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Abstract 

Progressive evolution, the tendency towards increasing complexity, is a controversial 

issue in Biology, whose resolution requires a proper measurement of complexity. 

Genomes are the best entities to address this challenge, as they record the history and 

information gaining of organisms in their ongoing biotic and environmental 

interactions. Using six metrics of genome complexity, none of which is primarily 

associated to biological function, we measure genome complexity in 91 genomes from 

the phylum Cyanobacteria. Several phylogenetic analyses reveal the existence of 

progressive evolution towards higher genome complexity: 1) all the metrics detect 

strong phylogenetic signals; 2) ridge regressions detect positive trends towards higher 

complexity; and 3) classical proofs for progressive evolution (the minimum, the 

ancestor-descendent and the sub-clade tests), show that some of these positive trends are 

driven, being mainly due to natural selection. These findings support the existence of 

progressive genome evolution in this ancient and diverse group of organisms. 
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Introduction 

Treatises on biological evolution reflect a conflict between the relative roles played by 

contingency and necessity (Moya, 2014). An important tradition in Evolutionary 

Biology, based on a large amount of empirical evidence, considers that contingency 

marks the dynamics of evolution in a way that makes it unpredictable. The trend 

towards the appearance of increasing complexity falls within the frame of contingent 

evolution insofar as it is inevitable given that, passively, we can expect that sooner or 

later more complex entities will evolve from the original, simpler entities. This is what 

Gould (1996) calls the passive tendency towards complexity marked by the minimum 

initial complexity wall.  

 Assuming there is an evolutionary trend towards greater complexity, a 

fundamental question is whether we can prove the existence of a metric accounting for 

it (McShea and Brandon, 2010; Day, 2012). We first conjecture that it is in the genomes 

where we can find evidence of such metrics, which may eventually increase over 

evolutionary time. Genomes record the history and information gained by organisms 

during their interaction with environmental and biotic factors over time (Adami, 2002, 

2016; Krakauer, 2011). However, genome parameters such as genome size, number of 

genes, gene components (i.e., introns, exons), etc., are insufficient to show any 

evolutionary trend. We speculate that this is probably because they only partially 

capture the abovementioned history and information gain (Lieberman-Aiden et al., 

2009; Dekker et al., 2017). Our second conjecture is that the best way to measure 

genome complexity is by using metrics that are not primarily associated to biological 

function. 

The currently available metrics applied to genomes are very broad and not all of 

them appropriately capture the information gained by the genome during its 
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evolutionary history (Zurek, 1990; Adami, 2002). Algorithmic complexity (Chaitin, 

1977; Li and Vitányi, 2008) is inconveniently maximum for randomness. The effective 

complexity of Gell-Mann and Lloyd (1996) is recommended for collections or 

ensembles of sequences, but in many cases, such as in genome sequences, it is not clear 

how to define an appropriate ensemble. Likewise, those based on mutual information, 

i.e. statistical dependence (Grassberger, 1986; Adami and Cerf, 2000) also quantify the 

complexity of sequence ensembles generated by a given source rather than the 

complexity of a single sequence. Here we consider metrics based on an individual entity 

(genome). Interestingly, four of them consider the number of different parts composing 

the genome and the irregularity of their distribution, thus extrapolating to DNA 

sequences the operational definition of McShea (1993), which measures biological 

complexity as the degree to which the parts of a morphological structure differ from 

each other. Two additional metrics are based on k-mer statistics. A key point is that 

none of the six metrics we used to measure genome complexity considers biological 

function. 

A first group of metrics are based on the Sequence Compositional Complexity  

derived from a four-symbol DNA sequence (SCC) or from the binary sequences 

resulting from grouping the four nucleotides into S(C,G) vs. W(A,T) or R(A,G) vs. Y 

(T,C), or K(A,C) vs. M(T,G), thus obtaining SCCSW, SCCRY and SCCKM metrics, 

respectively (Román-Roldán et al., 1998). These four metrics increase with the number 

of parts (i.e. compositional domains) found in a genome sequence by a segmentation 

algorithm, and both the length and compositional differences among them. 

The fifth metric we used is the Biobit (BB), a metric based on the difference 

between the maximum entropy for a k-mer of a random genome of same length as the 

genome under consideration and the entropy of that genome for such a k-mer (Bonnici 
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and Manca, 2016). Lastly, we used the Genomic Signature (GS), also a k-mer-based 

metric, which is the value corresponding to the k-mer that maximizes the difference 

between observed and expected equi-frequent classes of mers. GS is based on the 

relative abundances of short oligonucleotides (Karlin and Ladunga, 1994) and chaos 

game representation applied to genomes (Jeffrey, 1990; Almeida et al., 2001). 

As already stated, the four SCCs are the only metrics using genome 

segmentation (i.e., the partition of the genome into non-overlapping fragments of 

varying lengths and with homogeneous composition). These metrics parallel the concept 

of ‘pure complexity’ of McShea and Brandon (2010), where complexity is more closely 

related with the number of part types of a living being than with the number of 

functions. The other two metrics, based on distribution of k-mers, do not use genome 

partitioning. 

We test the above-mentioned metrics by analyzing the genome evolution of an 

ancient and diverse group of organisms: the Cyanobacteria phylum. These 

microorganisms played a fundamental role in the evolution of life on Earth. The fossil 

record shows that they were here 2.0 billion years ago (Bya) and molecular clock 

analyses indicate that the phylum originated over 2.5 Bya (Sergeev et al., 2002; 

Schirrmeister et al., 2013). By releasing oxygen through photosynthesis, Cyanobacteria 

caused the Great Oxidation Event about 2.3 Bya and changed the history of life on 

Earth (Bekker et al., 2004). The oxidation of the environment allowed the evolution of 

complex multicellular life forms (Hedges et al., 2004), leading to the origin of 

eukaryotic crown groups including plants and animals (Knoll, 2014). As it is well 

known, Cyanobacteria originated plastids through symbiosis with ancient eukaryotes 

(Sagan, 1967). 
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Cyanobacteria are morphologically diverse. The group was traditionally 

classified into five subsections according to several biological criteria (Rippka et al., 

1979; Rippka, 1988). These subsections of Cyanobacteria are not monophyletic 

(Schirrmeister et al., 2013; Dagan et al., 2013). More recent classification schemes 

using phylogenetic analysis from 31 conserved protein sequences divide Cyanobacteria 

into nine different groups (Komárek et al., 2014). These are: Gleobacterales, 

Synechococcales, Oscillatoriales, Chroococcales, Pleurocapsales, Spirulinales, 

Rubidibacter/Halothece, Chroococcidiopsidales and Nostocales. Not all these groups 

are monophyletic. Clearly, taxonomy and evolution of Cyanobacteria is an active area 

of research and this classification is likely to change in the near future. 

As a proof of concept, in the present work we test whether there is a statistically 

and phylogenetically supported driven tendency towards increasing genome complexity 

as reflected by the metrics of genome complexity and/or by genome standard 

parameters (genome size, %GC and number of genes) in the evolution of 

Cyanobacteria. 

 

 

Results 

Complexity measures throughout Cyanobacteria phylogeny 

The values of the four SCCs, BB and GS metrics as well as three standard genome 

parameters (Genome size, %GC and No. of genes) (see material and methods) for 91 

Cyanobacterial genomes are reported in Supplementary file 1. Figure 1 shows a 

maximum likelihood phylogeny of Cyanobacteria whose branch lengths are 

proportional to the number of amino acid substitutions (see material and methods). The 
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phylogeny is in general agreement with previous analysis (Dagan et al., 2013; 

Schirrmeister et al., 2013; Komárek et al., 2014).  

 

Phylogenetic signal 

All metrics of complexity and genome parameters showed a significant phylogenetic 

signal (Table 1), indicating that for all cases genomes of closely related cyanobacterial 

species tend to resemble more than two randomly selected genomes (Figure 1). 

However, the magnitude of the phylogenetic signal differs across metrics and 

parameters, with %GC and GS showing the highest values, which probably reflects 

different forces shaping the evolution of all these metrics and parameters (see 

Discussion). 

