	and	analyzed	for	each	measured	variable.	The	first	224	

dimension	of	PCA	shows	the	largest	separation	of	the	data	points	and	variables,	and	225	

largely	separates	the	data	based	on	euchromatin	versus	heterochromatin	features	226	

Figure	1.	DNA	methylation	is	only	present	at	transposable	elements,	but	not	at	those	present	
in	LS	regions.	(A)	Violin	plot	of	the	distribution	of	DNA	methylation	levels	quantified	as	
weighted	methylation	over	Genes,	Promoters	and	TEs.	Cytosine	methylation	was	analyzed	in	
the	CG,	CHG	and	CHH	sequence	context.	Methylation	was	measured	in	the	wild-type	(WT)	and	
heterochromatin	protein	1	knockout	strain	(Dhp1).	(B,	C)	Whole	chromosome	plots	showing	
TE	and	Gene	counts	(blue	and	red	heatmaps)	and	wild-type	(black	lines)	and	Dhp1	(green	
line)	CG	methylation	as	measured	with	bisulfite	sequencing.	Data	is	computed	in	10	kilobase	
non-overlapping	windows.	(C)	Two	previously	defined	LS	regions	(Faino	et	al.	2016)	are	
highlighted	by	grey	windows.	(D)	Violin	plot	of	weighted	cytosine	methylation	in	10	kb	
windows	broken	into	core	versus	LS	location	(E)	Same	as	D	but	plots	are	for	the	counts	of	TEs	
per	10	kb	window.	(F)	Same	as	in	D	but	methylation	levels	were	computed	at	individual	TE	
elements.	Statistical	differences	for	indicated	comparisons	were	carried	out	using	non-
parametric	Mann-Whitney	test	with	associated	p-values	shown.		
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(Fig.	2A,	PC1).	This	is	seen	by	the	variables	ATAC-seq,	%GC,	RNA-sequencing,	227	

H3K9me3	ChIP,	CRI	and	DNA	methylation	(mCG)	being	furthest	separated	along	the	228	

x-axis	(Fig.	2A).	Open	chromatin	features	such	as	higher	ATAC-seq,	%GC,	and	229	

transcriptional	activity	are	positive	on	the	x-axis,	with	small	angles	between	the	230	

vectors,	indicating	correlation	among	those	variables.	Conversely,	features	231	

associated	with	heterochromatin,	such	as	H3K9me3	association,	DNA	methylation	232	

and	indication	of	RIP	(CRI)	are	all	negative	on	the	x-axis,	and	the	position	of	their	233	

vectors	indicates	correlation	among	these	variables,	and	negative	correlation	to	the	234	

euchromatin	features	(Fig.	2A).	The	second	axis	discriminates	elements	based	on	235	

their	H3K27me3	profile	and	sequence	characteristics	such	as	Jukes	Cantor	(TE	age),	236	

Identity	and	Length	(Fig.	2A).	For	the	individual	element	classification,	there	is	a	237	

stronger	association	for	the	LTR	and	Unspecified	elements	with	the	238	

heterochromatin	features	(Fig.	2A,	grey	and	red	ellipse	extending	along	negative	x-239	

axis).	Collectively,	this	multivariate	description	of	TEs	identifies	those	that	are	more	240	

transcribed	and	open	as	having	lower	association	with	H3K9me3,	mCG,	and	RIP	241	

mutation.	There	are	statistically	significant	differences	between	the	TE	types	for	242	

each	of	these	variables	(Supplemental	Table	S2),	and	the	LTR	elements	have	the	243	

highest	levels	of	H3K9me3	and	mCG,	along	with	the	highest	CRI	values	and	lowest	244	

%GC,	consistent	with	the	mechanistic	link	between	the	four	variables	(Fig.	2B).	245	

Interestingly,	a	bimodal	distribution	occurs	for	%GC	and	CRI	within	the	LTR	and	246	

Unspecified	elements,	indicating	that	some	of	the	LTR	elements	have	undergone	RIP	247	

and	are	heterochromatic,	while	other	elements	have	not	been	subject	to	this	248	

mechanism	(Fig.	2B).	This	delineation	occurs	for	the	Unspecified	and	LTR	elements	249	

with	a	%GC	sequence	content	less	than	approximately	40%,	which	have	positive	CRI	250	

values	and	high	H3K9me3	signal	(Fig.	2C).	A	similar	distinction	is	seen	with	ATAC-251	

seq	data	that	show	a	clear	break	around	40%	GC	content,	and	elements	below	this	252	

have	lower	ATAC-seq	signal	and	higher	H3K9me3	signal	(Fig.	2D).	These	trends	are	253	

not	observed	for	the	LINE	and	DNA	elements	(Supplemental	Fig.	S2).	These	results	254	

suggest	that	LTR	and	Unspecified	TE	elements	exist	in	two	distinct	chromatin	states	255	

in	the	genome.	256	

	257	
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		258	

Figure	2.	Individual	TE	families	have	distinct	epigenetic	and	physical	compaction	profiles.	(A)	
Principle	component	analysis	for	14	variables	measured	for	each	individual	TE.	Each	vector	
represents	one	variable,	with	the	length	signifying	the	importance	of	the	variable	in	the	
dimension.	The	relationship	between	variables	can	be	determined	by	the	angle	connecting	
two	vectors.	For	angles	<900,	the	two	variables	are	correlated,	while	those	>900	are	negatively	
correlated.	Each	individual	element	is	shown	and	highlighted	by	color	and	symbol	as	
indicated	by	the	key.	Colored	ellipses	show	the	confidence	interval	for	the	four	families	along	
with	a	single	large	symbol	to	show	the	mean	position	for	the	four	families.	mCG,	weighted	CG	
DNA	methylation;	mCHG,	weighted	CHG	DNA	methylation;	CRI,	Composite	RIP	index;	%GC,	
percent	GC	sequence	content;	Identity,	Nucleotide	identity	as	percent	identity	to	the	
consensus	TE	sequence	of	a	family;	Length,	element	length;	Jukes	Cantor,	Jukes	Cantor	
corrected	distance	as	proxy	of	TE	age;	RNAseq,	RNA-sequencing	reads	from	(PDB),	half	
strength	MS	(HMS)	or	tomato	xylem	sap	(Xylem)	grown	fungus	expressed	as	variance	
stabilizing	transformed	log2	values	(see	methods	for	details);	H3K9me3,	log2	(TPM+1)	values	
of	mapped	reads	from	H3K9me3	ChIP-seq;	H3K27me3,	log2	(TPM+1)	values	of	mapped	reads	
from	H3K27me3	ChIP-seq;	ATAC-seq,	log2	(TPM+1)	values	for	mapped	reads	from	Assay	for	
transposase	accessible	chromatin.	(B)	Ridge	plots	showing	the	distribution	of	the	individual	
TE	families	per	variable.	The	median	value	is	shown	as	a	solid	black	line	in	each	ridge.	
Variables	same	as	in	A	except	for	mCG,	log2(weighted	cytosine	DNA	methylation	+	0.01).	(C)	
Scatter	plot	for	%GC	versus	CRI	values	for	individual	TE	elements	shown	as	points.	The	two	
plots	are	for	TEs	characterized	as	Unspecified	(Unsp)	or	LTR,	labeled	in	the	upper	left	corner.	
Each	point	is	colored	according	to	log2	(TPM+1)	values	from	H3K9me3	ChIP-seq,	scale	shown	
above	each	plot.	A	density	plot	is	shown	for	both	variables	on	the	opposite	side	from	the	
labeled	axis.	(D)	Same	as	in	C,	but	the	y-axis	is	now	showing	the	log2	(TPM+1)	values	from	
ATAC-seq.		
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Transposable	element	location	significantly	influences	the	epigenetic	and	DNA	259	

accessibility	profile		260	

To	further	dissect	the	relationship	between	epigenetic	modifications,	chromatin	261	

status	and	genomic	location,	pair-wise	comparisons	were	made	for	all	TEs	in	core	262	

versus	LS	regions.	All	measured	variables,	except	TE	length,	are	significantly	263	

different	for	TEs	in	the	core	versus	LS	regions	(Supplemental	Fig.	S3).	Further	264	

division	of	the	TEs	indicated	that	the	LTR	and	Unspecified	elements	showed	the	265	

greatest	differences	for	core	versus	LS	measurements	(Fig.	3A),	demonstrating	that	266	

the	major	driver	of	core	versus	LS	differences	are	driven	by	the	LTR	and	Unspecified	267	

elements.	The	bimodal	distribution	for	%GC,	CRI,	H3K9me3,	and	ATAC-seq	can	be	268	

accounted	for	in	part	by	core	versus	LS	separation	(Fig.	3B,	red	versus	grey).	269	

