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Population-level comparisons of prokaryotic genomes must take
into account the substantial differences in gene content, result-
ing from frequent horizontal gene transfer, gene duplication and
gene loss. However, the automated annotation of prokaryotic
genomes is imperfect, and errors due to fragmented assemblies,
contamination, diverse gene families and mis-assemblies accu-
mulate over the population, leading to profound consequences
when analysing the set of all genes found in a species. Here we
introduce Panaroo, a graph based pangenome clustering tool
that is able to account for many of the sources of error in-
troduced during the annotation of prokaryotic genome assem-
blies. We verified our approach through extensive simulations
of de novo assemblies using the infinitely many genes model
and by analysing a number of publicly available large bacterial
genome datasets. Using a highly clonal Mycobacterium tubercu-
losis dataset as a negative control case, we show that failing to
account for annotation errors can lead to pangenome estimates
that are dominated by error. We additionally demonstrate the
utility of the improved graphical output provided by Panaroo
by performing a pan-genome wide association study in Neisse-
ria gonorrhoeae and by analysing gene gain and loss rates across
51 of the major global pneumococcal sequence clusters. Pa-
naroo is freely available under an open source MIT licence at
https://github.com/gtonkinhill/panaroo.
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Background
Prokaryotic genome evolution is driven by both the trans-
fer of genetic material vertically from parent to offspring
as well as by horizontal gene transfer between organisms
(1). Large population sequencing studies of bacteria have
confirmed that this results in large scale differences in in-
traspecies genome content (2). This has led to the description
of the pangenome, the set of all genes that have been found
in a species as a whole (3). Within the pangenome, genes
are often then described as being part of the ‘core’ genome,
the set of genes present in all members of a species, or the

non-core (‘accessory’) genome. A common problem when
inferring the pangenome of bacterial genomic datasets is the
classification of homologous genes, usually defined by a per-
centage shared sequence identity, into either orthologous or
paralogous clusters. Orthologs are homologous genes de-
scended from the same ancestral sequence in the common
ancestor, and not via gene duplication or acquisition. When
analysing bacterial pangenomes we are often interested in not
just the function of a gene or protein but also its location, as
two nearly identical genes could be under differential regu-
lation at different locations in the genome. Many programs
for pangenome analysis therefore use location information to
further identify paralogs, which occur when two genes de-
scend from the same ancestral sequence due to gene duplica-
tion or when a homolog has been acquired horizontally.
Previous approaches for inferring the pangenome include
Roary, OrthoMCL, PanOCT, PIRATE, PanX, PGAP, COG-
soft, and MultiParanoid (4–10). The majority of methods for
determining the pangenome tend to make use of one of two
similar approaches (see Supplementary Figure 1). Most start
by inferring similarity between predefined gene sequences
using a homology search tool such as CD-HIT, BLAST or
DIAMOND (11–13). Using this output a pairwise distance
matrix is created and genes are then clustered into ortholo-
gous groups using either the popular Markov Clustering al-
gorithm (MCL) or by looking at triangles of pairwise best hits
(BeTs) (14, 15). A subset of these methods then continues by
using the neighbourhood or genomic context of each gene to
further split orthologous clusters into paralogs.
As bacterial genomic population studies have grown larger
there has not been a corresponding increase in genome an-
notation accuracy or genome assembly contiguity. Thus as
these databases have grown, so has the number of erroneous
gene annotations. This can have profound implications for
the resulting estimates of the pangenome whereby a higher
number genomes leads to a higher number of errors (16, 17).
Such errors can cause difficulties in any downstream mod-
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eling of the pangenome, such as the modeling of negative
frequency-dependent selection (NFDS) acting through the
loci in the accessory genome (18, 19). Errors can be intro-
duced into pangenome analyses by fragmented assemblies,
mis-annotation, contamination and mis-assembly. Denton et
al., have shown that fragmented assemblies were the major
cause of inflated gene numbers in draft eukaryotic genomes
(17). Whilst errors often lead to inflations in the estimates of
the size of the accessory genome they can also lead to missing
genes when the annotation software fails to identify a gene or
where the gene is fragmented by a break in the assembly,
which reduces the estimated size of the core genome. Many
current pan-genome inference algorithms have not been sub-
jected to rigorous verification using simulated data. Conse-
quently, their ability to deal with the errors occurring in the
initial genome annotations has received limited attention.
Here, we present an alternative approach to inferring the
pangenome, Panaroo, which makes use of a graph based al-
gorithm to share information between genomes, allowing us
to correct for many of the sources of annotation error. Pa-
naroo leverages the additional information provided by each
genome in a dataset to improve annotation calls, and as a
result, the clustering of orthologs and paralogs within the
pangenome. We also provide a number of pre- and post-
analysis scripts which further enrich the analysis package
we provide, allowing integrated data quality control, gene
association analysis, and to allow for the comparison of
pangenomes between species. As Panaroo constructs a full
graph representation of the pangenome, we are able to inves-
tigate structural variations within the resulting graph, allow-
ing for associations between structural variations and pheno-
types to be called. We demonstrate the success of the algo-
rithm through extensive simulation using the Infinitely Many
Genes model (20) and by analysing a diverse array of large
bacterial genomic datasets including the major clades of the
Global Pneumococcal Sequencing (GPS) project (21). We
compare the output of Panaroo with the previous gold stan-
dard methods for analysing the pangenome and show that Pa-
naroo produces superior ortholog clusters, often leading to
both significant reductions in the size of the estimated acces-
sory genome and increases in the size of the core genome.

Results
Overview. Panaroo builds a full graphical representation of
the pangenome, where nodes are clusters of orthologous
genes (COGs) and two nodes are connected by an edge if they
are adjacent on a contig in any sample from the population.
Using this graphical representation, Panaroo corrects for er-
rors introduced during annotation by collapsing diverse gene
families, filtering contamination, merging fragmented gene
segments, and refinding missing genes (Figure 1). Panaroo
generates the initial gene clusters using CD-HIT to cluster the
collection of all gene sequences in all samples (11). Paralogs
are then split by only allowing each genome to be present
once in each cluster. Fragmented or mistranslated genes are
identified and merged based on neighbourhood information
of each node (22). Diverse gene families are identified using

a relaxed alignment threshold along with neighbourhood in-
formation obtained from the graph. Finally, genes potentially
missing from one or more samples are identified in the graph
and the contig sequence near neighbouring nodes is searched
to check for the presence of the gene.
Panaroo takes annotated assemblies in GFF3 format as input
and generates a variety of output formats including a gene
presence absence matrix (as in Roary) as well as a fully an-
notated graph in GML format for viewing in Cytoscape or
other graph visualisation software (23). The Panaroo pack-
age includes a number of pre- and post-processing scripts that
can be used for initial quality control as well as for determin-
ing pangenome size, gene gain and loss rates and to iden-
tify coincident genes. Panaroo interfaces easily with many
other pangenome analysis packages including the latest ver-
sion of pyseer allowing for associations between phenotypes
and gene presence/absence as well as structural variation in
the graph to be investigated (24). The package is written in
python and is available under an open source MIT licence
from https://github.com/gtonkinhill/panaroo/.

