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S1 Supplementary Figures and Tables
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Figure S1.1: Distribution of trout captures over calendar months for the time period 1966 - 2016. Grey
= trout captured alive in the fish ladder (marking and recapture events), black = trout captured and
reported dead by fishers.
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Figure S1.11: Posterior distributions of baseline harvest / background mortality hazard rates (above-dam
spawners) and ladder usage probabilities of wild-hatched (grey) and stocked (blue) trout.
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Figure S1.12: Time variation in a) survival probability and b) total mortality hazard rate of above-dam
spawners. Lines represent the median predictions, ribbons indicate 95% credibility intervals.
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S2 Hierarchical Model using Custom Likelihood Distribution

We used the nimble package (de Valpine et al. 2017, NIMBLE Development Team 2018) for R for speci-

fying the hierarchical model, and model fitting via MCMC. NIMBLE provides a great deal of algorithmic

and modeling flexibility, including a possibility to define custom distributions for use in the hierarchical

model specifications. Here, we take advantage of this possibility to greatly reduce the the prohibitively

long MCMC runtimes of analysis of our large mark-recapture-recovery dataset (which can not be sum-

marized into reduced data representations such as “m-arrays” due to the individual size covariate in the

model).

In particular, we define a custom distribution dtroutDHMM, the name suggesting its use in a discrete

hidden Markov model, to exactly calculate the likelihood of each capture history, conditional on values of

the model parameters. Doing so allows removing a over 6,000 latent states (representing the true state

of individuals at each sampling occasion) from the hierarchical model, and thus reduces the dimension of

the posterior distribution (and equivalently the MCMC sampling problem) by that same number. This

also serves to improve the MCMC mixing of the remaining posterior dimensions, as it no longer relies

on MCMC integration over the nuisance dimensions. Specifically, for model parameters θ and capture

histories y = {y1, . . . , yn}, the posterior distribution is updated according to:

p(θ|y) ∝ p(θ)
n∏
i=1

p(yi|θ),

where the likelihood p(yi|θ) of capture history yi is calculated using the custom likelihood function, and

p(θ) is the prior specification. Our implementation extends that of Turek et al. (2016) by incorporating

individual-specific covariates (in this case, body length) into the likelihood calculation. In addition,

to further speed up computation time, our custom implementation strictly uses one-dimensional linear

calculations in lieu of the matrix operations used in Turek et al. (2016). This forgoes the need to construct

multi-dimensional arrays for storing state transition and observation probabilities, which were found to

be prohibitively large.

The reductions in the model structure made by the dtroutDHMM distribution come with added compu-

tational expense of the exact likelihood calculation, which involves a discrete summation over the possible

latent state values. But as we see, this added computation is dwarfed by the gains realized from smaller
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memory demands and improved mixing of the resulting MCMC.

In this section, we first present the gains realized through use of this custom distribution, and then

provide the definition and details of the custom dtroutDHMM distribution.

S2.1 Comparison of Hierarchical Model Performance

We first present performance comparisons between three different implementations of the hierarchical

model. The three implementations differ in the underlying software and representation of the model, but

are identical in their inferences for the biological parameters of interest.

The first model, denoted “jags LS” is a latent state formulation of the model specified using the jags

package (Plummer 2003) for R. This formulation contains over 60,000 latent variables representing the

true, unknown state of each individual on each relevant time period.

The second model, denoted “nimble LS”, is a porting of this same latent state representation into

NIMBLE, a more flexible and faster platform for hierarchical models and MCMC.

The third and final version, “nimble DHMM”, is constructed using NIMBLE, and makes use of the

custom dtroutDHMM distribution to directly calculate model likelihoods, thus removing the over 60,000

latent states from the model. This version of the model leaves only the top-level model parameters (inter-

cept, slope, and variance parameters) to undergo MCMC sampling. We note that this represents a 99.9%

reduction in the dimension of the MCMC sampling problem, albeit incurring additional computational

costs for the exact evaluation of the model likelihood.

MCMC sampling efficiency

Use of the custom dtroutDHMM distribution dramatically speeds up MCMC mixing of the remaining model

parameters. This is because the mixing of the top-level parameters is no longer hampered by potentially

slow mixing of the massive number of latent states. Removing the latent states from the model, the

top-level parameters are able to mix freely, as we are “only” exploring the n-dimensional space of the

posterior distribution (where n = number of top parameters).

As discussed, these gains in mixing come at the cost of a higher computational burden of the likelihood

evaluations. Thus, our measure of MCMC “efficiency” takes into account both MCMC mixing as well

as the associated computational requirement. We define the efficiency of MCMC sampling as the rate of

generating effectively independent posterior samples (Turek et al. 2017). Thus, efficiency is calculated as
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the posterior effective sample size (ESS) divided by the MCMC runtime (measured in seconds), and has

units of effectively independent posterior samples per second.

This efficiency can be calculated independently for each posterior dimension. We generally consider

an MCMC to only be as good as its slowest mixing dimension, and thus consider the minimum effi-

ciency across all model parameters. That said, the mean efficiency (across model parameters) is also

an interesting metric to consider, as well as the distribution of sampling efficiencies across all model

parameters.

Figure S2.1 compares the sampling efficiencies across all top-level parameters for each model formu-

lation (run on simulated data1). Focusing on the minimum efficiency across parameters, we see a 6-fold

increase using the “nimble LS” model as compared to jags, and a 32-fold increase through use of the

custom distribution “nimble DHMM” formulation of the model.
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Figure S2.1: Sampling efficiencies for top-level model parameters resulting from the three different model
formulations (run on simulated data). Minimum efficiency across all model parameters (left), mean
efficiency across model parameters (center), and boxplots showing the distribution of efficiency values for
all parameters (right).

1 We simulated capture histories assuming similar top-level parameter values as obtained from model runs on real data and
ignoring effects of hatchery origin. We further used a simpler model for reporting rate in the simulations. This model assumed
five time periods, in each of which r was allowed to vary around a period-specific mean: logit(rt) = logit(µrperiod) + εrt . We

chose this model for testing the custom distribution for convenience, because runtimes are considerably longer when using
the autocorrelated reporting rate model instead.
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As an alternate view of the same data, Figure S2.2 separates the model parameters into natural

groupings of structurally-similar parameters, and presents the progression of sampling efficiency of each

parameter resulting from each model formulation.

