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SI Materials

Traveling-subject Dataset Acquisition and Preprocessing

The Traveling-subject dataset is one of the largest and most heterogeneous multi-site

collection of resting-state fMRI data for the same traveling subjects [4]. The following

is a list of the acronyms for Table S1, which exhaustively describes the scanning proto-

cols for this dataset. UTO: University of Tokyo; HUH: Hiroshima University Hospital;

KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner

at Advanced Telecommunications Research Institute International; ATV: Siemens Verio

scanner at Advanced Telecommunications Research Institute International; SWA: Showa

University; HKH: Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima

University; KUS: Siemens Skyra scanner at Kyoto University; KPM: Kyoto Prefectural

University of Medicine; YC1: Yaesu Clinic 1; YC2: Yaesu Clinic 2; TR: repetition time;

TE: echo time.

This dataset consists of 141 scans, collected at 12 different sites for 9 subjects. Each

participant underwent three rs-fMRI sessions of 10 min each at nine sites, two sessions

of 10 min each at two sites (HKH and HUH), and five cycles (morning, afternoon, next

day, next week, and next month) consisting of three 10-min sessions each at a single site

(ATT). In the latter situation, one participant underwent four rather than five sessions

at the ATT site because of a poor physical condition. Thus, a total of 411 sessions were

conducted [8 participants × (3 × 9 + 2 × 2 + 5 × 3 × 1) + 1 participant × (3 × 9 + 2

× 2 + 4 × 3 × 1)]. During each session, participants were instructed to maintain a focus

on a fixation point at the center of a screen, remain still and awake, and to think about

nothing in particular. For sites that could not use a screen in conjunction with fMRI

(HKH and KUS), a seal indicating the fixation point was placed on the inside wall of the

MRI gantry. Differences between scanning sites include two phase-encoding directions

(P→A and A→P), three MRI manufacturers (Siemens, GE, and Philips), four different

numbers of channels per coil (8, 12, 24, and 32), and seven scanner types (TimTrio,

Verio, Skyra, Spectra, MR750W, SignaHDxt, and Achieva). In regards to other scanning

parameters, a large effort was made to ensure that imaging was performed using the same

variables at all sites.

The fMRI data in the Traveling-subject dataset were preprocessed using SPM8 im-

plemented in MATLAB (R2016b; Mathworks, Natick, MA, USA). The first 10 s of data

was discarded to allow for T1 equilibration. Preprocessing steps included slice-timing

correction, realignment, coregistration, segmentation of T1-weighted structural images,

normalization to Montreal Neurological Institute (MNI) space, and spatial smoothing

with an isotropic Gaussian kernel of 6 mm full-width at half-maximum (for additional

details, see [4]). If the number of volumes removed after scrubbing exceeded the average
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of −3 standard deviations across participants, the sessions were excluded. As a result,

14 sessions were removed from the dataset.

SI Methods

Hidden Markov Model

Hidden Markov modeling is a powerful technique that enables the description of time

series extracted from a system of interest. This can be done utilizing the theory of

Markov models to make an educated guess about the structure of the process generating

the data. Analyses of hidden Markov models seek to recover the sequence of states

from some observed data. The underlying assumption of this class of models is that the

observed time series of data can be explained by a discrete sequence of hidden states,

which must be finite in number. Additionally, to describe a hidden Markov model, an

observation model needs to be chosen. We assume multivariate Gaussian observation

model, so that, if xt denotes the data at time step t, and st represents the state at time

step t, we can write, whenever state k is active,

xt|st ∼ multivariate Gaussian(µk,Σk)

where µk ∈ Rc is the vector of the mean blood oxygen level-dependent (BOLD) activation

for each channel, with c being the number of channels in the data, and Σk ∈ Rc×c is

the covariance matrix encoding the variances and covariances between channels. The

transitions between different brain states depend on which state is active at the previous

time step. Specifically, the probability of a state being active at time t depends on which

state is active at time step t − 1. This is encoded in the Transition Probability Matrix

Θ, in which the entry Θij – the transition probability – denotes the probability of state i

becoming active at the next time step if state j is currently active. Formally, by denoting

a probability with Pr, it holds that

Pr(st = i) =
∑
j

ΘijPr(st−1 = j)

Within the Transition Probability Matrix Θ, the diagonal entries represent the prob-

ability of remaining on the actual state and are called persistence probabilities, whereas

the off-diagonal entries are called transition probabilities.

For large datasets, it is possible to resort to stochastic Variational Bayes inference to

estimate the posterior distribution of each state (µk,Σk), the probability of each state

being active at each time step, and the transition probabilities between each pair of

states Θij [2]. In conclusion, it is worth noting that, although in this study the model
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has been inferred by concatenating all subjects and the brain states are thus an outcome

of common brain dynamics, the state time courses are subject-specific. That is, the states

are inferred at the group level, but the time instants at which each brain state becomes

active is subjective and changes between and across subjects.