Collectively,	the	status	of	the	LS	TE	elements	can	be	characterized	as	devoid	of	DNA		270	
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	271	

and	H3K9	methylation,	low	RIP	signal,	generally	higher	than	50%	GC	content,	higher	272	

levels	of	H3K27me3,	more	open	with	ATAC-seq	signal,	and	higher	transcription	273	

levels	(Fig.	3D).	The	core	versus	LS	location	is	not	sufficient	to	fully	explain	the	274	

chromatin	status,	as	there	are	many	elements	located	in	the	core	genome	that	share	275	

a	similar	profile	with	the	LS	elements	(Fig.	3D,	elements	highlighted	in	black	boxes),	276	

but	as	an	ensemble,	the	core	elements	are	statistically	different	than	those	found	at	277	

LS	regions.	278	

	279	

Significantly	different	chromatin	status	between	core	and	LS	regions	extends	280	

to	larger	DNA	segments	281	

The	analysis	of	TEs	in	the	genome	clearly	shows	that	a	subpopulation	of	elements	282	

that	occur	in	the	previously	defined	LS	regions	have	different	epigenetic	283	

modifications	and	physical	openness	compared	to	those	in	the	core	genome.	LS	284	

regions	are	significant	for	V.	dahliae	biology	as	they	code	many	proteins	which	285	

support	host	infection.	To	capture	a	more	global	view	of	core	versus	LS	regions,	the	286	

genome	was	analyzed	using	10	kb	non-overlapping	windows,	revealing	the	same	287	

global	patterns	along	the	linear	chromosome	sequence;	regions	with	high	TE	288	

density	tend	to	have	lower	%GC	content,	higher	DNA	and	H3K9	methylation	and	a	289	

Figure	3.	The	LTR	and	Unspecified	elements	have	significantly	different	chromatin	profiles	
based	on	core	versus	LS	location.	(A)	Heatmap	comparing	core	versus	LS	values	within	the	
four	TE	classifications	for	the	variable	listed	to	the	right.	Plot	colored	based	on	p-values	from	
Wilcoxon	rank	sum	test.	P-values	³	0.05	are	colored	white	going	to	red	for	p-value	@	0.	(B)	
Scatter	and	density	plots	similar	to	those	shown	in	Figure	2c	except	the	individual	TE	points	
are	colored	by	core	(grey)	versus	LS	(red)	location.	The	density	plots	are	also	constructed	
based	on	the	two	groupings	(C)	Similar	to	B,	with	the	y-axis	now	showing	the	log2	(TPM+1)	
values	from	ATAC-seq	(D)	Multiple	grouped	heatmaps	for	ten	variables	collected	for	each	TE.	
Each	row	represents	a	single	element	and	the	same	ordering	is	used	across	all	plots.	The	LS	
elements	are	grouped	at	the	top,	indicated	by	the	red	bar	at	the	top	left,	and	the	core	elements	
are	grouped	below,	indicated	by	the	grey	bar	at	the	left.	Elements	are	further	grouped	by	the	
four	classifications	indicated	by	the	color	code	shown	to	the	left.	Within	each	element	group,	
the	elements	are	ordered	by	descending	GC	content.	The	scale	for	each	heatmap	is	shown	at	
the	right.	%	GC,	percent	GC	sequence	content;	Jukes	Cantor,	corrected	distance	as	proxy	of	TE	
age;	CRI,	Composite	RIP	index;	Length,	element	length;	mCG	and	mCHG,	log2(weighted	
cytosine	DNA	methylation+0.01)	for	CG	and	CHG	respectively;	RNAseq-PDB,	variance	
stabilizing	transformed	log2	RNA-sequencing	reads	from	PDB	grown	fungus;	H3K9me3	and	
H3K27me3	and	ATAC-seq,		TPM	values	of	mapped	reads	H3K9me3	ChIP-seq,	H3K27me3	
ChIP-seq,	or	Assay	for	transposase	accessible	chromatin	respectively.	Black	boxes	highlight	
LTR	and	Unsp	elements	in	the	core	that	have	euchromatin	profiles.		
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lack	of	ATAC-seq	reads.	The	distribution	of	H3K27me3	appears	more	complicated.	290	

This	mark	overlaps	with	that	of	DNA	and	H3K9	methylation,	as	nearly	all	regions	291	

with	these	two	modifications	also	have	H3K27me3,	yet	we	observed	additional	292	

regions	that	contain	only	H3K27me3	and	lack	DNA	and	H3K9	methylation	(Fig.	4A).	293	

The	regions	that	contain	DNA	methylation	and	H3K9me3	are	nearly	identical	and	294	

for	simplicity	refer	to	these	regions	going	forward	as	being	marked	by	H3K9me3.	295	

Interestingly,	regions	marked	by	H3K27me3	that	lack	H3K9me3	have	more	open	296	

DNA	than	region	with	H3K27me3	also	containing	H3K9me3	(Fig.	4A,	ATAC).	This	is		297	

apparent	for	the	LS	regions	that	appear	to	have	increased	H3K27me3	signal,	lack	298	

H3K9me3	and	are	less	open	than	the	genomic	background	but	not	as	closed	as	the	299	

regions	marked	by	H3K9me3	(Fig.	4B,	regions	marked	by	grey	boxes).	PCA	was	300	

again	employed	to	combine	the	variables	into	a	single	analysis,	with	the	first	301	

dimension	explaining	nearly	60%	of	the	variation	in	the	data	(Fig.	4C).	The	first	302	

dimension	largely	captures	the	variables	describing	euchromatin	versus	303	

heterochromatin,	such	that	ATAC-seq	and	%GC	are	furthest	separated	on	the	x-axis	304	

from	H3K9me3,	DNA	methylation	and	TE	density	(Fig.	4C).	Interestingly,	the	DNA	305	

segments	classified	as	core	are	mostly	associated	with	this	separation	across	the	306	

first-dimension	(Fig.	4C).	The	second	and	third	dimensions	of	the	PCA	explained	a	307	

similar	amount	of	variation	in	the	data;	14.4%	and	10.7%,	respectively.	Data	from	308	

the	RNA-seq	experiment	contributed	nearly	all	the	information	to	the	second	309	

dimension	(Supplemental	Fig.	S4),	while	the	H3K27me3	ChIP-seq	data	contributed	310	

most	of	the	information	in	the	third	dimension	(Supplemental	Table	S3).	311	

Interestingly,	when	this	third	dimension	is	considered,	we	observe	a	strong	312	

separation	of	the	core	from	the	LS	regions	(Fig.	4C,	y-axis),	suggesting	that	the	LS	313	

regions	of	the	genome	are	less	defined	by	DNA	openness,	and	DNA	or	H3K9	314	

methylation	but	more	by	H3K27me3	and	transcriptional	activity.		315	

Our	observations	can	be	summarized	into	a	genome-wide	model;	for	the	core	316	

genome,	regions	with	higher	TE	density	have	low	ATAC-seq	signal	(closed	DNA)	and	317	

elevated	H3K9me3	signal	and	thus	represent	the	heterochromatic	regions	(Fig.	4D,	318	

cluster	of	large	blue	dots	plotted	at	middle	left).	Core	genomic	regions	that	are	gene-319	

rich	have	a	higher	ATAC-seq	and	lower	H3K9me3	signal,	and	represent	the	320	
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euchromatic	portion	of	the	genome	(Fig.	4D,	cluster	of	small	blue	dots	plotted	in	the	321	

lower-middle	section).	The	LS	regions	are	a	hybrid	of	the	two	that	contain	high	TE	322	

density	and	higher	H3K27me3	signal	but	have	higher	ATAC-seq	signals	when	323	

compared	with	similar	TE	containing	regions	in	the	core	genome	(Fig.	4D,	cluster	of	324	

large	yellow	triangles	plotted	in	the	middle).	This	simple	model	of	the	genome	325	

accounts	for	many	of	the	phenomena	described	here,	and	links	the	epigenome,	326	

physical	genome	and	functional	genome.	327	

	328	

	329	
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	330	

	331	

Machine	learning	predicts	more	lineage-specific	genomic	regions	than	332	

previously	considered	333	

Given	that	a	clear	model	emerges	that	links	the	epigenome	and	physical	openness	of	334	

