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Abstract

Motivation: Large scale transcriptomic data are routinely used to prioritize genes underlying spe-
cific phenotypes. Current approaches largely focus on differentially expressed genes (DEGs), despite
the recognition that phenotypes emerge via a network of interactions between genes and proteins, many
of which may not be differentially expressed. Furthermore, many practical applications lack sufficient
samples or an appropriate control to robustly identify statistically significant DEGs.

Results: We provide a computational tool - PathExt, which, in contrast to differential genes, iden-
tifies differentially active paths when a control is available, and most active paths otherwise, in an
omics-integrated biological network. The sub-network comprising such paths, referred to as the Top-
Net, captures the most relevant genes and processes underlying the specific biological context. The
TopNet forms a well-connected graph, reflecting the tight orchestration in biological systems. Two key
advantages of PathExt are (i) it can extract characteristic genes and pathways even when only a single
sample is available, and (ii) it can be used to study a system even in the absence of an appropriate
control. We demonstrate the utility of PathExt via two diverse sets of case studies, to characterize (a)
Mycobacterium tuberculosis (M.tb) response upon exposure to 18 antibacterial drugs where only one
transcriptomic sample is available for each exposure; and (b) tissue-relevant genes and processes using
transcriptomic data from GTEx (Genotype-Tissue Expression) for 39 human tissues. Overall, PathExt
is a general tool for prioritizing context-relevant genes in any omics-integrated biological network for any
condition(s) of interest, even with a single sample or in the absence of appropriate controls.
Availability: The source code for PathExt is available at https://github.com/NarmadaSambaturu/PathExt.
Contact: nchandra@iisc.ac.in) sridhar.hannenhalli@nih.gov

1 Introduction

Whole-genome transcriptomic data are routinely harnessed to probe genes and processes underlying specific
biological contexts, including diseases (Blumenberg| (2019)); [Jiang et al| (2015)). Extracting biological in-
sights from such high-dimensional data remains an important challenge (Esteve-Codina) (2018))). A standard
approach to interpreting such data is to first identify differentially expressed genes (DEGs) and then to iden-
tify enriched functions among such genes (Esteve-Codinal (2018])). However, biological phenotypes emerge
from complex interactions among numerous biomolecules, resulting in a highly heterogeneous transcriptional
landscape, thus adversely affecting the power to detect critical genes and pathways based on DEGs alone.
Moreover, such high-coverage data encodes a vast amount of information beyond DEGs, warranting explo-
ration using multiple complementary approaches. Genome-wide molecular interaction networks constructed
from experimentally identified physical, regulatory, signaling, and metabolic interactions have shown great
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promise as a framework for integrating and interpreting such data (Sambarey et al|(2017alb)). The identi-
fication of sub-networks in such biological networks, which encode the processes perturbed by a stimulus, or
active processes in general, can lead to mechanistic insights, as well as help prioritize genes for intervention
(Mitra et al|(2013)). Several methods have been proposed to integrate transcriptomic data with biological
networks, that identify ‘active modules’ or connected sub-networks which show changes across conditions
(Mitra et al| (2013)). Despite the availability of interaction data, these methods largely rely on network
scoring schemes which prioritize DEGs (Mitra et al.| (2013)). However, in many practical scenarios includ-
ing clinical settings, lack of appropriate controls or sufficiently large number of samples preclude robust
identification of statistically significant DEGs (Stretch et al| (2013)).

In this work, to complement the conventional differential expression-based analyses, we provide PathExt,
a path-based approach to mining omics-integrated biological networks. PathExt uses a network weighting
scheme that prioritizes edges/interactions rather than nodes/genes, and identifies differentially active paths
when comparing conditions, or highly active paths when studying a single condition. The sub-network com-
prised of these differential paths, referred to as the TopNet, captures the genes and pathways characterizing
the biological condition under study. Deviating from traditional approaches to active sub-network identifica-
tion, PathExt does not use the selection of a connected module as a constraint. Rather, the method results
in a well-connected sub-network, reflective of the interconnectedness of biological processes responding to
any stimulus.

PathExt can be used to address the following biologically important questions: (i) What are the most
significantly differential paths between conditions, and what are the most critical genes underlying the
differentially active paths (note that the critical genes themselves may not be differentially active)?; (ii)
What is the response to a given perturbation?; and (iii) What are the most active paths and processes in a
condition for which there is no appropriate control?

We demonstrate the wide applicability of PathExt by applying it to two diverse sets of case studies. (a)
Exposure of the pathogen Mycobacterium tuberculosis to 18 antibacterial drugs, where only one sample is
collected for each such exposure. We find that the TopNet for each sample reveals the pathways known to be
affected by the corresponding drug. (b) Transcriptomic data for 39 human tissues. Application of PathExt re-
veals tissue-relevant genes and processes despite the absence of a clear control. In all applications, we find that
the TopNet forms a well-connected graph (not expected by chance). Overall, PathExt is a general framework
for the integration and analysis of knowledge-based biological networks and omics data, to reveal context-
relevant genes and processes. This can be done even with a single sample, or in the absence of appropriate
controls. We provide the open source PathExt tool at https://github.com/NarmadaSambaturu/PathExt.

2 Methods

2.1 PathExt

We provide an overview of PathExt in Figure|ll The inputs to PathExt are (a) a directed gene network and
(b) gene-centric omics data for the conditions of interest. The omics data can represent a variety of quantities
pertaining to the node, such as gene expression level, differential expression, protein, metabolite level, etc., in
one or more conditions. The output of PathExt is a sub-network, that we refer to as the TopNet, consisting
of the most significant differential or active paths, and is interpreted based on the application context.

PathExt can be used to interrogate any combination of knowledge-based networks and omics data. For
clarity, we describe the steps for a protein-protein interaction network (PPIN) and gene expression data. The
pipeline consists of the following steps (Figure [1)): (1) Integrate inputs, (2) Compute top k shortest paths,
(3) Estimate statistical significance of the top k shortest paths, and (4) Construct TopNet by retaining the
edges in the significant shortest paths.

STEP 1, Integrate inputs: We integrate the inputs by computing (sample-specific or condition-
specific) node and edge weights in the knowledge-based network using the omics data. In the specific scenario
when comparing conditions (e.g. pre- and post-treatment), we encode the ‘response’ of the system to the
change in conditions by assigning the node weight as either the fold change in gene expression (N; = FC),
or fold change in combination with simple gene expression (N; = ST x FC). Here N; is the weight of
node 4, and ST is the normalized signal intensity, or expression level, of a particular gene. Such a response
can be in terms of up-regulated/activated pathways (Activated Response TopNet), obtained by computing
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Figure 1: PathExt overview. PathExt uses a knowledge-based directed network and omics data as inputs,
and outputs a sub-network consisting of context-relevant genes and processes, referred to as the TopNet.
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FC = SIyerturved/SIcontrol, or down-regulated/repressed pathways (Repressed Response TopNet), obtained
using F'C = Slcontrot/SIperturved- The Response TopNet is a union of these two TopNets, and provides a
holistic view of the active, altered genes and processes. Exclusively applying the expression value as the node
weight (N; = ST) is useful either when no control is available, or when the emphasis is on identifying highly
active processes in each state. This TopNet is referred to as the Highest Activity TopNet (HA TopNet).
Even in this case, comparisons between states can be carried out after the TopNet is generated for each
state.

