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Abstract 15 

Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient machinery that includes >70 16 

endocytic accessory proteins (EAP). Accordingly, perturbation of individual EAPs often results in minor 17 

effects on biochemical measurements of CME, thus providing inconclusive/misleading information 18 

regarding EAP function. Live-cell imaging can detect earlier roles of EAPs preceding cargo internalization; 19 

however, this approach has been limited because unambiguously distinguishing abortive-clathrin coats 20 

(ACs) from bona fide clathrin-coated pits (CCPs) is required but unaccomplished. Here, we develop a 21 

thermodynamics-inspired method, “disassembly asymmetry score classification (DASC)”, that 22 

unambiguously separates ACs from CCPs without an additional marker. After extensive verification, we use 23 

DASC-resolved ACs and CCPs to quantify CME progression in 11 EAP knockdown conditions. We show 24 

that DASC is a sensitive detector of phenotypic variation in CCP dynamics that is orthogonal to the 25 

variation in biochemical measurements of CME. Thus, DASC is an essential tool for uncovering the 26 

function of individual EAPs.   27 
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Introduction 28 

Clathrin-mediated endocytosis (CME) is the major pathway for cellular uptake of macro-molecular cargo 29 

(1). It is accomplished by concentrating cell surface receptors into specialized 100-200 nm wide patches at 30 

the plasma membrane created by a scaffold of assembled clathrin triskelia (2). The initiation and 31 

stabilization of these clathrin-coated pits (CCPs) is regulated by the AP2 (adaptor protein) complex (3), 32 

which recruits clathrin and binds to cargo and phosphatidylinositol-4,5-bisphosphate (PIP2) lipids. 33 

Numerous endocytic accessory proteins (EAPs), which modulate various aspects of CCP assembly and 34 

maturation, contribute to the formation of clathrin-coated vesicles (CCVs) that transport cargo to the cell 35 

interior. However, the exact functions of many of these EAPs are still poorly understood, and in some cases 36 

controversial (4, 5). Due to the resilience of CME, perturbing single EAPs, like CALM (6, 7), SNX9 (8, 9), 37 

etc. or even multiple EAPs (10) often results in minor/uninterpretable changes in bulk biochemical 38 

measurements of cargo uptake. Nonetheless, perturbed EAP functions can be physiologically consequential, 39 

e.g. CALM is identified as associated to Alzheimer’s disease (11) and SNX9 is correlated to cancer and 40 

other human diseases (12). We hence question whether measuring internalization by biochemical assays is 41 

sufficient for determining the actual phenotypes of missing EAP functions, and thereby further supporting 42 

clinical studies of the EAPs in more complex models.  43 

Unlike bulk cargo uptake assays, the entire process of clathrin assembly at the plasma membrane can be 44 

monitored in situ by highly sensitive total internal reflection fluorescence microscopy (TIRFM) of cells 45 

expressing fiduciary markers for CCPs, such as the clathrin light chain fused to eGFP (13). Using this 46 

imaging approach, we and others have found that a large fraction of detected clathrin-coated structures 47 

(CSs) are shorter-lived (i.e. lifetimes < 20s) than thought to be required for loading and internalizing cargo, 48 

and dimmer (i.e. exhibit lower intensities) than mature CCPs detected prior to internalization (14, 15). These 49 

so-called “abortive” coats (ACs) presumably reflect variable success rates of initiation, stabilization and 50 

maturation, i.e. the critical early stages of CME. However, the range of lifetimes and intensities of ACs 51 

overlaps substantially with the range of lifetimes and intensities of productive CCPs (Fig. 1A,B). The 52 

current inability to unambiguously resolve ACs and CCPs limits analyses of the mechanisms governing 53 

CCP dynamics and their progression during CME. 54 

Our initial attempts to solve this problem relied on a statistical approach to deconvolve the overall broad 55 

lifetime distribution of all detected CSs into subpopulations with distinct lifetime modes (16). Although 56 

these statistical approaches allowed the identification of three kinetically-distinct CS subpopulations (16), 57 

the lifetimes of the thus identified subpopulations strongly overlapped, and the CS population with the 58 
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longest average lifetimes, most likely representing productive CCPs, also contained a large fraction of very 59 

short-lived CCPs, which is structurally nonsensical. Later, as a result of improvements in the sensitivity of 60 

detection and tracking, eGFP-CLCa-labeled CSs were classified by imposing both lifetime and intensity 61 

thresholds (10, 17). Besides the subjectivity in setting these critical values, we demonstrate in this work that 62 

neither lifetime nor intensity are sufficient to classify CSs. More recently, Hong et al. (18) removed some 63 

subjectivity by training a Support Vector Machine (SVM)-based classifier of “false” vs “authentic” CCPs; 64 

but the underlying features were still largely based on lifetime and intensity thresholds, which themselves 65 

are sensitive to detection and tracking artefacts (see (10)). Finally, other efforts to distinguish abortive from 66 

productive events have introduced second markers, such as a late burst of dynamin recruitment (19, 20) or 67 

the internalization of pH sensitive-cargo (14) as classifiers, with the obvious drawbacks of more 68 

complicated experimental set ups. Clearly, the mechanistic analysis of CCP dynamics would greatly benefit 69 

from an objective and unbiased means to resolve these heterogeneous subpopulations.  70 

Here, we introduce a thermodynamics-inspired method, referred to as disassembly asymmetry score 71 

classification (DASC), that resolves ACs from CCPs relying on the differential asymmetry in frame-by-72 

frame intensity changes between disassembling and fluctuating/growing structures. DASC is independent of 73 

user-defined thresholds and prior assumptions, and does not require second markers. We confirmed the 74 

positive correlation between CCP stabilization and curvature generation by combining DASC with 75 

quantitative live cell TIRF and epifluorescence microscopy. We further applied DASC to phenotype siRNA-76 

mediated knockdown of eleven reportedly early-acting ‘pioneer’ EAPs on CCP initiation and stabilization 77 

and compared these effects on CS dynamics with the effects on cargo uptake measured biochemically. In 78 

most cases we detected significant effects on early stages of CME resulting from reduced CCP initiation 79 

and/or stabilization that did not correlate with changes in transferrin uptake. Thus, DASC provides an 80 

orthogonal approach to traditional bulk biochemical measurements, and reveals compensatory mechanisms 81 

that can uncouple early perturbation from the final outcome of CME. Together these studies establish DASC 82 

as a new tool that is unique for objectively distinguishing abortive coats from bona fide CCPs and thus 83 

indispensable for comprehensively revealing which EAPs act at specific stages to mediate endocytic coated 84 

vesicle formation.  85 

Results 86 

Disassembly Asymmetry Score Classification (DASC): a new method to analyze CCP growth and 87 

stabilization  88 
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To ensure high sensitivity detection of all CCP initiation events, ARPE19/HPV16 (hereafter called HPV-89 

RPE) cells were infected with lentivirus encoding an eGFP-tagged clathrin light chain a (eGFP-CLCa) and 90 

then selected for those that stably expressed eGFP-CLCa at ~5-fold over endogenous levels. Overexpression 91 

of eGFP-CLCa ensures near stoichiometric incorporation of fluorescently-labeled CLC into clathrin triskelia 92 

by displacing both endogenous CLCa and CLCb. Control experiments by numerous labs have established 93 

that under these conditions CME is unperturbed and that eGFP-CLCa serves as a robust fiduciary marker for 94 

coated pit dynamics at the plasma membrane (3, 10, 14, 16, 20-22). For all conditions, ≥19 independent 95 

movies were collected and the eGFP intensities of >200,000 clathrin structures per condition were tracked 96 

over time using TIRFM and established automated image analysis pipelines (10, 23). We refer to these time 97 

dependent intensities as traces. Each trace is a measure of the initiation, growth and maturation of the 98 

underlying clathrin structure (CS).  99 

Following their initiation, the dynamics of CSs are highly heterogeneous, reflected by the widely spread 100 

distributions of lifetime and intensity maxima of their traces (Fig. 1B, top and bottom panels, respectively). 101 

Previous studies (10, 16, 20) have suggested that this heterogeneity reflects a mixture of at least two types of 102 

structures: 1) stabilized, bona fide CCPs, and 2) unstable partial and/or abortive coats (ACs) that rapidly 103 

turnover.  104 

Productive CCPs (i.e. those that form CCVs and take up cargo) tend to have lifetimes >20s and reach an 105 

intensity level corresponding to a fully assembled coat (between 36 and >60 triskelia) (20). In contrast, ACs 106 

tend to exhibit lower intensity levels and disassemble at any time. However, CCPs and ACs strongly overlap 107 

in their lifetime and intensity distributions, especially during the critical first 20-30s after initiation. 108 

