MluI_PRA1_1+FWD	GCTGCGACGCGTGCGGCCCAGAAGGACCAGCAG
BglII_Stop_PRA1- 185_RVRS	GCTGCGAGATCTTTACACAGGTTCCATCTGCAGCTC CTC
XhoI_PRA1_1+_FWD	GCTGCGCTCGAGATGGCGGCCCAGAAGGACCAGCA G
MscI_PRA1_185+_RVRS	GATACACTGGCCACCACAGGTTCCATCTGCAGCTC
XbaI_XhoI_ATG_EGFP_FW D	GCTGCGTCTAGACTCGAGATGGTGAGCAAGGGCGA GGAG
BglII_STOP_MluI_EGFP_R VRS	GCTGCGAGATCT <u>TCATCA</u> ACGCGTCTTGTACAGCTC GTCCATGCC
mCHERRY_FWD_5'Cloning	GCTGCG GAATTC GACGCT ACGCGT GTGAGCAAGGG CGAGGAGGATAAC
mCHERRY_RVRS_5'Clonin g	GCTGCGAGATCTTTACTTGTCATCGTCGTCCTTGT AGTCCTTGTACAGCTCGTCCATGCCGCC
mCHERRY_FWD_3'Cloning	GCTGCGGAATTCCGCCACCATGGACTACAAGGACG ACGATGACAAGGTGAGCAAGGGCGAGGAGGATAAC
mCHERRY_RVRS_3'Clonin g	GCTGCGAGATCTTTACGTACGCGTCTTAGGTACCCT TGTACAGCTCGTCCATGCCGCC
KpnI_mSec61b_FWD	GCTGCGGGTACCCCGGGTCCAACGCCCAGTGGCACC
KpnI_mSec61b_RVRS	GCTGCGACGCGT <u>TTA</u> TGATCGCGTGTACTTGCCCCAA AT
XbaI_mMannII_FWD	GCTGCG TCTAGA ATGAAGTTAAGTCGCCAGTTCACC GTG
Mlu_mMannII-aa116_RVRS	GCTGCGACGCGTCAAACAGTCTCTGGGGTCAGCCTG
KpnI_PRA1_131+RVRS	GCTGCGGGTACCCTGATGTGCTGGGCTCACCTC
PRA1_R37/38/39/43A_FWD	GAGGCCGCCGCGACCATCGCCCCCTGG

PRA1_R37/38/39/43A_RVR S	GGCGATGGTCGCGGCGGCGGCCTCCAG
PRA1_R37/38/39K_FWD	CTGGAGAAGAAGAAGGCGACCATCCGG
PRA1_R37/38/39K_RVRS	CCGGATGGTCGCCTTCTTCTCCAG
PRA1_80-86_OE_FWD	TTC <u>GTG</u> TTT <u>CTC</u> GGC <u>CTC</u> ATC
PRA1_72-78A_RVRS	GCCGAGAAACACGAACACGGCGGCGGCGGCGGCGGCGGCG
mPRA1_66-86_72-78 Δ _RVRS	GATGAGGCCGAGAAACACGAACACCACGTTGCGTAC CAGGCG
mPRA1_66-86_72-79 Δ _RVRS	GATGAGGCCGAGAAACACGAACACGTTGCGTACCAG GCG
mPRA1_YYQSNY-FFDAQE	GAGAAACACGAACACCTCCTGGGCGTCGAAGAACT CCAC

Table S1. Primer sequences used in this study

Supplementary Methods

ShRNA design

ShRNA constructs were made according to previously described protocols (Fellmann et al., 2013). Mir30 based 97nt hairpins were amplified using the following primers: 5'-cagaaggctcgagaaggtatattgctgttgacagtgagcg-3' and 5'-

tctcgaattctagccccttgaagtccgaggcagtaggc-3' with the reverse primer containing the "CNNC" motif retrofitted for more efficient processing (Fellmann et al., 2013). The resulting PCR fragment was cut with XhoI/EcoRI and ligated into the pCAG-mir30 vector (Addgene plasmid #14758) (Matsuda and Cepko, 2007).

Contructs generated (5'-3'): hPRA1-a-mir30, [tgctgttgacagtgagcgCGCGCAGAAGGACCAGCAGAAAtagtgaagccacagatgtaTTTCTGCTGGT CCTTCTGCGCTtgcctactgcctcgga]

hPRA1-b-mir30,

[tgctgttgacagtgagcgAACCCTGCTGCCGAAGCTGATTtagtgaagccacagatgtaAATCAGCTTCGG CAGCAGGGTCtgcctactgcctcgga]

hPRA1-c-mir30,

[tgctgttgacagtgagcgCGGTGGCTCTGGCTGTCTTTTTtagtgaagccacagatgtaAAAAAAAACACCCAGCCACCAtgcctactgcctcgga]

GFP-mir30,

[tgctgttgacagtgagcgaagccacaacgtctatatcatgtagtgaagccacagatgtacatgatatagacgttgtggctgtgcctact gcctcgga]. Prior to use, constructs were verified via Sanger sequencing at Eurofins Sequencing (Louisville, KY, USA).

Untagged PRA1 construct

PRA1 was amplified from mouse cDNA purchased from Origene (see Materials and Methods). The amplified product was cloned into the PCAGIG vector (Addgene-see Materials and Methods) using the XhoI and BgIII restriction enzyme sites.

Generation of Stable ShRNA cell lines (Abgent anti-PRA1 antibody confirmation)

To generate selectable ShRNA constructs, the generated mir30 constructs were amplified from the pCAG-mir30 backbone and subcloned within the pcDNA 3.1 (-) vector XbaI/BamHI restriction enzyme sites. Resulting constructs were sequence verified and linearized using the BgIII restriction enzyme site. 1.5 μ g of each construct was then transfected into Hek293T cells using Lipofectamine 2000 (12 well plates). 24 hrs later, cells were trypsinized and moved to 100 mm cell culture plates where selection was carried out over a 10 day period. An untransfected control plate showed complete cell death after the selection period was finished. Media was changed every 3 days with fresh Hygromycin B added each time.

Fellmann, C., Hoffmann, T., Sridhar, V., Hopfgartner, B., Muhar, M., Roth, M., Lai, D. Y., Barbosa, I. A., Kwon, J. S., Guan, Y. et al. (2013). An optimized microRNA backbone for effective single-copy RNAi. *Cell Rep* **5**, 1704-13.

Matsuda, T. and Cepko, C. L. (2007). Controlled expression of transgenes introduced by in vivo electroporation. *Proc Natl Acad Sci U S A* **104**, 1027-32.