We universally observe increases in sampling efficiency through use of NIMBLE and the custom

dtroutDHMM distribution, the improvement of the latter being most pronounced for the covariate effects

on mortality and ladder usage.
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Figure S2.2: MCMC sampling efficiencies for model parameters under each model formulation (run on
simulated data), grouped by the structural nature of the parameters. Parameters are named as written in
code and defined in section S2.2. There are five period-specific mean reporting rate parameters resulting
from the use of an alternative reporting rate model for simulating data and testing MCMC efficiency1.

Model build and compilation time

Unlike jags, NIMBLE separates the steps of (a) building the hierarchical model object, (b) compilation

to C++, and (c) MCMC execution. For the comparisons of MCMC efficiency presented above, we only

considered the final step of MCMC execution. However, for the NIMBLE versions of the model we can

also monitor the model build and compilation times, and report the additional savings form using the

custom dtroutDHMM distribution form of the model.

Broadly, “model building” consists of parsing and processing the BUGS code representation of the

17



model, constructing an equivalent directed acyclic graph object with functions for node density calcula-

tions and random simulation, and instantiating and populating data structures for storing the values of

model parameters, latent states, and data. The “compilation” step consists of dynamically generating

equivalent C++ code to represent the functions and data structures within the model and MCMC, in-

voking a C++ compiler to (on-the-fly) compile this dynamically generated code, linking this compiled

library into the current R session, and instantiating compiled objects using the linked library. For large

models, as here, these steps are non-trivial.

Table S2.1 presents the wall-clock time requirements for model building and compilation, using the

two different NIMBLE formulations of the model: the “nimble LS” model including latent states, and

the “nimble DHMM” model making use of the custom dtroutDHMM distribution. Through use of the

custom distribution DHMM model, we observe a 370-fold reduction in model building time, and a 12-fold

reduction in compilation time. These savings are noteworthy, as this represents a reduction by more than

7 hours in terms of actual wall-clock time.

Table S2.1: Absolute and relative amounts of time required by nimble to build (with and without
checking calculations) and compile the model with either the latent state or custom hidden Markov
distribution (DHMM) formulation.

Latent State DHMM Fold-increase with DHMM

hours minutes hours minutes

Model Building 7.252 435.131 0.020 1.178 369.519

Compilation 0.187 11.237 0.016 0.946 11.879

Memory usage

Finally, use of the custom dtroutDHMM distribution also provides a huge reduction in the memory demands

of the MCMC. This is a result of the large multi-dimensional data structures required by the latent state

formulation of the model, which are not needed or constructed in the DHMM formulation.

The maximal memory usage during the latent state MCMC reached 13.17 GB. In contrast, the MCMC

using the DHMM formulation of the model had a maximal memory usage of 1.23 GB, representing a 93%

reduction in (maximal) memory usage. Most importantly, this reduction brings the MCMC sampling

problem into the realm of tractability for many local computing platforms, as 13 GB of RAM is in excess

of the memory available on many laptop or desktop computers.

18



All analyses presented in this section were run under OSX (version 10.14.2), using a 3.3 GHz Intel

Core i5 processor, and with 32 GB of memory.

S2.2 Specification of Custom dtroutDHMM Likelihood Distribution

Now we present the definition of the custom dtroutDHMM distribution, as used in the “nimble DHMM”

formulation of the model.

This distribution is defined as a nimbleFunction, following particular conventions to allow the distri-

bution to be used in NIMBLE model code, and to pass through the NIMBLE compiler. See the NIMBLE

User Manual2 for further details of writing custom distributions and other nimbleFunctions.

Following the nimbleFunction definition of the custom dtroutDHMM distribution, we provide an item-

ized description of the distribution’s arguments, and intermediate variables used in the calculation of the

model likelihood.

dtroutDHMM <- nimble::nimbleFunction(

run = function(

## argument type declarations

x = double(1), length = double(), origin = double(),

mu.mH1 = double(), mu.mO1 = double(), mu.mO2 = double(), mu.p = double(),

beta1.mO1 = double(), beta1.mO2 = double(), beta2.mO1 = double(), beta2.mO2 = double(),

betaS.mO = double(), beta2.mH1 = double(), beta4.mH1 = double(), betaS.mH = double(),

beta1.p = double(), beta2.p = double(),

beta3.p = double(), beta4.p = double(), betaS.p = double(), size = double(1),

epsilon.mH = double(1), epsilon.mO = double(1), epsilon.p = double(1),

discF = double(1), discS = double(1), r = double(1), log = double()) {

## calculate background and harvest mortality hazard rates,

## ladder usage probability, and survival probabilities

mH1 <- exp(mu.mH1 + betaS.mH*origin + beta2.mH1*size + beta4.mH1*size^2 + epsilon.mH)

mO1 <- exp(mu.mO1 + betaS.mO*origin + beta1.mO1*discF + beta2.mO1*size + epsilon.mO)

mO2 <- exp(mu.mO2 + betaS.mO*origin + beta1.mO2*discF + beta2.mO2*size + epsilon.mO)

p <- expit(mu.p + betaS.p*origin + beta1.p*discS + beta2.p*size + beta3.p*discS*size +

beta4.p*size^2 + epsilon.p)

S1 <- exp(-(mH1 + mO1))

alpha1 <- mH1 / (mH1 + mO1)

S2 <- exp(-(mH1 + mO2))

alpha2 <- mH1 / (mH1 + mO2)

logL <- 0 ## initialize log-likelihood

pi <- numeric(4, init = FALSE)

pi[1] <- S1[1]*p[2] ## calculate probability of each

pi[2] <- S1[1]*(1-p[2]) ## unobserved state, conditional

pi[3] <- (1-S1[1])*alpha1[1] ## on first observation of spawning

pi[4] <- (1-S1[1])*(1-alpha1[1])

for(t in 2:length) { ## iterate over remaining observations

Zpi <- pi

if(x[t] == 1) { Zpi[2] <- 0 ## observed and seen alive:

Zpi[3] <- 0 ## update conditional distribution of unobserved

Zpi[4] <- 0 } ## states, given this observation

if(x[t] == 2) { Zpi[1] <- 0 ## harvested and reported:

2https://r-nimble.org/html manual/cha-welcome-nimble.html
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Zpi[2] <- 0 ## update conditional distribution

Zpi[3] <- pi[3] * r[t]