Consequently, the contributions of these two functionally distinct subpopulations of CSs to the overall 109 

lifetime or intensity distributions cannot be resolved and ACs cannot be readily distinguished from CCPs by 110 

application of a lifetime or intensity threshold (Fig. 1B). Significantly compounding the ability to 111 

distinguish CCPs from ACs is the fact that the intensities of individual CSs are highly fluctuating (see for 112 

example, Fig. S1A-B). These fluctuations are inevitable and reflect a combination of rapid turnover of 113 

individual triskelia, which occurs on the time scale of 1s (1, 24), stochastic bleaching of fluorophores, and 114 

membrane fluctuations within the TIRF field. We thus sought an approach to distinguish ACs from bona 115 

fide CCPs that is independent of user-defined thresholds and leverages these intensity fluctuations measured 116 

at high temporal resolution.  117 

Inspired by the computation of entropy production (EP) (25) we designed a new metric derived from the 118 

fluctuations of clathrin intensity traces that can clearly separate ACs from CCPs. Conventionally, EP 119 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.924019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.924019


5 
 

quantifies the dissipation rate of thermal energy when a system of interest is driven far away from 120 

equilibrium, as is the case during the formation of a macro-molecular assembly such as a CCP. This 121 

quantity is obtained by computing the difference between forward and reverse reaction rates. We therefore 122 

assigned clathrin assembly and disassembly as forward and reverse reactions in order to derive an EP-based 123 

metric of the progression of CS formation.  124 

We first expressed each trace as a chain of transitions among integer intensities (or states) over time, for the 125 

𝑛th trace, 126 

𝐼𝑛 (𝑡) ∶=  (𝑖, 𝑡 = 1𝑠) → (𝑗, 𝑡 = 2𝑠) → ⋯ → (𝑘, 𝑡 = 𝜏) (1). 127 

In this example, 𝑖, 𝑗 … 𝑘 ∈ [1, 𝑖𝑚𝑎𝑥](𝑎. 𝑢. ), where 𝑖𝑚𝑎𝑥 is the largest intensity recorded so that [1, 𝑖𝑚𝑎𝑥] 128 

represents the entire pool of the intensity states. 𝜏 is the lifetime of this trace (see Materials and Methods for 129 

details). 130 

Next, after expressing all the traces as in eq. (1), we quantified for each transition between two intensity 131 

states the conditional probabilities 𝑊𝑡(𝑖
⊝|𝑖) and 𝑊𝑡(𝑖|𝑖

⊝). Given state 𝑖 and its lower states 𝑖⊝ ∈ [1, 𝑖 −132 

1], 𝑊𝑡(𝑖
⊝|𝑖) denotes the probability of a decrease in intensity 𝑖 → 𝑖⊝ between time 𝑡 to 𝑡 + 1, and 133 

𝑊𝑡(𝑖|𝑖
⊝) denotes the probability for an increase in intensity 𝑖⊝ → 𝑖 (see Materials and Methods for details). 134 

From these probabilities, we define a disassembly risk function (𝐷) for any given intensity-time state (𝑖, 𝑡) 135 

as:  136 

𝐷(𝑖, 𝑡) = 𝑙𝑛
∑ 𝑊𝑡(𝑖

⊝|𝑖)𝑖−1
𝑖⊝=1

∑ 𝑊𝑡(𝑖|𝑖⊝)
𝑖−1
𝑖⊝=1

= 𝑙𝑛∑ 𝑊𝑡(𝑖
⊝|𝑖)𝑖−1

𝑖⊝=1⏟            
①

− 𝑙𝑛∑ 𝑊𝑡(𝑖|𝑖
⊝)𝑖−1

𝑖⊝=1⏟            
②

 (2), 137 

where, between state 𝑖 and its lower states 𝑖⊝ at time 𝑡, Term ① includes every transition of clathrin loss; 138 

while Term ② includes every transition of clathrin gain. 𝐷 =①−② thus indicates the net risk for 139 

disassembly at every intensity-time state. 140 

We can use this 𝐷 function to project each trace into a space of disassembly risk (Fig. 1C). The projected 141 

trace (Fig. S1C) then predicts the disassembly risk for an individual trace of particular intensity at a specific 142 

time. For example, 𝐼𝑛 (𝑡) in eq. (1) yields a corresponding series of disassembly risk (see Fig. S1C), written 143 

as: 144 

𝐷[𝐼𝑛(𝑡), 𝑡] = 𝐷(𝑖, 𝑡 = 1) → 𝐷(𝑗, 𝑡 = 2) → ⋯ → 𝐷(𝑘, 𝑡 = 𝜏) (3). 145 
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Hence, each intensity trace as in eq. (1) is translated into a 𝐷 series reflecting the risk of disassembly at each 146 

time point. Most 𝐷(𝑖, 𝑡) values are either negative (low disassembly risk, i.e. loss < gain) or nearly zero 147 

(moderate disassembly risk), see Fig. 1C, which we interpret as reflective of two phases of CCP growth and 148 

maturation.  149 

1. Early growth phase: Following an initiation event, and during the first few seconds of CME, 150 

almost all CSs, including ACs, grow albeit with fluctuation. Also, most CSs are still small. Hence, in 151 

this earliest phase, Term ①< Term ② and 𝐷(𝑖, 𝑡) < 0. Accordingly, clathrin dissociation is rare 152 

and all traces in this early phase have a low risk of disassembly. However, the risk of acute 153 

disassembly increases as CSs approach the end of this phase. CSs that disassemble early are 154 

potentially ACs, whereas surviving CSs enter the next phase to become CCPs. 155 

2. Maturation phase: Upon completion of the growth phase, CCP intensities plateau but continue to 156 

fluctuate over many high intensity states at mid to late time points. The fluctuation is equivalent to 157 

having a similar chance of gain or loss of clathrin, thus Term ①≈② and 𝐷(𝑖, 𝑡) ≈ 0. CCPs in this 158 

phase retain a moderate risk of acute disassembly.  159 

In summary, 𝐷(𝑖, 𝑡) < 0 is indicative of early stages of clathrin recruitment when disassembly risk is 160 

suppressed; 𝐷(𝑖, 𝑡) = 0 is indicative of intensity fluctuations that occur at later stages of CCP growth and 161 

maturation. Fig. 1C displays representative examples of CCP (blue) and AC (red) traces. In the early growth 162 

phase both traces exhibit 𝐷(𝑖, 𝑡) < 0 (dark shaded background). As CCPs reach the maturation phase they 163 

approach the regime 𝐷(𝑖, 𝑡) ≈ 0. Thus, even short-lived CCPs tend to have larger 𝐷 values than ACs and 164 

for longer-lived CCPs the contribution of the early growth phase with negative 𝐷 values becomes 165 

negligible. Accordingly, for maturing CCPs 𝐷 values distribute around zero, whereas for ACs 𝐷 values 166 

distribute in the negative range.  167 

A small portion of CSs possess abnormally high intensities when first detected, but quickly disappear. 168 

Therefore, Term ①> Term ②, 𝐷(𝑖, 𝑡) > 0, and the disassembly risk for high intensity states at early time 169 

points is high (green traces in Fig. 1C and Fig. S1C). These atypical CSs frequently appear in regions of 170 

high background, which can obscure early and late detections (Fig. S1D) and impair the ability to accurately 171 

detect small intensity fluctuations. As interpreting the fates of these CSs is difficult, and because they are 172 

rare, we refer to them as outlier traces (OTs).  173 

To quantitatively distinguish the distributions of CCPs and ACs, we examined mean, variation and 174 

skewness of the 𝐷 series. Considering the 𝑛th series 𝐷[𝐼𝑛(𝑡), 𝑡], we first calculated its time average: 175 
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𝑑1(𝑛) =
1

𝜏
∑ 𝐷[𝐼𝑛(𝑡), 𝑡]
𝜏
𝑡=1 . 176 

An AC is expected to have 𝑑1(𝑛) < 0, whereas a CCP is expected to have 𝑑1(𝑛) ≈ 0. Indeed, for a 177 

population of N > 200,000 CSs tracked in HPV-RPE cells, the distribution of 𝑑1 values is bimodal (Fig. 178 

1D), allowing the distinction of ACs and CCPs.  179 

We additionally computed: 180 

𝑑2(𝑛) = ln{[max(𝐷[𝐼𝑛(𝑡), 𝑡]) − min(𝐷[𝐼𝑛(𝑡), 𝑡])] 𝜏⁄ }, 181 

which reflects the lifetime-normalized difference between the maximum and minimum value of a 𝐷 series. 182 

For example, the 𝐷-series of the CCP trace in Fig. 1C (see blue curve in Fig. S1C) has a maximum value of 183 

0.2 and minimum value of -0.8, and lasts for 30s (Fig. S1C). Thus 𝑑2 = ln [
0.2−(−0.8)

30
] ≈ −3.4. Analogously, 184 

the 𝐷-series of the AC trace (red curve in Fig. S1C) yields 𝑑2 = ln [
0−(−1)

10
] ≈ −2.3. In general, because 185 

traces of ACs are dominated by the early growth phase with 𝐷 continuously changing, they are expected to 186 

have a significantly greater 𝑑2 value than CCPs. Indeed, the distribution of this feature is also bimodal (Fig. 187 

1E) and thus can strengthen the distinction between ACs and CCPs. 188 

The 𝐷 series of OTs contain a few initial values that are much higher than those in the 𝐷 series associated 189 

with either ACs or CCPs (Fig. S1C). Therefore, such series can be identified via a modified skewness of 𝐷:  190 