DNA	with	adaptive	regions	of	the	genome,	we	assessed	the	extent	to	which	these	335	

features	can	predict	core	or	LS	regions.	Stimulated	by	our	observations	(Fig.	4),	we	336	

used	ATAC-seq,	RNA-seq,	H3K27me3,	TE	density,	and	H3K9me3	along	with	the	337	

binary	classification	of	the	10	kb	windows	as	core	or	LS	for	machine	learning.	Four	338	

supervised	machine	learning	algorithms	were	used	to	train	(i.e.	learn)	on	80%	of	the	339	

data	(2890	regions),	while	the	remaining	20%	(721	regions)	were	used	for	340	

prediction	(i.e.	test),	using	a	10-fold	cross	validation	repeated	three	times.	Assessing	341	

the	classifier’s	performance	using	area	under	the	receiver	operating	characteristic	342	

(auROC)	curve	suggested	excellent	results	ranging	from	0.94	to	0.95,	with	a	value	of	343	

1	being	perfect	prediction	(Fig.	5A).	While	auROC	is	the	de	facto	standard	for	344	

machine	learning	performance	59,	it	is	not	appropriate	for	assessing	predictive	345	

performance	of	binary	classification	problems	when	the	two	classes	are	heavily	346	

skewed	as	it	overestimates	performance	due	to	the	high	number	of	true	negatives	60.	347	

This	is	the	case	for	our	analysis	in	which	the	test	set	(721	regions)	contains	only	33	348	

of	the	known	LS	regions	(4.6%).	To	more	accurately	assess	model	performance,	349	

precision-recall	curves	were	employed	as	these	do	not	use	true	negatives,	and	are	350	

therefore	less	influenced	by	skewed	binary	classifications	61.	All	four	algorithms	351	

Figure	4.	Epigenome	and	physical	DNA	characteristics	collectively	define	core	and	LS	regions.	
(A	and	B)	Whole	chromosomes	plots	showing	TE	and	gene	counts	over	10	kb	genomic	
windows,	blue	and	red	heatmaps	respectively.	The	%GC	content	is	shown	in	purple,	RNA-seq	
show	in	orange,	CG	cytosine	DNA	methylation	shown	in	black,	H3K9me3	and	H3K27me3	ChIP-
seq	shown	in	red	and	blue	respectively,	and	ATAC-seq	shown	in	green.	Values	are	those	
previously	described.	(B)	Two	LS	regions	are	highlighted	with	a	grey	window.	(C)	Principle	
component	analysis	for	seven	variables	at	each	10	kb	window.	Dimension	1	and	3	are	plotted	
and	collective	explain	~70%	of	the	variation	in	the	data.	The	individual	symbols	are	colored	by	
genomic	location	with	core	(blue	circles)	and	LS	(yellow	triangles).	Colored	ellipses	show	the	
confidence	interval	for	the	core	and	LS	elements	with	a	single	large	symbol	to	show	the	mean.	
(D)	Scatter	plot	of	the	10	kb	windows	colored	for	core	and	LS	location	by	ATAC-seq	data	(TPM,	
x-axis)	and	H3K27me3	(TPM,	y-axis).	The	size	of	each	symbol	is	proportional	to	the	TE	density	
shown	in	the	upper	right	corner.	The	density	plot	of	each	variable	is	shown	on	the	opposite	
axis.	
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consistently	outperformed	a	random	classifier,	with	the	boosted	classification	tree	352	

(BCT)	and	stochastic	gradient	boosting	(GMB)	algorithms	having	the	same	highest	353	

area	under	the	precision-recall	curve	of	0.52	(Fig.	5B).	However,	the	confusion	354	

matrix	indicated	that	the	BCT	model	only	identified	13	of	the	33	LS	regions	(Table	355	

2),	resulting	in	poor	recall	(Table	3).	In	contrast,	the	other	three	models	did	identify	356	

most	of	the	known	LS	regions	(high	recall),	but	had	lower	precision	caused	by	the	357	

high	rate	of	false	positives	(Table	2	and	3).	The	Matthews	correlation	coefficient	358	

(MCC),	an	analogous	measure	to	accuracy	but	more	appropriate	for	unbalanced	359	

binary	classification,	indicated	that	the	GMB	and	random	forest	(RF)	models	360	

performed	the	best	(Table	3).		361	

	362	

	363	
	364	
	365	
	366	
	367	
	368	
	369	

Figure	5.	Supervised	machine	learning	can	predict	LS	regions	based	on	epigenome	and	physical	
genome	characteristics.	(A)	Area	under	the	Response	operator	curve	(auROC)	plotting	sensitivity	
and	false	positive	rate	(FPR)	for	four	machine	learning	algorithms,	BCT-	Boosted	classification	
tree;	GMB-	stochastic	gradient	boosting;	LR-	logistic	regression;	RF-	random	forest.	The	auROC	
scores	are	shown	next	the	algorithm	key	in	the	grey	box.	The	black	dotted	line	represents	the	
performance	of	a	random	classifier.	Perfect	model	performance	would	be	a	curve	through	point	
(0,1)	in	the	upper	left	corner.	(B)	Area	under	the	Precision-Recall	curve	for	the	same	four	models	
shown	in	A.	Area	under	the	curves	are	shown	in	the	figure	key	in	the	grey	box.	The	black	dashed	
line	shows	the	performance	of	a	random	classifier,	calculated	as	the	TP	/	(TP	+	FN).	Perfect	model	
performance	would	be	a	curve	through	point	(1,1)	in	the	upper	right	corner.		
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Table	2.	Confusion	Matrix	for	LS	versus	core	prediction	in	V.	dahliae	370	
	 	 Known	
	 Predicted	 Core	 LS	

LR	 Core	 638	 7	
LS	 50	 26	

GMB	 Core	 645	 5	
LS	 43	 28	

BCT	 Core	 672	 20	
LS	 16	 13	

RF	 Core	 623	 2	
LS	 65	 31	

LR,	Logistic	Regression;	GMB,	Stochastic	Gradient	Boosting;	BCT,	Boosted	371	
Classification	Tree;	RF,	Random	Forest;	Core,	regions	of	the	genome	defined	as	core;	372	
LS,	regions	of	the	genome	defined	as	Lineage	Specific.	373	
	374	
Table	3.	Assessment	values	for	the	four	tested	machine	learning	algorithms	used	to	375	
classify	genomic	regions.	376	
Models	 Precision	 Recall	 MCC F1	 F2	
LR	 0.34	 0.79	 0.49	 0.48	 0.63	