Zpi[4] <- 0 }

if(x[t] == 3) { Zpi[1] <- 0 ## not seen or reported

Zpi[3] <- pi[3] * (1-r[t]) }

sumZpi <- sum(Zpi)

logL <- logL + log(sumZpi) ## log-likelihood contribution of observed state

if(t != length) { ## distribution of unobserved state for next time period

pi[1] <- Zpi[1]*S1[t]*p[t+1] + Zpi[2]*S2[t]*p[t+1]

pi[2] <- Zpi[1]*S1[t]*(1-p[t+1]) + Zpi[2]*S2[t]*(1-p[t+1])

pi[3] <- Zpi[1]*(1-S1[t])*alpha1[t] + Zpi[2]*(1-S2[t])*alpha2[t]

pi[4] <- Zpi[1]*(1-S1[t])*(1-alpha1[t]) + Zpi[2]*(1-S2[t])*(1-alpha2[t])+Zpi[3]+Zpi[4]

pi <- pi / sumZpi ## normalize

}

}

returnType(double())

if(log) return(logL) else return(exp(logL)) ## return log-likelihood

}

)
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Description of the dtroutDHMM distribution’s arguments and intermediate variables with all vectors

and vector arguments pertaining to a given individual:

x Vector argument containing the observed capture history data
length The length of the capture history
mu.mH1 Baseline harvest mortality hazard rate on the log scale
mu.mO1 Baseline above-dam background mortality hazard rate on the log scale
mu.mO2 Baseline below-dam background mortality hazard rateon the log scale
mu.p Baseline ladder usage probability on the logit scale
beta1.mO1 Log-linear discharge effect on above-dam background mortality hazard rate
beta1.mO2 Log-linear discharge effect on below-dam background mortality hazard rate
beta2.mO1 Log-linear size effect on above-dam background mortality hazard rate
betaS.mO Stocking effect on log background mortality hazard rate
beta2.mO2 Log-linear size effect on below-dam, background mortality hazard rate
beta2.mH1 Log-linear size effect on harvest mortality hazard rate
beta4.mH1 Log-quadratic size effect on harvest mortality hazard rate
betaS.mH Stocking effect on log harvest mortality hazard rate
beta1.p Logit-linear discharge effect on ladder usage probability
beta2.p Logit-linear size effect on ladder usage probability
beta3.p Logit-interactive discharge and size effect on ladder usage probability
beta4.p Logit-quadratic size effect on ladder usage probability
betaS.p Stocking effect on logit ladder usage probability
size Vector argument containing standardized body sizes
epsilon.mH Vector argument containing the random effects on harvest mortality hazard rates (log scale)
epsilon.mO Vector argument containing the random effects on background mortality hazard rates (log scale)
epsilon.p Vector argument containing the random effects on ladder usage probabilities (logit scale)
discF Vector argument containing standardized fall discharge values
discS Vector argument containing standardized summer discharge values
r Vector argument containing reporting rates
log Logical argument specifying whether the log of the likelihood should be returned
mH1 Vector containing harvest mortality hazard ratesl
mO1 Vector containing above-dam background mortality hazard rates
mO2 Vector containing below-dam background mortality hazard rates
p Vector containing ladder usage probabilities
S1 Vector containing above-dam survival probabilities
alpha1 Vector containing above-dam ratio of harvest- to total mortality hazard rate
S2 Vector containing below-dam survival probabilities
alpha2 Vector containing below-dam ratio of harvest- to total mortality hazard rate
logL Variable to store the log-likelihood of the observed capture history
pi Probabilities of each latent state, conditioned on preceding observations
Zpi Probability of current observed capture, conditioned on each possible latent state
sumZpi Marginal probability of current observed capture, or the likelihood of one observation
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S2.3 Model Specification with Custom dtroutDHMM Likelihood Distribution

The complete NIMBLE code giving the hierarchical model specification is provided in the supplementary

file nimbleDHMM.R. Below, we provide an itemized description of additional parameters and data objects

appearing in the model specification within the complete code. Names flagged with even or odd in the

code indicate parameters and data objects belonging to the analysis of even- and odd-year spawners

respectively and are not described separately.

Mu.mH1 Baseline harvest mortality hazard rate
Mu.mO1 Baseline above-dam background mortality hazard rate
Mu.mO2 Baseline below-dam background mortality hazard rate
Mu.p Baseline ladder usage probability
Mu.r1 Reporting rate over the first time period
sigma.mH Standard deviation of random time effects on harvest mortality hazard rates (log scale)
sigma.mO Standard deviation of random time effects on background mortality hazard rates (log scale)
sigma.p Standard deviation of random time effects on ladder usage probability (logit scale)
sigma.r Standard deviation of random time effects on reporting rate (logit scale)

y Matrix of capture histories
period Vector of time periods (1-5) for all time intervals
nind Total number of individuals
n.occasions Total number of capture occasions (= time steps)
first Vector of first capture occasions (marking events) of all individuals
last Vector of last analysis occasion of all individuals
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S3 Model Identifiability

In some models it is not possible to uniquely estimate every parameter regardless of the amount and

quality of data. This issue is due to intrinsic non-identifiability of the parameters. In some models it may

be obvious that parameters are non-identifiable. For example, in an occupancy model with a single visit

per season parameters representing detection and occupancy only ever appear in the model as a product

(MacKenzie et al. 2005). A unique parameter estimate exists only for the product of the two parameters,

the individual parameters have multiple parameter estimates. However in many models, such as the

multi-state capture-recapture models in this paper, it is not obvious whether or not the parameters are

identifiable. In Section S3.1 we discuss the methods used to investigate non-identifiability. Results of

identifiability tests are presented in Section S3.2.

S3.1 Methods for Investigating Intrinsic Non-Identifiability

We can investigate intrinsic identifiability using symbolic algebra (Cole et al. 2010). This involves using a

symbolic algebra package (Cacthpole et al. 2002), and here we used Maple. First we consider an exhaustive

summary of a model, which is a vector of parameter combinations that provide a unique representation

of that model. For the here presented mark-recapture-recovery model for trout, the probabilities of each

possible capture history for any individual fish form an exhaustive summary. There are three possible

observations at each time point (where a time point here is every two years): the fish is caught alive in

the fish ladder, represented by 1, the fish is caught and reported dead by a fisher, represented by 2 and

the fish is not seen, represented by 3. A possible history for 5 years of study is h = 13112, where the fish

is first caught in the dam at time 1, is not caught at time 2, and then is caught in the dam at times 3

and 4 and finally caught dead by a fisher at time 5. For constant parameters this history has probability

Pr(h = 13112) = S2
1(1− p1)S2p2p1(1− S1)α1r.

where Sn (e(−(m
H+mO

n ))) is the survival probability of state n (1 = above-dam spawners, 2 = below-dam

spawners), pn the ladder usage probability of state n, and αn the ratio of harvest- to total mortality

( mH

mH+mO
n

) of state n. The exhaustive summary consisting of all possible histories is then

κ =



Pr(h = 11111)

Pr(h = 31111)

Pr(h = 13111)

...

