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Abstract  22 

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP 23 

drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a 24 

leading monogenic cause of autism. Cortical hyperexcitability is a hallmark of FXS, however, 25 

the underlying mechanisms reported, including alterations in synaptic transmission and ion 26 

channel expression and properties, are heterogeneous and at times contradictory. Here, we 27 

generated isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using 28 

CRISPR-Cas9, differentiated these stem cell tools into excitatory cortical neurons and 29 

systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties 30 

over the course of in vitro differentiation. Using whole-cell patch clamp analyses at five separate 31 

time-points, we observed significant changes in multiple metrics following FMRP loss, including 32 

decreased membrane resistance, increased capacitance, decreased action potential half-width and 33 

higher maximum frequency, consistent with FMR1y/- neurons overall showing an increased 34 

intrinsic membrane excitability compared with age-matched FMR1y/+ controls. Surprisingly, a 35 

majority of these changes emerged early during in vitro differentiation and some were not stable 36 

over time. Although we detected significant differences in intrinsic properties, no discernable 37 

alterations were observed in synaptic transmission. Collectively, this study provides a new 38 

isogenic hPSC model to study the mechanisms of FMR1 gene function, identifies 39 

electrophysiological impacts of FMRP loss on human excitatory cortical neurons over time in 40 

vitro, and underscores that early developmental changes to intrinsic membrane properties may be 41 

a critical cellular pathology contributing to cortical hyperexcitability in FXS.  42 

 43 

Introduction 44 
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Fragile X syndrome (FXS) is caused by a repeat expansion in the 5’UTR of Fragile X mental 45 

retardation 1 (FMR1), leading to loss of Fragile X mental retardation protein (FMRP)(1-3). 46 

Studies using EEG and fMRI have revealed significant differences in cortical excitability 47 

between FXS patients and unaffected controls (4-6). Paralleling these results, a large body of 48 

experimental research in animal models reports altered excitability in the cerebral cortex 49 

following FMRP loss (7-9), which may be due to mis-regulation of RNA targets encoding 50 

synapse-associated proteins. While human pluripotent stem cell (hPSC) models of FXS hold 51 

great promise for dissection of human disease relevant mechanisms and drug screening, they 52 

have yielded diverse, and at times conflicting data on the impact of FMRP loss on human neurite 53 

development, synaptic connectivity and intrinsic and synaptic properties (7, 10-12). Even 54 

fundamental measurements such as neurite outgrowth have been reported to be decreased (10, 55 

11), increased (12) or unchanged (7) following FMRP loss in different hPSC models. A 56 

combination of technical and experimental variables such as differences in genetic backgrounds, 57 

constitutive versus inducible FMRP loss, different cell type(s) and cell ratios generated by 58 

distinct in vitro differentiation paradigms, inclusion or exclusion of multiple additional cell types 59 

in co-cultures such as mouse neurons or glia, and different time-points of analyses all likely 60 

contribute to varying phenotypic presentations. This further implies that some FXS cellular 61 

phenotypes may be sufficiently subtle as to not rise above these technical and biological sources 62 

of variation (7), complicating cross study comparisons and extrapolation to the human disease 63 

state in vivo. While the lack of congruity across studies presents a challenge, careful assessment 64 

of different sources of variance will likely facilitate a more holistic view of the impact of FMRP 65 

loss on neuronal development, synaptic connectivity and function in the human brain. In 66 

particular, a majority of studies of the impacts of FMRP loss on physiological function focus on 67 
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a single time-point of analysis, which led us to consider the initial pathological changes due to 68 

FMRP loss and how such changes dynamically evolve over different stages of differentiation.  69 

Specifically, we utilized CRISPR-Cas9 technology to generate isogenic hPSC lines with 70 

or without constitutive FMRP loss and used these cellular tools to generate excitatory cortical 71 

neurons from a well-established in vitro differentiation paradigm (7, 13-22). To gain insight into 72 

the physiological response to FMR1 loss over the course of in vitro differentiation, we measured 73 

intrinsic membrane properties and synaptic transmission in isogenic FMR1y/+ and FMR1y/- 74 

neurons at five separate time-points from two to five weeks of in vitro differentiation. We 75 

identified significant cell intrinsic defects but not synaptic transmission deficits driven by FMRP 76 

loss in these cellular systems. Moreover, these differences began to emerge relatively early 77 

during in vitro differentiation and several metrics dynamically changed over time, which may 78 

account for some of the previous discrepancies reported in the literature.  79 

 80 

Results 81 

To facilitate analyses of FMRP loss isolated from differences in genetic background, we first 82 

generated and validated FMR1y/+ and FMR1y/- isogenic hPSC lines (referred to as FMR1 WT and 83 