 

Phylogenetic correlations 

To gain a better understanding of the metrics, after correction of the phylogenetic 

signals, we evaluated how they correlate with each other and, particularly, with the 

genomic parameters (see Table 2). It is worth noticing that two metrics in particular, 

SCC and SCCRY correlate with other metrics and parameters (six correlations each one), 

accounting for 43% of all significant correlations. 

 

Ridge regression of complexity metrics versus age 

Using ridge regression of genome complexity metrics and genome parameters versus 

age (distance from the root), we have studied whether there is evidence of evolutionary 

trends, having detected interesting patterns (Figure 2, panels A and B). Of the 

complexity metrics, four out of six show a statistically significant positive trend (SCC, 

SSCSW, SCCRY and GS), indicating that complexity has increased with evolutionary time. 
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In contrast, SCCKM shows no trend and BB reveals a significant negative trend. 

Interestingly genome parameters, on the other hand, show no evidence of any 

evolutionary trend. 

 

Driven trends in Cyanobacteria 

To unravel whether the positive trends are passive or driven we have applied three types 

of proofs, called the minimum, the ancestor-descendent and the subclade proofs, 

respectively (McShea, 1994; see also McShea and Brandon, 2010). These proofs are 

well known in Paleontology and Evolutionary Biology and, to the best of our 

knowledge, this is the first time they have been applied to genome evolutionary 

analyses. To gain a better understanding of the positive trends we have also applied 

those proofs for comparative purposes to the metrics and genome parameters that do not 

show evidence of such a positive evolutionary trend. 

 

Minimum proof 

Regarding minimum proof, we have applied three types of tests. The first one is the 

skewness of the entire phylum. In this respect, we observed that the skewness of all 

metrics (except SCC and GC content) exhibit significant and positive skewness 

(D’Agostino-Pearson test, n = 91; see Table 3). This result supports a left wall for these 

metrics and parameters, which is compatible with either a passive or a driven trend. On 

the other hand, it is expected that if the minimum value of a given metric or parameter 

delimiting the left wall increases with evolutionary time, then the trend will probably be 

driven. To evaluate this, we considered as the minimum the estimated value of the most 

basal clade, xb, for each metric/parameter (see Figure 1). However, as it can be observed 

(Figure 3), there are lower or higher values than the one corresponding to the basal 

clade for any metric/parameter. A deeper study of the distribution of lower and higher 
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values with respect to xb could give us evidence of the putative existence of a driven 

trend. To test this (second test of the minimum proof) we measure |xd-xb|, the absolute 

difference between descendants’ clades and the most basal clade. Table 3 shows 

whether there is a statistical difference (Chi-square test) between those clades (179 in 

total) that are higher or lower than the basal clade, xb. As it can be observed, all the tests 

are significant with four metrics (SCC, SCCRY, SCCKM and BB) and two parameters 

(Genome size and No. of genes) showing a significant increase in the metric/parameter 

with respect to the corresponding basal values. In contrast, two metrics (SCCSW and GS) 

and one parameter (%GC) present a significant decrease. We have also tested by means 

of a Student’s t-test (third test of the minimum proof) whether there is a statistical 

difference between the average value of the absolute difference (|xd-xb|) of a give metric 

or parameter higher or lower than xb. In this case, it can be observed (see Table 3) that 

three metrics (SCCSW, SCCRY and SCCKM) show a statistical difference in favor of a 

higher value than xb and one metric (GS) and the three parameters (Genome size, %GC 

content and No. of genes) present a statistical difference in favor of a lower value than 

xb.  

 

The ancestor-descendent proof 

According to Gould (1996) the ancestor-descendent proof is the most appropriate one to 

discover whether positive trends are passive or driven. McSchea (1994) indicates that in 

a passive system, increases and decreases should be the same, whereas in a driven trend 

the number of increases should occur more often. To test this, we tabulated the derived 

clades for all possible nodes and whether they present a higher, lower or equal value of 

the metric/parameter than the ancestral clade corresponding to each node. In order to 

avoid bias due to proximity to the putative left wall, McSchea (1994) recommends 

applying the test only to those clades where both ancestor and descendent are higher 
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than the average value of the metric/parameter. As it can be observed (Table 4) this 

exigent test shows that metrics SCC and GS and the three genome parameters are in 

favor of a driven trend. A good visualization of the ancestor-descendant proof on the 

phylogeny of the Cyanobacteria for each metric/parameter has been obtained by 

estimating the values of internal nodes using a maximum likelihood function and 

interpolating the value along each edge. Figure 4 shows the mapping corresponding to 

the SCC metric where the driven positive trend of this metric can be clearly appreciated 

(see Supplementary file 2 for the mapping of the rest of metrics/parameters).  

 

The sub-clade proof 

The final proof applied is the sub-clade proof. According to McSchea (1993) if the 

parent distribution is skewed (see histograms of Figure 3 and Table 3) and the mean 

skew of a sub-clade drawn from the right tail is also skewed, the system is probably 

driven. For this proof we have applied two types of test. First, we tested whether the 

trend observed at Phylum level is also observed in four selected monophyletic clades 

and second, we have also applied the skewness test proposed by McSchea (1993) 

properly to either the entire phylum (results given in Table 3) and to the chosen sub-

clades. We have chosen four monophyletic clades formed by clusters 97, 132, 162 and 

172 that harbor 18, 22, 11 and 8 species, respectively (four color boxes in Figure 1 and 

Supplementary file 3). Clade 97 is formed by Synechococcus, Prochlorococcus and 

Cyanobium; clade 132 corresponds to Nostocales (subsections IV and V, Komarek et 

al., 2012); clade 162 contains Cyanothece and Microcystis; and clade 172, among 

others, contains Geminocystis and Cyanobacterium. The most relevant result found was 

that some metrics of genome complexity show statistically significant positive trends 

(SCC, SCCRY and GS) and some others show negative trends (SCCSW and SCCKM), 
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whereas the genomes parameters do not show any positive trends (see Supplementary 

files 4 and 5). Thus, we keep SCC, SCCRY and GS as the metrics showing positive trends 

at both levels of phylogenetic resolution. 

 Regarding the second test for sub-clade proof, we followed the criteria given by 

McShea, (1994) whereby the monophyletic sub-clade drawn from the right tail of the 

entire distribution should have a statistically significant average higher value than the 

one corresponding to the entire phylum. Regarding the skewness of the phylum (Table 

3) we observe that all metrics (except SCC and %GC) exhibit significant and positive 

skewness. However, this test of skewness cannot be applied to the four chosen 

monophyletic sub-clades either because a) the average value (median) of a given 

metric/parameter for each sub-clade was lower than the median of the phylum (16 cases 

out of 36) or, b) there was no statistical evidence (the remaining 20 cases) of a higher 

median (Mood’s median test) of a given metric/parameter for each sub-clade than the 

median of the entire phylum (see Supplementary file 6). 

 In summary, the overall results obtained in relation to the evidence found for a 

trend in a given metric or parameter (i.e., the phylogenetic signal, the number of 

significant correlations against the rest of metrics/parameters, as well as whether the 

trend is driven or not (see Table 5)) show that SCC, SCCRY and to a lower extent GS 

present the highest scores, and can thus be considered metrics evidencing progressive 

evolution of Cyanobacteria. 