Pr(h = 13112)

...


=



S4
1p

4
1

S3
1p

3
1

S3
1S2p

2
1(1− p1)p2

...

s21(1− p1)S2p2p1(1− S1)α1r

...


.
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The full exhaustive summary can be found in the Maple file constant.mw.

We can test whether a model is non-identifiable using the symbolic method, which involves forming a

derivative matrix by differentiating each term in the exhaustive summary with respect to each parameter.

If the rank of the derivative matrix is less than the number of parameters, the model is non-identifiable. If

the rank of the derivative matrix is equal to the number of parameters then the model is identifiable. The

deficiency of a model is the difference between the number of parameters and the rank. An identifiable

model has deficiency 0; a non-identifiable model has deficiency greater than 0 (Cole et al. 2010).

This symbolic method is demonstrated for the exhaustive summary above in the Maple file constant.mw.

There are 6 top-level parameters: mH ,mO
1 ,m

O
2 , p1, p2, r. However the rank of the derivative matrix is

5, so this model is non-identifiable. The deficiency of this model is 6 − 5 = 1. The Maple code also

provides information on which parameters are confounded. Specifically, we obtain a reparameterization

of the model in terms of parameter combinations which result in an identifiable model. In this simple

case, the estimable parameter combinations are: rmH , mH +mO
1 , mH +mO

2 , p1, p2.

For more complex models Maple runs out of memory calculating the rank of the derivative matrix

(Jiang et al. 2007, Hunter and Caswell 2009, Cole and Morgan 2010a, Cole 2012). It is possible to use

a numerical method instead (see Jiang et al. 2007, for example), however this can give the wrong result

about identifiability (Cole and Morgan 2010a). Alternatively a hybrid symbolic-numerical method can

be used (Choquet and Cole 2012) or the symbolic method can be extended by finding simpler exhaustive

summaries (Cole et al. 2010). Here we use both of these approaches, which are described below.

The hybrid symbolic-numerical method involves finding the exact derivative matrix, but then evaluat-

ing the rank of the derivative matrix at random points in the parameter space; Choquet and Cole (2012)

recommend 5 sets of random points. The maximum of the 5 ranks is the rank for the model. For the

constant model above the Maple code constant.mw also demonstrates how the hybrid symbolic-numerical

method is applied. In this case all 5 random points in the parameter space have a rank of 5. This again

leads to a deficiency of 1 and shows that the model is non-identifiable.

Alternatively, a simpler exhaustive summary can be found by reparameterising the original exhaustive

summary. The method is explained in Cole et al. (2010) and Cole (2012). Suppose that for this model

the transition matrix has entries ψj,k,t at time points t = 1, ..., T for j = 1, 2 and k = 1, 2, 3, 4 (where

j = state[t] and k = state[t+1]). Note that ψj,4,t = 1 − ψj,1,t − ψj,2,t − ψj,3,t. In the Maple code
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simplerexproof.mw we show that a simpler exhaustive summary consists of the terms:

ψ1,1,t for t = 1, . . . , T − 1

ψ1,2,t−1ψ2,1,t for t = 2, . . . , T − 1

ψ1,3,trt+1 for t = 1, . . . , T − 1

ψ1,2,t−1ψ2,3,t

ψ1,3,t
for t = 2, . . . , T − 1

ψ1,2,t−1ψ2,2,t

ψ1,2,t
for t = 2, . . . , T − 1

The models we consider include covariates and random effects. In some cases identifiability results

for models with covariates can be deduced from equivalents models without covariates (Cole and Morgan

2010b), however in this case it is simpler to use the simpler exhaustive summary directly. For time

varying covariates, such as the average discharge during the fall when trout are expected to migrate

downriver, this just involves changing the exhaustive summary terms to the form involving covariates.

For individual covariates, such as the individual body size at spawning, each individual adds a new

exhaustive summary term to the original exhaustive summary involving probabilities of each capture

history. However to obtain general results it is sufficient to use the simpler exhaustive summary repeated

2 times, with different covariate values on each repeat.

For example, suppose harvest mortality (mH) depends on individual covariate xi,t, background mor-

tality (mO
n ) depends on on individual covariate xi,t and time dependent covariate yt, the probability of

using a fish ladder (p) is dependent on individual covariate xi,t and time dependent covariate zt and the

reporting probability (r) is constant. When T = 5 we show in Maple code covariates.mw that the model

has rank 11, but there are 12 parameters, therefore the model has deficiency 1 and is not identifiable.

Similarly methods can be extended for models with random effects (Janzen et al. 2016; 2017). An

exhaustive summary for models with random effects consists of the probabilities of each history conditional

on the random effects, Pr(h = |b), and the probability density function of the random effects f(b), where

b represents the random effects. This can be simplified to the simpler exhaustive summary described

above conditional on the random effects with the addition of f(b). Using the extension Theorem from

Cole et al. (2010) we can consider this in two parts. First we consider the conditional simpler exhaustive

summary. In the Maple code randomeffects.mw we consider the same example as above but with time

varying random effects on (mH). The conditional simpler exhaustive summary results in a derivative

matrix with rank 12. Then we consider f(b), but because there is only one parameter. When only one

parameter is added Cole et al. (2010) show that the extension Theorem application is trivial, as the rank

of the required derivative matrix would always be 1. This is the case for the rank of the derivative matrix

for f(b). The rank for the whole model would then be 12 + 1 = 13, and as there are 13 parameters the

deficiency is 0 and the model thus identifiable.
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S3.2 Intrinsic Identifiability Results

Table S3.1 gives the identifiability results for a selection of relevant models. We consider models where the

harvest mortality rate (mH) and the hazard mortality rate (mO) are constant, dependent on appropriate

covariates and dependent on random year effects. The reporting rate (r) is allowed to be constant or time

dependent. In Table S3.1 the probability of using the fish ladder (p) is always assumed to be dependent

on covariates, as there is no change in deficiency when the parameter is constant. We also consider

including random year effects on (p). There are three covariates used, one is an individual, time-varying

covariate (xi,t, representing body size), and two are time dependent covariates (yt and zt, representing

river discharge in the fall and summer respectively).