Corrected analysis of a Mycobacterium tuberculosis
Outbreak in London. To assess the effectiveness of Pana-
roo and the impact of annotation errors on other pangenome
inference methods we analysed a large outbreak of highly
clonal, isoniazid resistant Mycobacterium tuberculosis (Mtb)
in London (25). Mtb exhibits a very low mutation rate and is
understood to have a ‘closed’ pangenome. Due to the short
timescale of the outbreak, the maximum pairwise SNP dis-
tance within this dataset was 9. As we would expect to find
no pangenome variation, this dataset provides a useful con-
trol to compare the different pangenome tools.
We ran each of the pangenome inference methods on all
413 Mtb genome assemblies after first annotating them us-
ing Prokka (26). Panaroo identified both the highest number
of core genes and the smallest accessory genome (Figure 2),
consistent with the established biology of Mtb and a highly
clonal dataset (27, 28). In contrast, PanX, PIRATE, COGsoft
and Roary all reported inflated accessory genomes ranging in
size from 2584 to 3670 genes representing a nearly ten-fold
increase to that reported by Panaroo. The small number of
accessory genes that Panaroo did predict mostly consisted of
core genes where the algorithm was unable to refind the genes
in a subset of the assemblies. The majority of the difference
between the methods was driven by genes being fragmented
during assembly ( 59%; see Supplementary Methods). A
smaller subset of genes were only called in a small minority
of the isolates despite the underlying sequence being nearly
identical ( 10%). Whilst some of these differences could be
due to frame shifts in the PE/PPE genes, 27.9% of the isolates
were indistinguishable with only one isolate being more than
5 SNPs from this major clone. We found that the majority
of the difference was due to the annotation algorithm opti-
mising for each isolate individually, leading to inconsistent
gene calls. However Panaroo’s consensus approach helps to
resolve these discrepancies. The magnitude of the difference
observed in this dataset suggests that failing to account for

2 | bioRχiv Tonkin-Hill et al. | Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.28.922989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922989
http://creativecommons.org/licenses/by/4.0/


DRAFT

Fig. 1. A: An overview conceptualizing the problem with current gene annotation methods and the stages Panaroo uses to correct for annotation errors. B: Expanded specific
stages in the process. (i) Contamination appears in the graph as poorly supported components. In the default mode, Panaroo removes contamination by recursively removing
poorly supported nodes of degree 1. (ii) Genes are often mis-annotated near contig breaks (17). Panaroo corrects such mis-annotations by recursively removing poorly
supported nodes of degree 1. (iii) Panaroo corrects cases where the same DNA sequence has been translated in multiple reading frames into a single gene by clustering
concomitant genes at the DNA level. (iv) Panaroo uses context and a lower clustering threshold to combine diverse gene families into a single gene. (v) Annotation algorithms
may predict a gene in some but not all samples, even when the samples share exactly the same DNA sequence. Panaroo finds missing genes by searching for the gene
sequence in the surrounding DNA.
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Fig. 2. Pangenome counts for 413 Mycobacterium tuberculosis genomes from an
outbreak in London (25). The maximum pairwise SNP distance between these
isolates was 9, suggesting extremely limited variation. Consequently, we would
expect a very limited accessory genome and a core genome of approximately 4000
genes. All tools with the exception of Panaroo found in excess of 2500 accessory
genes, which can be attributed to annotation errors.

annotation errors can have profound impacts on the resulting
estimates of the pangenome.

Superior Performance on Simulated Populations. To
further assess the ability of the different methods to iden-
tify the correct gene presence/absence matrix, we simulated
pangenomes using the Escherichia coli reference genome
ASM584v2 (accession number NC000913) and the Infinitely
Many Genes model (20, 29). To more accurately simulate
the kind of errors that typical annotation pipelines produce,
we simulated short read assemblies from these pangenomes
using Mason, ART and SPADES (30–32). A more detailed
description is given in the methods. We conducted five sim-
ple and two more complicated simulations, each with three
replicates (Supplementary Table 1). In the simple simula-
tions, the gene gain/loss rate was varied with lower rates cor-
responding to a larger core genome and smaller accessory
genome and higher rates corresponding to a larger accessory
genome. The mutation rate of the accessory genome was
also varied. In addition, we simulated two more complicated
datasets, one of which had an increased level of fragmenta-
tion of the assembly by fragmenting the input genome prior
to the NGS simulation. The second more complex simulation
included contamination by randomly adding in short frag-
ments of the Staphylococcus epidermidis reference genome,
which is a common contaminant.
Figure 3a indicates the number of gene clusters which con-
tained errors for each of the scenarios. Such errors included
both genes that were incorrectly annotated as well as gene se-
quences that were incorrectly clustered together. Most meth-
ods performed fairly well when applied to the output from
the simple simulation. All methods include some errors due
to genes never being annotated except in the original refer-
ence. As each method relied on the same input files this was
consistent between methods.
For the simple simulations, PanX and Panaroo produced the
fewest errors, followed by PIRATE, Roary and COGsoft.
Roary was the most sensitive method to the substitution rate,
with higher rates leading to more errors. This can be at-

tributed to its reliance on a strict BLAST e-value thresh-
old. COGsoft gave variable results, performing poorly on
pangenomes with larger accessories suggesting it may over
collapse genes. This interpretation was further supported in
our analysis of a diverse Klebsiella pneumoniae dataset (see
below).
Whilst most methods were able to perform adequately on rel-
atively error-free simulated data, the introduction of more re-
alistic significant sources of annotation error had a large im-
pact. Figure 3b indicates the resulting error counts after simu-
lating both contamination and highly fragmented assemblies.
Here, the importance of Panaroo’s multiple annotation error
correction approaches becomes apparent. As expected, when
small amounts of contaminating S. epidermidis DNA were
added to the simulated NGS data all methods except Panaroo
and COGsoft incorrectly called a larger accessory genome.
This is due to their inability to account for and remove con-
taminating contigs. In contrast, Panaroo achieved error rates
similar to that found for the clean assemblies. COGsoft had a
similar number of total errors to the other programs but rather
than calling a larger accessory genome tended to incorrectly
merge the contamination with other genes.
The highly fragmented assemblies led to the largest error
rates in each pangenome analysis tool. Fragmentation can
lead to gene annotation software such as Prokka miscalling
genes near the ends of contigs. It can also impact on the con-
sistency of the training step in some annotation algorithms.
This resulted in a large increase in the estimated accessory
genome size for all methods except Panaroo. Similarly, mis-
calling can lead to genes being left unannotated resulting in
smaller estimates of the core genome. In both cases Pana-
roo’s error correction and refinding steps were able to ac-
curately recover the true pangenome, while PanX, COGsoft,
PIRATE and Roary all produced nearly an order of magni-
tude higher error rates. This result mirrors that observed in
the analysis of the highly clonal M. tuberculosis outbreak,
helping to confirm the impact that such errors can have on
pangenome estimates.