 

 

Discussion 

Genomes probably provide the best record of the biological history of species, not only 

do they enable us to reconstruct their phylogenetic relationships but they also contain 
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information gained from their continuous biotic and environmental interactions over 

time (Adami, 2002; Krakauer, 2011). This information is an elusive but crucial 

component of the genome, whose study as a whole deserves deeper attention because it 

holds clues to answer many biological questions, particularly those of an evolutionary 

nature. The genome has distinct layers of information encoded in DNA sequences 

(Dekker et al., 2017; Cristadoro et al., 2018). The most well-known of these are those 

involved in biological function, such as the typical genome division into coding and 

non-coding parts or, within genes, the differential conservation shown by distinct codon 

positions due to the differential evolutionary constraints acting on them (Ikemura, 1985; 

Sueoka, 1992; Bernardi, 2004). In the present study we intend to capture or approximate 

the genome information held in these layers using certain metrics (collectively named 

‘genome complexity metrics’) to determine whether they show phylogenetic signals and 

indicate - or not - some kind of evolutionary trend. To do so, we use a group of 

organisms with a long phylogenetic history: the phylum Cyanobacteria. SCC accounts 

for the global compositional complexity of a DNA sequence encoded by the four 

nucleotides {A, T, C and G} and shares  similarity with McShea’s (1993) operational 

definition of biological complexity: the degree to which the parts of a morphological 

structure differ from each other. SCCSW may account for the complexity due to the 

partition of the genome into GC-rich and GC-poor segments (as for example, the 

isochores), which are known to be associated to many functionally relevant properties 

such as gene density, gene length, retrotransposon density, recombination frequency, 

etc. (Bernardi et al., 1985; Mouchiroud et al., 1988; Zoubak et al., 1996; Oliver et al., 

2004; Bernardi, 2015; Jabbari and Bernardi, 2017). Thus, SCCSW might capture the 

genome information gained throughout evolution by the selective forces acting on these 

important functional elements. On the other hand, SCCRY accounts for the complexity 
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due to the partition of the genome into segments of different purine/pyrimidine richness. 

Such strand asymmetries are less directly related to biological function, but this 

alphabet has been useful to uncover long-range correlations and analyze the evolution of 

fractal structure in the genomes (Li and Kaneko, 1992; Peng et al., 1992; Voss, 1992). 

Recently, a connection has been found between strand symmetry and the repetitive 

action of transposable elements during evolution (Cristadoro et al., 2018; see also 

Koonin, 2016a and his concept of ‘fuzzy meaning’ of sequences). The partition given 

by SCCKM, to our knowledge, has not been associated to any biological function. 

Finally, GS and BB explore the maximum deviation for a given k-mer between a real 

and a random genome. GS directly compares the observed distribution of k-mer classes 

of a real genome with respect to that corresponding to a random one. On the other hand, 

by calculating the entropy differences between both groups, BB measures the relative 

entropic and anti-entropic fraction of a real genome (Bonnici and Manca, 2016). 

 From a population genetics perspective, Cyanobacteria can be considered proto-

typical bacterial species whose populations are evolving under high effective population 

sizes (Lynch and Connery, 2003), with intermediate mutation rates between those of 

RNA viruses (higher mutation rate) and lower or higher eukaryotes (lower mutation 

rates) (Gago et al., 2009). Therefore, natural selection is expected to play a major role in 

the evolution of these organisms. Irrespective of whether mutations (or any source of 

genetic novelty) are deleterious or beneficial, their destiny will be dictated by the 

deterministic action of purifying or positive selection, respectively (Lynch, 2007; 

Koonin, 2016b). This observation is highly pertinent when it comes to appropriately 

interpreting the phylogenetic signals observed in the metrics of complexity measures 

and genome parameters following the in silico evolutionary processes described by 

Revell et al. (2008). Considering, thus, that selection is a key force in the evolution of 
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Cyanobacteria, most of the K values estimated for the metrics may reflect the action of 

purifying or stabilizing selection, particularly those that are below 1 (all metrics and 

parameters, except GS and %GC). K from GS is 1, which could be interpreted either as 

a random drift effect or, more convincingly for this type of organism, as fluctuating 

selection for a relatively high rate of movement of the optimum (Revell et al., 2008). 

Finally, K associated to %GC is much higher than one, which can also be interpreted as 

the result of an evolutionary process with heterogeneous peak shifts. 

 Importantly, our study of the evolutionary trends in Cyanobacteria by means of 

ridge regression found clear differences between metrics of complexity and genome 

parameters. Four metrics (SCC, SCCRY, SCCSW and GS) indicate changes toward higher 

complexity in more evolved clades (long-branch distance with respect to the root of the 

tree), while SCCKM does not show any signs of a trend and BB shows a negative trend. 

However, the genome parameters show no evidence of any trend (Figure 2). These 

results are reinforced when comparatively analyzing trends between metrics and 

parameters at a lower phylogenetic resolution (Supplementary files 4, 5 and 6). 

Although metrics used in this work capture different aspects of the evolution of genome 

complexity in Cyanobacteria (positive trends in SCC, SCCRY and GS vs. negative trends 

in SCCSW and SCCKM), the genome parameters never present any positive trends 

(Supplementary files 3 and 4). In that respect, although some metrics capture increasing 

complexity, genome parameters do not. It is interesting to point out the process of 

selection and genome streamlining of Synechococcus and Prochlorococcus in clade 97, 

giving rise to more evolved shorter genomes, which are AT-rich and show a lower 

number of genes than the rest of Cyanobacteria (Supplementary file 1). As it can be 

observed, there are statistically significant negative trends in the three genome 

parameters but also positive trends of SCC and SCCRY metrics (Supplementary files 3 
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and 4). Therefore, genome reduction in this clade does not imply loss of genome 

complexity; on the contrary, our study shows that this younger clade also has the most 

complex genomes of Cyanobacteria, a result in agreement with the high density of 

functional sequences observed in these free-living organisms (Batut et al., 2014). 

In summary, considering that selection is a major driver in the evolution of 

Cyanobacteria, the observed positive trends towards increasing complexity captured by 

SCC, SCCRY and GS metrics cannot be explained, contrary to Gould (1996), as a passive 

tendency to increase. The three proofs carried out in order to demonstrate whether 

positive trends are passive or driven show us that the positive trend is driven and is 

mainly due to the action of natural selection. 

As stated by Day (2012) (see also Corominas-Murtra et al., 2018), a necessary 

condition for progressive and open-ended evolution is the existence of a parameter 

(metric) that increases with the evolutionary age of the corresponding organisms. This is 

what we report here for the case of several metrics, which increase during the evolution 

of Cyanobacteria. 

 

 

Materials and methods 

Phylogenetic Analysis  

Ninety-one complete and nearly-complete cyanobacterial genomes were downloaded 

from GenBank and annotated using Prokka (Seemann, 2014) (see Supplementary file 

1). To infer a phylogenomic tree we proceeded first to identify the set of homologous 

gene families conserved among Cyanobacteria (core genome) using get_homologues.pl 

pipeline (Contreras-Moreira and Vinuesa, 2013). For this, we used BDBH and OMCL 

methodologies within get_homologues.pl with the following parameters: a threshold e-
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value ≤ 10−10 for BLAST searches; a minimum percent amino acid identity > 30% 

between query and subject sequences; and for OMCL, we set the inflation parameter (I) 

set to 2.0. The consensus core-genome was inferred by the intersection of BDBH and 

OMCL gene families. To select high-quality phylogenetic markers from the core-

genome (i.e. those gene families not showing recombination and/or horizontal gene 

transfer), we used the software package get_phylomarkers (Vinuesa et al., 2018). By 

this procedure, we obtained an alignment of 96 top markers. The multiple alignment 

was cured by eliminating uninformative sites and misaligned positions with Gblocks 

(Talavera and Castresana, 2007). Finally, a maximum likelihood phylogeny was 

reconstructed using PhyML (Guindon and Gascuel, 2003) with LG model + I 

(estimation of invariant sites) + G (gamma distribution) as selected by prottest3 

(Darriba et al., 2011). For branch support we used SH statistic within PhyML. 