The results show that to ensure identifiability, either mH and mO
n need to depend on different covari-

ates or random effects have to be included on at least mH or r. This makes sense when considering the

combinations of parameters that were not separately estimable in the constant model: rmH , mH +mO
1 ,

mH + mO
2 . The parameter mH is contained in all three expressions; therefore, model identifiability is

conditional on separating out mH . Previous research has shown that in some cases, adding informa-

tion through covariates can separate out non-identifiable parameters (see, for example, Cole and Morgan

2010b, Royle et al. 2012). Here, adding a covariate to mH resulted in an identifiable model as long as this

covariate was not shared with the confounded mO
n parameters (column 5 in Table S3.1). Just like covari-

ates, random effects can also aid in achieving identifiability by adding more information on parameters.

For that reason, including random effects on mH results in identifiable models. Adding random effects

on r also allows separating mH , thus making models identifiable. Adding the same random effect on mO
1

and mO
2 , on the other hand, does not provide independent information on mH since mH is confounded

with both mO
1 and mO

2 in the same way.

26



T
ab

le
S

3.
1:

R
es

u
lt

s
of

id
en

ti
fi

ab
il

it
y

te
st

s
of

m
o
d

el
s

w
it

h
d

iff
er

en
t

co
va

ri
a
te

a
n

d
ra

n
d

o
m

eff
ec

t
st

ru
ct

u
re

s.
T

h
e

fi
rs

t
fo

u
r

co
lu

m
n

s
sp

ec
if

y
th

e
fi

x
ed

eff
ec

t
m

o
d

el
u

se
d

fo
r

re
p

or
ti

n
g

ra
te
r,

h
ar

ve
st

m
or

ta
li

ty
m
H

,
b

ac
k
gr

ou
n

d
m

o
rt

a
li

ty
m
O n

,
a
n

d
la

d
d

er
u

sa
g
e

p
ro

b
a
b

il
it

y
p
.
x
i,
t

re
p

re
se

n
ts

a
n

in
d

iv
id

u
a
l,

ti
m

e-
va

ry
in

g
co

va
ri

a
te

(e
.g

.
b

o
d
y

si
ze

)
an

d
y t

an
d
z t

re
p

re
se

n
t

tw
o

d
iff

er
en

t
ti

m
e-

va
ry

in
g

en
v
ir

o
n

m
en

ta
l

co
va

ri
a
te

s
(e

.g
.

d
is

ch
a
rg

e
d

u
ri

n
g

tw
o

se
a
so

n
s)

.
T

h
e

re
m

a
in

in
g

co
lu

m
n

s
sh

ow
th

e
d

efi
ci

en
cy

of
th

e
m

o
d

el
u

n
d

er
d

iff
er

en
t

ra
n

d
om

eff
ec

t
st

ru
ct

u
re

s.
D

efi
ci

en
cy

is
ca

lc
u

la
te

d
a
s

th
e

n
u

m
b

er
o
f

p
a
ra

m
et

er
s

m
in

u
s

th
e

ra
n

k
o
f

th
e

d
er

iv
a
ti

ve
m

a
tr

ix
(f

ou
n

d
u

si
n

g
th

e
h
y
b

ri
d

sy
m

b
ol

ic
n
u

m
er

ic
al

m
et

h
o
d

),
an

d
m

o
d

el
s

w
h

er
e

d
efi

ci
en

cy
>

0
a
re

n
o
t

id
en

ti
fi

a
b

le
.

D
e
fi

c
ie

n
c
y

r
m

H
m

O n
p

N
o

R
E

R
E

o
n
m

H
R

E
o
n
m

O n
R

E
o
n
m

H
&

m
O n

R
E

o
n
m

H
&

m
O n

&
p

R
E

o
n
r

t
x
i,
t

x
i,
t
,
y t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
x
i,
t

x
i,
t
,
y t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

t
x
i,
t

y t
x
i,
t+

1
,
z t

+
1

0
0

0
0

0
-

.
x
i,
t

y t
x
i,
t+

1
,
z t

+
1

0
0

0
0

0
0

t
x
i,
t

x
i,
t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
x
i,
t

x
i,
t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

t
x
i,
t

.
x
i,
t+

1
,
z t

+
1

0
0

0
0

0
-

.
x
i,
t

.
x
i,
t+

1
,
z t

+
1

0
0

0
0

0
0

t
.

x
i,
t
,
y t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
.

x
i,
t
,
y t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

t
.

y t
x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
.

y t
x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

t
.

x
i,
t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
.

x
i,
t

x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

t
.

.
x
i,
t+

1
,
z t

+
1

1
0

1
0

0
-

.
.

.
x
i,
t+

1
,
z t

+
1

1
0

1
0

0
0

27



S3.3 Testing for Weak Identifiability using Prior-Posterior Overlaps

In some cases, intrinsically identifiable models may be near-redundant, resulting in in parameter estimates

with low precision and large influence of prior selection in Bayesian implementations. Garrett and Zeger

(2000) investigate near-redundancy by examining the prior-posterior overlap. For latent class models

(Garrett and Zeger 2000) and capture-recapture models (Gimenez et al. 2009) an overlap of 35% is

commonly used to classify a model as weakly identifiable. In Figure S3.1 we display the prior-posterior

overlap of all main parameters in our model. The only parameter with an overlap clearly exceeding 35% is

r1, the reporting rate over the very first 2-year interval. Since we know that the parameter is intrinsically

identifiable (section S3.2) this indicates that the amount of data may be insufficient to precisely estimate

this parameter. We assessed whether this potential weak identifiability in the first reporting rate could

affect the estimation of the biological parameters in the model by comparing posterior distributions of

the model with autocorrelated rt to those obtained under the assumption of an alternative reporting

rate model. This alternative model, which assumed five period-specific mean reporting rates (µr1, µr2, µr3,

µr4, µr5) and random variation around those, did not show any sign of non-identifiability (prior-posterior

overlaps of all parameters ¡ 35%, Figure S3.2). Posterior distributions for biological parameters obtained

from both models were basically identical (Figure S3.3), illustrating that the potential weak identifiability

of the initial reporting rate r1 did not affect biological predictions here and was thus unproblematic.

We note that the reason why we find a weakly identifiable parameter in the model with autocorrelated

rt but not in the model with period-specific rt may well be related, again, to random effect. Intrinsic

identifiability analysis (above) showed that random effects on at least mH or r were prerequisite to

obtaining an identifiable model. Autocorrelative models are very flexible, and here this resulted in

lower residual variance (σr, Figure S3.3); as residual variance decreases, the random effects necessary for

identifiability will approach 0, which may then lead to the model becoming less identifiable.