Greater Internal Consistency in a Diverse Klebsiella
pneumoniae Collection. We then went on to compare
each method on a more complex real dataset – 328 glob-
ally sourced Klebsiella pneumoniae genomes from both hu-
man and animal hosts (2). K. pneumoniae is a highly di-
verse gram-negative bacterium that can colonize both plants
and animals and has previously been found to have a large
pangenome (2). The high recombination rate and often mul-
tiple plasmids per bacterium complicates analysis of the K.
pneumoniae pangenome. Nine of the 328 isolates were iden-
tified as outliers by the Panaroo quality control script due to
the number of contigs or number of genes they contained (see
Supplementary Figures 3-5). These isolates were removed
before running each algorithm. Figure 4a indicates the re-
sulting total, core and accessory gene counts inferred by each
method, using the 99% presence threshold for core genes as
used in Roary (4).
As species such as K. pneumoniae are known to have many
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Fig. 3. Error counts for the different algorithms after comparing with simulated data on different scenarios. Accessory genome inflation refers to the number of erroneous
clusters that do not correspond to any simulated gene cluster. Even in simulations of pangenome variation from a single E. coli reference with only relatively simple sources
of error, a), panaroo outperforms other methods across a variety of gene gain/loss rates and mutation rates. In more realistic simulations of sequencing data, b), the only
method with reasonable control of the error rate is panaroo.
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rare plasmids which are difficult to distinguish from con-
tamination, we developed a ’sensitive’ mode for when the
default ’strict’ mode of Panaroo contamination filter can be
overly stringent. Panaroo identified the highest number of
core genes in both its default and sensitive modes, 3372 and
3376 respectively. Hence for these genomes there was only
a minor difference in the estimated core between the two
pipeline options. Roary identified the smallest core genome
of 1800 genes. Given the result of the simulations, this is
likely due to gene clusters being incorrectly split into mul-
tiple smaller clusters, as the default Roary pairwise identity
threshold of 95% is too stringent for such a diverse dataset.
PIRATE relaxes the strict threshold required in Roary and it
identified a similar number of core genes to Panaroo (3318)
but a smaller number of accessory genes than both the Pana-
roo (sensitive) and PanX methods which agreed more closely
with the original estimates in Holt et al. (2).
Whilst there is no gold standard with which to compare these
results, we can look at the gene annotations within clusters to
identify cases where a gene cluster contains multiple differ-
ent annotations, which would suggest separate gene clusters
have been incorrectly merged. Figure 4b indicates the num-
ber of conflicting annotations in the clusters of each method.
As gene fragments and genes annotated as “hypothetical” are
often the result of errors and thus can have erroneous anno-
tations, we did not consider conflicts that involved these. Pa-
naroo in both its default and sensitive modes had the lowest
number of conflicting annotations. PanX had the second low-
est number whilst COGsoft recorded the highest number of
conflicts which is consistent with the tendency of its method
to over-cluster genes. Overall, Panaroo identified a larger
core genome and fewer conflicting annotations than any other
method showing that its error correction approach is also suit-
able for diverse datasets of highly recombinogenic bacteria.

Pyseer Association Analysis with Panaroo Finds An-
tibiotic Resistance Mechanisms. Panaroo provides a
number of outputs as well as post processing scripts for
analysing the cleaned pangenome graph. Panaroo outputs
both a gene presence/absence matrix as well as structural
variation presence/absence matrix that can be used as input
to pyseer or Scoary for association analyses (24, 33). Pana-
roo generates structural variation calls by identifying distinct
consecutive triplets of gene families in the graph that describe
different paths through a node (see Figure 5a). As larger in-
sertion and deletion events will only be represented once in
the structural presence/absence matrix rather than repeatedly
for each gene, this approach increases the power of such as-
sociation analyses. The approach also identifies associations
with large structural re-arrangements although these are of-
ten more difficult to interpret. Once a significant association
between a gene triplet and a phenotype of interest have been
identified, the context of the structural rearrangement can be
investigated manually by interrogating the pangenome graph
in Cytoscape (23).
To validate the pan-genome wide association study (pan-
GWAS) and pan-genome structural variant association study

Fig. 4. a.) the estimated pangenome, core and accessory sizes from the different
algorithms in the global K. pneumoniae dataset. (b) The number of conflicting gene
annotations in the inferred clusters of the different algorithms.

(sv-pan-GWAS) pipelines, we ran panaroo on the Euro-
GASP collection of 1054 Neisseria gonorrhoeae isolates col-
lected from 20 countries across Europe from September to
November 2013 (34). We combined the Panaroo output with
antimicrobial MIC testing results for seven different antibi-
otics performed in the original study and carried out associa-
tion studies on the gene presence-absence patterns and struc-
tural variants using pyseer (24).
The gene presence-absence pan-GWAS approach returned 67
genes (Supplementary Table 2) associated with various an-
tibiotics (adjusted p-value ≤ 0.05 ). This included many
probable candidates for genes causing resistance, including
an uncharacterised ABC transporter (group_464), for peni-
cillin resistance. ABC transporters are a common resis-
tance mechanism against ribosome-targeting antimicrobials,
as they can function as efflux pumps (35).
The structural variant pan-GWAS returned 138 triplets (Sup-
plementary Table 3) associated with antibiotic resistance (ad-
justed p-value ≤ 0.05). These included many triplets con-
taining phage-associated, transposase, or pilin genes, all of
which are known to be mobile within the genome.
Among these, the sv-pan-GWAS identified a number of in-
sertions and deletions of whole genes which were associated
with antibiotic resistance. One of these, group_1138, is a
transmembrane protein which, when inserted, is associated
with ceftriaxone resistance. All four possible gene triplets
bypassing or going through the insertion were significantly
associated with either susceptibility or resistance depending
on if they included group_1138. The mechanisms of ceftri-
axone resistance in N. gonorrhoeae are not yet fully under-
stood, but it has been suggested that efflux and permeability
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Fig. 5. a) A diagram indicating how gene triplets are called in the graph. A single
genome can only pass through a node once; thus, variations in the arrangement
of genes in different genomes can be called using triplets. These triplets are sum-
marised as a binary presence absence matrix. b) A family of related plasmids
present in the N. gonorrhoeae pangenome gene network. The path highlighted
in red contained 4 structural variant gene triplets significantly negatively associ-
ated with tetracycline resistance, or associated with tetracycline susceptibility by a
structural variant pan-GWAS (all adjusted p-value < 0.05 ). The gene highlighted
in yellow, group_1999, was found to be a tetM resistance gene. c) A subsection
of the N. gonorrhoeae pangenome gene network of the region surrounding gene
group_1138. The presence of gene triplets (group_771-group_1002-group_1138)
and (group_1131-group_795-group_1138) is positively associated with tetracycline
resistance while the triplets (group_1002-group_795-group_1131) and (group_771-
group_1002-group_795) are negatively associated with tetracycline resistance (all
adjusted p-value < 0.05).

must play a role (36). Group_1138, as it is a transmembrane
protein, could have either of these functions.
The sv-pan-GWAS approach allows for closely related ge-
netic architectures to be disentangled, including highly re-
lated plasmids and phages. For example, analysis of the
pangenome graph showed that a common N. gonorrhoeae
plasmid present 430 times in this dataset is actually a fam-
ily of several closely related plasmids. These highly simi-
lar plasmids share the majority of their genes, but there are
several differences in gene content, which appear as bubbles
in the pangenome graph (Figure 5B). One of the plasmid
versions (highlighted in red in Figure 5B) is negatively as-
sociated with tetracycline resistance, with four gene triplets
significantly negatively associated with this phenotype in
the sv-pan-GWAS. The other plasmid variants each contain
group_1999, a tetM tetracycline resistance gene, providing a
mechanism to explain the differential resistance profiles. To-
gether, these analyses demonstrate that multiple members of
the same plasmid family with different resistance profiles are
circulating in the European N. gonorrhoeae population, and
illustrate the value of an the sv-pan-GWAS approach.

Improved Methods for Analysing Pangenome Evolu-
tionary Dynamics. The higher accuracy obtained by Pana-
roo allows for the comparison of gene gain and loss rates
between lineages and species as well as the more accurate in-

ference of pangenome size. Whilst it is common practice to
plot gene accumulation curves in the analysis of pangenomes,
these are not robust to errors and fail to account for sampling
biases and population structure. Thus, accumulation curves
should not be used to compare pangenome characteristics of
different lineages or species. Recently, a number of phyloge-
netically informed methods for investigating pangenome dy-
namics have been published, including the Infinitely Many
Genes (IMG) model and the Finitely Many Genes (FMG)
model (8, 20, 37). Both of these approaches account for the
diversity of the sample and have been implemented as post-
processing scripts in Panaroo.