GMB	 0.39	 0.85	 0.55	 0.54	 0.69	

BCT	 0.45	 0.39	 0.39	 0.42	 0.40	

RF	 0.32	 0.94	 0.52	 0.48	 0.68	

LR,	Logistic	Regression;	GMB,	Stochastic	Gradient	Boosting;	BCT,	Boosted	377	
Classification	Tree;	RF,	Random	Forest;	MCC,	Matthews	Correlation	Coefficient.	378	
	379	
The	results	indicate	that	the	machine	learning	algorithms	are	well-suited	to	identify	380	

the	previously	known	LS	regions	in	the	test	data	at	a	high	rate.	Additionally,	the	381	

algorithms	identified	a	relatively	large	number	of	regions	as	LS	that	were	previously	382	

classified	core.	The	original	classification	of	core	and	LS	in	V.	dahliae	was	based	on	383	

presence/absence	variations	identified	from	genomic	information	of	only	few	384	

strains	14,15.	Consequently,	we	reasoned	that	regions	here	classified	as	LS	by	the	385	

machine	learning	algorithms	could	be	genuine	LS	regions	that	were	originally	386	

missed	due	to	the	limited	diversity	of	the	V.	dahliae	represented	by	the	strains	387	

sequenced.	The	two	best	models	from	the	initial	testing,	GMB	and	RF,	predicted	a	388	

total	of	96	and	81	regions	as	LS	respectively,	suggesting	there	could	be	2	to	3	times	389	

more	LS	DNA	than	previously	identified.	To	improve	the	genome-wide	estimate	and	390	
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to	further	assess	the	robustness	of	machine	learning	for	LS	region	prediction,	we	re-391	

ran	the	GMB	and	RF	algorithms	on	15	new	training-test	splits,	independently	392	

training	and	predicting	on	each	set	(see	methods	for	details).	This	approach	nearly	393	

saturated	the	genome,	providing	multiple	predictions	per	window	and	only	124	of	394	

the	3611	regions	were	missed	(Supplemental	Fig.	S5).	The	average	MCC	395	

performance	estimate	of	the	GMB	and	RF	classifiers	were	0.53	and	0.48	over	the	15	396	

runs,	and	our	results	indicate	consistent	performance	across	the	independent	397	

predictions	(Fig.	6A,	Supplemental	Fig.	S6,	Supplemental	Table	S4	and	S5).	The	GMB	398	

classifier	predicted	a	total	of	285	of	the	10	kb	regions	as	LS,	while	the	RF	classifier	399	

predicted	388	(Supplemental	Table	S6	and	S7).	The	LS	predictions	for	the	two	400	

models	were	in	agreement	for	280	regions,	which	is	98%	of	the	GMB	predictions	401	

and	72%	of	those	from	the	RF	(Fig.	6B),	overall	showing	high	agreement	between	402	

the	two	classifiers.	Consensus	predictions	were	generated	from	the	two	classifiers	if	403	

a	region	was	predicted	as	LS	by	both	models,	and	a	conservative	joining	step	was	404	

employed	in	which	a	single	predicted	core	region	was	called	LS	if	it	was	flanked	by	405	

LS	predictions	on	both	sides	(see	methods).	This	resulted	in	a	total	of	280	regions	406	

predicted	as	LS	by	both	classifiers	and	an	additional	41	regions	due	to	the	joining.	In	407	

total,	this	new	classification	nearly	doubles	the	total	amount	of	LS	regions	compared	408	

with	the	original	observations	14,15.	The	original	classification	of	LS	regions	in	V.	409	

dahliae	clustered	in	four	larger	regions14,15.	We	were	interested	to	understand	the	410	

physical	genomic	location	of	the	originally	identified	and	the	newly	predicted	LS	411	

regions.	The	results	of	the	individual	classifiers	reveal	that	the	new	regions	are	also	412	

not	randomly	dispersed	across	the	genome	(Supplemental	Fig.	S7).	The	consensus	413	

prediction	from	the	two	classifiers	identified	the	large	blocks	of	LS	regions	from	the	414	

original	observations,	along	with	new	clusters	of	LS	regions	such	as	those	on	415	

chromosomes	4,	6,	and	8	(Fig.	6C	and	6D).	Importantly,	the	newly	defined	set	of	LS	416	

regions	supports	a	clearer	separation	of	the	LS	regions	from	the	core	regions	417	

(Supplemental	Fig.	S8).	Collectively,	these	analyses	suggest	that	the	machine	418	

learning	algorithms	can	be	used	to	predict	new	LS	regions	based	on	epigenetic	and	419	

physical	DNA	accessibility	data.	The	identification	of	potentially	new	LS	regions	420	
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missed	in	the	original	classification	provides	new	avenues	to	identify	proteins	421	

important	for	host	infection	and	adaptation.	These	results	support	that	genome	422	

structure	is	influencing	genome	function,	demonstrates	a	machine	learning	423	

approach	for	predictive	biology,	and	advances	our	biological	understanding	of	424	

genome	function.		425	

Figure	6.	Machine	Learning	predictions	for	genome-wide	LS	content.	(A)	Two	machine	learning	
algorithms,	Stochastic	Gradient	Boosting	(GMB)	and	Random	Forest	(RF),	were	used	to	predict	
LS	regions	from	15	independent	training-test	splits.	For	each	split,	80%	of	the	data	were	used	
to	train	and	the	remaining	20%	were	used	for	prediction.	Classifier	performance	was	measured	
for	each	of	the	15	trials,	and	summarized	as	a	boxplot	with	each	trial	represented	as	a	point.	(B)	
Venn	diagram	showing	the	overlap	between	the	results	of	the	two	classifiers	and	the	original	
observations	of	LS	regions	(Faino	et	al.	2016).	Each	slice	of	the	diagram	shows	the	number	of	LS	
regions	predicted,	see	methods	for	additional	details.	(C	and	D)	Schematic	representation	of	the	
eight	chromosomes	(labeled	on	right)	of	V.	dahliae	strain	JR2.	Each	chromosome	was	divided	
into	10	kb	windows	for	prediction.	Regions	classified	as	core	are	shown	in	grey	and	LS	as	their	
indicated	color.	(C)	Original	observations	of	core	and	LS	regions,	grey	and	purple	respectively.	
The	five	main	LS	regions	1can	be	seen	on	chromosome	2,	4	and	5.	(D)	The	consensus	model	
predictions	for	core	and	LS	regions	shown	in	grey	and	green	respectively.	The	consensus	
predictions	were	those	made	by	both	the	GMB	and	RF	model	(in	total	280).	Regions	predicted	
as	LS	were	joined	if	they	were	interrupted	by	a	single	window	of	Core	prediction,	adding	an	
additional	41	LS	regions	for	a	final	number	of	321	LS	regions	in	the	V.	dahliae	JR2	genome.			
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DISCUSSION	426	

Significant	efforts	to	detail	genomes	of	filamentous	pathogens,	to	understand	427	

variation	within	species,	and	to	a	lesser	extent	to	examine	epigenetic	modifications,	428	

have	increased	our	understanding	genome	function	in	this	important	group	of	429	

organisms	16,54,62.	Understanding	pathogen	genome	evolution	is	of	great	interest	to	430	

help	combat	emerging	pathogens,	and	to	broaden	our	knowledge	of	genome	biology	431	

beyond	model	eukaryotes.	Here	we	present	a	detailed	analysis	of	the	epigenome	and	432	

physical	DNA	accessibility	of	the	vascular	wilt	pathogen	V.	dahliae	and	link	these	433	

analyses	to	previous	characterizations	of	genomic	regions	contributing	to	host	434	

colonization	and	adaptation	13-16.	A	clear	picture	emerges	in	which	the	core	genome	435	

is	organized	into	heterochromatic	and	euchromatic	regions.	The	heterochromatin	is	436	

characterized	by	a	high	density	of	TEs	with	low	GC	content,	high	levels	of	DNA	and	437	