FMR1 KO, respectively) by targeting exon 4 of FMR1 with CRISPR-Cas9 in the XY line H1 84 

(Fig. 1A). Indels in exon 4 of FMR1 led to complete loss of FMRP expression (Fig. 1B) and loss 85 

of FMRP did not prevent hPSC differentiation into excitatory neurons (Fig. 1C), consistent with 86 

previous reports using a similar differentiation paradigm (7). Targeted cell lines maintained 87 

pluripotency, tri-lineage potential and karyotype stability (Fig. S1 and data not shown).  88 

 89 
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To understand how constitutive loss of FMRP affects the electrophysiological profiles of 90 

human excitatory neurons, we first assessed intrinsic membrane properties. For all whole-cell 91 

patch clamp experiments, FMR1 WT and FMR1 KO neurons were plated at densities of 40,000 92 

cells/cm2 with mouse glia on glass coverslips. hPSCs used for in vitro differentiation were 93 

infected with CAMK2A-GFP or CAMK2A-mOrange and only GFP+ or mOrange+ neurons 94 

were used for patch clamp analyses in order to select for neurons sufficiently mature as to 95 

express CAMK2A, as previously described (13). Neurons from each genotype were recorded 96 

from up to five separate batches of in vitro differentiation at five separate time-points from days 97 

11 to 35 (D11, D14, D21, D28 and D35) (Fig. S2). As shown in Fig. 2A, we first assessed 98 

passive membrane properties of the neurons including: resting membrane potential (RMP), 99 

membrane resistance (Rm), membrane time constant (Tau) and membrane capacitance (Cm). 100 

From these properties, we observed significant differences in Rm and Cm in FMR1 KO 101 

compared to FMR1 WT neurons, but no changes to RMP or Tau at any time-point measured 102 

(Fig. 2B-E). Specifically, we observed decreased Rm and increased Cm in FMR1 KO neurons 103 

relative to FMR1 WT neurons (Figs. 2C, E).  However, only changes to Rm remained significant 104 

across time from D14-D35 (Fig. 2C), while Cm appeared dynamic, with significant differences 105 

observed at D14 and D35 and no significant differences at D11, D21 or D28 (Fig. 2E). While 106 

both significant parameters (i.e., decreased Rm and increased Cm in FMR1 KO neurons relative 107 

to FMR1 WT neurons) are consistent with FMR1 KO neurons showing an increased maturation 108 

profile compared with age-matched FMR1 WT control neurons, they also suggest that the 109 

neurons undergo dynamic shifts in their physiological properties over time in response to 110 

constitutive FMR1 loss. Our data are also consistent with FMRP driving early (D14) changes to 111 

intrinsic membrane properties.  112 

 113 
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We next assessed the active membrane properties of the neurons, including action 114 

potential threshold (APthres), action potential half-width (APhw), action potential amplitude 115 

(APamp), after hyperpolarization (AHP) and maximum frequency (Fig. 3A). From these 116 

properties, we observed a significant increase in firing frequency at D21, D28 and D35 and 117 

decreased APhw at D11 and D14 in FMR1 KO neurons relative to FMR1 WT neurons, with no 118 

changes to APthres, APamp or AHP at any time-point measured (Fig. 3B-G).  Significant 119 

differences in APhw were evident early during in vitro differentiation at D11 and D14 but these 120 

differences disappeared at later time-points (Fig. 3B), suggesting that neurons may undergoing 121 

compensatory changes over time. Significant differences in firing frequency curves and  122 

maximum frequency emerged after D21 and remained until D35 (Fig. 3F-G). As with decreased 123 

Rm and increased Cm in FMR1 KO neurons relative to FMR1 WT neurons described above 124 

(Fig. 2C, E), increased maximum frequency and decreased APhw are consistent with FMR1 KO 125 

neurons showing an increased maturation profile compared with age-matched FMR1 WT control 126 

neurons.  127 

Finally, we measured synaptic transmission including mean amplitude and frequency of 128 

synaptic events as well as the percentage of neurons with spontaneous excitatory post-synaptic 129 

currents (sEPSCs) in the absence of the AP blocker tetrodotoxin (TTX) (Fig. 4) from the same 130 

neurons used to assess intrinsic properties (Figs. 2-3). We did not detect differences in any of 131 

these synaptic properties measured under steady state conditions (Fig. 4A-D).  132 