𝑑3(𝑛) =
1

𝜏
∑

[𝐷[𝐼𝑛(𝑡), 𝑡] − 𝑑1(𝑛)]
3

𝜎(𝑛)3
⁄

𝜏

𝑡=1

, 191 

where 𝜎(𝑛) = √
1

𝜏
∑ [𝐷[𝐼𝑛(𝑡), 𝑡] − 𝑑1(𝑛)]2
𝜏
𝑡=1  is the standard deviation of the 𝐷 series. 192 

Indeed, the distribution of 𝑑3 over 𝑁 series displays two tight populations with the 𝑑3 values of OTs easily 193 

separable from the 𝑑3 values of ACs and CCPs (Fig. 1F).  194 

Using the three summary statistics (𝑑1, 𝑑2, 𝑑3) we project all CS traces into a feature space (Fig. 2A) and 195 

classify ACs (red), CCPs (blue), and OTs (green) using k-medoid clustering (see Materials and Methods). 196 

Values for d3 identify OTs, whereas 𝑑1 and 𝑑2
 complement one another separating ACs from CCPs. As 197 

these features originate from the disproportionate disassembly vs. assembly of CSs, we term our feature 198 

selection the disassembly asymmetry score (DAS), and name the packaged software DASC as DAS 199 

classification, available under https://github.com/DanuserLab/cmeAnalysis. 200 
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DASC accurately identifies dynamically distinct CS subpopulations 201 

The DASC-resolved subpopulations of CSs exhibit distinct but overlapping lifetimes and intensities (Fig. 202 

2B, C grey zone), confirming the inability of these conventional metrics to distinguish ACs from CCPs. The 203 

lifetimes of ACs (Fig. 2B, red) were predominantly short (<20s) and exhibited an exponential distribution 204 

characteristic of coats that are exposed to an unregulated disassembly process. In contrast, CCP lifetimes 205 

(Fig. 2B, blue) exhibited a unimodal distribution with a highest probability lifetime of ~26s. In previous 206 

work, we had shown that this distribution is best represented by a Rayleigh distribution that reflects the 207 

kinetics of a three- to four-step maturation process (10, 16, 26). Interestingly, although partially overlapping 208 

with ACs, the intensity distribution of CCPs (Fig. 2C) exhibits a sharp threshold in the minimum intensity, 209 

indicative of the minimum number of clathrin triskelia required to form a complete clathrin basket (19, 20). 210 

The majority of OTs (Fig. 2B, C, green) are highly transient and bright structures, reflective of the higher 211 

backgrounds from which they emerge.  212 

Despite their overlapping lifetimes and intensities, AC and CCP traces are well resolved by DASC as 213 

represented in two-dimensional, normalized probability density maps 𝜌̅(𝑑1, 𝑑2) (Fig. 2Di), from here on 214 

referred to as DAS plots (see Materials and Methods for details). To illustrate this point, we selected 10 CSs 215 

with overlapping lifetime distributions (10-25s, gray zone Fig. 2B) that fall close to the associated modes of 216 

either the AC or CCP populations in the DAS plot, i.e. the two maxima of 𝜌̅(𝑑1, 𝑑2) denoted by a diamond 217 

for ACs and circle for CCPs in Fig. 2Di. White dots show the (𝑑1, 𝑑2) locations of the selected CSs. Their 218 

intensity traces are shown in Fig. 2 Dii-iii. Although the lifetimes are almost identical, the CCP and AC 219 

traces show characteristic differences in their intensity evolution. CCP intensities rise to a clear maximum as 220 

they assemble a complete clathrin coat (Fig. 2Dii), followed by a falling limb, which is associated with CCV 221 

internalization and/or uncoating. In contrast, AC intensities are more random (Fig. 2Diii), suggesting that 222 

these coats, trapped in the early growth phase, undergo continuous exchange of clathrin subunits without 223 

significant net assembly. We occasionally observed rapidly fluctuating, high intensity CSs amongst the AC 224 

traces. These likely correspond to previously identified ‘visitors’ (i.e. endosome-associated coats transiting 225 

through the TIRF field), which make up ~10% of all detected CSs (10).  226 

We next selected 10 CSs (indicated as white dots in Fig. 2Ei) from the AC and CCP populations that fall 227 

into the overlap region in the distributions of intensity maxima (gray zone, Fig. 2C). Although the intensity 228 

ranges are nearly identical, the selected CCP traces again display a rising and falling limb and lifetimes of 229 

~60s (Fig. 2Eii). In sharp contrast, ACs fluctuate about the same intensity values (Fig. 2Eiii) and exhibit 230 

much shorter lifetimes of ~10s. Together, these data demonstrate that DAS provides an unbiased metric to 231 
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discriminate between two completely distinct clathrin coat assembly and disassembly processes that, by 232 

inference, are associated with abortive coats and bona fide CCPs. This has not been possible based on more 233 

conventional features such as lifetime and intensity (10, 16-18, 20, 27).  234 

To further establish the robustness of the DASC, we acquired 24 movies from the same WT condition on 235 

the same day and randomly separated them into pairs of 12 movies each. We then applied DASC to the 236 

movies, and calculated percent contribution of bona fide CCPs, i.e. CCP% = CCP:(CCP+AC+OT) × 100%, 237 

for each movie using the first 12 as the control set, the other 12 as the test set, and compared the two data 238 

sets. The procedure was repeated 1000 times. Fig. 2F shows 5 example pairs, and Fig. 2G gives the p-value 239 

distribution of the 1000 repeats. As expected, comparison by a Wilcoxon rank sum test yields p-values >0.5 240 

for most pairs and scarcely <0.1, indicating no significant difference between movies from the same 241 

condition. Thus, DASC is statistically robust and not overly sensitive to movie-to-movie variations in data 242 

collected on the same day. 243 

Validation through perturbation of established CCP initiation and stabilization pathways 244 

We next tested the performance of DASC against conditions known to perturb early stages in CME. AP2 245 

complexes recruit clathrin to the plasma membrane and undergo a series of allosterically-regulated 246 

conformational changes needed to stabilize nascent CCPs (17, 28-30). Previous studies based on siRNA-247 

mediated knockdown (KD) of the  subunit of AP2 and reconstitution with either WT, designated 248 

αAP2(WT), or a mutant defective in PIP2 binding, designated αAP2(PIP2-), in hTERT-RPE cells have 249 

established that AP2-PIP2 interactions are critical mediators of AP2 activity (17). We repeated these 250 

experiments in HPV-RPE cells using DASC and detected pronounced differences in the DAS plots derived 251 

from αAP2(WT) vs αAP2(PIP2-) cells (Fig. 3Ai-ii). A DAS difference ∆𝜌[𝛼𝐴𝑃2(𝑊𝑇), 𝛼𝐴𝑃2(𝑃𝐼𝑃2−)] map 252 

(see Materials and Methods) shows a dramatic increase (yellow) in the fraction of ACs and a corresponding 253 

decrease (black) in the fraction of CCPs (Fig. 3B), as expected given the known role of AP2-PIP2 254 

interactions in CCP stabilization.  255 

We also observed an increase in CS initiation rate (CS init.) (Fig. 3Ci), measured by total trackable CSs 256 

detected per minute per cell surface area (see Material and Methods for detail definition). Previous studies 257 

reported a decrease in CS initiation rate (17). This apparent discrepancy likely reflects our use of all 258 

detected traces to calculate CS initiation rate as compared to previous use of only ‘valid’ tracks (see 259 

Materials and Methods). As the CSs observed in the αAP2-PIP2- cells were significantly dimmer than those 260 
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detected in WT cells (see Fig. S2), more initiation events would have been scored as ‘invalid’ in the 261 

previous analysis due to flawed detections, especially at early stages of CCP assembly.  262 

DASC analysis revealed multiple defects in early stages of CME in the αAP2(PIP2-) cells compared to 263 

αAP2(WT) cells. We detected a pronounced decrease in the efficiency of CCP stabilization, which was 264 

calculated as the fraction of CCPs in all the valid traces (see Material and Methods). The CCP% decreased 265 

from 32% (on average) in control cells to 22% in αAP2(PIP2-) cells (Fig. 3Cii). The lifetime distributions of 266 

CCPs also shift to shorter lifetimes (Fig. 3Ciii), resulting in decreased median lifetimes (Table 1) in 267 

αAP2(PIP2-) cells compared to αAP2(WT) cells. This lifetime shift indicates that the mutation can also 268 

cause instability in fully grown clathrin coats, as previously reported (17). In addition, the maximal intensity 269 

of ACs, which is an indication of the growth of ACs before they are turned over, was reduced in 270 

αAP2(PIP2-) cells (Fig. 3Civ, Table 1). These data suggest greater instability of nascent coats. 271 

We next compared the kinetics and extent of recruitment of AP2 and clathrin to ACs and CCPs. For this we 272 

applied two-color imaging and ‘master-slave’ analysis (10) to simultaneously track clathrin and AP2 in 273 