 

Genome complexity metrics 

SCC. Sequence Compositional Complexity of genomes was calculated by using a two-

step process. We first obtained the non-overlapping compositional domains  comprising 

the genome sequence, and then applied an entropic complexity measurement able to 

account for the heterogeneity of such compositional domains. The compositional 

domains of a given genome sequence are obtained through a segmentation algorithm 

that was properly designed (Bernaola-Galván et al., 1996) by using the Jensen-Shannon 

entropic divergence (Grosse et al., 2002; Lin, 1991) to split the sequence -and 

iteratively the sub-sequences- into non-overlapping compositional domains which, at a 

given statistical significance, s, are homogeneous and compositionally different from 

the neighboring domains. Note that this algorithm does not use any scanner window, 

thus avoiding introducing an artificial parameter. Note also that the statistical 
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significance level s, is the probability that the difference between each pair of adjacent 

domains is not due to statistical fluctuations. By changing this parameter one can obtain 

the underlying distribution of segment lengths and nucleotide compositions at different 

levels of detail (Li, 1997), thus fulfilling one of the key requirements for complexity 

measures (Gell-Mann and Lloyd, 1996). Recent improvements to this segmentation 

algorithm also allow to segment long-range correlated sequences (Bernaola-Galván et 

al., 2012). 

Once a genome sequence was segmented into n compositional domains, we 

computed SCC as:  

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐻𝐻(𝑆𝑆) −�
𝐺𝐺𝑖𝑖
𝐺𝐺
𝐻𝐻(𝑆𝑆𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

where S denotes the whole genomes and G its length, Gi the length of the i th domain, 

Si. 𝐻𝐻(∙) =  −∑𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙2𝑓𝑓 is the Shannon entropy of the distribution of relative frequencies 

of symbol occurrences {f} in the corresponding (sub)sequence (Román-Roldán et al., 

1998). It should be noted that the above expression is the same one than used in the 

segmentation process, applying it to the tentative two new subsequences (n = 2) to be 

obtained in each step. Thus, the two parts of the SCC computation are based on the 

same theoretical background. 

We apply the above two-step procedure to each of the entire four-symbol 

cyanobacterial genomes, thus obtaining a SCC complexity value for each of them. In 

addition, we also apply the same procedure to the binary sequences resulting from 

grouping the four nucleotides into S(C,G) vs. W(A,T) or R(A,G) vs. Y (T,C), or K(A,C) 

vs. M(T,G), then obtaining SCCSW, SCCRY and SCCKM metrics, respectively. These three 

additional metrics are partial complexities providing complementary views of genome 
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complexity to that obtained with the four-symbol sequence (Bernaola-Galván et al., 

1999; Bernaola-Galván et al., 2004). 

 

GS. The Chaos Game Representation (CGR, Jeffrey, 1990; Almeida et al., 2001) is an 

image derived from a genome where each point of the image corresponds to a given k-

mer level of analysis. If the genome sequence is a random collection of bases, the CGR 

will be a uniformly filled square image. On the bases of building a CGR for a particular 

genome, we define a corresponding genomic signature (GS) that is a numerical value 

obtained for a particular k-mer level by comparing point-by-point the difference 

between the CGR’s of a real genome and a random genome of the same length. In order 

to make it comparable, the pixel values of the images are normalized. As stated, the size 

of the images generated depends on the k-mer used. For a given k-mer, we have 4k 

different words and the corresponding image 4k pixels too. To build a frequency table 

for each k-mer minus the expected frequency for a random genome is equivalent to the 

difference between the CGR images of a real and a random genome. In fact, if G is the 

size of the genome to analyze, the expected value (EV) for a given k-mer is given by 

EV=G/(4k). This value is used to normalize to 1 the values of the k-mers obtained for 

each of the genomes analyzed. We then define the GS as:  

𝐺𝐺𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 � �
𝑃𝑃𝑖𝑖
𝐸𝐸𝐸𝐸

− 1�
4exp (𝑘𝑘)

i=0

 

 

where Pi is the relative frequency of the k-mer i. 

 

BB. The biobit is a metric of genome complexity that is derived from the comparison 

between the k-mer that yields the maximum entropy of a given random genome and the 
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corresponding entropy of the real genome of the same length (Bonnici and Manca, 

2016). The authors demonstrated that the entropy of a real genome of length G, E2L(G) 

takes a value between the maximum (2log4(G) or 2L(G)) and the minimum (L(G)) 

entropy. On the other hand, Bonnici and Manca (2016) define and measure two 

additional components, that they call entropic (E(G)) and anti-entropic (A(G)) of a real 

genome, in such a way that A(G) + E(G) = L(G). Then, the entropy of those 

components are given by E(G) = E2L(G) - 2L(G) and A(G) = 2L(G) - E2L(G), respectively. 

Finally, the biobit BB of a genome (BB(G)), is a non-linear combination of the 

two entropic and anti-entropic components given by:  

𝐵𝐵𝐵𝐵(𝐺𝐺) = �𝐿𝐿(𝐺𝐺)�
𝐴𝐴(𝐺𝐺)
𝐿𝐿(𝐺𝐺)

�1 − 2
𝐴𝐴(𝐺𝐺)
𝐿𝐿(𝐺𝐺)�

3

  , 

where 𝐴𝐴(𝐺𝐺)
𝐿𝐿(𝐺𝐺)

 is the anti-entropic fraction of the genome and 1 − 2 𝐴𝐴(𝐺𝐺)
𝐿𝐿(𝐺𝐺) is the 

corresponding entropic fraction. Both components vary between 0 and 1. 

 

 

Standard genome parameters. Finally, we have also included three standard genome 

parameters: genome size, %GC and number of genes. 

 

Phylogenetic signal  

We used the phylogenetic tree of Cyanobacteria to test the existence of a phylogenetic 

signal in the genome complexity metrics and genome parameters through Blomberg et 

al. (2003) K-statistic in the picante package for R (Kembel et al., 2010). K ranges from 

0 to ∞. K values significantly higher than zero are indicative of the presence of a 

phylogenetic signal or, in other words, that closely related species resemble more in the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

study trait than expected by chance. K = 1 is the value expected under Brownian 

evolution.  

 

Phylogenetic correlations  

We have examined the correlation between genome parameters and metrics of genome 

complexity after correcting the phylogenetic signal. Pearson r value between variables 

was computed as the phylogenetic trait variance-covariance matrix between two 

variables and significance tested against a t-distribution with n-2 degrees of freedom. 

We used the R code provided by Liam Revell to perform Pearson correlation with 

phylogenetic data (http://blog.phytools.org/2017/08/pearson-correlation-with-

phylogenetic.html). The p-value obtained with this procedure is the same as that 

provided by a phylogenetic generalized linear square model. As we run multiple 

phylogenetic correlations, we corrected p-values by false discovery rates. 

 

Evolutionary trends  

We tested the existence of an evolutionary trend in the genomic complexity measures 

and genome parameters by fitting a ridge regression of each of these genomic values 

against evolutionary age (i.e., tip-to-root or node-to-root distances). Significance was 

tested against 10,000 slopes obtained under Brownian motion simulations with the help 

of the search.trend function in the RRphylo package for R (Castiglione et al., 2019).  

 

 

Acknowledgements 

This work was supported by grants from the Spanish Minister of Science, Innovation 

and Universities (former Spanish Minister of Economy and Competitiveness) to AM 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

http://blog.phytools.org/2017/08/pearson-correlation-with-phylogenetic.html
http://blog.phytools.org/2017/08/pearson-correlation-with-phylogenetic.html
https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

(project SAF2015-65878-R), JLO (project AGL2017-88702-C2-2-R) and AL (project 

PGC2018-099344-B-I00), grant from Generalitat Valenciana to AM (project 

Prometeo/2018/A/133), and co-financed by the European Regional Development Fund 

(ERDF). This project was also supported by a Fulbright fellowship (Spanish Minister of 

Science, Innovation and Universities) to AM for a sabbatical leave at Harvard 

University. 

 

 

References 

Adami C. 2002. What is complexity? BioEssays 24:1085-1094. 

Adami, C. 2016. What is information? Phil. Trans. R. Soc. A 374:20150230. 

Adami, C, Cerf NJ. 2000. Physical complexity of symbolic sequences. Phys. D. 

Nonlinear. Phenom. 137:62-69. 

Almeida JS, Carriço JA, Maretzek A, Noble PA, Fletcher M. 2001. Analysis of genomic 

sequences by Chaos Game Representation. Bioinformatics 17:420-437. 

Batut B, Knibbe C, Marais G, Daubin V. 2014. Reductive genome evolution at both 

ends of the bacterial population size spectrum. Nature Reviews Microbiology 

12:841-850. 