 133 

Discussion 134 

By generating isogenic FMR1 WT and FMR1 KO cell lines plated under identical culture 135 

conditions and recorded from up to five separate batches of in vitro differentiation over five 136 
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separate time-points, we observed subtle but significant differences in intrinsic membrane 137 

properties that collectively suggest an increased physiological maturation profile of FMR1 KO 138 

neurons compared to FMR1 WT controls, consistent with previous studies describing 139 

electrophysiological and neural network activity in mouse models of FXS (23-28). Our results 140 

suggest that early developmental changes in the intrinsic membrane properties could potentially 141 

underlie subsequent cortical hyperexcitability and other related neurological deficits associated 142 

with FXS. Given that human in vitro derived neurons most closely resemble prenatal cell stages 143 

in vivo (13), these analyses underscore the importance for future studies to identify the ionic 144 

cellular mechanisms underlying the hyperexcitability in FXS during prenatal development. Of 145 

note, not all phenotypes were stable over time, and indeed we observed dynamic changes in 146 

multiple metrics, suggesting that neurons respond to constitutive FMRP loss as they differentiate 147 

in vitro and some discrepancies in the literature may be due to differing time-points of analysis. 148 

Indeed, a majority of studies using in vitro human neuronal of disease assess electrophysiological 149 

properties at a single time-point (7, 15, 16). Although we detected significant differences in 150 

intrinsic properties, we did not uncover alterations in synaptic function consistent with a previous 151 

study of FXS using the same neuronal cell type (7). This suggests that additional cell types or 152 

conditions may be required to unmask synaptic phenotypes in vitro. For example, our inclusion 153 

of mouse glia increased the health and viability of our neuronal cultures, but could also reduce 154 

phenotypic severity if glia contribute to electrophysiological phenotypes in FXS, as reported in 155 

other experimental contexts (29-31). While our experiments allow us to sensitively reveal 156 

phenotypes specific to excitatory cortical neurons, they cannot capture the complex relationship 157 

with inhibitory neurons and how this may drive network perturbations. Though our isogenic 158 

system eliminates variability in genetic background between patient and control samples and 159 
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thus allows for the detection of more subtle phenotypes, given the variability reported in both 160 

FXS molecular phenotypes (e.g., differing levels of protein synthesis changes across 161 

patients)(32) as well as FXS clinical presentations (e.g., the fact that a subset of patients have 162 

seizures and a subset do not)(33), physiological phenotypes in vitro may similarly vary across 163 

different parental cell lines. Our study identifies specific time-points and conditions in human in 164 

vitro derived cortical neurons for further investigation. Future studies will be required to fully 165 

understand how different patient brain cell types respond to FMR1 loss over time and how this 166 

impacts the development of more complex networks of human excitatory neurons, inhibitory 167 

neurons and astrocytes. hPSC models are well positioned to address increasingly complex 168 

questions related to the impact of a defined genetic change on multiple or mixed brain cell types 169 

to uncover key developmental mechanisms with relevance to human disease.  170 

 171 

Materials and Methods 172 

Stem cell culture and CRISPR-Cas9 based genome engineering 173 

The human embryonic stem cell line H1 (34) was obtained commercially from WiCell Research 174 

Institute (https://www.wicell.org). All studies using H1 followed institutional IRB and ESCRO 175 

guidelines approved by Harvard University. Stem cell culture and assessment of pluripotency 176 

and tri-lineage potential was carried out as previously described (35-37). In brief, stem cells were 177 

grown and maintained in mTeSR1 medium (Stem Cell Technologies) on geltrex-coated plates 178 

(Life Technologies). Cells were routinely tested to confirm the absence of mycoplasma 179 

contamination (Lonza MycoAlert). CRISPR-Cas9 based genome engineering experiments were 180 

carried out as previously described (35-37). In brief, H1 was transfected with pre-assembled 181 