To demonstrate the utility of using the corrected pangenome
graph to infer gene gain/loss rates and pangenome size, we
used the FMG model to investigate 51 of the major Global
Pneumococcal Sequence Clusters (GPSCs) for which reli-
able dated phylogenies could be constructed (21). The ma-
jor clades of the pneumococcus have distinct accessory gene
profiles (38). We ran Panaroo on each GPSC separately and
used the resulting gene presence/absence matrix with the cor-
responding dated phylogeny to infer gene gain and loss rates
for each cluster. We compared the inferred parameters with
other variables of interest calculated by Gladstone et al. (21),
including the inferred recombination rate (r/m), odds ratio
of invasive disease and the number of distinct serotypes for
each cluster. The parameters along with these variables are
plotted in Supplementary Figure 2. We found that the es-
timated effective pangenome size correlated positively with
the recombination rate of a cluster (Spearman correlation co-
efficient 0.53, p<0.001) and the number of serotypes present
in the cluster (Spearman coefficient 0.51, p=0.001). This is
consistent with biological understanding of the genome di-
versification and gives confidence to our results, as a higher
recombination rate would allow for a clade to more easily
gain and lose genes, including serotype-defining gene clus-
ters, resulting in a larger pangenome. Interestingly, GPSCs
that have lower gene gain rates were more likely to have a
significant odds ratio for invasive disease (p=0.04)(see Figure
6). The association with gene loss rate was weaker, although
the effect was in the same direction (p=0.08). Genome reduc-
tion has previously been associated with increasingly obli-
gate interactions with the host in multiple unrelated bacterial
pathogens (39).

Computational Performance. Panaroo uses a similar level
of computational resources to competing methods. Figure 7
indicates the memory and cpu time required for the analy-
sis of 10, 100 and 1000 N. gonorrhoeae isolates subsampled
from the Euro-GASP collection. PanX and COGsoft used
the most resources with COGsoft not completing the largest
dataset in under a week. Roary, PIRATE and Panaroo all per-
formed similarly.
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DRAFTFig. 6. The inferred gene gain and loss rates of each of the 51 major clades of the Global Pneumococcal Sequencing project plotted above the respective log odds ratio of
invasive disease in that clade. Clades which had significant odds ratios in Gladstone et al. (21) are represented in dark yellow.

Fig. 7. the cpu time and memeory required for each of the algorithms for 10, 100
and 1000 N. gonorrhoeae isolates. Each tool was run with 5 cpus

Discussion

Annotation errors, fragmented assemblies and contamination
represent a major challenge for pangenome analysis. We
have designed Panaroo to tackle these challenges using a so-
phisticated framework for error-correction that leverages in-
formation across strains through a population graph-based
pangenome representation. Using both simulations and well-
characterised real world datasets, we demonstrated that many
commonly used methods greatly inflated the size of the ac-
cessory genome while reducing the estimated size of the
core genome. In contrast, Panaroo exhibited far lower error
rates and reconstructed highly accurate core and accessory
genomes for simulated datasets that included contamination
and genome fragmentation. Analysis of both a highly con-
served M. tuberculosis dataset and a highly diverse K. pneu-
moniae dataset indicated that Panaroo provides superior so-
lutions in challenging real world population genomics appli-
cations.
Panaroo also includes a number of pre- and post-processing
scripts for the analysis of bacterial pangenomes that assist in
quality control of the input data and facilitate down-stream
processing of the pangenome. We used the Panaroo pre-
processing QC scripts to identify nine K. pneumoniae sam-
ples that were outliers based on the number of contigs or
genes and excluded these samples from our analysis. We rec-
ommend that such pre-processing QC be carried out on all
datasets to identify potentially erroneous samples.
We used the output from Panaroo as input to pyseer to
run pan-GWAS and sv-pan-GWAS analyses on N. gonor-
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rhoeae. Through this approach, we identified a deletion in the
genome of N. gonorrhoeae in a large European collection that
confers resistance to tetracycline. We demonstrated the util-
ity of Panaroo to disentangle highly similar genetic structures
through identification of a plasmid family in N. gonorrhoeae
(Figure 5C). By combining this high resolution picture with
structural variant pan-GWAS we identified that some mem-
bers of this plasmid family carry tetracycline resistance and
were able to accurately determine the tetM gene as the cause
of resistance.
As part of the Panaroo package, we include implementations
of recently proposed pangenome evolution models, which are
more appropriate than the more frequently used gene accu-
mulation curves. We demonstrated the effectiveness of such
methods through the analysis of the 51 major GPSCs where
we observed an association between recombination rate and
pangenome size (Supplementary Figure 2). We also identi-
fied an association between pneumococcal clade invasiveness
and gene gain rate.
Panaroo is written in python (versions 3.6+)
and is available under the open source MIT li-
cence from https://github.com/gtonkinhill/panaroo.
The code used to produce the analyses described
above along with summary data is available from
https://github.com/gtonkinhill/panaroo_manuscript. The
raw GFF3, FASTA and all intermediate post-processing files
are available from https://doi.org/10.5281/zenodo.3599800.
Taking gene annotation errors into account is vital to recover
an accurate pangenome, something previous methods have
struggled to do in a systematic manner. Panaroo uses gene
adjacency in a population-graph to provide a fast method
for pangenome analysis, which is robust to a wide range of
error sources. In the future, we plan to further improve the
computational performance of Panaroo to allow it to scale
to datasets involving hundreds of thousands or millions of
genomes. We will also extend the post-processing tools
available to analyse the resulting pangenome graph.

Methods
Panaroo algorithm. The Panaroo algorithm builds a graph-
ical representation of the pangenome where nodes are genes
and edges connect nodes if two genes appear adjacent to
one another on at least one contig. The algorithm then uses
this initial graph structure to perform a number of cleaning
steps which correct for many of the problems encountered
in genome annotation. Panaroo accepts annotated assemblies
in GFF3 format as output by the popular annotation pipeline
Prokka (26). Unlike similar pangenome software, Panaroo
attempts to preserve the full global context of each gene in
the graph. This is in contrast to other programs such as Roary
(4, 7, 10) which uses only the local context surrounding genes
to build the graph.

Initial graph creation. To first build the graph, Panaroo
runs CD-HIT (v4.8.1) at a high sequence identity threshold
(98%) (11). The resulting clusters are then either classified as
non-paralogous gene clusters, if they contain at most one in-

stance of each genome, or paralogous clusters if they contain
more than one gene from any single genome. Initially, non-
paralogous gene clusters are represented by a single node in
the graph whilst paralogous clusters are split into a single
node for every occurrence of that cluster in the dataset. For
instance, if a paralogous gene appears twice in two genomes
and once in another, the initial graph will contain five nodes
representing that paralog. The graph is then built by connect-
ing cluster nodes with edges between them if the two clusters
appear adjacent to one another on any contig. Paralogous
nodes are collapsed back into the maximum number of nodes
in which those genes appear in a single genome using the
global context of the graph. In the above example, this would
result in the final graph having two instances of the paralog
node.

Contig Ends. Fragmented assemblies can cause issues for
gene annotation software, whereby genes are often mis-
annotated near contig breaks (17). These spurious annota-
tions appear as short paths of low support edges and nodes
that end in a node of degree one that splits off from the main
graph. To deal with this, Panaroo recursively removes nodes
of degree one that are below a given support threshold as in-
dicated in Figure 1.

Contamination. Contigs originating from sample contam-
ination are generally significantly diverged from the target
species pangenome. Thus, contaminating contigs tend to ap-
pear as disconnected components from the main graph with
low support. To remove these, Panaroo uses the same ap-
proach as described for contig ends to recursively delete low
supported nodes with less than or equal to one degree (see
Figure 1). This approach has the advantage of retaining rare
genes which are present in the main graph whilst removing
likely contaminants. Whilst this has in general been found to
be very successful it can occasionally lead to rare plasmids
being removed. We have found that the benefits of removing
unwanted noise far exceed the small loss in sensitivity that
this approach provides. However, we also provide three set-
tings for the algorithm with the most sensitive retaining such
rare calls which can be useful when one is interested in rare
plasmids.