Bekker A, Holland HD, Wang PL, Rumble D 3rd, Stein HJ, Hannah JL, Coetzee LL, 

Beukes NJ. 2004. Dating the rise of atmospheric oxygen. Nature 427:117-1200. 

Bernaola-Galván P, Oliver JL, Carpena P, Clay O, Bernardi G. 2004. Quantifying 

intrachromosomal GC heterogeneity in prokaryotic genomes. Gene 333:121-

133. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Bernaola-Galván P, Oliver JL, Hackenberg M, Coronado AV, Ivanov PCh, Carpena P. 

2012. Segmentation of time series with long-range fractal correlations. Eur. 

Phys. J. B 85:211. 

Bernaola-Galván P, Oliver JL, Román-Roldán R. 1999. Decomposition of DNA 

sequence complexity. Phys. Rev. Lett. 83:3336-3339. 

Bernaola-Galván P, Román-Roldán R, Oliver JL. 1996. Compositional segmentation 

and long-range fractal correlations in DNA sequences. Phys. Rev. E. 53:5181-

5189. 

Bernardi G. 2004. Structural and evolutionary genomics. Natural selection in genome 

evolution. Amsterdam: Elsevier. 

Bernardi G. 2015. Chromosome architecture and genome organization. PLoS One 

10:e0143739.  

Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, 

Rodier F. 1985. The mosaic genome of warm-blooded vertebrates. Science 

228:953-958.  

Blomberg SP, Garland JrT, Ives, AR. 2003. Testing for phylogenetic signal in 

comparative data: behavioral traits are more labile. Evolution 57:717-745. 

Bonnici V, Manca V. 2016. Informational laws of genome structures. Scientific Reports 

6:28840. 

Castiglione S, Serio C, Mondanaro A, Di Febbraro M, Profico A, Girardi G, Raia P. 

2019. Simultaneous detection of macroevolutionary patterns in phenotypic 

means and rate of change with and within phylogenetic trees including extinct 

species. PLoS One 14:e0210101.  

Chaitin, GJ. 1977. Algorithmic Information Theory. IBM J. Res. Dev. 21:350–359. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software 

package for scalable and robust microbial pangenome analysis. Appl. Environ. 

Microbiol. 79:7696-7701. 

Corominas-Murtra B, Seoane LF, Solé R. 2018. Zipf’s, undounded complexity and 

open-ended evolution. J.R. Soc. Interface 15:20180395. 

Cristadoro, G., Degli Esposti, M., and Altmann, E.G. 2018. The common origin of 

symmetry and structure in genetic sequences. Scientific Reports 8:15817. 

Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major, P, Gould SB, Goremykin 

VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune 

I, Maus I, Pühler A, Martin WF. 2013. Genomes of Stigonematalean 

cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from 

prokaryotes to plastids. Genome Biol. Evol. 5:31-44. 

Darriba D, Taboada GL, Doallo R, Posada, D 2011. ProtTest 3: fast selection of best-fit 

models of protein evolution. Bioinformatics 27:1164-1165. 

Day T. 2012. Computability, Gödel’s incompleteness theorem, and an inherent limit on 

the predictability of evolution. J.R. Soc. Interface 9:624-639. 

Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, 

O’Shea CC, Park PJ, Ren B, Ritland Politz JC, Shendure J, Zhong S, and the 4D 

Nucleome Network. 2017. Nature 549: 21-226. 

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 

125:1-15. 

Gago S, Elena SF, Flores R, Sanjuán R. 2009. Extremely high mutation rate of a 

hammerhead viroid. Science 323:1308. 

Gell-Mann M, Lloyd S. 1996. Information measures, effective complexity, and total 

information. Complexity 2:44-52. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Gould SJ. 1996. Full house: the spread of excellence from Plato to Darwin. Harmony 

Books, New York. 

Grassberger P. 1986. Toward a quantitative theory of self-generated complexity. Int. J. 

Theor. Phys. 25:907-938. 

Grosse I, Bernaola-Galván P, Carpena P, Román-Roldán R, Oliver J, Stanley HE. 2002. 

Analysis of symbolic sequences using the Jensen-Shannon divergence. Phys. 

Rev. E. 65:041905. 

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large 

phylogenies by maximum likelihood. Systematic Biology 52:696-704. 

Hedges SB, Blair JE, Venturi ML, Shoe JL. 2004. A molecular timescale of eukaryote 

evolution and the rise of complex multicellular life. BMC Evol Biol. 4:2. 

Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular 

organisms. Mol Biol Evol. 2:13-34. 

Jabbari K, Bernardi G. 2017. An isochore framework underlies chromatin architecture. 

PLoS One 12:e0168023. 

Jeffrey, H.J. 1990. Chaos game representation of gene structure. Nucleic Acids Research 

18:2163-2170. 

Karlin S, Ladunga I. 1994. Comparison of eukaryotic genomic sequences. Proc. Natl. 

Acad. Sci. USA 91:12832-12836. 

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, 

Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and 

ecology. Bioinformatics 26:1463-1464. 

Knoll AH. 2014. Paleobiological perspectives on early eukaryotic evolution. Cold 

Spring Harb. Perspect. Biol. 6:016121. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Komárek J, Kaštovský J, Mareš J, Johansen JR. 2014. Taxonomic classification of 

cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. 

Preslia 86:295-335. 

Koonin EV. 2016a. The meaning of biological information. Phil. Trans. R. Soc A 

374:20150065. 

Koonin EV. 2016. Splendor and misery of adaptation, or the importance of neutral null 

for understanding evolution. BMC Biology 14:114. 

Krakauer DC. 2011. Darwinian demons, evolutionary complexity, and information 

maximization. Chaos 21:037110. 

Li M, Vitányi P. 2008. An Introduction to Kolmogorov Complexity and Its 

Applications. Springer, New York. 

Li W. 1997. The complexity of DNA. Complexity 3:33-38. 

Li W, Kaneko K. 1992. DNA correlations. Nature 360:635-636. 

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, 

Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender 

MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, 

Dekker J. 2009. Comprehensive mapping of long-range interactions reveals 

folding principles of the human genome. Science 326: 289-293. 

Lin J. 1991. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. 

Theory 37:145-151. 

Lynch ML. 2007. The frailty of adaptive hypotheses for the origins of organismal 

complexity. Proc. Natl. Acad. Sci. USA 104 Suppl 1:8597-8604. 

Lynch, M.L., and Connery, J.S. 2003. The origins of genome complexity. Science 

302:1401-1404. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

McShea DN. 1993. Evolutionary change in the morphological complexity of the 

mammalian vertebral column. Evolution 47:730-740. 

McShea DN. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:1747-

1763. 

McShea DN, Brandon RN. 2010. Biology’s first law. Chicago University Press, 

Chicago. 

Mouchiroud D, Gautier C, Bernardi G. 1988. The compositional distribution of coding 

sequences and DNA molecules in humans and murids. J Mol Evol 27:311-320. 

Moya A. 2014. The calculus of life. Springer, New York. 

Oliver JL, Carpena P, Hackenberg M, Bernaola-Galván P. 2004. IsoFinder: 

Computational prediction of isochores in genome sequences. Nucleic Acids Res. 

32, Suppl_2:W287–W292. 

Peng CC-KK, Buldyrev SVS, Goldberger AL, Havlin S, Sciortino F, Simons M, 

Stanley HE. 1992. Long-range correlations in nucleotide sequences. Nature 

356:168-170. 

Revell, LJ. 2012. phytools: An R package for phylogenetic comparative biology (and 

other things). Methods in Ecology and Evolution 3:217-223. 

Revell LJ, Harmon LJ, and Collar DC. 2008. Phylogenetic signal, evolutionary process, 

and rate. Systematic Biology 57:591-601. 

Rippka R. 1988. Recognition and identification of cyanobacteria. Methods in 

Enzymology 167:28-67. 

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic 

assignments, strain histories and properties of pure cultures of Cyanobacteria. 