To assign edge weight, we interpret an edge to represent a ‘reaction’ between the two nodes, and following
the principles of mass action kinetics, an edge between highly abundant nodes is given Edge weight; ;) =
N; x Nj, where N; and N; are the weights of the incident nodes 4, j. This choice of edge weight prioritizes
highly active interactions in a given context.

STEP 2, Compute top k shortest paths: To achieve a biological outcome, typically a sequence
of active reactions is involved, represented by a series of high weight edges in our network. In order to
enumerate such high weight paths, we first transform the edge weights into edge costs as Edge cost; ;) =

1/,/Edge weight; ;), and use Dijkstra’s algorithm (Dijkstra et al.| (1959)) to identify all-pair-shortest-paths.

We then normalize the path cost for each node pair by the number of edges along the shortest path to get

. 2 edges in path Bdge cost
Normalized path cost = Number of edges in path’

application-specific threshold.

STEP 3, Statistical significance of shortest path costs: We assess the statistical significance of
the normalized cost of each selected path empirically as follows. Given an m x n matrix of gene expression
data for m genes in n samples/conditions, we randomly shuffle data in each row (gene) independently. The
edges are re-weighted with the randomized gene expression data, and the cost of each path from step 2 is
computed. After r such randomizations, for each path selected in step 2, » randomization-based costs are
computed, based on which a z-score and p-value is estimated for each path. The p-value is finally transformed
into a g-value (Benjamini and Hochberg| (1995)) to account for multiple hypotheses testing. All paths with
significant g-value are retained.

STEP 4, Construct TopNet: The edges in the significant paths from step 3 form a sub-network,
which we refer to as the TopNet. The TopNet provides a snapshot of the active and/or significantly altered
processes in the system, and can be studied to gain mechanistic insights. To further prioritize critical genes
and paths in the TopNet, we apply network centrality measure —Ripple Centrality (Sambaturu et al. (2016))).

In cases where a single condition is being examined, or the number of conditions is too small to generate
a sufficiently large number of randomized gene expression matrices, step 3 can be skipped, and top k shortest
paths can be taken to represent highly active, altered paths, albeit without the statistical filter. In such
cases, Step 4 can be directly applied to these paths to generate a TopNet.

and retain the top k shortest paths, where k is a user-defined,

2.2 Ripple centrality

Ripple centrality (Sambaturu et al.| (2016)) prioritizes nodes which can reach a large fraction of the net-
work along highly active and perturbed paths. It is measured as Ripple centrality(u) = C(u) X Rout(u),
where R,u:(u) = |nodes reachable from u| denotes the outward reachability of node u, and C(u) = (n —
1)/ 22;11 o(u,v) gives the closeness centrality of node u. Here o(u,v) denotes the cost of the shortest path
from node u to all n — 1 other nodes in the graph.

2.3 M.tb drug exposure
2.3.1 Data

Transcriptomic data for M.tb H37Rv exposed for 16 hours to 2xMIC of 18 drugs was obtained from GSE71200
(Ma et al| (2015))). The list of 18 drugs along with their mechanism of action and TopNet details can
be found in Supplementary Table S1. A knowledge-based network composed of experimentally validated
protein-protein interactions as well as regulatory interactions in M.tb was obtained from (Mishra et al.
(2017)), consisting of 3,686 genes and 34,223 edges.
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2.3.2 Gold standards

INH is known to affect the mycolic acid synthesis and processing pathways in M.tb (Wishart et al.|(2017)).
To create a gold standard for INH treatment, we searched for the term ‘mycolic acid’ in Mycobrowser
(Kapopoulou et al. (2011)), a database of manually curated annotations for pathogenic mycobacteria,
including M.tb. This resulted in a list of 17 M.tb genes, to which we added katG and fas, the known targets of
INH (Wishart et al.| (2017)). Similarly, gold standards were created for 5 other drugs by searching for terms
related to their known mechanisms of action - ‘RNA polymerase’ for Rif, ‘mycolic acid’ for ethionamide,
‘protein synthesis’ for capreomycin, and ‘30s ribosomal protein’ as well as ‘16s rrna’ for kanamycin and
streptomycin (Wishart et al.| (2017)) (Supplementary Table S3).

2.3.3 TopNet creation

For all 18 drugs in GSE71200 (Ma et al.| (2015])), Activated Response TopNets were constructed using N; =
STgrug X (STarug/SIcontror), while N; = Seonirol X (Slcontrot/STirug) Was used to construct the Repressed
Response TopNets. Only shortest paths with 2 or more edges were considered, and 1,000 randomizations
of the gene expression matrix were carried out for computing statistical significance of shortest paths. The
percentile and g-value thresholds were chosen such that the resulting TopNets were of similar size for all
cases (Supplementary Table S1). Activated and Repressed TopNets are provided in Supplementary Files S1
and S2, respectively.

2.3.4 Functional enrichment

Functional enrichment was carried out using ClueGO v2.3.4 (Bindea et al|(2009)), a plugin in the network
visualization tool Cytoscape 3.2 (Shannon et al.| (2003)). Enrichment was against GO Biological Processes,
GO Cellular Components and GO Molecular Functions, with a g-value cutoff of 0.01. Enriched pathways
for all 18 drug exposure cases are provided in Supplementary File S3.

2.3.5 Significance of TopNet connectedness

Significance of TopNet connectedness was tested by comparing against comparable sub-networks induced by
(a) the top DEGs, (b) 1,000 sets of randomly sampled genes, and (c¢) 1,000 sets of randomly sampled edges.
Here the number of DEGs and sampled genes (or edges) corresponds to the number of nodes (or edges) in
the TopNet.

2.4 Human tissues
2.4.1 Data

Normalized gene expression data was collected from GTEx (Carithers and Moore| (2015)) (dbGaP accession
number phs000424.v7.p2) for 39 human tissues, corresponding to 23 organs and 2 cell lines. The signal
intensities of each tissue were summarized using the LMFit function in R (Limma package; Ritchie et al.
(2015)). The antilog of the fitted value was used for further analysis as PathExt requires non-negative
values. Human protein-protein interaction network (hPPIN) comprising regulatory, signaling and metabolic
pathways was obtained from (Sambarey et al.| (2017a))). This network has 17,062 proteins (nodes) and
208,759 interactions (edges).