Mistranslation Correction. Many annotation algorithms
rely on an initial training phase where their parameters are
adapted to the dataset at hand (40–42). Often this training
is performed separately on each genome. This is the case
in the Prokka pipeline, which makes use of Prodigal to per-
form the initial gene annotation (26, 40). This can result in
an identical sequence being annotated differently in different
genomes. To correct for this Panaroo checks genes that are
within close proximity in the pangenome graph to determine
if any are likely to be mistranslations, frame shift mutations,
or pseudogenised gene copies by comparing their sequence
at the nucleotide level. If two gene sequence matches at a
high coverage and identity, typically 95% and 99% respec-
tively a mistranslation is called and the gene node with the
lower support is collapsed into the node with higher support.
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Collapse Gene Families. Gene families diversify at differ-
ent rates due to the influence of positive and purifying selec-
tion. This makes choosing a strict sequence identity threshold
for defining orthologous clusters difficult. Most pangenome
analysis software relies on either a pairwise sequence identity
or BLAST e-value threshold. This reliance can lead to both
over clustering, where separate gene families are incorrectly
merged, and over splitting where a single gene family is in-
correctly split into several smaller clusters. Many approaches
attempt to deal with the former of these problems by utilising
contextual information to split apart clusters that have differ-
ent gene neighbourhoods (4, 6). More recently, alternatives
that make use of clustering at lower thresholds followed by
more involved splitting techniques have been proposed (7, 8).
As an alternative to these approaches we extend the idea of
using gene context to the over splitting problem. Panaroo
utilises gene contextual information to collapse diverse gene
families that have been incorrectly split into multiple clus-
ters during the initial pangenome graph creation. Initial gene
clusters that share a common neighbour in the graph are com-
pared at a lower pairwise sequence threshold (default 70%).
If they fall within this threshold the two nodes are collapsed
and the resulting node is annotated to indicate it consists of a
more diverse family. We have found that utilising this addi-
tional contextual information leads to more robust clusters.

Identifying Missing Genes. Previous pangenome cluster-
ing software tools are unable to identify missing annotations.
Gene annotations can be lost due to variability in model
training, fragmented assemblies and mis-assemblies. Pana-
roo remedies this issue by identifying pairs of nodes in the
pangenome graph where one node is present in a genome
and its neighbour is not. The potentially missing node is then
searched for in the sequence surrounding the neighbouring
node. If a match of sufficient coverage and identity is found,
the graph is corrected to include an annotation for this miss-
ing gene in that genome. The alignment tool edlib (v1.3.4)
is used to perform these searches which enables millions of
checks in a reasonable time frame (22).

Output. To allow for simple integration with existing bioin-
formatics pipelines Panaroo outputs many of the same file
formats as Roary. This includes the same gene pres-
ence/absence file format as well as core and accessory
genome alignments created using either MAFFT, Prank or
Clustal Omega (43–45). In addition, Panaroo outputs a fully
annotated pangenome graph in GML format for easy view-
ing in Cytoscape (23). Each gene node and edge is annotated
with the genomes to which it belongs as well as the gene
annotations given by Prokka, gene sequence and whether or
not the node has been classified as being a paralog. This
graph format provides a valuable tool for visually inspect-
ing the results of Panaroo. As Panaroo attempts to build the
full pangenome graph rather than only using local context,
this graph is able to provide insights hidden in many of the
outputs of similar tools such as Roary (4).

Structural Variation. As Panaroo constructs the full
pangenome graph, it is possible to go beyond gene pres-
ence/absence and look at the underlying structure of the
graph. To facilitate the analysis of this structure, Panaroo
generates a gene triplet presence/absence matrix, indicating
when three genes are present in a path along a genome.
This is demonstrated in Figure 5a and the resulting pres-
ence/absence matrix can be used in association studies to in-
vestigate differences in rearrangements between genomes in
a species. The context of each triplet can then be analysed by
looking at the full graph in Cytoscape.

Pre- and Post-Processing. The Panaroo pipeline comes
packaged with a number of pre and post processing scripts
for analysing pangenomes. We have included a wrapper for
the popular Mash and Mash screen algorithms which gener-
ates diagnostic plots for quality control prior to running the
Panaroo pipeline (46, 47). These plots include a Multidimen-
sional scaling (MDS) projection of pairwise Mash distances,
interactive bar charts to investigate contamination, as well as
gene and contig counts.
In addition we have included post processing scripts for es-
timating gene gain and loss rates using both the infinitely
many genes (IMG) model (37, 48) and the finitely many
genes (FMG) model of (8, 48). These are preferable to the
common practice of plotting accumulation curves to indi-
cate pangenome size as they account for the diversity and
timescale of the sampled isolates. This allows for a clearer
comparison between the pangenomes of different species or
clades. Panaroo also includes an implementation of the Spy-
drpick algorithm which allows for the identification of gene
presence/absence patterns that are either highly correlated
or anti-correlated whilst accounting for population structure
(49). Such correlations can indicate that the genes involved
have epistatic effects on fitness or that their presence or ab-
sence is a result of similar selective pressures. Finally, the
output of Panaroo seamlessly interfaces with pyseer (v1.3.0),
a bacterial GWAS package (24, 50). pyseer includes a wide
range of methods for performing association studies allowing
for phenotypic associations to be found with gene or struc-
tural presence/absence patterns.

Simulation and Comparison with Previous Methods.
Using the E. coli reference genome ASM584v2 as a start-
ing point, we simulated variation in the accessory genome
by varying the rates of gene gain and loss using a phylogeny
simulated with the Kingman coalescent in dendropy (v4.4.0)
(51). In addition, we simulated various degrees of sequence
variation by varying the within gene codon substitution rate.
Three replicate datasets of 100 sampled genomes were cre-
ated for each set of model parameters outlined in Supple-
mentary Table 1. Realistic sequence assemblies were gen-
erated by first simulating NGS sequencing reads using either
Mason (v2.0.9) or ART (v2.5.8) (30, 32). These were as-
sembled using SPAdes (v3.13.0) (31). The resulting assem-
blies were annotated using Prokka (v1.13.3) with a custom
BLAST database containing the correctly assigned proteins
from the simulation prior to assembly. This extensive simula-
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tion pipeline provided more realistic data and included many
of the sources of error encountered in pangenome analyses.
To simulate the problems that fragmentation can bring to the
analysis of pangenomes we also simulated a fragmented as-
sembly by breaking the simulated whole genomes into frag-
ments prior to simulating the NGS reads. This resulted in
highly fragmented final assemblies. Contamination was also
simulated by randomly adding 10kb segments of the S. epi-
dermidis reference genome ASM764v1 a common lab con-
taminant to the simulated genomes prior to NGS simulation.
These segments were added by sampling from a Poisson dis-
tribution with mean 1. The gene presence/absence matrix
was then generated for PanX (v1.5.1), Roary (v1.007002),
PIRATE (v1.0), COGsoft (v201204) and Panaroo (v1.0.0).
These were compared with the simulated matrix and the num-
ber of inferred orthologous clusters that contained an error
was counted and is shown in Figure 3.