Journal of General Microbiology 111:1-61. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Román-Roldán R, Bernaola-Galván P, Oliver JL. 1998. Sequence compositional 

complexity of DNA through an entropic segmentation method. Phys. Rev. Lett. 

80:1344-1347. 

Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14:255-274. 

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 

30:2068-2069. 

Sergeev VN, Gerasimenko LM, Zavarzin GA. 2002. Proterozoic history and present 

state of cyanobacteria. Microbiology 71:623-637. 

Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC. 2013. Evolution of 

multicellularity coincided with increased diversification of cyanobacteria and the 

Great Oxidation Event. Proc. Natl. Acad. Sci. USA 110:1791-1796. 

Sueoka N. 1992. Directional mutation pressure, selective constraints, and genetic 

equilibria. J Mol Evol. 34:95-114. 

Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent 

and ambiguously aligned blocks from protein sequence alignments. Systematic 

Biology 56:564-577. 

Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. 2018. GET_PHYLOMARKERS, 

a software package to select optimal orthologous clusters for phylogenomics and 

inferring pan-genome phylogenies, used for a critical geno-taxonomic revision 

of the genus Stenotrophomonas. Frontiers in Microbiology 9:771. 

Voss R. 1992. Evolution of long-range fractal correlations and 1/f noise in DNA base 

sequences. Phys Rev Lett 68:3805-3808. 

Zoubak S, Clay O, Bernardi G. 1996. The gene distribution of the human genome. Gene 

174:95-102. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Zurek W. (Ed.). 1990. Complexity, Entropy and the Physics of Information. Addison-

Wesley Press, Cambridge, MA. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924464
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

 

 

 

Figure 1. Phylogeny of Cyanobacteria with the metrics of complexity and genome 

parameters for each chosen genome. Values of metrics and parameters are proportional 

to circle size and were standardized to have a mean of zero and variance of one. The 
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four colored boxes represent four monophyletic sub-clades that were used to test 

evidence of a driven trend for each sub-clade. 
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Figure 2. Phylogenetic trends of genomic complexity metrics (panel A) and standard genome parameters (panel B). The estimated genomic 

value for each tip (red circles) or node (white circles) in the phylogenetic tree is regressed against its evolutionary age (i.e., distance from the 

root). The statistical significance of the regression (blue lines) is tested against 10,000 slopes obtained under simulated Brownian evolution. The 

upper plot shows the frequency distribution of the 10,000 simulated slopes and the red vertical line shows the estimated slope. The slopes and 

their p-values are shown in Supplementary file 4. 
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Figure 3. Distribution of metrics and parameters according to amino-acidic age. The interior dashed line corresponds to the value of the basal 

clade, xb. The histograms that appear above each figure correspond to the number of accumulated values of metrics and parameters (regardless of 

the age) ranging from lower (left) to higher (right) values than xb. 
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Figure 4. Mapping of the SCC complexity metric on the Cyanobacteria tree. We used 

two functions (contMap and fastAnc) from the phytools R package (Revell, 2012). The 

contMap R function allows plotting a tree with a mapped continuous character, such as 

any of our complexity measures. Mapping is accomplished by estimating states at 

internal nodes using maximum likelihood with the function fastAnc and interpolating 

the states along each edge using equation 2 of Felsenstein (1985). 
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Table 1. Phylogenetic signals (K) of the six metrics of genome complexity and the three 

genome parameters. 

Genome parameters and metrics of genome complexity  K Probability, p 

SSC 0.34 0.001 

SCCRY 0.66 0.001 

SCCSW 0.32 0.001 

SCCKM 0.26 0.001 

BB 0.15 0.001 

GS 1.00 0.001 

Genome size 0.46 0.001 

%GC 3.96 0.001 

No. of genes 0.31 0.001 
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Table 2. Phylogenetic Pearson correlations (r) among metrics of genome complexity 

and genome parameters. Statistical significance was corrected by false discovery rates 

to control for multiple testing. 

 

SCC SCCSW SCCRY SCCKM BB 

 

 

GS 

 

Genome 

Size 

 

 

%GC 

SCCSW 0.66***        

SCCRY 0.52*** 0.09ns       

SCCKM 0.30** 0.09ns 0.03ns      

BB 0.38*** -0.02ns 0.53*** -0.04ns     

GS 0.34*** 0.20ns 0.41*** -0.20ns 0.19ns    

Genome Size 0.22* 0.10ns 0.31** -0.05ns 0.32** 0.001ns   

%GC -0.06ns 0.26* -0.38*** -0.11ns -0.09ns -0.1ns -0.11ns  

No. of genes 0.12ns 0.07ns 0.26* -0.09ns 0.26* -0.09ns 0.86*** -0.09ns 

*** p < 0.001; ** 0.001 < p <0.01; *0.01 < p < 0.05; ns p > 0.05 
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Table 3. Proofs of the minimum. D’Agostino-Pearson test of skewness for the entire Phylum (n = 91) and number (n) of times that the 

metric/parameter of a given derived internal or terminal node (xd) is higher or lower than the basal node (xb) (Chi-square test), as well as the 

average absolute difference (|xd-xb|, Student’s t-test) between nodes that are higher or lower than xb. 

Complexity measure  

Skewness  

 

p-value 

Higher than xb Lower than xb Chi-square test 

p-value 

Student’s t-test 

p-value n |xd-xb| n |xd-xb| 

SCC 0.3470 2.78E-01 139 0.00265 40 0.00207 1.3659E-13 0.0848 

SCCSW* 0.9455 5.31E-04 48 0.00215 131 0.00108 5.5147E-10 5.8066E-07 

SCCRY 2.1530 9.49E-12 130 0.00115 49 0.00051 1.1410E-09 0.0031 

SCCKM* 1.9214 6.76E-11 138 0.00079 43 0.00035 1.6496E-12 0.0005 

BB* 0.7018 2.31E-02 116 0.07421 63 0.07290 7.4510E-05 0.4452 

GS 0.6050 4.30E-02 30 0.05647 149 0.07073 5.8695E-19 0.0460 

Genome Size* 0.3805 2.31E-01 112 1117595 67 1959615 0.0008 3.3185E-07 

%GC* 0.6496 4.53E-02 20 6.245 159 8.705 2.7724E-25 0.0053 

No. of genes* 0.3367 3.78E-01 105 796.8 74 1488.6 0.0205 1.1460E-07 

*these metrics/parameters showed twice xd = xb 
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Table 4. Ancestor-descendent proof. For any complexity measure/genome parameter 

we test whether the derived clades present higher or lower values than the 

corresponding ancestral clade for any node. 

Complexity 

measure 

Derived nodes with 

a higher value than 

the ancestor of a 

given clade 

Derived nodes with 

a lower value than 

the ancestor of a 

given clade 

Fisher exact text 

p-value 

SCC 36 2 0.0001 

SCCSW 19 9 0.2772 

SCCRY 15 5 0.1908 

SCCKM 15 15 1.0000 

BB 58 32 0.0703 

GS 33 5 0.0011 

Genome Size 68 36 0.0018 

%GC 68 8 0.0350 

No. of genes 38 32 0.0143 
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Table 5. Summary of the results for each complexity metric and genome parameter. K is the phylogenetic signal. The signs “+”, “-“ or “0” 

indicate the existence of a positive, negative or no statistical evidence, respectively, for the corresponding test: the general trend, the driven trend, 

the three types of test of the minimum (i.e., skewness, Chi-square test and Student’s t-test), the ancestor-descendant test and the trend in the case 

of the four sub-clades. 