2.4.2 TopNet creation

Since no control was available, we constructed two types of TopNets - HA TopNets using N; = SI, and z-
score TopNets using N; = |z — score|;. Here z-score for a gene 7 in a given tissue was computed with respect
to all tissues, and statistical significance of shortest paths was computed by randomizing the |z — score|
matrix 1,000 times. The size of the TopNet can vary across tissues and across percentile and false discovery
rate thresholds. For the z-score TopNets, we explored percentile thresholds in the range [0.001, 1.0] and
g-value thresholds from the set {0.001, 0.005, 0.01, 0.05} in each tissue to adjust the TopNet size to 2300
nodes. Then for the HA TopNet of each tissue, we explored the same set of percentile thresholds so as to
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have a comparable size between HA and z-score TopNets; the percentiles across tissues were either 0.001
or 0.002 in all cases. Thresholds for all tissues are available in Supplementary Table S9. HA TopNets and
z-score TopNets for all tissues are provided in Supplementary Files S4 and S5, respectively.

2.4.3 Gold standards

The human protein atlas (HPA;|Uhlén et al|(2015)), a compiled list of Disease genes (Feiglin et al.| (2017)),
and genes from the Disease Ontology browser of the Mouse Genome Informatics (MGI) database (Bult et al.
(2018)) were used to validate the results. HPA provides lists of genes whose mRNA expression is elevated in
a particular tissue. The elevated expression can correspond to one of three categories: (i) > 5-fold mRNA
levels in a particular tissue as compared to all other tissues, (ii) > 5-fold higher mRNA levels in a group
of 2-7 tissues, and (iii) > 5-fold higher mRNA levels in a particular tissue as compared to average levels
in all tissues. The union of genes from the above three categories form the gold standard. HPA data was
downloaded on the 26" of December, 2018. Disease genes were compiled by |Feiglin et al.| (2017) by cross-
referencing data from two databases - Online Mendelian Inheritance in Man (OMIM, |[Hamosh et al.| (2005)),
and the Human Phenotype Ontology (HPO, Kohler et al.| (2013)). OMIM is a compendium of associations
between genetic variations and predominantly Mendelian disorders, while HPO provides a standardized
vocabulary for working with such phenotypic abnormalities. The Disease Ontology browser of the MGI lists
genes whose mutation is associated with phenotypes characteristic of human disease (Bult et al| (2018))).
A list of housekeeping genes obtained from [Eisenberg and Levanon| (2013), comprising of 3,804 genes with
constant expression level across a panel of tissues, is used as a negative control to test whether tissue TopNets
are enriched in ubiquitously active genes.

2.4.4 Functional enrichment and ranking of pathways

Enrichment was carried out using the enrichGO function of the R package clusterProfiler v3.6.0 (Yu et al.
(2012)), using Biological Processes as the ontology, and with a Benjamini Hochberg cutoff of 0.01. For each
tissue, the background for enrichment was set to be the list of genes for which both expression and interaction
data were available. Pathway enrichment results for HA TopNets, z-score TopNets, their corresponding
baselines, gold standards, as well as housekeeping genes, are provided for all tissues in Supplementary File
S6. Pathways enriched in the TopNets were ranked based on the cost of the first TopNet shortest path
involving a gene from that pathway. Ties were broken based on the fold enrichment of TopNet genes in a
pathway relative to expectation.

3 Results

3.1 PathExt reveals pathways related to drugs’ mechanism of action in treated
M.tb

In a previous study, the Mycobacterium tuberculosis (M.tb) strain H37Rv was exposed to different concen-
trations of various anti-tuberculosis drugs, and the transcriptional response was measured (GEO accession
number GSE71200; [Ma et al| (2015])). We obtained the transcriptomic data for 2xMIC (twice the minimum
inhibitory concentration) dose of 18 drugs, for bacteria surviving 16 hours of drug exposure, suggesting a
degree of drug resistance. Only one replicate per MIC per drug and a single untreated control sample were
measured, making robust estimation of differential expression impractical. For 6 drugs where the mechanism
of action is well studied (Wishart et al| (2017)), we obtained gold standard sets of genes experimentally
verified to be perturbed upon drug exposure (Methods section . In all 6 cases, the Response TopNets
generated by PathExt are concordant with the gold standards, and reveal genes and pathways relevant to the
action of each drug (Table . In contrast, the genes with 1.5-fold differential expression have consistently
poor overlap with gold standards (Table [1). We discuss the Isoniazid and Rifampicin exposures in detail
below.
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Drug Gold Activated Response | Repressed Re- | Response TopNet 1.5 FC DEGs
stan- TopNet sponse TopNet
dard
Nod| Gold p- Nod| Gold p- Nod| Gold p- DE | Base Gold p-
es stan- value | es stan- value | es stan- value | Gs net- stan- value
dard dard dard work dard
Capre | 29 184 | 2 0.45 | 195 |5 0.02 | 372 |7 0.03 | 1796 | 1676 16 0.26
omycin
Ethio | 15 201 | 5 0.001 | 202 | O 1 394 | 5 0.02 | 610 | 562 6 0.02
namide
Isoni 17 195 | 6 0.0002| 213 | 5 0.002 | 401 | 11 2.2e- | 1078 | 987 8 0.07
azid 7
Kanam| 30 191 | 5 0.02 199 | 2 0.5 37191 7 0.03 | 790 | 731 4 0.23
ycin
Rifam | 22 196 | 7 0.0001| 197 | 4 0.03 | 380 | 11 4.3e- | 1579 | 1462 13 0.07
picin 6
Strep | 30 193 | 7 0.0009| 181 | 4 0.06 | 338 | 10 0.0003| 308 | 286 1 0.29
to-
mycin

Table 1: Response TopNets for M.tb exposed to 6 drugs whose mechanism of action is well known, are
concordant with gold standards and reveal genes relevant to the action of each drug.

3.1.1 PathExt links INH exposure to mycolic acid synthesis and processing

The anti-bacterial drug Isoniazid (INH) inhibits the synthesis of mycolic acids, which are long fatty acids
found in the cell walls of mycobacteria (Wishart et al.|(2017)). The Activated Response TopNet (selecting for
up-regulated paths), Repressed (down-regulated paths), and merged Response TopNets (Methods) identified
by PathExt were all significantly enriched in gold standard genes related to mycolic acid synthesis and
processing (Table [I} Supplementary Table S1). In stark contrast, the DEGs with > 1.5-fold differential
expression had poor overlap with the gold standard (Table |1}, Supplementary Table S1). The central genes
(Methods section in the Activated Response TopNet consist mainly of genes involved in mycolic acid
biosynthesis, whereas the Repressed Response TopNet has unsaturated acyl-CoA hydratases responsible for
oxidizing fatty acids, and genes involved in lipid degradation as the central nodes (Supplementary Tables S4
and S5). These results unambiguously point to the up-regulation of fatty acid synthesis and down-regulation
of its degradation as a resistance response to INH exposure.