ARPE cells stably expressing mRuby2-CLC as the master channel and the wild-type α subunit of AP2 274 

encoding eGFP within its flexible linker region (α-eGFP-AP2) as the slave channel. Applying DASC to the 275 

mRuby2-CLCa signal to distinguish CCPs from ACs and cohort plotting of traces with lifetimes in the range 276 

15s to 25s (26), we observed, as expected, that CCPs reach significantly higher average clathrin intensity 277 

than ACs (Fig. 3Di-ii). We also observed significantly higher levels of AP2 α subunit present at CCPs than 278 

ACs. Moreover, as previously shown for statistically-defined abortive vs. productive pits (26), the initial 279 

rates of recruitment to CSs of both clathrin and AP2, determined by the derivative of intensity, were much 280 

greater for CCPs than ACs (Fig. 3Ei-ii). Together these data corroborate the known stabilization function of 281 

AP2 during CCP initiation (17, 31), and serve to validate the ability of DASC to distinguish different 282 

regimes of molecular regulation at early stages of CME.  283 

Validation through curvature acquisition and CCP stabilization relation 284 

Previous studies have suggested that curvature generation within nascent CCPs is a critical factor for their 285 

maturation and that CCPs that fail to gain curvature are aborted (10, 16, 27, 32). Therefore, we asked how 286 

DASC-identified ACs and CCPs relate to the acquisition of CCP curvature (Fig. 3F). To this end, we 287 

applied DASC to traces acquired by near simultaneous epifluorescence (Epi)-TIRF microscopy (10, 26). 288 

Because of the differential fluorescence excitation depths of TIRF- and epi-illumination  fields, the ratio of 289 

Epi:TIRF intensities of individual CSs provides a measure of curvature (Fig. S3A). CSs were classified as 290 
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ACs or CCPs based on the TIRF channel traces and then grouped into lifetime cohorts to obtain average 291 

invagination depth ∆𝑧 (See Methods and materials). We show in Fig. 3F that CSs in the 20s cohort 292 

classified by DASC as CCPs reached maxima ∆𝑧𝑚𝑎𝑥/ℎ = max [∆𝑧(𝑡)]/ℎ > 0.3, which corresponds to an 293 

invagination depth of > 35𝑛𝑚 (ℎ = 115𝑛𝑚 is the characteristic depth of our TIRF illumination field, see 294 

Materials and Methods). In contrast, CSs in 20s cohort classified by DASC as ACs fail to gain significant 295 

curvature. Other cohorts supporting this CCP-curvature relation are presented in Fig. S3. Together, these 296 

data (Fig. 3D, F) establish that DASC-identified ACs and CCPs are structurally and functionally distinct.  297 

Differential effects of endocytic accessory proteins (EAPs) on CCP dynamics revealed by DASC  298 

Equipped with DASC as a robust and validated tool to distinguish bona fide CCPs from ACs and to 299 

quantitatively measure early stages of CME, we next probed the effects of siRNA KD of eleven EAPs 300 

previously implicated in these stages (3, 33-43). Our measurements allow us to segment the early dynamics 301 

in CME into discrete stages (Fig. 4A), including stage 1: initiation, measured by CS initiation rate (CS init. 302 

in min-1μm-2), and stage 2: stabilization, quantified by CCP%, which is a measure of the efficiency of 303 

nascent CCP stabilization (Fig. 4A). Combining stage 1 and 2 measurements, we calculated CCP rate (min-304 

1μm-2), i.e. the number of CCPs appearing per unit time normalized by cell area (see Materials and Methods 305 

for a detailed definition and computation of the three metrics). Finally, we measured the lifetime distribution 306 

of CCPs, which reflects CCP maturation (stage 3) and the efficiency of transferrin receptor (TfR) uptake, 307 

TfReff, a bulk measurement of internalized TfRs as a percentage of their total surface levels, which is not 308 

stage specific but reflects the overall process of CME (see Fig. 4A, Fig. S4 and Materials and Methods).  309 

The KD effects of these EAPs are summarized in Table 1 with statistical significance. KD efficiency is 310 

shown in Fig. S4. Three representative examples comparing the effects of treating cells with EAP-specific 311 

siRNA vs non-targeting siRNA on i) stage 1-initiation, ii) stage 2-stabilization, iii) stage 1 plus 2, iv) stage 312 

3-maturation and v) transferrin uptake efficiency (TfReff) are shown in Fig4 B-D. KD of CALM 313 

dramatically decreased initiation, stabilization and TfReff, and also significantly altered the lifetime 314 

distribution of CCPs (Fig. 4B). These changes included increases in both short- and long-lived CCPs, 315 

indicative of a role for CALM in multiple aspects of CCP maturation. Conversely, KD of epsin1 selectively 316 

perturbed CCP stabilization without affecting initiation, CCP lifetime or TfReff (Fig. 4C). In the example of 317 

Eps15, initiation and stabilization were significantly decreased upon KD, while CCP lifetime was not 318 

significantly affected; on the other hand, TfReff was slightly increased (Fig. 4D), suggesting a compensation 319 

effect. Together, these examples show consistent and significant defects in early stage(s) caused by the three 320 

EAPs, despite their differential and less interpretable effects on the efficiency of transferrin receptor uptake. 321 
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Moreover, DASC analysis confirmed that KD of the so-called ‘pioneer’ EAPs, e.g. FCHO1/2, ITSN1/2, 322 

NECAP1 and Eps15/15R (34) selectively altered CCP initiation and/or stabilization without affecting CCP 323 

maturation rates, and having only relatively mild effects on the efficiency of TfR uptake (Table 1). In sum, 324 

DASC is a statistically reliable method to detect phenotypes caused by KD of individual EAPs, thus 325 

enabling their effects on specific stage(s) of CCP dynamics to be mechanistically dissected.  326 

DASC phenotypes are orthogonal to biochemical measurements of CME efficiency 327 

We next evaluated the sensitivity of DASC and its relation to bulk biochemical measurement of transferrin 328 

uptake (TfReff), the commonly used assessment of CME efficiency. Strikingly, KD of most EAPs 329 

significantly reduced CCP rate (by over 30%), but caused less and/or uncorrelated shifts in TfReff (Fig. 4 330 

panel (iii), (v) and Table 1). To further explore this observation, we first replotted the KD phenotypes as 331 

percentage changes relative to control (Δr) in a colored ‘heat’ map (Fig. 5A). We also added measurements 332 

of transferrin receptor internalization (TfRint), which is independent of potential changes in surface levels of 333 

the recycling TfR, as is often measured by FACS or fluorescence imaging. As is evident from this plot, 334 

DASC-determined changes to early stages, ΔrCCP% and especially ΔrCCP rate, were with few exceptions 335 

more severe than ΔrTfRint and ΔrTfReff. Few of the pioneer proteins we studied affected CCP median 336 

lifetime (ΔrτCCP) and thus later stages of CCP maturation.  337 

To visualize the range of effects of all EAPs on each measurement, we next plotted the data from Fig. 5A in 338 

a bar graph (Fig. 5B, each black dot represents an EAP KD). Three examples siEpsin, siNECAP1 and 339 

siITSN1 were highlighted by colored lines to illustrate their differential effects on early stages v.s. TfReff. 340 

The data show that CCP rate was most affected by EAP KDs (reduced on average by 30%); whereas TfRint 341 

was only reduced by ~10%. TfReff was more sensitive than TfRint, but was still reduced on average by only 342 

<20%. The three highlighted EAPs, epsin1, NECAP1 and ITSN1, underline the distinguishing power of 343 

DASC vs biochemical CME measurements. While their individual KD resulted in an ~30% decrease in 344 

CCP rate, typical among the whole collection of KDs, they had differential effects on TfReff. Whereas KD 345 

of NECAP1 correspondingly decreased TfReff by ~ 24%, KD of ITSN1 and epsin1 caused only a minor 346 

decrease or insignificant change in TfReff. These examples indicated that early phenotypes can easily be 347 

obscured in non-stage-specific biochemical measurements.  348 

We further illustrated this point for the whole collection of EAP KDs. For better visualization, we reduced 349 

the dimensionality of the extracted features using a principal component analysis (PCA) (implemented in 350 

Matlab’s function pca). The original data (Fig. 5A) contained 11 observations (11 EAP KDs) of 6 351 
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variables/dimensions (6 relative changes). First, the original observations were recentered, rescaled and 352 

projected into a new 2 dimensional PCA space, spanned by Component 1 and Component 2, which are 353 

linear combinations of the original 6 dimensions (Fig. 5C, implemented in Matlab’s function biplot). The 354 

variance of the original data was largely (>85%) maintained in this new space, shown by Component 1 355 

(65.14% of total variance) and Component 2 (20.65% of total variance). Hence, the dimensionality 356 

reduction to a 2D space caused no substantial information loss from the original data. We then projected the 357 

original variables or dimensions into the two-component PCA space (Fig. 5C) and observed that ΔrCCP rate 358 

was almost perpendicular to ΔrTfReff. This striking orthogonality indicates manipulations of early CME 359 

stages have almost no effect on the bulk efficiency of CME. We conclude from this that defects in the CCP 360 

initiation and stabilization steps are compensated through redundant mechanisms that replenish transferrin 361 

receptor uptake. We supplemented the PCA with a correlation map (Fig. S5). Indeed, ΔrCCP rate among 362 

other early variables shows little correlation to ΔrTfReff. These comparisons highlight the value of DASC 363 

for increased sensitivity and greater phenotypic resolution over bulk biochemical measurements of cargo 364 

uptake, which can often obscure effects of EAP KD due to the resilience of CME. 365 