 

Complexity 

metric / 

parameter 

 

 

 

K 

 

Number of  

significant 

correlations 

 

 

General 

trend 

Driven trend 

 

Minimum test 

 

 

Ancestor-descendant test 

Trend in the 

four sub-clades  

Skewness Chi-square test Student’s t-test + - 0 

SCC + 6 + 0 + 0 + 2 0 2 

SCCSW + 2 + + - + 0 1 2 1 

SCCRY + 6 + + + + 0 2 0 2 

SCCKM + 1 0 + + + 0 0 2 2 

BB + 4 - + + 0 0 0 1 3 

GS + 2 + + - - + 3 0 1 

Genome Size + 4 - + + - + 0 2 2 
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%GC + 2 - 0 - - + 0 2 2 

No. of genes + 3 - + + - + 0 2 2 
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Additional files 

Supplementary files 

Supplementary file 1. Table S1. General genome features, genome parameters, and 

metrics of genome complexity of Cyanobacteria genomes 

 

Supplementary file 2. Figure S1. Cyanobacteria tree mapping the rest of the metrics and 

parameters. We used two functions (contMap and fastAnc) from the phytools R package 

(Revell, 2012). The contMap R function allows plotting a tree with a mapped 

continuous character, such as any of our complexity measures. The mapping is 

accomplished by estimating states at internal nodes using maximum likelihood with the 

function fastAnc and interpolating the states along each edge using equation 2 of 

Felsenstein (1985). 

 

Supplementary file 3. Figure S2. Indication on the phylogenetic tree of the 

Cyanobacteria the location of the four monophyletic clades (97, 132, 162 and 172) 

where evolutionary trends of metrics and genome parameters were evaluated. 

 

Supplementary file 4. Table S2. Ridge regression of genome complexity metrics and 

genome parameters versus age (distance from the root) in the phylum and the four 

selected monophyletic clades. 

 

Supplementary file 5. Figure S3. Phylogenetic trends of genomic complexity metrics 

and standard genome parameters in the clades 97, 132, 162 and 172. The estimated 

genomic value for each tip (red dots) or node (black dots) in the phylogenetic tree is 

regressed against its evolutionary age (i.e. distance from the root). The shaded area of 
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the plot shows a 95% confidence interval of the estimated genomic values. The 

statistical significance of the regression is tested against 10,000 slopes obtained under 

simulated Brownian evolution. 

 

Supplementary file 6. Table S3. Sub-clade proof, second sub-clade test. Median values 

in the entire phylum and the four sub-clades. In the protocol adopted here, a subclade 

drawn from the tail is defined as a monophyletic subset chosen such that the mean fits 

distribution is greater than the mean of the parent distribution (McShea, 1994). 
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Supplementary File 1. Table S1. 

Species NCBIRef 
Assembly 
accession SCC SCC_SW SCC_RY SCC_KM GS BB 

Genome 
size %GC 

No. of 
genes 

Leptolyngbya_boryana_dg5 AP014642.1 GCF_002142495.1 0.0055 0.0003 0.0003 0.0016 0.5944 0.1451 6176365 46.99 6144 

Calothrix_sp._NIES_2098 AP018172.1 GCF_002368175.1 0.0094 0.0051 0.0001 0.0002 0.6425 0.1706 8656060 41.20 7082 

Chondrocystis_sp_NIES_4102 AP018281.1 GCF_002368355.1 0.0111 0.0019 0.0019 0.0010 0.7459 0.2086 4516676 36.53 4198 

Thermosynechococcus_elongatus_BP_1 BA000039.2 GCF_000011345.1 0.0047 0.0001 0.0001 0.0006 0.6483 0.3032 2593857 53.92 2476 

Gloeobacter_violaceus_PCC_7421 BA000045.2 GCF_000011385.1 0.0095 0.0058 0.0001 0.0003 0.8216 0.1380 4659019 62.00 4430 

Prochlorococcus_marinus_subsp._pastoris_str._CCMP1986 BX548174.1 GCF_000011465.1 0.0173 0.0049 0.0082 0.0006 0.8197 0.0726 1657990 30.80 1790 

Anabaena_sp._90_Chromosome_chANA01 CP003284.1 GCF_000312705.1 0.0149 0.0049 0.0020 0.0003 0.7406 0.3151 4329264 38.10 4531 

Rivularia_sp._PCC_7116 CP003549.1 GCF_000316665.1 0.0128 0.0026 0.0015 0.0011 0.7498 0.1990 8698463 37.54 6526 

Pseudanabaena_sp._PCC_7367 CP003592.1 GCF_000317065.1 0.0079 0.0007 0.0002 0.0011 0.6684 0.1972 4557046 46.31 3877 

Oscillatoria_nigro_viridis_PCC_7112 CP003614.1 GCF_000317475.1 0.0163 0.0045 0.0009 0.0043 0.5948 0.3362 7479014 45.87 6408 

Gloeocapsa_sp._PCC_7428 CP003646.1 GCF_000317555.1 0.0085 0.0034 0.0000 0.0008 0.5904 0.1100 5431448 43.27 4996 

Cyanobacterium_stanieri_PCC_7202 CP003940.1 GCF_000317655.1 0.0257 0.0072 0.0008 0.0067 0.7436 0.1744 3163381 38.66 2837 

Leptolyngbya_sp._PCC_7376 CP003946.1 GCF_000316605.1 0.0078 0.0023 0.0003 0.0014 0.6078 0.3789 5125950 43.87 4167 

Microcystis_panniformis_FACHB_1757 CP011339.1 GCF_001264245.1 0.0173 0.0067 0.0021 0.0006 0.6771 0.5209 5686839 42.35 5974 

Arthrospira_sp_PCC_8005 FO818640.1 GCF_000973065.1 0.0136 0.0040 0.0027 0.0023 0.6321 0.5083 6228153 44.73 5293 

Synechocystis_sp._PCC_6803 NC_000911.1 GCF_001318385.1 0.0109 0.0060 0.0005 0.0003 0.6692 0.1887 3573470 47.72 3204 

Nostoc_sp._PCC_7120 NC_003272.1 GCF_000009705.1 0.0107 0.0043 0.0003 0.0001 0.6197 0.2037 6413771 41.35 5842 

Prochlorococcus_marinus_subsp_marinus_str_CCMP1375 NC_005042.1 GCF_000007925.1 0.0116 0.0028 0.0043 0.0023 0.7325 0.0679 1751080 36.44 1882 

Synechococcus_sp._WH_8102 NC_005070.1 GCF_000195975.1 0.0176 0.0124 0.0006 0.0017 0.7361 0.1826 2434428 59.41 2513 

Prochlorococcus_marinus_str_MIT_9313 NC_005071.1 GCF_000011485.1 0.0156 0.0077 0.0005 0.0049 0.5902 0.1334 2410873 50.74 2369 

Synechococcus_elongatus_PCC_6301 NC_006576.1 GCF_000010065.1 0.0067 0.0043 0.0000 0.0003 0.6473 0.0564 2696255 55.48 2602 

Prochlorococcus_marinus_str._NATL2A NC_007335.2 GCF_000012465.1 0.0153 0.0046 0.0051 0.0018 0.7571 0.1461 1842899 35.12 1953 

Trichormus_variabilis_ATCC_29413 NC_007413.1 GCF_000204075.1 0.0105 0.0046 0.0004 0.0004 0.6206 0.2421 6365727 41.42 5676 

Synechococcus_sp._CC9902 NC_007513.1 GCF_000012505.1 0.0156 0.0092 0.0008 0.0034 0.6111 0.0690 2234828 54.16 2337 

Synechococcus_sp._CC9605 NC_007516.1 GCF_000012625.1 0.0167 0.0116 0.0003 0.0015 0.7302 0.1029 2510659 59.22 2665 

Prochlorococcus_marinus_str_MIT_9312 NC_007577.1 GCF_000012645.1 0.0176 0.0052 0.0084 0.0007 0.8165 0.0852 1709204 31.21 1826 

Synechococcus_elongatus_PCC_7942 NC_007604.1 GCF_000012525.1 0.0067 0.0043 0.0001 0.0003 0.6474 0.0523 2695903 55.47 2685 

Synechococcus_sp_JA_3_3Ab NC_007775.1 GCF_000013205.1 0.0105 0.0040 0.0000 0.0008 0.7850 0.3043 2932766 60.24 2611 

Synechococcus_sp_JA_2_3B_a_2_13 NC_007776.1 GCF_000013225.1 0.0086 0.0026 0.0001 0.0020 0.7515 0.2847 3046682 58.45 2692 