Cas9 protein (NEB) + crRNA and tracrRNA (Synthego), targeting full-length FMR1 upstream of 182 
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predicted functional domains  (gRNA: GTTGGTGGTTAGCTAAAGTG), using the NEON 183 

system (Life Technologies). Wild-type cells are those that went through the gene-targeting 184 

protocol but were not edited. Antibodies used to assess pluripotency were anti-OCT3/4 (R&D 185 

Systems AF1759), anti-SOX2 (BD 245619), and anti-TRA-1-60 (Santa Cruz Biotechnology sc-186 

21705). Antibodies used to assess tri-lineage potential were anti-AFP (Sigma A8452), anti-SMA 187 

(Sigma A2547), and anti-β-III-Tubulin (R&D Systems MAB1195). 188 

 189 

Generation of human excitatory cortical neurons 190 

Human neurons were generated as previously described (13, 14). In brief, H1 hPSCs were 191 

transduced with TetO-Ngn2-T2A-Puro and Ubiq-rtTA lentivirus and treated with doxycycline to 192 

induce ectopic Ngn2 expression combined with the extrinsic addition of SMAD inhibitors 193 

(SB431542, 1614, Tocris, and LDN-193189, 04-0074, Stemgent), Wnt inhibitors (XAV939, 04-194 

00046, Stemgent) and neurotrophins (BDNF, GDNF, CNTF) followed by puromycin 195 

treatment to eliminate uninfected stem cells. Ultra-high lentiviral titer was generated by Alstem, 196 

LLC.  197 

 198 

Whole-cell patch clamp analysis  199 

Stem cells were infected with CAMK2A-GFP or CAMK2A-mOrange ultra-high titer lentivirus 200 

(Alstem, LLC) and differentiated into neurons as described above. At D4, neurons were plated at 201 

a density of 40,000 cells/cm2 on a bed of mouse glia on poly-D-lysine and laminin coated glass 202 

coverslips with Geltrex coating. Neurons were kept in NBM supplemented with B27 and 203 

neurotrophins. Whole-cell patch clamp recordings were performed at five time-points: Days 11, 204 

14, 21, 28 and 35. Cultured neurons were transferred to a recording chamber and constantly 205 
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perfused at a speed of 3ml/min with an extracellular solution containing (in mM): 119 NaCl, 2.3 206 

KCl, 2 CaCl2, 1 MgCl2, 15 HEPES, 5 glucose, phenol red (0.25mg/L) and D-serine (10µM) (all 207 

from Sigma) adjusted to pH 7.2-7.4 with NaOH. Osmolarity was adjusted to 325 mOsm with 208 

sucrose. Recording pipettes (KG33, King Precision Glass) were pulled in a horizontal pipette 209 

puller (P-97, Sutter Instruments) with a tip resistance of 3–5 MΩ. Pipettes were filled with an 210 

internal solution containing in mM: 120 K-Gluconate, 2 MgCl2, 10 HEPES, 0.5 EGTA, 0.2 211 

Na2ATP, and 0.2 Na3GTP.  All experiments were performed at room temperature. The 212 

recordings were made with a microelectrode amplifier with bridge and voltage clamp modes of 213 

operation (Multiclamp 700B, Molecular Devices). Cell membrane potential was held at -60 mV, 214 

unless specified otherwise. Signals were low-pass filtered at 2 kHz and sampled at 10kHz with a 215 

Digidata 1440A (Molecular Devices). All data were stored on a computer for subsequent off-line 216 

analysis. Cells in which the series resistance (Rs, typically 8–12 MΩ) changed by >20% were 217 

excluded for data analysis. In addition, cells with Rs more than 25 MΩ at any time during the 218 

recordings were discarded. Conventional characterization of neurons was made in voltage and 219 

current clamp configurations. The membrane resistance, time constant (tau) and capacitance 220 

were measured in current clamp mode as described previously (38). CAMK2A expressing 221 

neurons were identified for recordings on the basis of GFP or mOrange expression visualized 222 

with a microscope equipped with GFP and Texas red filter (BX-51WI, Olympus). The 223 

electrophysiologists were blinded to genotype until data analyses were complete. The number of 224 

individual neurons recorded from and the number of independent batches of neurons are shown 225 

in Fig. S2.  226 
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 344 

Figure Legends 345 

Fig. 1. Generation of isogenic FMR1 cellular resources.  346 

A. Schematic of CRISPR-Cas9 editing strategy targeting exon 4 of FMR1 to generate isogenic FMR1y/+ (WT) and 347 

FMR1y/- (KO) hPSC lines. B. Western blot analysis showing loss of FMRP in CRISPR edited FMR1 KO hPSCs 348 

compared to FMR1 WT hPSCs. C. Expression of β-III-Tubulin (green) in FMR1 WT (left) and FMR1 KO (right) 349 

neurons. Cells are counterstained with DAPI (blue). Scale bar = 50µm. 350 

 351 

Fig. 2. Constitutive FMR1 loss leads to altered intrinsic membrane properties over time.  352 
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A. Schematic of analysis parameters. B. Summary of resting membrane potential (RMP) measurements in FMR1 353 