A previous study (Takayama et al.| (2005))) consolidated experimental and computational evidence to
list the 7 main processes in the mycolic acid synthesis and processing pathway, namely, the FAS-I (fatty
acid synthetase-I) system, transition from the FAS-I system to the FAS-II system, the FAS-II system,
cyclopropane synthases and methyltransferases, oxidation-reduction, Claisen-type condensation, and mycolic
acid processing. Of the 42 genes described in their work, interaction and expression data were available for
39, of which 16 were present in the INH exposed Response TopNet (3.63 fold enrichment; Fisher’s p-value
= 1.68e-6), while the 1,078 DEGs comprise only 14 of these genes (Fisher’s p-value = 0.27). Notably, the
TopNet sub-network induced by the 16 genes from the mycolic acid synthesis and processing pathway (Figure
and their immediate neighbors, represent all 7 component processes. Interestingly, NADH dehydrogenases
(highlighted in violet in Figure [2)) are also picked up in this sub-network. It has been hypothesized that
M.th may gain resistance to INH by regulating NADH dehydrogenase and the intracellular NADH/NAD+
ratio (Miesel et al.|(1998])). This is consistent with the fact that the bacteria under study are the ones which
survived exposure to 2xMIC of INH and thus likely to have triggered their resistance processes.

Finally, as an additional control, we directly compared the Response TopNet genes with same number
of top DEGs in terms of their functional enrichment (Figure [2] Methods section [2.3.4). The genes in the
Response TopNet are enriched in the functional terms relevant to INH exposure, such as cell periphery,
which is the part of the cell most affected by INH (Wishart et al| (2017)), and stress response terms such
as ozidoreductase activity and oxidation-reduction process. We also find the term regulation of metabolic
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Figure 2: Response to 2xMIC INH. (a) Gene expression data for a single sample of M.tb exposed to 2xMIC
of INH for 16 hours is integrated with a knowledge-based protein-protein interaction network for M.tb using
two weighting schemes. N; = SI;NH X (SI;nm/SIcontrot) prioritizes genes up-regulated after exposure to
INH, and results in an Activated Response TopNet. N; = STcontrot X (SIcontrot/SIrn ) prioritizes genes and
processes down-regulated after exposure to INH, and results in a Repressed Response TopNet. Thresholds for
the top k shortest paths and statistical significance are chosen such that the two TopNets are of comparable
sizes. The union of the two TopNets gives a Response TopNet. All three TopNets are enriched in gold
standard genes. (b) Sub-network of the Response TopNet formed by extracting genes from the mycolic acid
synthesis and processing pathway (Takayama et al| (2005)), the known target pathway of INH, and their
immediate interactors. Every component process of this pathway is represented in the Response TopNet
by at least 1 gene. (¢) GO enrichment of Response TopNet gives pathways relevant to INH exposure, such
as cell-periphery and oxidation-reduction process. Enrichment of an equal number of top DEGs does not
provide drug-specific insights.
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processes, which is an expected energy conservation response. In contrast, the top 401 DEGs are enriched
for the terms quinone binding and symbiosis encompassing mutualism through parasitism, which are not
informative of the condition under study. Together, these results show that the Response TopNet for M.tb
exposure to 2xMIC of INH is indeed characteristic of its action and reveals genes and processes that would
be missed by a conventional approach relying on differential gene expression alone.

3.1.2 Rif exposure TopNet reveals the perturbation of nucleotide synthesis pathway

Rifampicin (Rif) inhibits DNA-dependent RNA polymerase activity, thus suppressing transcriptional ini-
tiation (Wishart et al.| (2017)). Once again, the Activated, Repressed and union Response TopNets are
enriched in gold standard genes, whereas the DEGs are not (Table |1} Supplementary Table S1). The gene
rpoB (Rv0667) is central in the Activated Response TopNet, effectively recapitulating previous reports which
suggest that Rif resistance can be caused by transcriptional up-regulation of rpoB (Zhu et al|(2018)). The
error prone DNA repair synthesis protein DnaE2 (Rv3370c), and the genetic recombination and nucleotide
excision repair protein RecA (Rv2737c) are also central in this network. Exposure to antibiotics such as Rif
has been shown to result in a recA-dependent SOS response, and a corresponding increase in dnaE2 levels
(McGrath et al.| (2013))). Also, the up-regulation of dnaE2 has been identified as a critical factor in the
emergence of drug resistance both in-vitro and in-vivo (Boshofl et al.| (2003))). Other central genes (full list
in Supplementary Table S4) include the 16S ribosomal RNA methyltransferase Rv2372c, and the replicative
DNA helicase dnaB (Rv0058). These genes reflect perturbations in the nucleotide synthesis pathway, the
very pathway known to be affected upon exposure to Rif. Central genes in the Repressed Response TopNet
include, among others, dnaK (Rv0350) and Rv0232, a transcriptional regulator of the tetR/acrR-family. Dis-
ruption of Rv0232 has been shown to provide a growth advantage to H37Rv in-vitro (DeJesus et al.| (2017)).
We found that Rv0232 was 4.5-fold down-regulated and centrally involved in repressed paths, suggesting
this as a possible resistance mechanism.

Interestingly, dnaK is central in the Repressed Response TopNet for Rif, whereas it is central in the
Activated Response TopNet for INH exposure. It has been shown that dnaK is repressed by Rif (Eltringham
et al|(1999)), whereas cells with higher levels of dnaK are more likely to persist upon exposure to INH (Jain
et al| (2016)). This result underscores the biological and mechanistic relevance, as well as the condition-
specificity of the TopNets generated by PathExt.

Although the exact pathway for DNA-dependent RNA polymerase activity is not known, examining
the central genes from the Rif Activated and Repressed Response TopNets along with their immediate
interactors provides valuable insights. These genes form two connected components, connected by two
linker genes, fadE18 (Rv1933c) and fadD11 (Rv1550) (Figure [3). This sub-network highlights three major
processes, namely, (i) transcription and nucleotide synthesis, (ii) error-prone synthesis and repair, and (iii)
lipid metabolism. Figure |3| also shows the GO-term based enrichment of the genes in the Response TopNet,
and for an equal number of top DEGs. The genes in the Response TopNet are enriched for terms relevant
to exposure to Rifampicin, such as translation, which is the process targeted by Rif, plasma membrane and
acyl-CoA dehydrogenase activity, which are related to lipid metabolism. On the other hand, the 380 top
DEGs are enriched for the terms cell periphery and plasma membrane, which are not specifically informative
of cellular response to the drug.