Data Preparation for HMM Training

In order to concatenate HCP resting-state fMRI data and the ones from the Traveling-

subject dataset, we proceeded as follows. First, we had to match the Traveling-subject

voxel coordinates with the spatial maps containing the weights from the ICA decompo-

sition to 50-dimensional space into which the HCP time series have been decomposed.

Such decomposition is available as an additional download at the HCP database. The

spatial maps were extracted from the group average analysis across all the subjects of

the S1200 release and are also provided as an additional download from the HCP web-

site: https://db.humanconnectome.org. Because the spatial maps are in a grayordinate

CIFTI file [1], it is possible to extract the xyz coordinates in a standard stereotaxic space

MNI152 by using a midthickness surface file for the surface vertices and the coordinate

transformation matrix included in the CIFTI file. Next, we extracted the time series from

the Traveling-subject data corresponding to the same xyz coordinates of the aforemen-

tioned spatial map in Matlab by using the toolbox DPABI [5]. Finally, we obtained the

estimated the 50-dimensional ICs from the extracted time series by means of the HCP

group average spatial map. Once the Traveling-subject resting-state fMRI time series

have been reduced to 50 ICs, they matched the spatial dimension of the HCP data used

to infer the hidden Markov model as in [3].

Control Analysis with Randomized Time Series

To verify the robustness of our analysis in regards to the application of the HMM model

to the Travelig-subject dataset, we applied the HCP-trained HMM to randomly permuted

time series of the Traveling-subject dataset. Namely, we have applied random permu-

tations to the independent components of the Traveling-subject time series. Next, we

proceeded with the HMM decoding on such permuted time series, which yielded state

time courses that mostly stay on state 5 for all different scanning sessions. See Fig. S5 for

a few examples of the state time courses obtained from HMM decoding of the randomly

permute Traveling-subject time series. It is worth noting that state 5 is the state that

is mostly uncorrelated from the remaining 11 states and it is the state with the largest

variance. In [3], it is shown that state 5 is associated with motion artifacts in the scanner.

The outcome of the HMM decoding is in accordance with these observations and supports

the robustness of our findings.
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Subject Classification Using Brain Dynamics Fingerprints

To support our findings, and the robustness of the subject-specific fingerprints to data

heterogeneity, we used machine learning on such fingerprints to perform subject classifi-

cation. Specifically, we performed a classification task on the subjects in the Traveling-

subject dataset based on the two fingerprints used in this study (Metastate Profiles and

Fractional Occupancies). Our simple classification experiment revealed that subject clas-

sification by means of fingerprints that are based on the subjects’ brain dynamics is

possible, and that the accuracy of our classifier is way above the baseline chance level.

For each scanning factor, we trained a logistic regression classifier – which minimizes

the cross-entropy loss – with the scikit-learn maching learning package in Python 3

with the following parameters: default L2 penalty, default L-BFGS-B algorithm [6], and

‘multi class’ option set to ‘multinomial’. The classification task is repeated multiple times

by splitting the data into different training and validation datasets as follows. We repeat

the training and validation of the linear regression classifier for each factor attribute

(e.g., for the scanner parameter, we repeat the procedure for each scanner model) by

performing a leave-one-attribute-out cross-validation: we choose as validation set all the

samples (i.e. fingerprints) belonging to one factor attribute, and we used as training

set all the remaining samples. A summary of the classification results based on the two

fingerprints is in Fig. S6, whereas the classification results for each scanning factor are

reported in Table S3. It is worth noting that (1) even with different scanning protocols

and heterogeneous data, the classification based on brain dynamics fingerprints performs

way above the baseline chance level, and (2) the scanning factors site and day are the

ones with the lowest accuracy among all the classification results, in accordance with our

claim that some factors tend to make data collections more spurious than other factors.
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Figure S1: Ideal FO Correlation Matrix. For each model inferred from our datasets,
we compute the Euclidean distance between the model’s FO Correlation Matrix and the
ideal one. We rank our models based on this distance with the aim of selecting the model
that has the most clear emergence of the 2-metastate structure.
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Figure S2: Network associated with the Transition Probability Matrix of the HMM used
in this study (FIg. S1A). The first 4 states comprise metastate 1, whereas states 6 to
11 comprise metastate 2. State 5 is mostly uncorrelated to the other states, is associated
with head motion, and has the highest variance [3]. The interconnections depicted in
this graph represent probabilities higher than 10% (i.e. > 0.1) in the HMM’s Transition
Probability Matrix, and their color and thickness are proportional to their magnitude.
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Figure S3: Transition Probability Matrix and Fractional Occupancy Correlation Matrix
for different HMM models. (A) The best model among all the models trained in terms
of free energy and Euclidean distance from the ideal FO Correlation Matrix. (B) The
best model in terms of free energy among all models trained on the subjects of the HCP
1200-subject distribution. (C) The best model in terms of Euclidean distance from the
ideal FO Correlation Matrix among all models trained on the subjects of the HCP 1200-
subject distribution. (D) The best model in terms of Euclidean distance from the ideal
FO Correlation Matrix among all models trained on the Traveling-subject dataset by
using the model (A) as a prior. Notice that, while the model in this last panel displays
very distinct metastate separation in the TPM matrix, such a matrix is not irreducible
(i.e. there does not exist a path connecting the two groups of states), making it not
suitable to represent any biological system.