28



0.0 0.5 1.0 1.5 2.0 2.5 3.0

µH

0.1752

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µ1
O

D
en

si
ty

0.1298

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µ2
O

D
en

si
ty

0.1975

0.0 0.2 0.4 0.6 0.8 1.0

µp

D
en

si
ty

0.173

0.0 0.2 0.4 0.6 0.8 1.0

r1

0.4403

−4 −2 0 2 4

βD, 1
O

D
en

si
ty

0.183

−4 −2 0 2 4

βD, 2
O

D
en

si
ty

0.1736

−2 −1 0 1 2

βD
p

D
en

si
ty

0.1353

−4 −2 0 2 4

βS
H

0.0174

−4 −2 0 2 4

βS, 1
O

D
en

si
ty

0.1362

−4 −2 0 2 4

βS, 2
O

D
en

si
ty

0.1972

−2 −1 0 1 2

βS
p

D
en

si
ty

0.1536

−2 −1 0 1 2

βDS
p

0.0788

−4 −2 0 2 4

βSS
H

D
en

si
ty

0.0145

−2 −1 0 1 2

βSS
p

D
en

si
ty

0.0792

−4 −2 0 2 4

βstock
H

D
en

si
ty

0.0356

−4 −2 0 2 4

βstock
O

0.1517

−4 −2 0 2 4

βstock
p

D
en

si
ty

0.0735

0 1 2 3 4 5

σH

D
en

si
ty

0.0564

0 1 2 3 4 5

σO

D
en

si
ty

0.3542

0 1 2 3 4 5

σp

0.1128

0 1 2 3 4 5

σr

D
en

si
ty

0.0612

Figure S3.1: Densities of prior (dashed black line) and posterior (solid red line) distributions for all
main parameters in the final model with autocorrelated reporting rates. The red numbers indicate the
proportion overlap between prior and posterior.
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Figure S3.2: Densities of prior (dashed black line) and posterior (solid red line) distributions for all main
parameters in the alternative model with period-specific mean reporting rates. The red numbers indicate
the proportion overlap between prior and posterior.
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S4 Posterior Predictive Checks

S4.1 Simulation of new data sets and extraction of test statistics

Assessing model fit using posterior predictive checks (PPCs) relies on the comparison of the real dataset

to replicate datasets generated from the joint posterior of a Bayesian model (Conn et al. 2018). We se-

lected 500 evenly spaced samples from our model’s joint posterior distributions and simulated 10 replicate

datasets for each of those 500 posterior samples (= 5000 simulated datasets). Specifically, we simulated

capture histories for each individual, assuming initial capture in the same year and at the same body size

as in the real data and calculating individual- and year-specific transition probabilities using the joint

posterior sample of model parameters. Effects of river discharge and individual body size on transition

probabilities were calculated using the same covariates employed during the model run. Random year

effects were not re-sampled for data simulation and we used posterior samples of the estimated random

effect levels to include among-year variation in predicted transition probabilities. Simulated datasets con-

sequently contained the same number of individuals and years (divided into even- and odd-year spawners)

as the real dataset.

We selected two general characteristics of our datasets for comparison: the number of individuals recap-

tured (both in the fish ladder and through harvest) and the size distribution of those individuals. When

further describing size distribution through mean, median, and standard deviation, this resulted in the

following eight general test statistics:

• Number of recaptures

• Mean size of recaptured individuals

• Median size of recaptured individuals

• Size standard deviation of recaptured individuals

• Number of harvests

• Mean size of harvested individuals

• Median size of harvested individuals

• Size standard deviation of harvested individuals

We then further specified these test statistics by separately considering distributions of marking size

(MarkSize) and recapture size (RecapSize) of recaptured/harvested individuals3, and evaluating all met-

3The rationale behind making this separation is that these two size metrics are influenced to a different degree by
assumptions about growth. Contrasting model fit in the context of the two metrics may thus give some insights into the
contribution of the growth model (Appendix S5) to overall model fit, or lack thereof. Note, however, that we evaluated
recapture size metrics only for ladder recaptures. We did not do so for harvests, since harvest usually takes place before an
individual has realized its full 2-year growth, and often within less than a year after spawning.
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rics at time t+ 1 (two years after marking) and at time t+ 2 (four years after marking). An overview of

the resulting 22 test statistics is provided in Table S4.1.

S4.2 Comparing real and simulated datasets

Following current recommendations (Conn et al. 2018), we used both visual tools and Bayesian p-values

to assess the fit of our model. Specifically, we plotted representations of our test statistics derived from

simulated datasets versus those derived from the real dataset, and calculated Bayesian p-values as the

proportion of test statistics derived from simulated datasets that were higher than the test statistics

derived from the real dataset. p-values surrounding 0.5 thus indicate good fit of the model to the data,

while p-values at the extremes (0 or 1) provide evidence for lack of model fit or non-uniform p-value

distribution (Besbeas and Morgan 2014). In the next section, we present the results of our model fit

assessment for test statistics related to recapture numbers and recapture size distributions, at the level

of the whole dataset and by marking cohort.

S4.3 Results: Model goodness-of-fit

PPCs indicated that overall and regarding the majority of evaluated test statistics, our model produced

a decent fit to the data. Of the 22 Bayesian p-values we calculated for test statistics across the entire

dataset, 16 (73%) fell between 0.1 and 0.9, and 13 (59%) fell between 0.2 and 0.8 (Table S4.1). p-Values

varied substantially across different marking cohorts, but when averaged over all cohorts fell between 0.37

and 0.59 (Figure S4.1).

Our model performed well when predicting the numbers of individuals recaptured two and four years

after marking (Figure S4.2a & b) and harvested within two years after marking (Figure S4.2c). For

harvest between two and four years after marking, however, the model had a tendency to overestimate

numbers (Figure S4.2d) when considering the whole dataset. The average of cohort-specific p-values, on

the other hand, was 0.52 (Figure S4.1f). A closer look at cohort-specific model fit and p-values (Figure

S4.3) revealed that overestimation of t+2 harvest numbers predominantly occurred in the first half of

the time series and was most severe for the very first few marking cohorts. The model frequently also

predicted lower than observed mean sizes (Table S4.1) for t+2 harvests, and investigating the entire

size distributions revealed that this was due to a marked absence of relatively small individuals in t+2

harvests in the real data (as opposed to simulation, Figure S4.4).

The observed marking and recapture size distributions all fit well within the limits of what the model

was able to predict (Figure S4.4), supporting an overall decent fit of the model also regarding size dy-

namics. Considering specific size metrics (and associated p-values) made some discrepancies between
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Table S4.1: The 22 evaluated test statistics including Bayesian p-values
calculated across entire datasets (all marking cohorts pooled).