As demonstrated by the INH and Rif case studies, each Response TopNet reveals drug-specific mech-
anisms. Drug-specificity of the TopNets is further emphasized by the fact that there is no node or edge
common to all 18 Response TopNets, despite the same knowledge-based network being used as input in all
cases.

The Response TopNet is a connected graph with > 50% nodes in the largest component in each of the 18
drug exposures. This connectedness, reflective of biological pathways, is shown to be non-random (Methods
section , and not captured by the sub-networks induced by top DEGs (Table [2| Supplementary Table
S2). This suggests that our Response Network captures crosstalk between the dysregulated paths, which
simple differential gene expression analysis may not.

Taken together, these results show that PathExt captures drug-specific responsive genes and processes,
even when only a single sample was available per condition.


https://doi.org/10.1101/2020.01.21.913418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913418; this version posted January 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) M.tb PPI network Activated Response base network Activated Response TopNet
3,686 nodes 3,551 nodes, 33,096 edges 196 nodes, 241 edges
34,223 edges J 7 gold std (p-value = 9.5e-5)
Slgif L 0.01 percentile
Ny =Slpig 57— g-score < 0.05 Unlio Response TopNet
control 380 nodes, 511 edges
N; = SLontrol Sleontrol 0.02 percentile 11 gold std (p-value=7e-6)
2xMIC Rif exposure Slgif g-score < 0.05 —L Repressed Response TopNet
Control Repressed Response base network 197 nodes, 270 edges
3,847 genes 3,551 nodes, 33,096 edges 4 gold std (p-value = 0.027)

~ N -

TN ~

) Rv3114 / \

pl(rsj /‘ // ‘rpsB
t\
=

\ N
A \pks13\ \dnaK\ /

rpmJ\ - /]Rﬁma

/\ R\@BQ“I c
\r\nth QQB sj

O Up-regulated )
O Down-regulated/
[V

O Unchanged
expression

D Epicenter

PE ﬁessu Rvé“gn '

SN
Rve2sgc

g N " [ - ;
- ,/ﬁv1395 ‘ A Rv342>;c Rv{482c
R N Transcrlptlon and RVOSZ} ,4\,2944 N

nucleotide synthesis

Error prone synthesis and repalr

17 7 Fold change 0 09

(c) Rif2x Response TopNet Rif2x Top 380 DEGs

plasma membrane — plasma membrane

cell peripher:
- quinone binding i)

)/

acyl-CoA
dehydrogenase—
activity

> translation

Figure 3: Response to 2xMIC Rif. (a) Gene expression data for a single sample of M.tb exposed to 2xMIC of
Rif for 16 hours is integrated with a knowledge-based protein-protein interaction network for M.tb using two
weighting schemes. N; = SIg;f x (SIRrit/SIcontrot) prioritizes genes up-regulated after exposure to Rif, and
results in an Activated Response TopNet. N; = SIcontror X (Slcontror/SIriy) prioritizes genes and processes
down-regulated after exposure to Rif, and results in a Repressed Response TopNet. Thresholds for the top k
shortest paths and statistical significance are chosen such that the two TopNets are of comparable sizes. The
union of the two TopNets gives a Response TopNet. All three TopNets are enriched in gold standard genes.
(b) Central genes from Activated and Repressed Response TopNets as well as their immediate interactors,
extracted from the union Response TopNet for Rif. The inclusion of two linker genes, fadE18 and fadD11,
links the resulting components into a single connected component. The size of the nodes reflects the extent
of dysregulation of the genes. Up-regulated genes are colored red, while down-regulated genes are blue. This
module contains genes related to transcription and nucleotide synthesis, the known target pathway of Rif
(Wishart et al.| (2017)). Other pathways represented here are lipid metabolism and error-prone synthesis
and repair, both known mechanisms of resistance to Rif (Howard et al|(2018);Boshoff et al.| (2003))). (¢) GO
enrichment of Response TopNet gives pathways relevant to Rif exposure, such as translation. Enrichment
of an equal number of top DEGs does not provide drug-specific insights.
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Drug Accession number | Response TopNet Top k | Node Edge
DEGs | sam- sam-
in- pling pling
duced | mean | mean
CC CC CC

Nodes | Edges | CC | Largest
CC%

Capreomycin GSM1829654 372 518 4 97.6 159 181.8 205.9

Cycloserine GSM 1829656 378 486 2 98.4 172 183.4 | 206.4

Ethionamide GSM1829659 394 516 3 90.1 151 187.2 207.3

LY 83583 GSM1829661 357 473 1 100 155 179.7 | 205.1

Aminothiadiazole GSM 1829664 352 434 2 96.9 131 178.4 202

Tunicamycin GSM 1829667 380 484 2 97.1 145 184.4 | 206

Acivicin GSM 1829683 359 432 3 96.4 136 180.3 201.2

Fenamisal GSM 1829685 377 466 1 100 157 183.6 204.4

Todotubercidin GSM1829687 385 450 6 92.7 161 185.3 202

Disulfiram GSM 1829690 383 685 7 55.1 128 184.4 | 207.2

Methoxy- GSM1829709 378 490 4 97.4 175 182.1 197.8

methylellipticinium

Chloroxine GSM1829712 357 432 2 98.6 156 179.4 | 201.2

Isoniazid GSM 1829740 401 505 1 100 211 188.1 207

Kanamycin GSM1829743 379 483 3 96.6 149 185.3 205.7

Moxifloxacin GSM 1829746 383 513 5 86.2 155 185 207.1

Pretomanid  (PA- | GSM1829749 368 469 5 93.2 187 179.3 197.1

824)

Rifampicin GSM1829752 380 511 6 92.9 196 184.7 | 207.4

Streptomycin GSM 1829755 338 463 3 93.2 172 175.9 204.2

Table 2: Response TopNets of all 18 drugs are connected graphs with > 50% nodes in a single connected
component (CC). In contrast, the graphs induced by the same number of top DEGs, and by randomly
sampling the same number of nodes or edges as the TopNet are highly disconnected. All randomizations are
carried out 1,000 times.Standard deviations, z-scores and p-values are provided in Supplementary Table S2.

3.2 Human tissue TopNets reveal tissue-related genes and processes

In a second set of case studies, we applied PathExt to identify tissue-related pathways using gene expression
data for 39 human tissues in GTEx (Carithers and Moore (2015))), corresponding to 23 organs and 2 cell
lines. In this scenario, there is no control. Therefore, we constructed two types of TopNets independently in
each tissue (Methods section . A Highest Activity TopNet (HA TopNet) where N; = SI, and a z-score
TopNet where N; = |z — score|;. Here N; is the weight of node 4, and ST is the normalized signal intensity
(expression level). The z-score for gene ¢ in a given tissue is computed relative to all tissues, thus using all
tissues as a control for each tissue.