7



SS SD DS

0

0.2

0.4

0.6

0.8

1

1.2

M
P 

di
ffe

re
nc

es

Channels per Coil

SS SD DS

0

0.2

0.4

0.6

0.8

1

FO
 c

or
re

la
tio

ns

Channels per CoilA B

SS SD DS

0

0.2

0.4

0.6

0.8

1

1.2

M
P 

di
ffe

re
nc

es

Manufacturers

SS SD DS

0

0.2

0.4

0.6

0.8

1

FO
 c

or
re

la
tio

ns

ManufacturersC D

SS SD DS

0

0.2

0.4

0.6

0.8

1

1.2

M
P 

di
ffe

re
nc

es

Scanners

SS SD DS

0

0.2

0.4

0.6

0.8

1

FO
 c

or
re

la
tio

ns

ScannersE F

Figure S4: Panels (A) to (F) illustrate the distributions of values for MP Differences and
FO Correlations, for the factors: numbers of channels per coil, manufacturers, and scanner
model. The set SS comprises the MP Differences (resp., FO Correlations) computed for
each subject within the same factor attribute, and the SS distribution displays these
values for all subjects; the set SD consists of the MP Differences (resp., FO Correlations)
computed for each subject across different attributes of the same factor, and the SD
distribution displays these values for all subjects; finally, the set DS consists of the MP
Differences (resp., FO Correlations) computed across all subjects within the same factor
attribute, and the DS distribution displays these values for all attributes of the same
factor. Further, for all the distributions, the black dashed lines illustrate the mean. The
difference between SS and DS distributions in panel (A), and the difference between SD
and DS distributions in panel (F), are not statistically significant (see also Table 1 in the
main text).
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Figure S5: Examples of state time courses after HMM decoding on randomized time
series. To provide a baseline for our study, we applied the HMM model used in this work
to random permutations of the 50 independent components for each run in the Traveling-
subject dataset (see SI Methods). The HMM decoding yields state time courses that
stay most of the time in state 5, which is the state that is highly uncorrelated from the
other 11 states and the one with the highest variance. This fact supports the goodness
of fit of the inferred model, as randomized time series do not provide meaningful state
time courses. In this figure, we show 6 casually chosen state time courses after random
permutation of the time series in the Traveling-subject dataset. (A) subject 8 run 4. (B)
subject 4 run 2. (C) subject 3 run 35. (D) subject 2 run 1. (E) subject 9 run 15. (F)
subject 5 run 48.
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scanning factors, along with the standard deviation, for the two fingerprints. The red
dashed line indicates the baseline chance level. These results show that the personal
signature of brain dynamics fingerprints emerges even with a simple logistic regression
classifier.
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Table S1: Imaging protocols for resting-state fMRI in the Traveling-subject dataset.
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Table S2: Kolmogorov-Smirnov test statistics for MP Differences and FO Correlations

MP Differences FO Correlations

Parameter
SS
vs
SD

SS
vs
DS

SD
vs
DS

SS
vs
SD

SS
vs
DS

SD
vs
DS

1. Site 0.2808 0.1756 0.1552 0.5535 0.4549 0.1416
2. Day 0.4438 0.2183 0.2468 0.4708 0.2424 0.2745
3. Phase 0.0428 0.1904 0.154 0.044 0.2074 0.1687
4. Channels/Coil 0.1422 0.0078 0.1472 0.2513 0.2168 0.0361
5. Manufacturer 0.0735 0.1836 0.1419 0.2184 0.2156 0.0257
6. Scanner 0.1454 0.231 0.0929 0.2616 0.2686 0.0117

Table S3: Logistic regression accuracy results

Parameter MP Differences FO Correlations

1. Site 0.2096 0.3056
2. Day 0.1889 0.2917
3. Phase 0.2222 0.3119
4. Channels/Coil 0.2341 0.3289
5. Manufacturer 0.2217 0.3430
6. Scanner 0.2243 0.3220

Mean 0.2168 0.3140
Standard Deviation 0.0158 0.0239
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