 366 

Discussion 367 

Live cell imaging has revealed remarkable heterogeneity in the intensities and lifetimes of eGFP-CLCa-368 

labeled CCPs in vertebrate cells, even amongst productive pits (13). Consequently, it has been challenging 369 

based on these parameters to comprehensively and objectively distinguish abortive coats (ACs) from bona 370 

fide CCPs, and thus to use them to define the roles of many uncharacterized EAPs in the dynamics of CCV 371 

formation. Here, we introduce DAS as a new feature space for describing CS dynamic behaviors, in which 372 

ACs and bona fide CCPs are accurately resolved. The DAS features exploit fluctuations in the inherently 373 

noisy intensity traces of individual CSs. The associated software pipeline, DASC, reliably separates 374 

dynamically, structurally and functionally distinct abortive and productive subpopulations without imposing 375 

any prior assumptions or the need for additional markers. While demonstrated on the classification of CSs 376 

during CME, the DASC framework is derived from first principles of thermodynamics describing entropy 377 

production during the assembly of macromolecular structures. Therefore, our tool will be applicable to any 378 

assembly process for which the addition and exchange of subunits can be traced.  379 

Application of DASC to analyze the effects of knockdown of eleven early-acting endocytic accessory 380 

proteins identified diverse and significant phenotypes in discrete stage(s) of CCP progression, orthogonal to 381 
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changes in conventionally used cargo uptake assays. Our findings establish the necessity of DASC for 382 

mechanistically dissecting early stages in CME dynamics and to study the numerous, as yet functionally 383 

undefined, endocytic accessory factors.  384 

Characterization of the DASC-resolved AC and CCP subpopulations shows that ACs: i) have much lower 385 

average intensities than CCPs, ii) have much shorter average lifetimes than CCPs, iii) exhibit unregulated 386 

exponentially decaying lifetime distributions, as compared to the near-Rayleigh distributed CCP lifetimes, 387 

iv) contain fewer AP2 complexes than CCPs, v) recruit both clathrin and AP2 at a much slower rate than 388 

CCPs, and vi) acquire less curvature than CCPs. All of these features reproduce the properties of abortive 389 

coats inferred from previous studies (10, 16), thus both validating the robustness of DASC for 390 

distinguishing ACs from bona fide CCPs and providing unambiguous mechanistic insight into the factors 391 

required to stabilize nascent CCPs. Importantly, however, the distributions of each of these distinguishing 392 

properties have strong overlap between ACs and CCPs, preventing the use of any single or combined 393 

feature set as a marker for AC vs CCP classification. DASC is the only tool so far that can serve the purpose 394 

of stratifying individual CSs into these groups.  395 

By applying this classification power to analyze early acting EAPs, we could assign their differential 396 

functions to specific stages of CCV formation even when single isoforms were individually depleted and 397 

bulk rates of cargo uptake were not or only mildly affected. Thus, DASC enables phenotypic assignment of 398 

individual EAPs to discrete stages of CME, but also reveals the existence of compensatory mechanisms (10, 399 

44) and/or molecular redundancy (1) able to restore or maintain efficient cargo uptake. The resilience of 400 

CME to the effects of KD of individual components of the endocytic machinery is evident in the inability of 401 

multiple genome-wide screens based on ligand internalization assays to detect EAPs (45-48). Previous 402 

studies have shown that one compensatory mechanism triggered in cells expressing a truncated -subunit 403 

lacking the EAP-binding appendage domain involves the isoform-specific activation of dynamin-1 (49). 404 

Thus, DASC will be a critical tool for future studies aimed at identifying other possible compensatory 405 

mechanisms able to restore transferrin receptor internalization. 406 

We report a strong effect on the efficiency of TfR uptake in cells depleted of CALM and SNX9, whereas 407 

others have reported only minor or no effects (6-9). These differences may reflect cell type specific 408 

expression levels and/or activities of functionally redundant isoforms such as AP180 or SNX18 in the case 409 

of CALM and SNX9, respectively (8). Moreover, while not relevant to the work cited above, transferrin 410 

uptake assays that only measure the intracellularly accumulated ligand (e.g. TfRint) without taking into 411 

consideration changes in levels of surface receptor, as is frequently the case for FACS- or fluorescence 412 
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microscopy-based assays, could miss or mis-interpret phenotypes (see Fig. S4). Importantly, the sensitivity 413 

of DASC to changes in early stages of CCP initiation and stabilization, enables detection of phenotypes 414 

even when single isoforms are depleted.  415 

In summary, DASC classifies the previously unresolvable ACs and CCPs using data derived from single 416 

channel live cell TIRF imaging, thus providing an accurate measure of progression of CME through its early 417 

stages. This comprehensive and unbiased tool enables the determination of the distinct contributions of early 418 

EAPs to clathrin recruitment and/or stabilization of nascent CCPs. The stage-specific analysis by DASC is 419 

essential to characterize the functions of EAPs that were previously masked by detection limits and 420 

incompleteness of current experimental approaches. Going forward, DASC will be essential to functionally 421 

and comprehensively characterize the roles of the complete set of >70 EAPs in CME dynamics. 422 

 423 

Materials and Methods 424 

Computational flow of DAS analysis 425 

1. Acquire intensity traces using cmeAnalysis (10) to analyze live-cell imaging movies. From the software 426 

output, determine the total number of traces, 𝑁𝑡𝑜𝑡, which includes both valid traces (𝑁 entries, i.e. 427 

always diffraction-limited with no consecutive gaps) and invalid traces (𝑁𝑖𝑣 entries, i.e. not always 428 

diffraction limited, and/or contain consecutive gaps) and calculate the CS initiation rate (CS init.), which 429 

equals to 𝑁𝑡𝑜𝑡/(𝐴 ∙ 𝑇), where 𝐴 is the cell area and 𝑇 = 451𝑠 is the duration of each movie. Repeat this 430 

step for control and all the experimental conditions that have been collected on the same day. It is 431 

critical that a new control be performed with each data set. 432 

2. Include only ‘valid’ traces in the following DAS analysis (described below) to identify subpopulations 433 

of CSs. 434 

3. Align each trace to its first frame, which is the first statistically significant detection (10). Then, for each 435 

trace, every intensity value is rounded to its nearest integer, 𝑖 ∈ [1, 𝑖𝑚𝑎𝑥](𝑎. 𝑢. ), where 𝑖𝑚𝑎𝑥 is the 436 

maximal rounded intensity among all the traces acquired on the same day.  437 

4. Calculate conditional probabilities 𝑊𝑡(𝑖
⊝|𝑖) (i.e. increase in intensity from t to t+1) and 𝑊𝑡(𝑖|𝑖

⊝) (i.e. 438 

decrease in intensity from t to t+1), 𝑡 ∈ [1, 𝑇], using the entire population of traces from the control 439 

condition: 440 

𝑊𝑡(𝑖
⊝|𝑖) =

𝜌[(𝑖⊝, 𝑡 + 1) ∩ (𝑖, 𝑡)]

𝜌(𝑖, 𝑡)
, 441 
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where 𝜌(𝑖, 𝑡) is the probability of traces that reach (𝑖, 𝑡), and 𝜌[(𝑖⊝, 𝑡 + 1) ∩ (𝑖, 𝑡)] is the joint 442 

probability of traces that reach (𝑖, 𝑡) but also reach (𝑖⊝, 𝑡 + 1). Conversely,  443 

𝑊𝑡(𝑖|𝑖
⊝) =

𝜌[(𝑖, 𝑡 + 1) ∩ (𝑖⊝, 𝑡)]

𝜌(𝑖⊝, 𝑡)
. 444 

Note that large numbers of traces (>100,000), typically obtained from >10 movies per condition, are 445 

required to obtain stable values of 𝑊𝑡. 446 

5. Calculate the function 𝐷(𝑖, 𝑡), based on eq. (2) (see main text). Note that the 𝐷 function is only 447 

calculated once using control traces. The same 𝐷, which in essence serves as a ‘standard function’, will 448 

be applied to directly compare data between different conditions, if collected on the same day. 449 

6. Convert each trace to a 𝐷 series by substituting its intensity at each time frame (i.e. eq. (1)) into its 𝐷 450 

function (i.e. eq. (3)). Repeat this step for all conditions.  451 

7. Calculate the three features 𝑑1, 𝑑2 and 𝑑3 of every 𝐷 series, resulting in a 𝑁 by 3 data set, where 𝑁 is 452 

the total number of 𝐷 series. Repeat this step for all the conditions.  453 

8. Make the three features numerically comparable by normalizing 𝑑1, 𝑑2 and 𝑑3 from different conditions 454 

using means and standard deviations of the control. For any given condition, the normalized 𝑑 reads: 455 