We assessed the tissue-specific TopNets against three gold-standards (Methods): (1) the Human Protein
Atlas (HPA) (Uhlén et al| (2015)) where genes with >5-fold higher abundance in each tissue are labelled
tissue-specific, (2) a set of curated tissue-relevant Disease genes (Feiglin et al.f(2017)), and (3) a list of genes
associated with tissue-specific human diseases from the MGI (Bult et al| (2018)). These comparisons are
carried out for 37 out of 39 tissues, as corresponding gold standards could not be obtained for the 2 cell
lines. We also use a list of housekeeping genes (Eisenberg and Levanon| (2013)) as a negative control. To
assess the utility of the z-score TopNets, we use the same number of genes with the highest |z — score| as a
baseline control. Likewise, for the HA TopNets, the baseline used is the set of genes with highest expression
levels.

The MGI had > 25 genes with both gene expression and interaction data for 5 tissues. Of these, the HA
TopNets were significantly enriched in tissue-associated genes in 3 tissues, and z-score TopNets in 4 tissues
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Figure 5: Overlap with HPA. p-values for overlap between the gold standard HPA and nodes from (a) HA
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TopNets, (b) z-score TopNets, and their corresponding baseline controls, (¢) Top SI (genes with highest
value = 0.05. Tissues are plotted along the X-axis in lexicographic order. Since genes with >5-fold differential

expression are labelled tissue-specific in HPA, the genes with top z-score always have statistically significant
overlap with this gold standard, as expected. Notwithstanding this comparison, the overlap between HA
TopNet nodes and the gold standard is better than the corresponding baseline in all but one case (highlighted

a taller bar corresponds to a more statistically significant overlap. The red horizontal line corresponds to p-
with dashed box); discussed in Supplementary Info S1.

expression) and (d) Top z-score. The p-values are plotted along the Y-axis as —log1o(p — value), such that
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(Supplementary Table S6). In every case, the TopNet picked up equal or more gold standard genes than the
corresponding baseline.

Figures |4| and [5| show the Fisher’s p-value of the overlap between the genes in the TopNets (and their
corresponding baselines) and the two gold standards HPA and Disease genes. Since HPA is constructed based
on differential abundance, as expected, genes with top z-score are highly concordant with the HPA-derived
tissue-specific genes. In all other comparisons across tissues, genes identified by PathExt agree better with
gold standards than the corresponding baselines. We found 4 exceptions out of 74 comparisons (37 tissues x
2 gold standards), marked with dashed boxes in Figures[4/and [5| Even in these cases, the pathways enriched
in the TopNets are relevant to the functions of that tissue (Supplementary Info S1).

An ideal tissue-specific network should exclude housekeeping genes, which by their very definition are
broadly active. We find that the TopNets identified by PathExt have this property, and are under-enriched
in housekeeping genes in all but 1 case (Supplementary Table S6). This suggests that the paths prioritized
by PathExt correspond to tissue-related functions rather than universally active processes.

3.2.1 PathExt-identified pathways enriched exclusively in a tissue correspond to known tissue-
relevant functions

Figure [6| shows the top pathway exclusively enriched in the HA TopNet of each of 32 tissues (Methods
section The 7 excluded tissues had no exclusively enriched pathways. Figure |§| also highlights
additional significant (0.01 | g-value < 0.05 and 0.05 | g-value < 0.1) pathway-tissue pairs. We found direct
literature evidence supporting 20 out of 32 exclusive pathway-tissue associations, and indirect evidence for
an additional 9 (Supplementary Table S7). A similar table along with literature evidence for the pathways
enriched in the z-score TopNets is provided in Supplementary Table S8.

Some of the pathway-tissue pairs correspond to well-established functions of the tissue, such as regulation
of bile acid metabolic process in liver (Chiang| (2013)), ethanol catabolic process in lung (Bernstein| (1982))),
etc. PathExt reveals a few surprising associations as well. Sensory perception of smell is the top pathway
exclusively enriched in the testis. At first glance this seems counter-intuitive. However, prevalence of olfactory
receptors in the testis and sperm has been experimentally verified, and testicular olfactory receptor signaling
has been implicated in sperm flagellar motility (Kang and Koo| (2012)). As another example, regulation
of rhodopsin mediated signaling pathway is enriched exclusively in the pancreas. Interestingly, rhodopsin
regulates insulin receptor signaling in rod photoreceptor neurons (Rajala and Anderson| (2010)), and loss
of Arf4, a GTPase important for localizing rhodopsin to the eye and kidney, has been shown to result in
damage of exocrine pancreas in mice (Pearring et al.| (2017)). This surprising link between rhodopsin and
the pancreas is not picked up by any of the gold standards or the controls.

Figure [6] also highlights the specificity of functions of the different regions of the brain. For instance,
the gamma-delta T cell activation pathway is enriched in the brain cortex. Gamma-delta T cells have been
implicated in Rasmussen encephalitis, a disease characterizing inflammation of the cerebral cortex (Owens
et al| (2015); Varadkar et al|(2014)). The adenylate cyclase-activating dopamine receptor signaling pathway
is enriched exclusively in the putamen basal ganglia region of the brain. The dorsal region of the basal
ganglia comprises of the putamen, and the caudate nucleus (Lanciego et al.| (2012)). Experiments involving
homogenates of the caudate nucleus of the rat brain point at dopamine-sensitive adenylate cyclase as the
receptor for dopamine in the mammalian brain (Kebabian et al.| (1972))). This finding could indicate the
presence of caudate nucleus cells in the putamen sample, or a shared function between these two adjacent
regions of the brain. Several processes expected to be ubiquitous, such as regulation of receptor activity and
response to extracellular stimulus, are enriched in all the tissues under consideration.

Overall, PathExt-identified tissue-specific TopNets recapitulate gold standard genes with known tissue-
specific functions, and provide unique insights into tissue functions, not reflected in conventional differential
expression-based analyses.

4 Discussion
We provide PathExt, a computational tool to identify sub-networks of an omics-integrated biological network,

which capture the response to a perturbation, or the active processes in a particular condition. PathExt
builds on our prior work which mined omics-integrated networks to (i) identify tuberculosis biomarkers
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Figure 6: Tissue-exclusive pathways, HA TopNets. Top GO Biological Process exclusively enriched in each
tissue, as well as the top 3 processes enriched in all tissues. The g-value of enrichment is provided for all
cases. Green filling corresponds to cases with g-value < 0.01, orange to 0.01 < g-value < 0.05, and blue to
0.05 < g-value < 0.1. Literature evidence support 29 out of 32 tissue-pathway pairs with g-value < 0.01
(bold green text; Supplementary Table S7).
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(Sambarey et al.| (2017b))), (ii) discriminate between primary and metastatic melanoma (Metri et al.| (2017)),
and (iii) identify influential genes in the condition under study (Sambaturu et al.| (2016)). Substantially
extending our prior work, PathExt provides a general framework to address all the above questions, while
employing rigorous statistical significance estimation to identify critical paths. Importantly, PathExt is
designed to operate even when a single sample is available for each condition, and in the absence of an
experimental control sample.