WT (black) and FMR1 KO (blue) neurons at indicated time-points. No significant differences were identified. C. 354 

Summary of membrane resistance (Rm) measurements in WT (black) and KO (blue) neurons at indicated time-355 

points. KO neurons showed significantly lower membrane resistance than their WT counterparts from D14 onward 356 

(**p<0.01, *p<0.05, unpaired t-test) indicative of a higher level of maturation. D. Summary of membrane time 357 

constant (Tau) measurements in WT (black) and KO (blue) neurons at indicated time-points. No significant 358 

differences were identified.  E. Summary of membrane capacitance (Cm) measurements in WT (black) and KO 359 

(blue) neurons at indicated time-points. KO neurons showed significantly higher Cm compared with their WT 360 

counterparts at D14 and D35 but not at D11, D21 or D28 (*p<0.05, unpaired t-test). 361 

 362 

Fig. 3. Constitutive FMR1 loss leads to altered action potential properties over time.   363 

A. Schematic of action potential properties measured by whole-cell patch clamp analyses from five independent 364 

batches of in vitro differentiation across five time-points. B. Summary of AP half width measurements in FMR1 WT 365 

(black) and FMR1 KO (blue) neurons at indicated time-points. KO neurons showed significantly shorter APhw 366 

compared to their WT counterparts at D11 and D14 (*p<0.05, **p<0.01, unpaired t-test). Inset shows a 367 

representative expanded action potential for WT and KO neurons at D14. C-E. Summary of APthres, APamp and 368 

AHP measurements in WT (black) and KO (blue) neurons at indicated time-points. No significant differences were 369 

identified. F. Summary of the firing frequency curve as a response to increasing current injection in WT (black) and 370 

KO (blue) neurons at indicated time-points. KO neurons showed significantly higher maximum frequencies 371 

compared with WT neurons from D21 onward (*p<0.05, **p<0.01, ***p<0.001, unpaired t-test). G. Summary of 372 

maximum frequency measurements in WT (black) and KO (blue) neurons at indicated time-points. KO neurons 373 

showed significantly higher maximum frequencies compared with WT neurons from D21 onward (*p<0.05, 374 

**p<0.01, unpaired t-test). 375 

 376 

Fig. 4. Constitutive FMR1 loss does not lead to significant differences in synaptic properties at steady-state.   377 

A. Sample traces showing spontaneous excitatory postsynaptic currents (sEPSCs) in WT (black) and KO (blue) 378 

neurons at D35. B-D. Summary of sEPSC amplitude (B), frequency (C) and percentage of cells that showed 379 
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responses (D) in WT (black) and KO (blue) neurons at indicated time-points. No significant differences were 380 

identified under steady state conditions. 381 

 382 

Fig. S1: Assessment of pluripotency (left) and tri-lineage potential (right) for FMR1 WT (top) and FMR1 KO 383 

(bottom) hPSC lines. 384 

 385 

Fig. S2: Chart showing the numbers of neurons and numbers of batches used for recordings. D=Days in vitro; (n)= 386 

number of neurons recorded from in total for each condition. Batch indicates the total number of independently 387 

generated sets of neurons utilized to measure the indicated properties.   388 

 389 
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Fig. S1 

Intrinsic properties 
Genotype WT KO WT KO WT KO WT KO WT KO 

D 11 14 21 28 35 
(n) 24 27 40 35 35 33 38 32 36 29 

Batch 4 4 5 5 5 5 5 5 5 5 

Synaptic properties 
Genotype WT KO WT KO WT KO WT KO WT KO 

D 11 14 21 28 35 
(n) 0/17 0/15 5/16 2/14 4/15 8/15 8/15 11/15 9/15 11/15 

Batch 4 4 4 4 4 4 4 4 4 4 

Fig. S2 
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