𝑑̅𝛼 =
(𝑑𝛼 − 𝜇𝛼

𝑐𝑡𝑟𝑙)
𝜎𝛼
𝑐𝑡𝑟𝑙⁄ , for 𝛼 = 1,2,3, 456 

where 𝜇𝛼
𝑐𝑡𝑟𝑙 is the mean of all 𝑑𝛼 and 𝜎𝛼

𝑐𝑡𝑟𝑙 is the standard deviation of all 𝑑𝛼 in control condition.  457 

9. Apply the k-medoid method, using 𝑑̅1, 𝑑̅2 and 𝑑̅3 as features, to separate the traces from a single 458 

condition into 3 clusters, CCP, AC and OT, using Euclidean distance. k-medoid (implemented in 459 

Matlab’s function kmedoids) is chosen for its robustness over k-means. Repeat this step for all the 460 

conditions from the same day.  461 

10. Calculate metrics such as lifetime and maximal intensity distributions and medians, population size, etc. 462 

for all traces within the same cluster. See more details of these calculations in the following sections. 463 

Repeat this step for all the conditions. 464 

11. Calculate the fraction of CCPs, CCP% (the efficiency of CCP stabilization), as the population of CCPs, 465 

𝑛𝐶𝐶𝑃, divided by the entire population of valid traces, 𝑁 = 𝑛𝐶𝐶𝑃 + 𝑛𝐴𝐶 + 𝑛𝑂𝑇. Box plots with p-values 466 

are shown for CS init. and CCP% using Matlab’s exchange file function raacampbell/sigstar by Rob 467 

Campbell. Repeat this step for all the conditions. 468 

12. Calculate CCP rate that equals to 𝑛𝐶𝐶𝑃/(𝐴 ∙ 𝑇) as the evaluation of the combined result of initiation and 469 

stabilization.  470 
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13. Evaluate statistical significance using Wilcoxon rank sum test (implemented in Matlab’s function 471 

ranksum). 472 

Statistical confidence bands of probability density functions based on bootstrapping 473 

A new statistical analysis evaluating the variation of probability density function (pdf) is developed for the 474 

data in this paper, where movie-movie variation is considered to be the dominant source of variation. First, 475 

for a given choice of variable 𝑥, e.g. lifetime or maximal intensity in either CCP or AC subpopulations, 𝑥 476 

values pooled from all 𝑁𝑚 movies in a certain experimental condition are obtained. To equalize the 477 

contribution from different movies, 𝑥 values in each movie are resampled to match the same size (𝑛𝑥) 478 

before pooling, where 𝑛𝑥 is the median of the 𝑁𝑚 movies’ CCP or AC number per movie. The pdf 𝑝(𝑥) is 479 

then computed using Matlab’s function ksdensity (default kernel smoothing factor is applied to all pdf 480 

calculations). Next, to evaluate the movie-movie variation, the 𝑁𝑚 movies are bootstrapped to obtain 𝑁𝑚 481 

resampled movies. 𝑥 values from these bootstrapped movies are pooled to compute the first bootstrapped 482 

pdf 𝑝𝑖=1
∗ (𝑥) using ksdensity, where 𝑖 indicates bootstrap number. Repeating this part 400 times, 𝑝𝑖=1

∗ (𝑥) for 483 

𝑖 = 1…400 are obtained. Finally, at any given value 𝑥, the 95% confidence band is obtained as a lower and 484 

upper bound [𝑝↓(𝑥), 𝑝
↑(𝑥)], where 𝑝↓ = 2.5th percentile and 𝑝↑ = 97.5th percentile of the 400 𝑝𝑖=1…400

∗ (𝑥) 485 

values. The final presentation of pdf is therefore 𝑝(𝑥) as the main curve with the confidence band defined 486 

by 𝑝↓(𝑥) and 𝑝↑(𝑥).  487 

Normalized two-dimensional distributions 488 

DAS plots (e.g. Fig. 2D), calculated as 𝜌̅(𝑑1, 𝑑2) = 𝜌(𝑑1, 𝑑2)/max [𝜌(𝑑1, 𝑑2)] represent the 2D probability 489 

density normalized by maximum, where 𝜌(𝑑1, 𝑑2) is the probability density in 𝑑1-𝑑2 space, binned by 490 

∆𝑑1 = 0.2 and ∆𝑑2 = 0.5. The normalized probability density projections of the data in the (𝑑1, 𝑑2 𝑑3) 491 

space in Fig. 2A is computed in the same way, adding bins of  ∆𝑑3 = 0.5. 492 

The DAS difference maps (e.g. Fig. 3B) show the difference between the normalized 2D densities of two 493 

given conditions divided by their integrations (condition 1 as control),  494 

∆𝜌(𝑐𝑜𝑛𝑑. 1, 𝑐𝑜𝑛𝑑. 2) =
𝜌̅𝑐𝑜𝑛𝑑.2(𝑑1, 𝑑2)

∑ ∑ 𝜌̅𝑐𝑜𝑛𝑑.2(𝑑1, 𝑑2)∆𝑑1∆𝑑2𝑑2𝑑1

−
𝜌̅𝑐𝑜𝑛𝑑.1(𝑑1, 𝑑2)

∑ ∑ 𝜌̅𝑐𝑜𝑛𝑑.1(𝑑1, 𝑑2)𝑑2𝑑1 ∆𝑑1∆𝑑2
. 495 

Averaged intensity and ∆𝒛 time course 496 

For a given cohort lifetime 𝜏, the traces within lifetime range 𝜏 ± 5𝑠 are averaged using the cohort method 497 

described in (10). The average values are presented as lines, and their error (standard deviation) as bands.  498 
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Using the microscopy setup illustrated in Fig. S3A, Epi and TIRF intensities over the lifetimes of each 499 

cohort (Fig. S3B-D) and errors of EPI and TIRF channels are obtained, i.e. 𝐼𝐸(𝑡) ± ∆𝐼𝐸(𝑡) and 𝐼𝑇(𝑡) ±500 

∆𝐼𝑇(𝑡). Following the approach developed by Saffarian and Kirchhausen (50), we then derived the distance 501 

between the center of the CS (*) and the initial position of assembled clathrin (+) as the invagination depth 502 

∆𝑧 (Fig. S3A). For each cohort we calculated ∆𝑧(𝑡)/ℎ = 𝑙𝑛
𝐼𝐸
′ (𝑡)

𝐼𝑇(𝑡)
, where the normalization factor is the 503 

characteristic depth of the TIRF field, ℎ = 115𝑛𝑚 based on our TIRF setting, similar to (26). 𝐼𝐸
′ (𝑡) defines 504 

the Epi intensity trace adjusted to match the initial growth rate of clathrin measured in the TIRF intensity 505 

trace.  506 

𝐼𝐸 and 𝐼𝑇 are different in linear range of intensity measurement, i.e. the same intensity signal may have 507 

different readings from EPI and TIRF channel. To correct for this, 𝐼𝐸(𝑡) is adjusted along following 508 

protocol: 1) the data between the 2nd and 10th element in 𝐼𝐸(𝑡) and 𝐼𝑇(𝑡) are fitted by a 3rd order polynomial 509 

𝑃𝐸(𝑡 = 2…10𝑠) and 𝑃𝑇(𝑡 = 2…10𝑠) respectively. Then the initial growth rate for both channels is 510 

approximated as 511 

𝑘𝐸 =
𝑑𝑃𝐸
𝑑𝑡
|
𝑡=2
, 512 

𝑘𝑇 =
𝑑𝑃𝑇
𝑑𝑡
|
𝑡=2
, 513 

 and 𝐼𝐸(𝑡) adjusted such that the growth rate of the corrected series 𝐼′𝐸(𝑡) matches 𝑘𝑇, i.e.,𝐼′𝐸(𝑡) =514 

𝑘𝑇

𝑘𝐸
𝐼𝐸(𝑡) + 𝐼0    (𝑆1,and  𝐼0 is an additive correction factor (see below). The averaged invagination depth is 515 

then extracted from the relation 516 

𝐼𝑇(𝑡) = 𝐼𝐸
′ (𝑡)𝑒𝑥𝑝 (−

∆𝑧

ℎ
)   (𝑆2) , 517 

i.e., 518 

∆𝑧(𝑡)

ℎ
= 𝑙𝑛 [

𝐼𝐸
′ (𝑡)

𝐼𝑇(𝑡)
]    (𝑆3). 519 

Considering the approximation that ∆𝑧(𝑡 = 2) ≈ 0, 𝐼0 is obtained by substituting eq. (S1) into eq. (S3), and 520 

then replacing 𝐼𝐸 and 𝐼𝑇 at 𝑡 = 2𝑠 with the corresponding fitted values from 𝑃𝐸 and 𝑃𝑇, 521 

𝐼0 = −
𝑘𝑇
𝑘𝐸
𝑃𝐸(𝑡 = 2𝑠) + 𝑃𝑇(𝑡 = 2𝑠). 522 
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∆𝑧(𝑡) is then expressed as a function of 𝐼𝑇 and the original 𝐼𝐸 with calculated parameter values, 523 

∆𝑧(𝑡)