H3K9	methylation,	low	DNA	accessibility	and	clear	signatures	of	RIP	mutations	at	438	

repetitive	sequences.	The	euchromatin	regions	are	opposite	in	all	characteristics,	439	

and	this	collective	description	is	consistent	with	previous	research	in	many	other	440	

eukaryotic	genomes	32,63,64.	Interestingly,	we	provide	evidence	that	previously	441	

defined	LS	regions	of	the	genome,	characterized	for	their	role	in	contributing	to	host	442	

infection,	exist	in	an	intermediate	chromatin	state,	having	higher	TE	density	than	443	

the	euchromatic	regions,	yet	are	devoid	of	DNA	and	H3K9	methylation.	444	

Furthermore,	LS	regions	have	higher	DNA	accessibility	than	the	core	445	

heterochromatic	regions	and	are	more	transcriptionally	active,	but	they	are	less	446	

accessible	than	the	‘true’	euchromatic	gene-rich	core	regions.	Notably,	LS	regions	447	

are	characterized	as	having	a	strong	association	with	H3K27me3,	similar	to	the	448	

discovery	that	SM	gene	clusters	are	enriched	at	H3K27me3	regions	in	F.	449	

graminearum	29.	Our	results	demonstrate	that	LS	regions	are	by	definition	not	450	

heterochromatic,	as	they	are	far	more	accessible	than	the	true	heterochromatin,	and	451	

yet	they	typically	contain	many	heterochromatin	features.	We	note	previous	452	

descriptions	of	contradictory	heterochromatin	states	65,	and	the	broad	possible	453	

chromatin	states	that	may	characterize	a	genome	33.	However,	few	previous	454	
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analyses	have	assessed	the	relationship	between	DNA	and	histone	modifications	455	

with	DNA	accessibility	in	light	of	biological	function	of	genomic	adaptation.	456	

	457	

Our	results	support	the	hypothesis	that	chromatin	structure	underlies	genome	458	

function.	More	specifically	that	chromatin	modifications	and	DNA	accessibility	459	

contribute	to	genome	evolution,	not	just	via	transcriptional	control	but	also	460	

regarding	the	architecture	of	the	genome	50.	Along	with	the	described	associations,	461	

we	were	able	to	predict	LS	regions	using	machine	learning.	The	results	of	running	462	

four	machine	learning	algorithms	trained	on	H3K9	and	H3K27	methylation,	RNA-463	

sequencing,	TE	density	and	DNA	accessibility	data,	shows	these	variables	could	be	464	

used	to	classify	DNA	segments	as	core	versus	LS	with	high	recall	(i.e.	sensitivity).	465	

The	RF	model	showed	the	highest	recall,	correctly	classifying	31	of	the	previously	466	

observed	33	LS	regions	in	spite	of	their	skewed	presence	in	the	data	at	nearly	1:20	467	

LS	to	core.	The	precision	assessment	of	the	algorithms	was	low	because	each	model	468	

classified	regions	as	LS	that	were	originally	observed	as	core,	statistically	termed	469	

false	positives.	However,	the	original	observations	represent	operational	470	

classification	based	on	then	available	data.	Consensus	predictions	based	on	the	two	471	

highest	performing	models	extended	the	boundaries	of	the	previous	LS	regions	and	472	

identified	new	potentially	clustered	LS	regions.	Thus,	the	use	of	machine	learning	473	

can	extend	our	knowledge	of	biology	and	identify	novel	genomic	regions	to	search	474	

for	as	of	yet	uncharacterized	genes	with	important	adaptive	roles.	Collectively,	we	475	

interpret	our	results	to	indicate	a	strong	link	between	the	epigenome,	physical	DNA	476	

accessibility	and	the	occurrence	of	LS	regions	in	V.	dahliae.	Our	findings	however	477	

have	limited	inference	on	causation	versus	association,	an	important	area	for	future	478	

research.	If	there	is	a	causative	relationship	between	genome	structure	and	function	479	

it	is	interesting	to	consider	who	drives	whom-	do	the	LS	regions	dictate	altered	480	

chromatin	or	does	altered	chromatin	dictate	LS	formation?	481	

	482	

It	is	currently	not	possible	to	extend	our	machine	learning	predictions	to	additional	483	

filamentous	pathogen	genomes,	as	the	necessary	data	are	not	currently	publicly	484	

available.	However,	for	many	filamentous	plant	pathogens	it	is	clear	that	genome	485	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921486
http://creativecommons.org/licenses/by/4.0/


	 23	

variation	on	multiple	scales,	from	SNPs	to	large	structural	variation,	are	not	486	

uniformly	distributed	in	the	genome	29.	Recent	reports	from	the	fungal	pathogen	Z.	487	

tritici	addressed	the	role	of	genome	stability	and	H3K27me3	during	asexual	488	

reproduction	53,66.	During	experimental	evolution,	individual	strains	of	Z.	tritici	489	

readily	lose	accessory	chromosomes.	The	authors	observed	that	a	mutant	lacking	490	

the	enzyme	responsible	for	H3K27me3	showed	less	accessory	chromosome	loss	and	491	

concluded	that	H3K27me3	destabilizes	chromosome	structure	53.	However,	492	

accessory	chromosome	losses	were	clearly	biased	in	their	individual	frequency	and	493	

changes	were	not	reported	for	core	chromosomes,	despite	H3K27me3	being	found	494	

at	high	levels	on	accessory	and	regions	of	core	chromosomes	67.	Therefore,	the	495	

observed	genome	destabilization	requires	additional	determinants	in	conjunction	496	

with	H3K27me3	which	remain	to	be	discovered.	Results	presented	here	suggest	that	497	

DNA	and	histone	methylation	marks	and	physical	DNA	accessibility	are	important	498	

additional	determinants	to	distinguish	accessory	and	LS	regions	of	the	genome.	499	

However,	we	acknowledge	that	our	model	does	not	strictly	differentiate	all	LS	500	

region	in	the	V.	dahliae	genome,	as	there	are	LS	and	core	regions	that	have	very	501	

similar	overall	chromatin	profiles,	and	therefore	these	features	alone	are	not	502	

sufficient.	One	factor	that	could	explain	part	of	this	discrepancy	is	that	LS	formation	503	

is	likely	not	fully	deterministic.	Evolution	is	a	stochastic	process,	and	it	seems	504	

unlikely	that	LS	formation	can	be	described	in	absolute	terms.	Rather,	it	is	more	505	

likely	to	be	a	probabilistic	process,	in	which	specific	chromatin	and	physical	status	506	

increases	the	likelihood	for	formation	and	maintenance	of	LS	regions.	The	results	507	

presented	here	offer	an	exciting	new	link	between	the	epigenome,	physical	DNA	508	

accessibility	and	adaptive	genome	evolution.	509	

	510	

METHODS	511	

Fungal	growth	and	strain	construction	512	

V.	dahliae	strain	JR2	(CBS	143773)	was	used	for	experimental	analysis	68.	The	strain	513	

was	maintained	on	potato	dextrose	agar	(PDA)	(Oxoid,	Thermo	Scientific,	CM0139)	514	

and	grown	at	22⁰C	in	the	dark.	For	liquid	grown	cultures,	conidiospores	were	515	
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collected	from	PDA	plates	after	approximately	two	weeks	and	inoculated	into	flasks	516	

containing	the	desired	media	at	a	concentration	of	2x104	spores	per	mL.	Media	used	517	

in	this	study	include	PDA,	half-strength	Murashige	and	Skoog	plus	vitamins	(HMS)	518	

(Duchefa-Biochemie,	Haarlem,	The	Netherlands)	medium	supplemented	with	3%	519	

sucrose	and	xylem	sap	(abbreviated,	X)	collected	from	greenhouse	grown	tomato	520	

plants	of	the	cultivar	Moneymaker.	Liquid	cultures	were	grown	for	four	days	in	the	521	

dark	at	22⁰C	and	160	RPM.	The	cultures	were	strained	through	miracloth	(22	μm)	522	

(EMD	Millipore,	Darmstadt,	Germany),	pressed	to	remove	liquid,	flash	frozen	in	523	

liquid	nitrogen	and	ground	to	powder	with	a	mortar	and	pestle.	Samples	were	524	

stored	at	-80⁰C	if	required	prior	to	nucleic	acid	extraction.	525	

The	Dhp1	strain	was	constructed	as	previously	described	69.	Briefly,	the	genomic	526	