Current approaches to identify active sub-networks are largely built on the work by [Ideker et al.| (2002),
called jActiveModules, which formulates a sub-network scoring scheme based on the statistical significance
of differential gene expression, and then identifies high-scoring sub-networks using a simulated annealing
approach. |Cabusora et al.| (2005) use the same scoring method but identify sub-networks by listing k-
shortest paths in the interaction network among a set of ‘seed’ nodes. The best scoring sub-network is then
identified by sampling seed nodes based on their differential expression. Although this method computes
paths (unlike jActiveModules), all edges in the interaction network are given equal importance, and the
scoring scheme as well as seed node prioritization still focuses on DEGs. Other methods along similar ideas
have been proposed, that filter sub-networks based, for example, on network motifs (Milo et al.| (2002)). In
contrast, PathExt assigns weights to the interactions in the biological network as a function of the given
omics data, thus transferring importance from individual genes to paths, and potentially capturing the way in
which biological phenotypes emerge from interconnected processes. Interestingly, even though connectedness
is not used as a criterion to identify sub-networks, the TopNet resulting from the identified paths forms a
well-connected graph.

PathExt relies on two user defined parameters, the threshold & used to select the top k& shortest paths,
and the g-value for statistical significance of the paths selected to construct TopNet. These values have been
set at very stringent values in this paper, allowing us to focus on the most active paths. Different thresholds
can give different layers of information, with different levels of false discovery.

In summary, PathExt is a general framework for path-based mining of omics-integrated biological net-
works. While the paths identified by PathExt may not constitute a comprehensive or exhaustive listing of all
the active, altered processes in the system, the resulting TopNet can be thought of as a starting point from
which hypotheses can be generated. In this work, we have gathered, for each drug and each tissue, the top
central genes, along with their fold change for drug exposure (Supplementary Tables S4, S5), and z-score for
human tissues (Supplementary Tables S10, S11). Further examining the network or genomic neighborhood
of these and other genes comprising the TopNet can provide additional insights, or strengthen the insights
gained.

Funding

This work was supported by the Department of Biotechnology (DBT) - Indian Institute of Science (IISc)
Partnership Program - Phase II [BT/PR27952/IN/22/ 212/2018] and the Mathematical Biology Initiative
[DSTO/PAM/GR-1303] of the Government of India. S.H. was supported in part by National Science Founda-
tion (NSF) award 1564785 and in part by the Intramural Research Program of the National Cancer Institute,
Center for Cancer Research, National Institutes of Health (NIH).

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing.
Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300.

Bernstein, J. (1982). The role of the lung in the metabolism of ethanol. Research communications in chemical pathology and
pharmacology, 38(1), 43-56.

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pages, F., Trajanoski, Z., and
Galon, J. (2009). Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.
Bioinformatics, 25(8), 1091-1093.

Blumenberg, M. (2019). Introductory chapter: Transcriptome analysis. In Transcriptome Analysis. IntechOpen.

Boshoff, H. I., Reed, M. B., Barry III, C. E., and Mizrahi, V. (2003). Dnae2 polymerase contributes to in vivo survival and the
emergence of drug resistance in mycobacterium tuberculosis. Cell, 113(2), 183-193.

16


https://doi.org/10.1101/2020.01.21.913418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913418; this version posted January 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A., and Richardson, J. E. (2018). Mouse genome database (mgd) 2019. Nucleic acids
research, 47(D1), D801-D806.

Cabusora, L., Sutton, E., Fulmer, A., and Forst, C. V. (2005). Differential network expression during drug and stress response.
Bioinformatics, 21(12), 2898-2905.

Carithers, L. J. and Moore, H. M. (2015). The genotype-tissue expression (gtex) project.
Chiang, J. Y. (2013). Bile acid metabolism and signaling. Comprehensive Physiology, 3(3), 1191-1212.

DelJesus, M. A., Gerrick, E. R., Xu, W., Park, S. W., Long, J. E., Boutte, C. C., Rubin, E. J., Schnappinger, D., Ehrt, S., Fortune, S. M.,
et al. (2017). Comprehensive essentiality analysis of the mycobacterium tuberculosis genome via saturating transposon mutagenesis.
MBio, 8(1), €02133-16.

Dijkstra, E. W. et al. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
Eisenberg, E. and Levanon, E. Y. (2013). Human housekeeping genes, revisited. TRENDS in Genetics, 29(10), 569-574.

Eltringham, I., Drobniewski, F., Mangan, J., Butcher, P., and Wilson, S. (1999). Evaluation of reverse transcription-pcr and a
bacteriophage-based assay for rapid phenotypic detection of rifampin resistance in clinical isolates of mycobacterium tuberculosis.
Journal of clinical microbiology, 37(11), 3524-3527.

Esteve-Codina, A. (2018). Rna-seq data analysis, applications and challenges. Data Analysis for Omic Sciences: Methods and
Applications, 82, T1.

Feiglin, A., Allen, B. K., Kohane, I. S., and Kong, S. W. (2017). Comprehensive analysis of tissue-wide gene expression and phenotype
data reveals tissues affected in rare genetic disorders. Cell systems, 5(2), 140-148.

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., and McKusick, V. A. (2005). Online mendelian inheritance in man (omim),
a knowledgebase of human genes and genetic disorders. Nucleic acids research, 33(suppl-1), D514-D517.

Howard, N. C., Marin, N. D., Ahmed, M., Rosa, B. A., Martin, J., Bambouskova, M., Sergushichev, A., Loginicheva, E., Kurepina, N.,
Rangel-Moreno, J., et al. (2018). Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage
metabolism through cell wall lipid changes. Nature microbiology, 3(10), 1099.

Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002). Discovering regulatory and signalling circuits in molecular interaction
networks. Bioinformatics, 18(suppl-1), S233-5240.

Jain, P., Weinrick, B. C., Kalivoda, E. J., Yang, H., Munsamy, V., Vilcheze, C., Weisbrod, T. R., Larsen, M. H., O’Donnell, M. R.,
Pym, A., et al. (2016). Dual-reporter mycobacteriophages (¢2drms) reveal preexisting mycobacterium tuberculosis persistent cells
in human sputum. MBio, 7(5), e01023—-16.