ℎ
= 𝑙𝑛 [

𝑘𝑇
𝑘𝐸
⁄ 𝐼𝐸(𝑡) + 𝐼0 

𝐼𝑇(𝑡)
]. 524 

The error of ∆𝑧(𝑡) is obtained through error propagation for the two variables 𝐼𝐸(𝑡) ± ∆𝐼𝐸(𝑡) and 𝐼𝑇(𝑡) ±525 

∆𝐼𝑇(𝑡) using Matlab’s exchange file function PropError by Brad Ridder. Note that at early and late time 526 

points, high background but weak foreground intensity prohibits accurate calculation of 𝐼𝐸 and hence ∆𝑧 527 

(Fig. 3F and S3). We also detected too few ACs in the 40s cohort for robust analysis (Fig. S3). 528 

Cell culture and cell engineering 529 

ARPE19 and ARPE-19/HPV-16 (ATCC® CRL-2502™) cells were obtained from ATCC and cultured in 530 

DMEM/F12 medium with 10% (v/v) FBS at 37°C under 5% CO2. ARPE-19/HPV-16 cells were infected 531 

with recombinant lentiviruses encoding eGFP-CLCa in a pMIEG3 vector, and sorted by FACS after 72 532 

hours (10). AP2 reconstitution was achieved by infecting the eGFP CLCa-expressed ARPE-19/HPV-16 533 

cells (ARPE_HPV16 eGFP_CLCa) with retroviruses encoding siRNA resistant WT or PIP2- (K57E/Y58E) 534 

AP2 alpha subunit in a pMIEG3-mTagBFP vector and FACS sorted based on BFP intensity (17). CALM 535 

reconstitution was achieved by infecting ARPE-19/HPV-16 eGFP-CLCa cells with retroviruses encoding 536 

siRNA resistant WT CALM in a pBMN vectors gifted from Dr. David Owen (21) (Cambridge, UK) and 537 

selected in 0.25 mg/ml hygromycin B for a week. Western blotting was used to confirm reconstituted-538 

protein expression and knockdown efficiency of the generated cell lines using anti-alpha-adaptin (Thermo 539 

Fisher Scientific, #AC1-M11) and anti-CALM (Abcam, #ab172962) antibodies. APRE19 cells with stable 540 

expression of mRuby2-CLCa and -eGFP-AP2 were also generated via lenti- and retroviral transduction, 541 

respectively. 542 

siRNA transfection 543 

200,000 ARPE-19/HPV-16 cells were plated on each well of a 6-well plate for ≥ 3 hours before 544 

transfection. Transfections for siRNA knockdown were assisted with Lipofectamin RNAiMAX (Life 545 

Technologies, Carlsbad, CA). Briefly, 6.5 µl of Lipofectamin RNAiMax and 5.5 µl of 20 µM siRNA were 546 

added separately into 100 µl OptiMEM and incubated separately for 5 min at room temperature. SiRNA 547 

were next mixed with lipofectamin RNAiMAX and incubated at room temperature for another 10 min 548 

before being added dropwise to the cells with fresh medium. Measurements were performed at day 5 after 549 

plating cells following two rounds of siRNA transfection (time gap = 24-48 hrs between transfections). 550 
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Western blotting confirmed that the knockdown efficiency for all proteins was over 80%. Control cells were 551 

transfected in parallel with control siRNA (siCtrl) purchased from QIAGEN (Germantown, MD). 552 

Transferrin receptor internalization assay 553 

Internalization of transferrin receptor was quantified by in-cell ELISA following established protocol (39). 554 

ARPE-19/HPV-16 cells were plated in 96 well plates (15,000 cells/well, Costar) and grown overnight. 555 

Before assay, cells were starved in PBS4+ (1X PBS buffer with addition of 0.2% bovine serum albumin, 556 

1mM CaCl2, 1mM MgCl2, and 5mM D-glucose) for 30min at 37ºC incubator with 5% CO2 and then 557 

cooled down to 4ºC and supplied with 100μl 5μg/ml HTR-D65 (anti-TfR mAb) (51). Some cells were kept 558 

at 4ºC for the measurement of surface-bound HTR-D65, while some cells were moved to 37ºC water bath 559 

for 10min internalization and then acid washed to remove surface-bound HTR-D65. All cells were fixed 560 

with 4% paraformaldehyde (PFA) (Electron Microscopy Sciences, PA) and penetrated with 0.1% Triton-561 

X100 (Sigma-Aldrich). After blocking with Q-PBS (PBS, 2% BSA, 0.1% lysine, 0.01% saponin, pH 7.4) 562 

for 30min, surface and internalized HTR-D65 was probed by HRP-conjugated goat-anti-mouse antibody 563 

(Sigma-Aldrich). Color developed after adding OPD solution (Sigma-Aldrich) and absorbance was read at 564 

490nm (Biotek Synergy H1 Hybrid Reader).  565 

Statistical significance of changes in internalized and surface-bound transferrin receptors (TfRint and 566 

TfRsuf) were obtained by two-sample t-test (implemented in Matlab’s function test2). Statistical significance 567 

of changes and 95% confidence intervals in efficiency of transferrin receptor uptake (TfReff =TfRint/TfRsuf) 568 

were obtained using a statistical test for ratios (52) (implemented in a customized Matlab’s function).  569 

Microscopy imaging and quantification 570 

Total Internal Reflection Fluorescence (TIRF) Microscopy imaging was conducted as previously described 571 

(16). Cells were grown on a gelatin-coated 22x22mm glass (Corning, #2850-22) overnight and then 572 

mounted to a 25x75mm cover slide (Thermo Scientific, #3050). Imaging was conducted with a 60X, 1.49-573 

NA Apo TIRF objective (Nikon) mounted on a Ti-Eclipse inverted microscope equipped with an additional 574 

1.8X tube lens, yielding a final magnification of 108X. Perfect focus was applied during time-lapsed 575 

imaging. For epi/TIRF imaging, nearly simultaneous two channel (488 epifluorescence/TIRF) movies were 576 

acquired with multi-dimension acquisition (MDA). Movies were acquired at the rate of 1 frame/s. 577 

cmeAnalysis was applied for CCP detection and tracking (10, 23, 26). 578 

 579 
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EAP  Number 
of 
movies  

Initiation Stabilization Initiation + 
Stabilization 

Maturation Biochemical 
measurements of CME 

siRNA or 
mutant 

𝒏𝒔𝒊𝑪𝒕𝒓𝒍, 
𝒏𝒔𝒊𝑬𝑨𝑷 

CS 
initiation 

rate 

CCP% CCP rate Median 
lifetime of 

CCP 

TfRint 
(intracellular 

accumulation) 

TfReff 
(internal/ 
surface 
bound) 

α-PIP2 19, 20 ↑36%*** ↓27%*** ↑27%** ↓* -- -- 

CALM 20, 19 ↓28%*** ↓34%*** ↓62%*** ↑** ↑21%*** ↓64%*** 

epsin1 23, 22 → ↓27%*** ↓27%*** → ↓37%*** → 

Eps15 23, 23 ↓25%*** ↓29%*** ↓48%*** → → ↑22%** 

Eps15R 23, 24 ↓24%*** ↓14%*** ↓37%*** → ↓13%*** → 

FCHO1 24, 24 ↑15%** → ↑12%* → ↓30%*** → 

FCHO2 24, 24 → ↓19%*** → → ↓22%*** ↓34%*** 

ITSN1 20, 19 → ↓26%*** ↓31%** → ↓22%*** ↓9%* 

ITSN2 20, 22 ↓13%** ↓8%* ↓37%*** ↑* ↓31%*** ↓21%*** 

NECAP1 22, 21 ↓13%*** ↓23%*** ↓34%*** ↑*** → ↓24%** 

NECAP2 22, 21 → → → → → ↓13%** 

SNX9 24, 24 ↓31%*** ↓45%*** ↓67%*** ↑*** ↑21%*** ↓57%*** 

 700 

 701 

Table 1. Quantitative summary of EAP experiments. 702 

↑ = increase; ↓ = decrease; → = no significant change, p-value>.05; *** p-value<.001; ** p-value<.01; * 703 

p-value<.05 (statistical tests explained in Materials and Methods), percentage change based on mean-704 

mean comparison between KD and control condition.  705 
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Figures and table 706 

 707 

Figure 1. Conventional threshold based cut-off vs. DAS derived metrics. (A) Schematic of abortive coat 708 

(AC) and clathrin-coated pit (CCP) evolving from early clathrin nucleation. (B) Lifetime (𝜏) and intensity 709 

maxima (𝐼𝑚𝑎𝑥) characteristics of hypothetical ACs and CCPs. ACs are typically assigned by a user-defined 710 

lifetime or 𝐼𝑚𝑎𝑥 threshold. (C) Disassembly risk map 𝐷(𝑖, 𝑡) represented on a gray value scale indicated by 711 

the gradient bar. A representative CCP (blue), AC (red) and outlier trace (OT) (green) are plotted on the 𝐷-712 

map. (D) Distribution of 𝑁 = 215,948 counts of 𝑑1 values for WT condition. AC group near 𝑑1<0 as a 713 

subpopulation, and CCP group at 𝑑1 ≈ 0 as another subpopulation. (E) Distribution of 𝑁 counts of 𝑑2 714 

values. Subpopulations of ACs and CCPs present in two modes. (F) Distribution of 𝑁 counts of 𝑑3 values 715 

resolves the small subpopulation of OTs. 716 
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 718 