DNA	regions	flanking	the	5’	and	3’	HP1	coding	sequence	were	amplified	(left	border,	527	

For.	Primer,	5’-GGTCTTAAUGACCTGAAGAATCGAGCAAGGA	and	528	

Rev.	primer,	5’-GGCATTAAUATGAAAGCACCGGGATTTTTCT;	right	border,		529	

For.	Primer,	5’-GGACTTAAUATGCTGTTGGGAGGCAGAATAA		530	

Rev.	primer,	5’-GGGTTTAAUCCACGTAGATGGAGGGGTAGA).	The	PCR	products	were	cloned	531	

in	to	the	pRF-HU2	vector	system	70	using	USER	enzyme	following	manufactured	532	

protocol	(New	England	Biolabs,	MA,	USA).	Correctly	ligated	vector	was	transformed	533	

into	Agrobacterium	tumefaciens	strain	AGL1	used	for	V.	dahliae	spore	534	

transformation	69.	Colonies	of	V.	dahliae	growing	on	hygromycin	B	selection	after	5	535	

days	were	moved	to	individual	plates	containing	PDA	and	hygromycin	B.	Putative	536	

transformants	were	screened	using	PCR	to	check	for	deletion	of	the	HP1	sequence	537	

(For.	Primer,	5’-	AATCCCGCAAGGGAAAAGAGAC	and	Rev.	primer,	5’-	538	

CGTGTGCTTTGTCTTCTGACCA)	and	the	integration	of	the	hygromycin	B	sequence	(For.	539	

Primer,	5’-	TGGAATATGCCACCAGCAGTAG	and	Rev.	primer,	5’-	GGAGTCGCATAAGGGAGAGCG)	at	540	

the	specific	locus.		541	

	542	

Bisulfite	sequencing	and	analysis	543	

The	wild-type	V.	dahliae	strain	and	Dhp1	were	grown	in	liquid	PDA	for	three	days,	544	

flash	frozen	and	collected	as	described	earlier.	Extracted	DNA	was	sent	to	the	545	
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Beijing	Genome	Institute	(BGI)	for	bisulfite	conversion,	library	construction	and	546	

Illumina	sequencing.	Briefly,	the	DNA	was	sonicated	to	a	fragment	range	of	100-300	547	

bp,	end-repaired	and	methylated	sequencing	adapters	were	ligated	to	3’	ends.	The	548	

EZ	DNA	Methylation-Gold	kit	(Zymo	Research,	CA,	USA)	was	followed	according	to	549	

manufacturer	guidelines	for	bisulfite	conversion	of	non-methylated	DNA.	Libraries	550	

were	paired-end	100bp	sequenced	on	an	Illumina	HiSeq	2000.	551	

	552	

Whole-genome	bisulfite	sequencing	reads	were	analyzed	using	the	BSMAP	pipeline	553	

(v.	2.73)	and	methratio	script	71.	The	results	were	partitioned	into	CG,	CHG	and	CHH	554	

cytosine	sites	for	analysis.	Only	cytosine	positions	containing	greater	than	4	555	

sequencing	reads	were	included	for	analysis.	Methylation	levels	were	summarized	556	

as	weighted	methylation	percentage,	calculated	as	the	number	of	reads	supporting	557	

methylation	over	the	number	of	cytosines	sequenced	or	as	fractional	methylation,	558	

calculated	as	the	number	of	methylated	cytosines	divided	by	all	cytosine	positions	559	
72.	For	fractional	methylation,	a	cytosine	was	considered	methylated	if	it	was	at	least	560	

5%	methylated	from	all	the	reads	covering	that	cytosine.	As	such,	weighted	561	

methylation	captures	quantitative	aspects	of	methylation,	while	fractional	562	

methylation	is	more	qualitative.	Weighted	and	fractional	methylation	were	563	

calculated	over	intervals	described	in	the	text,	including	genes,	promoters	(defined	564	

as	the	300	bp	upstream	of	the	translation	start	site),	transposable	elements	and	10	565	

kb	windows.	For	each	feature,	weighted	and	fractional	methylation	were	calculated	566	

from	the	sum	of	the	mapped	reads	or	the	sum	of	the	positions,	respectively,	over	the	567	

analyzed	region.		Two	sample	comparisons	were	computed	using	base	R	73	to	568	

compute	the	non-parametric	Mann-Whitney	U	test	(equivalent	to	the	two-sample	569	

Wilcoxon	rank-sum	test).	Principle	component	analyses	were	computed	in	R	using	570	

the	packages	FactoMineR	(v	1.42)	74	and	factoextra	(v	1.0.5)	75.		571	

	572	

Transposable	element	annotation	573	

Repetitive	elements	were	identified	in	the	V.	dahliae	stains	JR2	genome	assembly	68	574	

as	well	as	in	three	other	high-quality	V.	dahliae	genome	assemblies	16	using	a	575	
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combination	of	LTRharvest	76	and	LTRdigest	77		followed	by	de	novo	identification	of	576	

RepeatModeler	78.	Briefly,	LTR	sequences	were	identified	(recent	and	ancient	LTR	577	

insertions)	and	subsequently	filtered,	e.g.	for	occurrence	of	primer	binding	sites	or	578	

for	nested	insertions	(see	procedure	outlined	by	Campbell	and	colleagues	for	details	579	
79).	Prior	to	the	de	novo	prediction	with	RepearModeler,	genome-wide	occurrences	580	

of	the	identified	LTR	elements	are	masked.	Predicted	LTR	elements	and	the	de	novo	581	

predictions	from	RepeatModeler	were	subsequently	combined,	and	the	identified	582	

repeat	sequences	of	the	four	V.	dahliae	strains	were	clustered	using	vsearch	(80%	583	

sequence	identity,	search	on	both	strands;	v	2.4.4)	80.	A	non-redundant	V.	dahliae	584	

repeat	library	that	contained	consensus	sequences	for	each	cluster	(i.e.	repeat	585	

family)	was	constructed	by	performing	multiple	sequence	alignments	using	MAFFT	586	

(v7.271)	81	followed	by	the	construction	of	a	consensus	sequence	as	described	by	587	

Faino	et	al.	15.	The	consensus	repeat	library	was	subsequently	manually	curated	and	588	

annotated	(Wicker	classification	82)	using	PASTEC	(default	databases	and	settings;	589	

search	in	the	reverse-complement	sequence	enabled)	83,	which	is	part	of	the	REPET	590	

pipeline	(v2.2)	84,	and	similarity	to	previously	identified	repetitive	elements	in	V.	591	

dahliae	68,85.	The	occurrence	and	location	of	repeats	in	the	genome	assembly	of	V.	592	

dahliae	strain	JR2	were	determined	using	RepeatMasker	(v	4.0.7;	sensitive	option).	593	

The	Repeatmasker	output	was	post-processed	using	‘One	code	to	find	then	all’	86	594	

which	supports	the	identification	and	combination	of	multiple	matches	(for	instance	595	

due	to	deletions	or	insertions)	into	combined,	representative	repeat	occurrences.	596	

We	only	further	considered	matches	to	the	repeat	consensus	library,	and	thereby	597	

excluded	simple	repeats	and	low-complexity	regions.	To	estimate	divergence	time	598	

of	TEs,	each	individual	copy	of	a	transposable	element	was	aligned	to	the	consensus	599	

of	its	family	using	needle,	which	is	part	of	the	EMBOSS	package	87.	Sequence	600	

divergence	between	the	TEs	and	the	TE-family	consensus	was	corrected	using	the	601	

Jukes-Cantor	distance,	with	a	correction	term	that	accounts	for	insertions	and	602	

deletions	88,89.	The	composite	RIP	index	(CRI)	was	calculated	as	previously	603	

described	43.	Briefly,	CRI	was	determined	by	subtracting	the	RIP	substrate	from	the	604	

RIP	product	index,	which	are	defined	by	dinucleotide	frequencies	as	follows:	RIP	605	
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product	index	=	(TpA	/	ApT)	and	the	RIP	substrate	index	=	(CpA	+	TpG/	ApC	+	GpT).	606	