SOFTWARE AVAILABILITY
Source code available from:
https://github.com/gtonkinhill/panaroo
Code for reproducing figures from:
https://github.com/gtonkinhill/panaroo_manuscript
Archived data for replication at time of publication to bioRxiv:
https://doi.org/10.5281/zenodo.3599800
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Supplementary Figures:

Gain/Loss Ratio Mutation Rate Source of Error
0.1 1.00E-14 NA
1 1.00E-14 NA
10 1.00E-14 NA
10 1.00E-15 NA
10 1.00E-16 NA
10 1.00E-14 Fragmentation
10 1.00E-14 Contamination with S. epidermidis

Supplementary Table 1: Parameters used to simulate pangenomes using the Infinitely Many Genes model.

Gene lrt-pvalue beta beta-std-err Antibiotic Annotation
gatC 9.38E-06 0.402 0.0903 PEN aspartyl/glutamyl-tRNA amidotransferase subunit C
group_111 4.82E-07 0.319 0.063 PEN ATP synthase F0F1 subunit delta
group_1126 3.60E-08 0.18 0.0324 PEN putative thiosulfate sulfurtransferase
group_1140 9.18E-06 -0.108 0.0242 AZM ArsR family transcriptional regulator
group_1168 2.95E-10 0.317 0.0498 PEN integral membrane protein
group_1237 1.92E-20 0.165 0.0174 TET putative phage associated protein;phage associated protein
group_1333 4.44E-07 0.263 0.0517 CFM two-component system transcriptional response regulator
group_1333 5.93E-18 0.499 0.0568 PEN two-component system transcriptional response regulator
group_1333 4.44E-07 0.263 0.0517 CRO two-component system transcriptional response regulator
group_134 4.48E-06 0.211 0.0458 CRO TonB-dependent receptor protein
group_134 2.30E-19 0.439 0.0478 PEN TonB-dependent receptor protein
group_134 4.48E-06 0.211 0.0458 CFM TonB-dependent receptor protein
group_1387 5.01E-09 0.12 0.0203 TET putative maltose phosphorylase
group_144 9.10E-06 0.149 0.0334 PEN elongation factor G
group_1491 3.64E-08 0.261 0.047 PEN phage protein
group_1496 2.09E-08 0.332 0.0587 PEN membrane protein
group_1511 2.17E-07 0.377 0.0722 PEN phage protein
group_1611 9.18E-06 -0.108 0.0242 AZM phage associated protein;hypothetical protein
group_1623 2.65E-07 0.256 0.0494 CRO phage associated protein
group_1623 1.34E-17 0.486 0.0559 PEN phage associated protein
group_1623 2.65E-07 0.256 0.0494 CFM phage associated protein
group_1693 8.09E-15 0.122 0.0155 TET putative cytochrome C
group_1708 2.65E-07 0.256 0.0494 CFM VapD-like protein
group_1708 1.34E-17 0.486 0.0559 PEN VapD-like protein
group_1708 2.65E-07 0.256 0.0494 CRO VapD-like protein
group_172 7.24E-06 0.202 0.0447 PEN IS1016 transposase
group_1753 2.42E-08 0.419 0.0745 CRO YegA
group_1753 4.11E-09 0.472 0.0796 PEN YegA
group_1753 2.42E-08 0.419 0.0745 CFM YegA
group_238 1.78E-08 -0.0668 0.0118 TET amidophosphoribosyltransferase
group_299 4.82E-07 0.319 0.063 PEN NADH:ubiquinone dehydrogenase L subunit
group_380 9.10E-06 0.149 0.0334 PEN arsenate reductase
group_438 9.18E-06 -0.108 0.0242 AZM phosphoribosylaminoimidazole carboxylase ATPase subunit
group_451 2.42E-08 0.419 0.0745 CRO Protein rnfH
group_451 4.11E-09 0.472 0.0796 PEN Protein rnfH
group_451 2.42E-08 0.419 0.0745 CFM Protein rnfH
group_464 2.22E-08 0.178 0.0316 PEN ABC transporter ATP-binding protein
group_914 9.62E-07 0.0566 0.0115 CIP phage repressor phage associated protein
group_945 4.82E-07 0.319 0.063 PEN ABC transporter permease amino acid
porB 1.63E-06 -0.152 0.0316 PEN major outer membrane protein porin P.IB; P.I
rplW 1.53E-08 -0.327 0.0574 AZM 50S ribosomal protein L23