Figure 2. DASC resolves behaviorally distinct ACs and CCPs. (A) k-medoid classification in three-719 

dimensional feature space (𝒅𝟏, 𝒅𝟐, 𝒅𝟑), where normalized probability densities 𝜌̅(𝑑1, 𝑑2), 𝜌̅(𝑑2, 𝑑3) and 720 

𝜌̅(𝑑1, 𝑑3) are shown as three landscape plots. 𝜌̅ values are scaled according to gray bar. Examples of CCPs 721 

(blue), ACs (red) and OTs (green) concentrate near the maxima of 𝜌̅. (B) Lifetime distributions of all traces 722 

(black), CCPs (blue), ACs (red) and OTs (green). Gray region shows lifetime overlap between CCPs and 723 

ACs. (C) 𝐼𝑚𝑎𝑥 distributions and overlap. Color scheme same as in (B). Overlap between CCPs and ACs. (D) 724 
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i. DAS plot: 𝜌̅(𝑑1, 𝑑2) contour map (values indicated by color bar) with modes for CCPs and ACs indicated 725 

by circle and diamond, respectively. Ten representative CCPs and ACs (white dots) from the lifetime 726 

overlap in (B) close to the modes are projected onto 𝑑1-𝑑2 coordinate. Traces of the representative CCPs (ii) 727 

and ACs (iii) from i. (E) Same as (D) for the representative CCPs and ACs from the 𝐼𝑚𝑎𝑥 overlap in (C). (F) 728 

Five examples of comparison between 12 and another 12 movies of WT cells imaged on the same day. A 729 

total of 24 movies were randomly shuffled to obtained 12-12 pairs. (G) p-value distribution of 1000 repeats 730 

of shuffle. 731 
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 733 

Figure 3. Validation of DASC. (A) DAS plots showing 𝜌̅(𝑑1, 𝑑2) contour as ‘rainbow’ map and color bar 734 

for αAP2(WT) cells (i) and αAP2(PIP2-) cells (ii). (B) DAS difference plot (difference in 𝑑1𝑑2 distribution) 735 

of αAP2(PIP2-) minus αAP2(WT) cells as contour in ‘heat’ map. (C) Comparison of DASC-derived metrics 736 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.924019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.924019


29 
 

for CCP dynamics in αAP2(WT) vs αAP2(PIP2-) cells. CS initiation rate (i) and CCP% (ii), population ratio 737 

as percentage: [𝑛𝐶𝐶𝑃/(𝑛𝐶𝐶𝑃 + 𝑛𝐴𝐶 + 𝑛𝑂𝑇)] × 100 in αAP2(WT) and αAP2(PIP2-) cells. Dots represent 738 

jittered raw data from individual movies, box plots show mean as red line and 95% and 1 standard deviation 739 

as red and blue blocks, respectively (see Materials and Methods). (iii) CCP lifetime distribution of 740 

αAP2(WT) vs αAP2(PIP2-) cells. (iv) 𝐼𝑚𝑎𝑥 distribution of ACs in αAP2(WT) vs αAP2(PIP2-) cells. (D) 20 741 

second cohorts from dual channel movies of CLC-mRuby (red, solid) and α-AP2-eGFP (green, dashed) for 742 

CCPs (i) and ACs (ii). (E) Time derivative of CLC-mRuby (i) and α-AP2-eGFP (ii) intensities for the first 743 

10 seconds in the dual channel cohorts of CCPs and ACs in (D). (F) Time course of invagination depth 744 

∆𝑧(𝑡)/ℎ (TIRF characteristic depth ℎ = 115𝑛𝑚) for CCPs (blue) and ACs (red) measured by Epi-TIRF. 745 

Statistical analysis of the data used the Wilcoxon rank sum test. *** p-value < 0.001, ** p-value < 0.01, * p-746 

value < 0.05, n.s. (non-significant) p-value > 0.05. Shaded area indicates 95% confidence interval. 747 
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Figure 4. Stage specific phenotypes detected by DASC compared to transferrin uptake measurement. 750 

(A) Schematic of 4 stages of CME: CS initiation, CCP stabilization, CCP maturation and CCV 751 

internalization. Stage 1-3 are quantified by CS initiation rate (CS init. in min-1μm-2), CCP% and CCP 752 

lifetime distribution. Bulk assays for transferrin receptor uptake (TfReff) measure CCV formation are not 753 

stage specific. CCP rate (min-1μm-2) measures the combination of initiation and stabilization. Effects of 754 

siRNA knockdown of CALM (B), epsin1 (C) and Eps15 (D) on (i) CS initiation rate, (ii) CCP%, (iii) CCP 755 

rate, (iv) CCP lifetime distribution and (v) TfReff (internalized over surface bound transferrin receptors, 756 

error bars as 95% confidence interval and statistical significance explained in Materials and Methods).  757 

 758 
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 760 

Figure 5. DASC is a sensitive measure of stage-specific defects in CME not detected by bulk 761 

measurement of transferrin uptake. (A) Summary of phenotypes of 11 EAP KD conditions evaluated by 762 

percentage difference (Δr) in CS initiation rate (CS init.), CCP%, CCP rate, CCP median lifetime (τCCP) and 763 

transferrin receptor uptake: internalized and efficiency (TfRint and TfReff) relative to control. EAP KD 764 

sorted based on CCP rate. (B) Bar graph of 6 variables of Δr in (A). Each bar colored based on its mean Δr 765 

value matching to color bar in (A). 3 example conditions, KD of epsin, NECAP1 and ITSN1, presented as 766 

circles plus lines. Δr = 0 presented as dashed line, averaged Δr CCP rate as dotted line. (C) Principle 767 
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component analysis (PCA). Projection of 6 variable values from 11 conditions in (A) into principle 768 

component space. First and second component (Component 1 and 2) account for 65.14% and 20.60% of 769 

total variance, respectively. Projection of original variable axes presented as red vectors with blue arrows.  770 
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Supplemental figures 771 

 772 

Figure S1. (A) Ten randomly selected traces of eGFP-CLCa intensity at CSs in WT cells. (B) Ten randomly 773 

selected traces with the same lifetime 𝜏 = 20 seconds from the same cells as in (A). (C) 𝐷 values as time 774 

series read from the color map corresponding to the three traces in Fig. 1C in the main text. Color scheme: 775 

CCP (blue), AC (red) and OT (green). (D) 20s cohort of CCP, AC and OTs. Same color scheme as in (C). 776 

High background (BG) in dashed line observed in OTs. 777 
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 779 

Figure S2. Single frame from movies of αAP2(WT) and αAP2(PIP2-) cells. Note that CCPs in the 780 

AP2(PIP2-) cells are much dimmer potentially altering the ability to detect valid CS initiation events.  781 
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 783 

Figure S3. DASC combined with EPI-TIRF approach reveals CME invagination kinetics. (A) 784 

Schematic of CCP in EPI and TIRF microscopy at 0, intermediate and maximal invagination depth (∆𝑧). ‘+’ 785 

as starting point and ‘*’ as center of mass of CCP during invagination. TIRF characteristic depth ℎ =786 

115𝑛𝑚. (B) i. 20s cohorts of CCPs in TIRF channel (blue, solid line) and EPI (blue, dashed), and ACs in 787 

TIRF (red, solid) and EPI (red, dashed); ii. ∆𝑧(𝑡)/ℎ time course of CCPs (blue) and ACs (red) derived from 788 

EPI-TIRF cohorts in i, ∆𝑧𝑚𝑎𝑥 indicated as dark dot. (C) i-ii Same as (B) for 30s cohorts and ∆𝑧(𝑡)/ℎ. (D) i-789 

ii Same as (B) for 40s cohorts and ∆𝑧(𝑡)/ℎ but without ACs. Shaded area as 95% confidence interval 790 

(Materials and Methods). 791 
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 793 

Figure S4. Measurements of transferrin receptor uptake and siRNA knockdown efficiency. (A) 794 

Internalized transferrin receptors (TfRint) after 10 min in arbitrary unit (a.u.). (B) Surface bound transferrin 795 

receptors (TfRsuf) (a.u.). (C) Efficiency of transferrin receptor uptake (TfReff) as ratio of TfRint over TfRsuf. 796 

Error bars represent 95% confidence intervals. Statistical significance of TfRint and TfRsuf are obtained 797 
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using 2-sample t-test. A statistical test for ratios is applied to calculate the significance of TfReff, see 798 

Materials and Methods. (D) KD efficiency of 11 EAPs shown by western blots.  799 
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 800 

 801 

Figure S5. Correlation matrix of 6 variables in Fig. 5A. Diagonal bar graphs showed histogram of 802 

individual variable values. Off-diagonal graphs showed pair-wise Pearson linear correlation coefficient. 803 

Implemented in Matlab’s function corrplot. 804 
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