Positive	CRI	values	indicate	the	analyzed	sequences	were	subjected	to	the	RIP	607	

process.	For	TE	analysis,	elements	that	are	less	than	100	bp	were	removed.		608	

	609	

RNA-sequencing	and	analysis	610	

V.	dahliae	strain	JR2	(CBS	143773)	was	grown	in	triplicate	liquid	media	PDB,	HMS	611	

and	xylem	sap	as	described.	RNA	extraction	was	carried	out	using	TRIzol	(Thermo	612	

Fisher	Science,	Waltham,	MA,	USA)	following	manufacturer	guidelines.	Following	613	

RNA	re-suspension,	contaminating	DNA	was	removed	using	the	TURBO	DNA-free	kit	614	

(Ambion,	Thermo	Fisher	Science,	Waltham,	MA,	USA)	and	RNA	integrity	was	615	

estimated	by	separating	2	μL	of	each	sample	on	a	2%	agarose	gel	and	quantified	616	

using	a	Nanodrop	(Thermo	Fisher	Science,	Waltham,	MA,	USA)	and	stored	at	-80⁰C.	617	

Library	preparation	and	sequencing	was	carried	out	at	BGI.	Briefly,	mRNA	were	618	

enriched	based	on	polyadenylation	purification	and	random	hexamers	were	used	619	

for	cDNA	synthesis.	RNA-sequencing	libraries	were	constructed	following	end-620	

repair	and	adapter	ligation	protocols	and	PCR	amplified.	Purified	DNA	fragments	621	

were	single-end	50bp	sequenced	on	an	Illumina	HiSeq	2000.		622	

	623	

Reads	were	mapped	to	the	V.	dahliae	stain	JR2	genome	assembly	68	using	STAR	(v	624	

2.6.0)	with	settings	(--sjdbGTFfeatureExon	exon,	--sjdbGTFtagExonParentTranscript	625	

Parent,	--alignIntronMax	400,	--outFilterMismatchNmax	5,	--outFilterIntronMotifs	626	

RemoveNoncanonical)	90.	Mapped	reads	were	quantified	using	the	627	

summarizeOverlaps	and	variance	stabilizing	transformation	(vst)	features	of		628	

DESeq2	91.	For	TE	analysis,	the	coordinates	of	the	annotated	TEs	were	used	as	629	

features	for	read	counting.	To	perform	RNAseq	analysis	over	whole	genome	10	kb	630	

regions,	raw	mapped	reads	were	summed	over	10	kb	bins	using	bedtools	(v	2.27)	91	631	

and	converted	to	Transcripts	Per	Million	(TPM)	and	averaged	over	the	three	reps	632	

for	analysis.			633	

	634	

	635	
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	636	

Chromatin	immunoprecipitation	and	sequencing	and	analysis	637	

V.	dahliae	strain	JR2	was	grown	in	PDB	and	materials	was	collected	as	described.	638	

Approximately	400	mg	ground	material	was	resuspended	in	4	ml	ChIP	Lysis	buffer	639	

(50	mM	HEPES-KOH	pH7.5,	140	mM	NaCl,	1	mM	EDTA,	1%	Triton	X-100,	0.1%	640	

NaDOC)	and	dounced	40	times	in	a	10	cm3	glass	tube	with	tight	fitting	pestle	on	800	641	

power	with	a	RZR50	homogenizer	(Heidolph,	Schwabach,	Germany),	followed	by	642	

five	rounds	of	20	seconds	sonication	on	ice	with	40	seconds	rest	between	rounds	643	

with	a	Soniprep	150	(MSE,	London,	UK).	Samples	were	redistributed	to	2	ml	tubes	644	

and	pelleted	for	2	min	at	max	speed	in	tabletop	centrifuge.	The	supernatants	were	645	

combined,	together	with	20	µl	1M	CaCl2	and	2.5µl	MNase,	and	after	10	minutes	of	646	

incubation	in	a	37°C	water	bath	with	regular	manual	shaking,	80	µl	0.5M	EGTA	was	647	

added	and	tubes	were	put	on	ice.	Samples	were	pre-cleared	by	adding	40	µl	Protein	648	

A	Magnetic	Beads	(New	England	Biolabs,	MA,	United	States)	and	rotating	at	4°C	for	649	

60	min,	after	which	the	beads	were	captured,	1	ml	fractions	of	supernatant	were	650	

moved	to	new	2	ml	tubes	containing	5	μl	H3K9me3	or	H3K27me3	antibody	651	

(ActiveMotif	;	#39765	and	#39155)	respectively	and	incubated	overnight	with	652	

continuous	rotation	at	4ᵒC.	Subsequently,	20	μl	protein-A	magnetic	beads	were	653	

added	and	incubated	for	3	hours	at	4ᵒC,	after	which	the	beads	were	captured	on	a	654	

magnetic	stand	and	subsequently	washed	with	1	ml	wash	buffer	(50	mM	Tris	HCl	655	

pH	8,	1	mM	EDTA,	1%	Triton	X-100,	100	mM	NaCL),	high-salt	wash	buffer	(50	mM	656	

Tris	HCl	pH	8,	1	mM	EDTA,	1%	Triton	X-100,	350	mM	NaCL),	LiCl	wash	buffer	(10	657	

mM	Tris	HCl	pH8,	1	mM	EDTA,	0.5%	Triton	X-100,	250	mM	LiCl),	TE	buffer	(10	mM	658	

Tris	HCl	pH	8,	1mM	EDTA).	Nucleosomes	were	eluted	twice	from	beads	by	addition	659	

of	100μl	pre-heated	TES	buffer	(100	mM	Tris	HCl	pH	8,	1%	SDS,	10	mM	EDTA,	50	660	

mM	NaCl)	and	10	minutes	incubation	at	65ᵒC.	10mg	/ml	2μl	Proteinase	K	(10mg	661	

/ml)	was	added	and	incubated	at	65ᵒC	for	3	hours,	followed	by	chloroform	clean-up.	662	

DNA	was	precipitated	by	addition	of	2	volumes	100%	ethanol,	1/10th	volume	3	M	663	

NaOAc	pH	5.2	and	1/200th	volume	120	mg/ml	glycogen,	and	incubated	overnight	at	664	

-20ᵒC.	Sequencing	libraries	were	prepared	using	the	TruSeq	ChIP	Library	665	

Preparation	Kit	(Illumina)	according	to	instructions,	but	without	gel	purification	and	666	
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with	use	of	the	Velocity	DNA	Polymerase	(BioLine,	Luckenwalde,	Germany)	for	25	667	

cycles	of	amplification.	Single-end	125bp	sequencing	was	performed	on	the	Illumina	668	

HiSeq2500	platform	at	KeyGene	N.V.	(Wageningen,	the	Netherlands).	669	

	670	

Reads	were	mapped	to	the	reference	JR2	genome,	using	BWA-mem	with	default	671	

settings	92.	For	ChIP	and	ATAC-seq	mapping,	three	regions	of	the	genome	were	672	

masked	due	to	aberrant	mapping,	possibly	owing	to	sequence	similarity	to	the	673	

mitochondrial	genome	(chr1:1-45000,	chr2:3466000-3475000,	chr3:1-4200).	This	674	

is	similar	to	what	is	described	as	blacklisted	regions	in	other	eukaryotic	genomes	93.	675	

The	raw	mapped	reads	were	counted	either	over	the	TE	coordinates	or	10	kb	676	

intervals	for	the	two	separate	analyses.	The	raw	mapped	reads	were	converted	to	677	

TPM	and	the	average	of	the	two	replicates	was	used	for	analysis.		678	

	679	

Assay	for	Transposase-Accessible	Chromatin	(ATAC)-sequencing	and	analysis	680	

The	V.	dahliae	strain	JR2	(CBS	143773)	was	grown	in	PDB	liquid	media	as	described.	681	

Mycelium	was	collected,	filtered,	rinsed	and	flash	frozen	in	liquid	nitrogen.	The	682	