Supplementary Table 2: Significant pan-GWAS results for antibiotic resistance in the EuroGASP collection
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variant af filter-pvalue lrt-pvalue beta beta-std-err variant_h2 antibiotic
metG-group_1858-pilE_1_pilE_pilE_3_pilS5_pilS2_1_pilE_2 0.0398 1.79E-09 4.85E-45 -0.36 0.0244 0.415 CIP
group_946-group_1499-group_1846 0.0133 0.0379 5.08E-45 0.317 0.0215 0.415 TET
hemC-group_1846-group_1499 0.0133 0.0379 5.08E-45 0.317 0.0215 0.415 TET
group_1056-group_1846-pepN 0.0218 7.10E-35 3.75E-43 -0.377 0.0261 0.406 TET
group_885-group_1826-group_1827 0.0275 1.13E-45 7.11E-43 -0.273 0.019 0.405 TET
group_143-group_933-group_1118 0.0133 2.26E-10 2.84E-39 0.31 0.0226 0.388 TET
group_212-group_592-group_1675 0.0199 2.62E-31 1.90E-31 -0.256 0.0212 0.348 TET
group_644-group_801-group_505 0.0256 4.65E-42 5.58E-29 -0.257 0.0223 0.335 TET
group_1236-group_1556-group_1237 0.0598 8.52E-07 1.83E-28 0.23 0.0202 0.332 TET
group_505-group_1775-group_1232 0.0247 2.95E-40 4.42E-27 -0.251 0.0227 0.323 TET
group_1775-group_505-group_801 0.0237 1.85E-38 1.11E-23 -0.231 0.0225 0.302 TET
group_238-group_1556-group_1236 0.0949 3.87E-42 1.83E-22 -0.189 0.019 0.294 TET
group_936-group_885-group_1826 0.102 1.26E-19 3.17E-22 -0.121 0.0122 0.292 TET
group_1367-group_1237-group_1556 0.0294 0.76 1.11E-21 0.206 0.0211 0.289 TET
group_1824-group_164-group_1899 0.0123 0.0199 1.53E-20 0.176 0.0185 0.281 CIP
group_1229-group_1118-group_933 0.0218 6.11E-25 3.74E-20 0.183 0.0195 0.278 TET
group_936-group_885-group_1827 0.0417 0.971 6.45E-19 0.123 0.0136 0.269 TET
group_1335-group_1794-group_1099 0.018 0.00505 2.90E-18 0.358 0.0403 0.264 CRO
group_1720-group_75-group_1901 0.0503 7.80E-79 1.96E-17 -0.258 0.0299 0.258 SMX
group_1367-group_238-group_1556 0.102 4.08E-50 1.51E-16 -0.142 0.0169 0.251 TET
group_1393-group_1795-group_1690 0.0104 0.00778 4.41E-16 0.204 0.0247 0.247 TET
group_1032-group_1894-group_1051 0.0123 0.226 7.84E-16 0.145 0.0177 0.245 CIP
group_1630-ppsR-group_1489 0.0237 0.203 1.78E-15 -0.147 0.0182 0.242 CIP
ppsA-group_1489-ppsR 0.0237 0.203 1.78E-15 -0.147 0.0182 0.242 CIP
group_1332-group_1826-group_117 0.0114 0.0123 7.75E-15 -0.163 0.0206 0.236 CIP
rho-ppsA-group_1489 0.0247 0.145 9.58E-15 -0.14 0.0178 0.235 CIP
group_136-group_1367-group_1237 0.037 0.398 1.12E-14 0.136 0.0174 0.235 TET
group_68-group_64-group_37 0.0342 0.000752 1.25E-14 -0.126 0.0161 0.234 CIP
group_64-group_37-group_915 0.0342 0.000752 1.25E-14 -0.126 0.0161 0.234 CIP
group_1333-group_117-group_1826 0.0123 0.00691 1.92E-14 -0.157 0.0202 0.233 CIP
group_190-group_577-group_150 0.0294 0.377 2.73E-14 0.111 0.0144 0.231 TET
hemC-group_1846-pepN 0.0266 3.68E-17 6.23E-14 -0.141 0.0186 0.228 TET
rpsS-rplB-group_1157 0.829 7.48E-31 6.85E-14 0.575 0.0757 0.228 AZM
rpsS-rplB-rplW 0.171 7.48E-31 6.85E-14 -0.575 0.0757 0.228 AZM
group_676-mafB_mafB_2-group_1127 0.0266 0.000891 1.19E-13 0.675 0.0898 0.226 CRO
group_1895-group_493-group_1591 0.858 2.81E-35 1.91E-13 0.56 0.0752 0.224 AZM
group_702-group_1633-group_1869 0.0171 0.458 1.93E-13 0.142 0.019 0.224 TET
group_1051-group_460-group_1482 0.0104 0.0217 2.24E-13 0.128 0.0172 0.223 CIP
group_446-pepN-group_1846 0.0531 1.40E-10 1.20E-12 -0.107 0.0149 0.217 TET
group_972-group_1612-group_1829 0.0323 8.11E-07 1.36E-12 0.104 0.0145 0.216 CIP
group_563-group_303-group_1171 0.0218 9.75E-17 1.79E-12 -0.138 0.0193 0.215 TET
group_2008-group_1991-group_1972 0.135 1.55E-05 2.46E-12 -0.105 0.0148 0.214 TET
group_393-group_262-group_1171 0.0199 3.84E-16 4.36E-12 -0.141 0.0201 0.211 TET
group_303-group_1171-group_262 0.019 1.31E-14 6.45E-12 -0.142 0.0204 0.209 TET
group_1121-group_1531-group_1176 0.0228 0.458 8.01E-12 0.202 0.0292 0.209 AZM
group_255-group_841-group_1576 0.488 4.57E-82 8.19E-12 0.312 0.0451 0.208 PEN
metG-group_1576-group_841 0.488 4.57E-82 8.19E-12 0.312 0.0451 0.208 PEN
group_758-group_841-group_255 0.512 4.57E-82 8.19E-12 -0.312 0.0451 0.208 PEN
group_758-group_1576-metG 0.512 4.57E-82 8.19E-12 -0.312 0.0451 0.208 PEN
group_2024-group_1993-group_1985 0.14 1.43E-05 1.03E-11 -0.0985 0.0143 0.207 TET
rho-ppsA-ppsR 0.0285 0.00396 3.69E-11 0.0904 0.0135 0.202 CIP
group_1630-ppsR-ppsA 0.0285 0.00396 3.69E-11 0.0904 0.0135 0.202 CIP
dut-group_385-group_1465 0.0104 0.0225 4.32E-11 0.603 0.0906 0.201 CRO
group_1066-group_1531-group_1176 0.544 1.83E-09 4.49E-11 -0.173 0.026 0.201 AZM
group_1711-group_1694-group_1894 0.0266 1.94E-27 8.25E-11 -0.135 0.0205 0.198 TET
pyrG-group_1870-group_714 0.0304 0.74 1.07E-10 0.235 0.036 0.197 PEN
group_95-group_363-group_1224 0.0455 3.36E-10 1.12E-10 -0.311 0.0478 0.197 CIP
group_363-group_95-group_1299 0.0455 3.36E-10 1.12E-10 -0.311 0.0478 0.197 CIP
group_177-group_791-group_892 0.0152 7.03E-07 3.50E-10 -0.13 0.0205 0.192 TET
group_1066-group_1121-group_1558 0.97 0.327 4.70E-10 -0.162 0.0257 0.19 AZM
group_182-group_714-group_1870 0.0114 1.79E-12 8.68E-10 -0.154 0.0249 0.187 TET
group_1134-alaS-group_67 0.0304 0.00204 1.14E-09 0.0918 0.0149 0.186 TET
group_283-group_67-alaS 0.0304 0.00204 1.14E-09 0.0918 0.0149 0.186 TET
group_185-group_274-group_908 0.737 1.49E-08 1.42E-09 -0.0695 0.0114 0.185 CIP
group_2007-group_1985-group_1993 0.214 0.175 1.58E-09 -0.0818 0.0134 0.185 TET
group_1531-group_1121-group_1558 0.0275 0.637 1.60E-09 0.157 0.0258 0.184 AZM
group_1401-group_1332-group_1826 0.0161 0.343 1.92E-09 -0.0982 0.0162 0.184 CIP
group_1824-group_164-opaD_piiC 0.0332 0.0109 2.68E-09 -0.0883 0.0147 0.182 CIP
group_292-group_412-group_321 0.0342 2.07E-07 4.03E-09 0.143 0.024 0.18 AZM
group_1126-mafB_mafB_2-group_1136 0.315 1.17E-10 4.05E-09 0.205 0.0345 0.18 PEN
group_2026-group_2011-group_2005 0.225 0.201 7.69E-09 -0.0756 0.013 0.177 TET
group_1066-group_1531-group_1190 0.426 1.44E-11 7.80E-09 -0.183 0.0314 0.177 CRO
group_683-group_385-group_1738 0.0503 0.0135 8.26E-09 0.473 0.0815 0.176 CRO
group_1516-group_1056-group_1846 0.0152 1.77E-22 9.22E-09 -0.149 0.0257 0.176 TET
group_702-group_1633-group_1902 0.0209 0.00462 9.51E-09 0.0917 0.0158 0.176 CIP
ispH-lspA-group_1875 0.0588 0.000396 1.14E-08 0.106 0.0184 0.175 AZM
rplB-group_1157-rplD 0.824 1.14E-30 1.53E-08 0.327 0.0574 0.173 AZM
rplC-rplD-group_1157 0.824 1.14E-30 1.53E-08 0.327 0.0574 0.173 AZM
rplC-rplD-rplW 0.176 1.14E-30 1.53E-08 -0.327 0.0574 0.173 AZM
group_976-group_494-group_1552 0.278 7.66E-09 1.65E-08 -0.109 0.0192 0.173 AZM