Test statistic Capture type Size measure Time p-value
recapNo Recapture MarkSize t+1 0.2768
sizeMean Recapture MarkSize t+1 0.4818
sizeMedian Recapture MarkSize t+1 0.3846
sizeSD Recapture MarkSize t+1 0.0194
recapNo Recapture MarkSize t+2 0.4922
sizeMean Recapture MarkSize t+2 0.5182
sizeMedian Recapture MarkSize t+2 0.4760
sizeSD Recapture RecapSize t+2 0.5092
sizeMean Recapture RecapSize t+1 0.0002
sizeMedian Recapture RecapSize t+1 0.0000
sizeSD Recapture RecapSize t+1 0.6578
sizeMean Recapture RecapSize t+2 0.1866
sizeMedian Recapture RecapSize t+2 0.1658
sizeSD Recapture RecapSize t+2 0.9432
recapNo Harvest MarkSize t+1 0.2054
sizeMean Harvest MarkSize t+1 0.3236
sizeMedian Harvest MarkSize t+1 0.5564
sizeSD Harvest MarkSize t+1 0.8720
recapNo Harvest MarkSize t+2 0.9992
sizeMean Harvest MarkSize t+2 0.1418
sizeMedian Harvest MarkSize t+2 0.2040
sizeSD Harvest MarkSize t+2 0.9594

observed and predicted size distributions more obvious. Overall, the model performed well at predict-

ing mean and median sizes of recaptures and harvests (Figures S4.5 & S4.6, Table S4.1). However, it

consistently underestimated mean/median recapture size for recaptures four years after marking (t+2).

Investigating the corresponding predicted and observed size distribution (Figure S4.4d) revealed that the

main reason for the underestimation of mean/median size by the model lay in its failure to reproduce the

non-normality in the observed size distribution, which was characterised by a surprisingly low number

of relatively small individuals. Underestimation of mean/median size was also visible when considering

cohort-specific p-values (Figure S4.1c) and – similar to the mismatch of t+2 harvest numbers – appeared

to be largely driven by earlier years (Figure S4.7). Notably, the most extreme p-values in the beginning of

the time series came from years 1966, 1967, 1969, 1971, 1973, and 1975. With the exception of 1966, all of

these pertain to odd-year spawner, indicating that specific birth and/or spawning cohorts may contribute

disproportionately to lack of fit. Standard deviation of size distributions was clearly underestimated by

the model on some occasions (t+1 recapture marking size) and overestimated on others (t+2 recapture

recapture size, t+2 harvest marking sizes, Figure S4.8). However, considering the entire size distributions

(Figure S4.4) illustrated that over-/underestimation of size standard deviation by no means indicated se-

vere bias in overall predictions of size distributions in recaptures and harvests. Unlike above-mentioned

biases, the model’s ability to predict size standard deviation was not subject to any temporal patterns.
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Figure S4.1: Distributions of marking cohort-specific p-Values for all evaluated test statistics two (t+1,
left column) and four (t+2, right column) after marking.
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Figure S4.2: Distributions of the number of ladder recaptures and harvests two (t+1) and four years
(t+2) after marking across the entire simulated datasets (all marking cohorts pooled). Black line marks
the corresponding number recaptured/harvested in the real dataset.
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Figure S4.4: Distributions of marking size of ladder recaptures (top), recapture size of ladder recaptured
(middle), and marking size of harvests (bottom) two (t+1) and four (t+2) years after marking. Each
colored line represents the size distribution from one entire simulated dataset (N = 5000). The black line
is the same distribution as found in the real dataset. All size measures are standardized.
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Figure S4.5: Distributions of the mean marking and recapture sizes during recaptures and harvests two
(t+1) and four years (t+2) after marking, across the entire simulated datasets (all marking cohorts
pooled). The solid line marks the corresponding mean size in the real dataset. Size here is standardized.
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Figure S4.6: Distributions of the median marking and recapture sizes during recaptures and harvests
two (t+1) and four years (t+2) after marking, across the entire simulated datasets (all marking cohorts
pooled). The solid line marks the corresponding median size in the real dataset. Size here is standardized.
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Figure S4.7: p-Values for the mean and median of standardized size of individuals recaptured two years
after marking across time (marking years). The shaded areas highlight marking cohorts with potentially
large influence on entire dataset p-value.
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Figure S4.8: Distributions of the marking and recapture size standard deviation during recaptures and
harvests two (t+1) and four years (t+2) after marking, across the entire simulated datasets (all marking
cohorts pooled). The solid line marks the corresponding size standard deviation in the real dataset. Size
here is standardized.
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S5 Growth Model and Size Extrapolation

S5.1 Re-fitting of the growth model

A subset of trout asceding the ladder had scale samples taken at capture, and the year rings on those

scales were used to reconstruct individual growth histories (dataset described in Moe et al. 2019). Nater

et al. (2018) analysed these data using a biphasic growth model which divided growth into a juvenile

river period and an adult lake period while accounting for among-individual, among-year, and residual

variation, as well as measurement error. Specifically, they modelled juvenile growth as a linear process and

adult growth as following a von Bertalanffy curve such that Li,t = Li,t−1 + (Li,∞ −Li,t−1)(1− e−ki,t−1),

where Li,t is the length of individual i in year t, Li,∞ is an individual’s asymptotic length and ki,t its

year-specific lake growth rate (Nater et al. 2018).

For the purpose of this study, we re-fit the model of Nater et al. (2018) (without environmental covariates)

to an extended data set of 6,843 individual growth histories spanning the years 1952 to 2003. We further

included potential differences between wild-hatched and hatchery-reared (= stocked) trout, and male and

female trout, by including effects of origin and sex (if available) on asymptotic size and lake growth rate.

The re-fitting of the growth model was done with JAGS 4.2.0 (Plummer 2003) via the dclone package

(Sólymos 2010) in R 3.3.0 (R Core Team 2018), generating 3 chains of 50,000 iterations each (of which

the first 20,000 were discarded as burn-in).

S5.2 Parameter estimates from extended growth model

The parameter estimates from the re-fitted growth analysis are reported in Table S5.1. With the extended

dataset, we were unable to separately estimate individual variation in asymptotic size and therefore

excluded this parameter from the analyses. New estimates of individual variation in lake growth rates

were consequently higher, but otherwise posterior estimates closely resembled those reported previously

(Nater et al. 2018). Additionally, we found that sex had larger effects on growth parameters than origin,

and that male and/or stocked trout grew slower (lower lake growth rate) but towards a larger asymptotic

size than female and/or wild-hatched trout.
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Table S5.1: Posterior means, standard deviations (SD), 2.5% and 97.5% quantiles for parameters of the
re-fitted growth model. RE is used as an abbreviation for random effect.