Jiang, Z., Zhou, X., Li, R., Michal, J. J., Zhang, S., Dodson, M. V., Zhang, Z., and Harland, R. M. (2015). Whole transcriptome
analysis with sequencing: methods, challenges and potential solutions. Cellular and molecular life sciences, 7T2(18), 3425-3439.

Kang, N. and Koo, J. (2012). Olfactory receptors in non-chemosensory tissues. BMB reports, 45(11), 612.

Kebabian, J. W., Petzold, G. L., and Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and
its similarity to the “dopamine receptor”. Proceedings of the National Academy of Sciences, 69(8), 2145-2149.

Kohler, S., Doelken, S. C., Mungall, C. J., Bauer, S., Firth, H. V., Bailleul-Forestier, I., Black, G. C., Brown, D. L., Brudno, M.,
Campbell, J., et al. (2013). The human phenotype ontology project: linking molecular biology and disease through phenotype data.
Nucleic acids research, 42(D1), D966-D974.

Lanciego, J. L., Luquin, N., and Obeso, J. A. (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor perspectives
in medicine, 2(12), a009621.

Ma, S., Minch, K. J., Rustad, T. R., Hobbs, S., Zhou, S.-L., Sherman, D. R., and Price, N. D. (2015). Integrated modeling of gene
regulatory and metabolic networks in mycobacterium tuberculosis. PLoS computational biology, 11(11), €1004543.

McGrath, M., Gey van Pittius, N., Van Helden, P., Warren, R., and Warner, D. (2013). Mutation rate and the emergence of drug
resistance in mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 69(2), 292-302.

Metri, R., Mohan, A., Nsengimana, J., Pozniak, J., Molina-Paris, C., Newton-Bishop, J., Bishop, D., and Chandra, N. (2017). Identi-
fication of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach.
Scientific reports, T(1), 17314.

Miesel, L., Rozwarski, D. A., Sacchettini, J. C., and Jacobs Jr, W. R. (1998). Mechanisms for isoniazid action and resistance. In
Genetics and Tuberculosis: Novartis Foundation Symposium 217, pages 209—221. Wiley Online Library.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: simple building blocks of
complex networks. Science, 298(5594), 824-827.

Mishra, S., Shukla, P., Bhaskar, A., Anand, K., Baloni, P., Jha, R. K., Mohan, A., Rajmani, R. S., Nagaraja, V., Chandra, N.,
et al. (2017). Efficacy of -lactam/B-lactamase inhibitor combination is linked to whib4-mediated changes in redox physiology of
mycobacterium tuberculosis. Elife, 6, €25624.

17


https://doi.org/10.1101/2020.01.21.913418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913418; this version posted January 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Mitra, K., Carvunis, A.-R., Ramesh, S. K., and Ideker, T. (2013). Integrative approaches for finding modular structure in biological
networks. Nature Reviews Genetics, 14(10), 719-732.

Owens, G. C., Erickson, K. L., Malone, C. C., Pan, C., Huynh, M. N., Chang, J. W., Chirwa, T., Vinters, H. V., Mathern, G. W,
and Kruse, C. A. (2015). Evidence for the involvement of gamma delta t cells in the immune response in rasmussen encephalitis.
Journal of neuroinflammation, 12(1), 134.

Pearring, J. N., San Agustin, J. T., Lobanova, E. S.; Gabriel, C. J., Lieu, E. C., Monis, W. J., Stuck, M. W., Strittmatter, L., Jaber,
S. M., Arshavsky, V. Y., et al. (2017). Loss of arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease
or retinal degeneration. PLoS genetics, 13(4), €1006740.

Rajala, R. V. and Anderson, R. E. (2010). Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons.
Molecular neurobiology, 42(1), 39-47.

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). limma powers differential expression
analyses for rna-sequencing and microarray studies. Nucleic acids research, 43(7), ed7—e4T.

Sambarey, A., Devaprasad, A., Baloni, P., Mishra, M., Mohan, A., Tyagi, P., Singh, A., Akshata, J., Sultana, R., Buggi, S., et al.
(2017a). Meta-analysis of host response networks identifies a common core in tuberculosis. NPJ Systems Biology and Applications,
3(1), 4.

Sambarey, A., Devaprasad, A., Mohan, A., Ahmed, A., Nayak, S., Swaminathan, S., D’Souza, G., Jesuraj, A., Dhar, C., Babu, S.,
et al. (2017b). Unbiased identification of blood-based biomarkers for pulmonary tuberculosis by modeling and mining molecular
interaction networks. EBioMedicine, 15, 112-126.

Sambaturu, N., Mishra, M., and Chandra, N. (2016). Epitracer-an algorithm for identifying epicenters in condition-specific biological
networks. BMC genomics, 17(4), 543.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003).
Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11), 2498
2504.

Stretch, C., Khan, S., Asgarian, N., Eisner, R., Vaisipour, S., Damaraju, S., Graham, K., Bathe, O. F., Steed, H., Greiner, R., et al.
(2013). Effects of sample size on differential gene expression, rank order and prediction accuracy of a gene signature. PloS one,
8(6), e65380.

Takayama, K., Wang, C., and Besra, G. S. (2005). Pathway to synthesis and processing of mycolic acids in mycobacterium tuberculosis.
Clinical microbiology reviews, 18(1), 81-101.

Uhlén, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund,
A., et al. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.

Varadkar, S., Bien, C. G., Kruse, C. A., Jensen, F. E., Bauer, J., Pardo, C. A., Vincent, A., Mathern, G. W., and Cross, J. H. (2014).
Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. The Lancet Neurology, 13(2), 195-205.

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., et al.
(2017). Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic acids research, 46(D1), D1074-D1082.

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterprofiler: an r package for comparing biological themes among gene clusters.
Omics: a journal of integrative biology, 16(5), 284-287.

Zhu, J.-H., Wang, B.-W., Pan, M., Zeng, Y.-N., Rego, H., and Javid, B. (2018). Rifampicin can induce antibiotic tolerance in
mycobacteria via paradoxical changes in rpob transcription. Nature communications, 9(1), 4218.

18


https://doi.org/10.1101/2020.01.21.913418
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	PathExt
	Ripple centrality
	M.tb drug exposure
	Data
	Gold standards
	TopNet creation
	Functional enrichment
	Significance of TopNet connectedness

	Human tissues
	Data
	TopNet creation
	Gold standards
	Functional enrichment and ranking of pathways


	Results
	PathExt reveals pathways related to drugs' mechanism of action in treated M.tb
	PathExt links INH exposure to mycolic acid synthesis and processing
	Rif exposure TopNet reveals the perturbation of nucleotide synthesis pathway

	Human tissue TopNets reveal tissue-related genes and processes
	PathExt-identified pathways enriched exclusively in a tissue correspond to known tissue-relevant functions


	Discussion