ATAC-seq	procedure	was	carried	out	mainly	as	described	previously	94.	Nuclei	were	683	

collected	by	resuspending	ground	mycelium	in	5	mL	of	ice-cold	Nuclei	Isolation	684	

Buffer	(NIB)	(100	mM	NaCl,	4mM	NaHSO4,	25mM	Tris-HCl,	10mM	MgSO4,	0.5mM	685	

EDTA,	0.5%	NP-40	including	protease	inhibitors	added	at	time	of	extraction,	2	mM	686	

Phenylmethanesulfonyl	fluoride	(PMSF),	100	µM	Leupeptin,	1	µg/mL	Pepstatin,	10	687	

µM	E-64).	The	homogenate	was	layered	onto	10-mL	of	an	ice-cold	sucrose-Ficoll	688	

gradient	(bottom	layer	5mL	of	2.5M	sucrose	in	25mM	Tris-HCl,		5mL	40%	Ficoll	400	689	

(GE	Biosciences	Corporation,	NJ,	USA)).	Nuclei	were	separated	into	the	lower	phase	690	

by	centrifugation	at	2000g	for	30	min	at	4ᵒC.	The	upper	layer	was	discarded	and	the	691	

lower	phase	(~4mL)	moved	to	another	collection	tube	containing	5mL	of	ice-cold	692	

NIB.	Nuclei	were	pelleted	at 9000g for 15 min at 4ᵒC	and	re-suspended	in	3	mL	of	693	

NIB.	The	integrity	of	the	nuclei	and	their	concentration	in	the	solution	were	694	

estimated	by	DAPI	staining	(DAPI	Dilactate	5mg/mL,	used	at	a	1/2000	dilution	for	695	

visualization)	and	counted	on	a	hemocytometer.	A	total	of	200,000	nuclei	were	696	
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transferred	to	a	1.5mL	microfuge	tube,	and	nuclei	pelleted	at	13000g	for	15	min	at	697	

4ᵒC	and	resuspended	in	the	transposition	reaction	(20uL	of	2x	Nextera	reaction	698	

buffer,	0.5uL	of	Nextera	Tn5	Transposase,	19.5	uL	of	nuclease-free	H20)	(Illumina,	699	

Nextera	DNA	library	Preparation	kit	FA-121-1030)	and	the	reaction	was	carried	out	700	

for	5	minutes	at	37ᵒC.	The	reaction	was	halted	and	fragmented	DNA	purified	using	a	701	

MinuElute	PCR	purification	kit	(Qiagen,	MD,	USA).	The	eluted	DNA	was	amplified	in	702	

reaction	buffer	(10uL	of	transposased	DNA,	10uL	nuclease-free	H20,	2.5uL	forward	703	

PCR	primer	(5’-AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG),	2.5uL	704	

reverse	PCR	primer	705	

(CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT)	and	25uL	706	

NEBnext	High-Fidelity	2x	PCR	Master	Mix	(New	England	Biolabs,	MA,	United	707	

States))	using	thermo-cycler	conditions	described	in	94	for	a	total	of	9	cycles.	708	

Amplified	library	was	purified	using	the	MinElute	PCR	Purification	Kit	(Qiagen,	MD,	709	

USA)	and	paired-end	100	bp	sequenced	on	an	Illumina	HiSeq4000.		710	

	711	

Reads	were	mapped	to	the	reference	JR2	genome	with	the	described	blacklisted	712	

regions	masked,	using	BWA-mem	with	default	settings	92.	The	mapped	reads	were	713	

further	processed	to	remove	duplicates	reads	arising	from	library	prep	and	714	

sequencing	using	Picard	toolkit	markDuplicates	95.	The	mapped	reads	were	counted	715	

either	over	the	TE	coordinates	or	10	kb	intervals	for	the	two	separate	analyses	using	716	

bedtools	multicov	(v	2.27)	96.	The	reads	were	converted	to	TPM	values	and	those	717	

numbers	used	for	analysis.		718	

	719	

Machine	Learning	and	assessment	720	

The	machine	learning	algorithms	were	implemented	using	the	classification	and	721	

regression	training	(caret)	package	in	R	73,97.	The	full	set	of	genomic	data	was	used	722	

to	create	a	data	frame	comprising	the	genome	in	10	kb	segments	as	rows	and	the	723	

individual	collected	variables	as	columns.	The	regions	were	classified	as	core	or	LS	724	

based	on	the	previous	observations	15.	For	initial	model	assessment	and	parameter	725	

tuning,	the	data	were	split	into	80%	for	training	and	20%	used	for	testing	(i.e.	726	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.921486
http://creativecommons.org/licenses/by/4.0/


	 31	

prediction),	and	the	proportion	of	core	and	LS	regions	were	kept	approximately	727	

equal	in	the	two	splits.	For	parameter	tuning,	repeated	cross-validation	of	10-fold	3-728	

times	was	used	and	the	best	model	was	selected	based	on	accuracy.	Four	algorithms	729	

were	used-	logistic	regression,	random	forest,	stochastic	gradient	boosting,	and	730	

boosted	classification	tree.	The	model	for	all	algorithms	was	classification	=	ATAC-731	

seqTPM	+	ChIP-H3K27me3TPM	+	ChIP-H3K9me3TPM	+	TEdensity	+	PDB-RNAseqTPM.		732	

Logistic	regression	was	run	using	method	glm,	family		binomial.	Random	forest	was	733	

run	using	method	rf		and	tuneGrid		[mtry=	(1,2,3)].	The	Stochastic	Gradient	Boosting	734	

was	implemented	with	method	gbm	and	tuneGrid	[interaction.depth=(1,5,10),	735	

n.trees=(50,500,1000),	shrinkage=(0.001,	0.01),	n.minobsinnode=(1,5)].	The	Bosted	736	

Classification	Tree	was	implemented	unsing	method	ada	and	tuneGrid	[iter=(100,	737	

1000,	3000),	maxdepth=(1,5,20),	nu=(0.01)].	Models	were	assessed	using	standard	738	

metrics	for	data	retrieval,	with	receiver	operating	and	precision-recall	curves	739	

generated	using	package	PRROC	98.		740	

	741	

To	saturate	the	genome	in	predictions,	a	total	of	15	new	training	test	splits	(80:20)	742	

were	generated,	again	maintaining	the	genome-wide	proportion	of	core	and	LS	743	

regions	in	data	set.	The	random	forest	and	stochastic	gradient	boosting	classifiers	744	

were	used,	based	on	their	highest	performance	from	the	initial	test.	The	settings	745	

were	picked	based	on	best	performance	from	initial	testing:	random	forest,	method	746	

rf	and	tuneGrid	[mtry=3];	stochastic	gradient	boosting,	method	gbm	and	tuneGrid	747	

[interaction.depth=(5),	n.trees=(500),	shrinkage=(0.01),	n.minobsinnode=(5)].		The	748	

predictions	for	each	of	the	15	runs	were	assessed	using	the	precision,	recall	and	749	

MCC	metrics.	For	each	genomic	region,	a	consensus	designation	was	assigned	based	750	

on	the	highest	occurrence	of	core	versus	LS	prediction	across	the	15	trials.	This	was	751	

done	independently	between	the	two	models.	A	region	was	finally	classified	as	LS	or	752	

core	based	on	the	majority	classification	across	the	15	trails.	For	regions	that	had	an	753	

equal	number	of	core	and	LS	predictions,	the	regions	were	designated	as	core	to	be	754	

conservative.	A	final	high	confidence	LS	consensus	designation	was	determined	for	755	

each	genomic	region	if	it	was	predicted	LS	by	both	models.	Regions	predicted	LS	by	756	

only	one	of	the	models	were	designated	core.	A	conservative	joining	approach	was	757	
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used	so	that	a	single	core	region	would	be	called	LS	if	it	were	flanked	by	two	LS	758	

regions.	This	added	41	genomic	regions	(410	kb)	to	the	LS	genome.		759	
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