Parameter Unit Abbreviation Mean SD 2.5% 97.5%

Baseline river growth rate mm h0 69.206 1.150 66.684 71.362

Male effect on h mm betaM.h 0.556 0.342 -0.118 1.227

Length at birth mm mu0 1.548 0.290 0.976 2.120

Time trend on h mm/year betaYR -0.224 0.038 -0.297 -0.147

Average lake growth rate (wild) - k0[1] 0.155 0.004 0.148 0.162

Average lake growth rate (stocked) - k0[2] 0.139 0.005 0.130 0.148

Spawning effect on log(k) - betaS -1.770 0.034 -1.838 -1.705

Male effect on log(k) - betaM.k -0.126 0.020 -0.166 -0.086

Average asymptotic size (wild) mm mu inf0[1] 1295.570 11.525 1272.937 1318.251

Average asymptotic size (stocked) mm mu inf0[2] 1435.445 25.177 1388.476 1487.319

Male effect on mu inf - betaM.mu 157.966 18.880 121.537 194.764

SD of individual REs on h mm sigmaR.i 7.715 0.173 7.381 8.059

SD of year REs on h mm sigmaR.t 3.221 0.425 2.495 4.144

SD of individual REs on log(k) - sigmaL.i.k 0.154 0.002 0.094 0.159

SD of year REs on log(k) - sigmaL.t.k 0.117 0.013 0.094 0.146

Residual process SD (river) mm sigmaR.R 13.714 0.128 13.464 13.969

Residual process SD (lake) mm sigmaL.R 19.920 0.229 19.469 20.365

Measurement error SD (river) mm sigmaR.M 5.353 0.101 5.155 5.552

Measurement error SD (lake) mm sigmaL.M 15.914 0.183 15.554 16.273
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S5.3 Extrapolating size for mark-recapture modelling

Whenever size covariate values were missing for a given individual in a given time-interval, we calculated

them using the parameter estimates of the re-fitted biphasic growth model. All trout in the mark-

recapture-recovery data are mature adults, so we used only the von Bertalanffy model (adult growth)

and extrapolated length for two-year intervals (year t− 2 to year t) as follows:

Li,t = Li,t−2 + (Li,∞ − Li,t−2)(1− e−kN,i,t−2)︸ ︷︷ ︸
Li,t−1

+(Li,∞ − Li,t−1)(1− e−kS,i,t−1)F

Here, kN and kS are used for lake growth rate in non-spawning and spawning years respectively. Li,t−2

can be the measured length of a trout captured in the fish ladder, or an extrapolated value. Li,t−1 is

always an extrapolated value, as trout can be captured and measured in the ladder only every other year.

For each individual, we used the origin- and sex-specific baseline k and L∞. For the 343 individuals with

unknown sex, we used parameter estimates from a growth model run without sex effects.

The re-fitted growth models also produced estimates of the specific growth random effect levels for the

years 1966 to 2003 and for the 6,843 individuals contained in both the growth and the mark-recapture-

recovery data. For these years and individuals, we also included the respective random effect levels for

calculating missing values in the size covariates. For the remaining years and individuals, we set random

effect levels to 0 instead.

F in the above equation represents a correction factor. When comparing sizes predicted using the

original growth model (F = 1) to sizes measured in the fish ladder at later recaptures, we found that

the model consistently overestimated size (Figure S5.1, top-left). The degree of overestimation further

scaled with growth increment, with more severe overestimation for the larger growth increments of smaller

individuals (Figure S5.1, bottom-left). Plausible explanations for the model’s overestimation of growth

include violations of the assumption of no growth in fall/winter (measuring trout that have not completed

their annual growth yet in the fish ladder) and bias in the data used for estimating lake growth parameters

towards subadult trout whose growth patterns may differ from those of mature trout. Overestimating

growth, and therefore the size covariate used in CMRR analyses, resulted in biased estimates of size-

dependence in mortality and ladder usage and ultimately to poor fit of the CMRR model to the data

(as indicated by posterior predictive checks, Appendix S4). We were able to greatly improve model fit

by avoiding growth overestimation through the use of the correction factor F while extrapolating size.

To do so, we determined the optimal value for F by minimizing average difference between observed

and predicted sizes (Figure S5.2). We ultimately used F = 0.63, the optimized correction factor for

extrapolation when both individual and year random effects are available (most of our extrapolated

datapoints fell into this category). The resulting reduced growth model predicted sizes that fit well with

observations (Figure S5.1, right panels).
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Figure S5.1: Top panels: comparison of observed sizes (measured in the fish ladder) and sizes predicted
using the original growth model (left) and a reduced growth model with F = 0.63 (right). Bottom panels:
relationship of observed sizes and factor difference of predicted sizes. Colors indicate which random effects
were available for predicting sizes.
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Figure S5.2: Average difference between observed sizes (measured in the fish ladder) and sizes predicted
using the growth models with different values for the correction factor F . Numbers indicate the value of
F closest to 0 difference under different random effect availability (colors).
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S6 Extended Model with Correlated Random Effects

We attempted to estimate the temporal correlation between harvest and background mortality hazard

rates. To do so, we re-expressed the random effects on the hazard rates such that

εHt = σHt ∗ ξHt , ξHt ∼ Normal(0, 1)

εOt = ξOt + τ ∗ ξHt , ξOt ∼ Normal(0, σOt )

where σHt and σOt are the standard deviations for the random effects on harvest and background mortality

hazard rates respectively. The scaling parameter τ can then be used to calculate the correlation between

random effects as C = τ/
√

(σOt )2 + τ2. We selected this parameterization to model the correlation

between εHt and εOt since it induces the same marginal variances as the equivalent multivariate normal

prior, but is computationally faster on account of forgoing the full multivariate normal distribution and

associated matrix operations.

In the trout analysis, we found that the available data was insufficient to yield a precise estimate of the

random effects correlation C. The resulting posterior distribution for C (Figure S6.1) spanned the entire

possible range from -1 to 1 and its median of 0.667 (95% CI [-0.622, 0.854] was indistinguishable from 0.

Neither estimates of other parameters nor goodness-of-fit of the model were affected by the inclusion of

random effect correlation.

0.00

0.25

0.50

0.75

−1.0 −0.5 0.0 0.5 1.0
Correlation coefficient

D
en

si
ty

Figure S6.1: Posterior distributions of coefficient C of the temporal correlation between harvest and
background mortality hazard rates estimated by an extended model. White line marks C = 0.
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