group_494-group_1552-tbpA 0.278 7.66E-09 1.65E-08 -0.109 0.0192 0.173 AZM
pilS1_pilE_pilE_1_pilE1_pilS6_2_pilS5_pilS2_pilS6_pilS6_1_pilE_2_pilE_3-pilE_1_pilS6_pilE_pilE1-pilE_pilE_1_pilS6_pilE1_pilE_2 0.0408 0.432 2.87E-08 0.178 0.0317 0.17 CRO
pilS5_pilE_pilS2-pilE_1_pilE1_pilS6-pilS6_pilE_pilS2 0.0104 7.70E-11 3.06E-08 0.161 0.0288 0.17 TET
group_205-pyrG-group_1870 0.0361 0.734 3.16E-08 0.191 0.0343 0.169 PEN
group_903-group_1759-group_1716 0.0142 0.0115 3.39E-08 -0.177 0.0319 0.169 CRO
group_1404-group_321-group_412 0.038 1.37E-07 3.51E-08 0.126 0.0226 0.169 AZM
group_1751-group_1224-group_363 0.0465 1.84E-10 4.12E-08 -0.226 0.041 0.168 CIP
group_1951-group_46-group_886 0.0123 0.597 4.21E-08 -0.351 0.0636 0.168 PEN
group_451-group_714-group_1870 0.0218 0.136 4.52E-08 0.246 0.0446 0.167 PEN
group_1761-group_1801-group_1749 0.0664 6.69E-05 5.18E-08 -0.0652 0.0119 0.167 TET
group_1103-group_953-group_899 0.0152 0.00122 6.37E-08 0.16 0.0294 0.166 CIP
group_185-group_274-group_167 0.0408 9.82E-10 7.58E-08 0.0633 0.0117 0.165 CIP
group_536-group_940-group_252 0.0199 1.41E-21 8.45E-08 0.162 0.03 0.164 TET
group_940-group_252-group_757 0.0199 1.41E-21 8.45E-08 0.162 0.03 0.164 TET
group_1514-group_679-porB 0.229 5.98E-14 8.51E-08 -0.16 0.0296 0.164 PEN
lpxC-pilS5_pilE_2_pilS5_2_pilE_pilE1_pilE_1_pilE_4-group_1778 0.0133 0.00407 8.87E-08 0.133 0.0247 0.164 CRO
group_136-group_1367-group_238 0.166 5.32E-37 1.11E-07 -0.0617 0.0115 0.163 TET
ileS-group_1875-lspA 0.0408 0.0324 1.13E-07 0.116 0.0217 0.162 AZM
group_1126-mafB_mafB_2-group_1100 0.766 4.67E-24 1.21E-07 0.171 0.0321 0.162 PEN
group_976-group_494-group_1864 0.0787 5.06E-15 1.25E-07 0.101 0.019 0.162 AZM
group_1136-mafB_mafB_2-group_1127 0.0607 0.191 1.30E-07 0.247 0.0465 0.162 PEN
group_1265-group_1890-group_1901 0.0209 3.42E-06 1.39E-07 -0.367 0.0691 0.161 PEN
pip-opaD_piiC-group_164 0.0275 0.11 1.54E-07 -0.0839 0.0159 0.161 CIP
group_992-group_128-group_1602 0.018 3.33E-21 2.32E-07 0.158 0.0304 0.158 TET
group_1562-group_1190-group_1176 0.319 1.63E-09 2.53E-07 0.109 0.021 0.158 SMX
lpxC-pilS5_pilE_2_pilS5_2_pilE_pilE1_pilE_1_pilE_4-pilS5_pilE_pilS2 0.0142 0.0115 2.57E-07 0.123 0.0238 0.158 CRO
group_861-group_485-group_935 0.0266 3.94E-05 2.91E-07 0.0586 0.0113 0.157 CIP
group_1541-group_68-group_914 0.108 2.47E-14 3.67E-07 -0.0443 0.00866 0.156 TET
group_68-group_914-group_37 0.108 2.47E-14 3.67E-07 -0.0443 0.00866 0.156 TET
group_1374-pilE1_pilE_1_pilE__pilE_2_pilS3_pilS6-pilS5_pilE_2_pilS5_2_pilE_pilE1_pilE_1_pilE_4 0.0427 0.000119 4.00E-07 0.105 0.0206 0.155 TET
group_914-group_37-group_915 0.694 5.88E-10 4.11E-07 0.0588 0.0115 0.155 CIP
group_495-ileS-group_1875 0.0636 0.000141 4.79E-07 0.104 0.0205 0.154 AZM
group_1613-group_504-group_412 0.0114 0.0924 5.28E-07 -0.259 0.0513 0.154 AZM
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variant af filter-pvalue lrt-pvalue beta beta-std-err variant_h2 antibiotic
group_303-group_1450-group_262 0.0142 1.14E-05 6.64E-07 -0.113 0.0226 0.152 TET
group_1131-group_795-group_1138 0.743 0.123 6.87E-07 0.322 0.0645 0.152 CRO
group_771-group_1002-group_1138 0.743 0.123 6.87E-07 0.322 0.0645 0.152 CRO
group_1002-group_795-group_1131 0.257 0.123 6.87E-07 -0.322 0.0645 0.152 CRO
group_771-group_1002-group_795 0.257 0.123 6.87E-07 -0.322 0.0645 0.152 CRO
group_1986-group_1998-group_2014 0.22 0.155 7.61E-07 -0.0673 0.0135 0.152 TET
group_1570-group_1673-group_668 0.0133 0.0188 9.18E-07 0.0905 0.0183 0.151 CIP
group_1821-group_1622-group_1145 0.018 2.29E-24 9.75E-07 0.118 0.024 0.15 TET
pilS1-pilS1_pilE_pilE_1_pilE1_pilS6_2_pilS5_pilS2_pilS6_pilS6_1_pilE_2_pilE_3-pilE_1_pilS6_pilE_pilE1 0.0104 0.324 9.80E-07 0.331 0.0673 0.15 PEN
group_1329-group_1882-group_1779 0.0342 6.56E-27 1.02E-06 0.0822 0.0167 0.15 TET
group_945-group_1522-group_816 0.952 2.05E-07 1.07E-06 0.301 0.0613 0.15 PEN
coaD-group_1369-group_1909 0.0493 3.17E-08 1.14E-06 0.102 0.0208 0.149 AZM
group_1514-group_679-group_464 0.763 3.19E-12 1.15E-06 0.157 0.032 0.149 PEN
group_447-group_1761-group_1801 0.0674 4.34E-08 1.20E-06 0.0616 0.0126 0.149 TET
group_484-group_956-group_829 0.0503 3.22E-10 1.41E-06 -0.0827 0.017 0.148 TET
rpoD-group_528-group_1522 0.0446 8.89E-10 1.54E-06 -0.402 0.0831 0.147 PEN
group_816-group_1522-group_528 0.0446 8.89E-10 1.54E-06 -0.402 0.0831 0.147 PEN
tbpA-group_1552-group_1864 0.0417 1.51E-08 1.62E-06 0.111 0.0231 0.147 AZM
group_494-group_1864-group_1552 0.0417 1.51E-08 1.62E-06 0.111 0.0231 0.147 AZM
group_947-group_1749-group_1801 0.0835 5.84E-07 1.70E-06 -0.059 0.0123 0.147 TET
group_1596-group_1720-group_75 0.0427 3.75E-55 1.89E-06 -0.11 0.0229 0.146 SMX
group_393-group_262-group_1450 0.0152 3.16E-05 1.94E-06 -0.104 0.0217 0.146 TET
group_171-group_1672-group_1229 0.107 3.42E-27 2.43E-06 0.228 0.048 0.145 CRO
group_1126-mafB_mafB_2-group_1187 0.756 4.03E-17 2.46E-06 0.131 0.0277 0.145 PEN

Supplementary Table 3: Significant sv-pan-GWAS results for antibiotic resistance in the EuroGASP collection
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Supplementary Figure 1: A comparison of the pipelines used by different pangenome analysis tools.
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Supplementary Figure 2: Inferred parameters for the Finitely Many Genes model for each of the 51 clusters of the global pneumococcal sequencing project for which reliable
dated phylogenies could be inferred. The log odds ratio of invasive disease, number of unique serotypes and recombination rate given in (21) are also plotted for each cluster.
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DRAFTSupplementary Figure 3: Multi Dimensional Scaling (MDS) plot of pairwise mash distances between isolates in the global K. penumoniae dataset. This plot is produced by
the Panaroo quality control script.

Supplementary Figure 4: Boxplot produced by the Panaroo quality control script indicating the number of contigs in each of the K. pneumoniae assemblies.

18 | bioRχiv Tonkin-Hill et al. | Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.28.922989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922989
http://creativecommons.org/licenses/by/4.0/


DRAFT

Supplementary Figure 5: Boxplot produced by the Panaroo quality control script indicating the number of gene annotations in each of the K. pneumoniae assemblies.
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