Trichodesmium_erythraeum_IMS101 NC_008312.1 GCF_000014265.1 0.0228 0.0085 0.0054 0.0037 0.8707 0.4000 7750108 34.14 4549 

Synechococcus_sp._CC9311 NC_008319.1 GCF_000014585.1 0.0166 0.0091 0.0008 0.0042 0.5892 0.1273 2606748 52.45 2663 

Prochlorococcus_marinus_str._AS9601 NC_008816.1 GCF_000015645.1 0.0178 0.0051 0.0085 0.0007 0.8132 0.0896 1669886 31.32 1784 

Prochlorococcus_marinus_str._MIT_9515 NC_008817.1 GCF_000015665.1 0.0178 0.0055 0.0084 0.0007 0.8245 0.0798 1704176 30.79 1794 

Prochlorococcus_marinus_str._NATL1A NC_008819.1 GCF_000015685.1 0.0157 0.0047 0.0052 0.0019 0.7612 0.1136 1864731 34.98 1976 

Synechococcus_sp._RCC307 NC_009482.1 GCF_000063525.1 0.0100 0.0053 0.0002 0.0020 0.7824 0.0620 2224914 60.84 2388 

Acaryochloris_marina_MBIC11017 NC_009925.1 GCF_000018105.1 0.0087 0.0043 0.0004 0.0011 0.4988 0.3259 6503724 47.25 7163 

Microcystis_aeruginosa_NIES_843 NC_010296.1 GCF_000010625.1 0.0184 0.0072 0.0020 0.0005 0.6789 0.5272 5842795 42.33 5190 

Synechococcus_sp._PCC_7002 NC_010475.1 GCF_000019485.1 0.0105 0.0031 0.0000 0.0017 0.6137 0.0924 3008047 49.63 3148 

Cyanothece_sp._ATCC_51142 NC_010546.1 GCF_000017845.1 0.0159 0.0078 0.0012 0.0012 0.7318 0.1957 4934271 37.88 4942 

Nostoc_punctiforme_PCC_73102 NC_010628.1 GCF_000020025.1 0.0095 0.0046 0.0007 0.0000 0.6249 0.2768 8234322 41.41 6984 

Cyanothece_sp._PCC_8801 NC_011726.1 GCF_000021805.1 0.0149 0.0079 0.0000 0.0004 0.6980 0.2034 4679413 39.76 4326 

Cyanothece_sp._PCC_7424 NC_011729.1 GCF_000021825.1 0.0148 0.0045 0.0015 0.0016 0.7157 0.2530 5942652 38.61 5603 

Cyanothece_sp._PCC_7425 NC_011884.1 GCF_000022045.1 0.0086 0.0049 0.0001 0.0002 0.6005 0.2504 5374574 50.79 5202 

Cyanothece_sp._PCC_8802 NC_013161.1 GCF_000024045.1 0.0146 0.0078 0.0000 0.0002 0.6958 0.1516 4669813 39.82 4371 

Candidatus_Atelocyanobacterium_thalassa_isolate_ALOHA NC_013771.1 GCF_000025125.1 0.0106 0.0025 0.0014 0.0000 0.7835 0.0141 1443806 31.12 1148 

Nostoc_azollae_0708 NC_014248.1 GCF_000196515.1 0.0123 0.0016 0.0018 0.0004 0.7431 0.4708 5354700 38.45 3669 

Cyanothece_sp._PCC_7822 NC_014501.1 GCF_000147335.1 0.0131 0.0024 0.0005 0.0019 0.6672 0.2010 6091620 40.22 6683 

Arthrospira_platensis_NIES_39 NC_016640.1 GCF_000210375.1 0.0150 0.0044 0.0035 0.0038 0.6427 0.5361 6788435 43.65 5872 

Cyanobium_gracile_PCC_6307 NC_019675.1 GCF_000316515.1 0.0161 0.0114 0.0009 0.0005 0.9722 0.1545 3342364 68.71 3191 

Nostoc_sp._PCC_7107 NC_019676.1 GCF_000316625.1 0.0095 0.0038 0.0002 0.0006 0.6642 0.2174 6329823 40.36 5192 

Synechococcus_sp_PCC_6312 NC_019680.1 GCF_000316685.1 0.0107 0.0046 0.0002 0.0018 0.6020 0.1331 3697276 48.52 3528 

Calothrix_sp._PCC_7507 NC_019682.1 GCF_000316575.1 0.0094 0.0042 0.0003 0.0001 0.6144 0.2470 7023215 42.25 5836 

Nostoc_sp._PCC_7524 NC_019684.1 GCF_000316645.1 0.0113 0.0047 0.0008 0.0010 0.6332 0.2669 6635030 41.53 5405 

Pleurocapsa_sp._PCC_7327 NC_019689.1 GCF_000317025.1 0.0118 0.0061 0.0005 0.0007 0.6080 0.2026 4986817 45.19 4271 

Oscillatoria_acuminata_PCC_6304 NC_019693.1 GCF_000317105.1 0.0128 0.0038 0.0011 0.0018 0.5971 0.2879 7689443 47.60 5879 

Chroococcidiopsis_thermalis_PCC_7203 NC_019695.1 GCF_000317125.1 0.0100 0.0042 0.0006 0.0005 0.5662 0.1985 6315792 44.44 5716 

Chamaesiphon_minutus_PCC_6605 NC_019697.1 GCF_000317145.1 0.0095 0.0037 0.0003 0.0005 0.5962 0.3231 6284095 45.73 6013 

Synechococcus_sp._PCC_7502 NC_019702.1 GCF_000317085.1 0.0058 0.0012 0.0000 0.0010 0.6733 0.3091 3510253 40.62 3442 

Geitlerinema_sp._PCC_7407 NC_019703.1 GCF_000317045.1 0.0187 0.0118 0.0003 0.0012 0.7190 0.1261 4681111 58.46 3789 

Microcoleus_sp._PCC_7113 NC_019738.1 GCF_000317515.1 0.0092 0.0034 0.0003 0.0004 0.4995 0.2215 7470429 46.21 6350 

Stanieria_cyanosphaera_PCC_7437 NC_019748.1 GCF_000317575.1 0.0092 0.0032 0.0002 0.0006 0.7960 0.1622 5041209 35.95 4758 

Calothrix_sp._PCC_6303 NC_019751.1 GCF_000317435.1 0.0123 0.0036 0.0017 0.0012 0.6702 0.2512 6767834 39.80 5465 

Crinalium_epipsammum_PCC_9333 NC_019753.1 GCF_000317495.1 0.0099 0.0026 0.0014 0.0016 0.6482 0.2338 5315554 40.16 4728 

Cylindrospermum_stagnale_PCC_7417 NC_019757.1 GCF_000317535.1 0.0118 0.0053 0.0009 0.0004 0.6193 0.2233 7003560 42.30 6158 

Anabaena_cylindrica_PCC_7122_c NC_019771.1 GCF_000317695.1 0.0127 0.0049 0.0014 0.0012 0.7081 0.2648 6395836 38.80 5834 

Cyanobacterium_aponinum_PCC_10605 NC_019776.1 GCF_000317675.1 0.0216 0.0061 0.0031 0.0002 0.8160 0.2883 4114099 34.96 3426 

Halothece_sp._PCC_7418 NC_019779.1 GCF_000317635.1 0.0102 0.0030 0.0009 0.0013 0.6501 0.2452 4179170 42.92 3710 

Dactylococcopsis_salina_PCC_8305 NC_019780.1 GCF_000317615.1 0.0165 0.0035 0.0043 0.0018 0.6906 0.3888 3781008 42.44 3429 

Gloeobacter_kilaueensis_JS1 NC_022600.1 GCF_000484535.1 0.0116 0.0067 0.0002 0.0002 0.8134 0.1802 4724791 60.54 4336 

Thermosynechococcus_sp._NK55a NC_023033.1 GCF_000505665.1 0.0045 0.0014 0.0001 0.0004 0.6403 0.0708 2520064 53.81 2287 

Geminocystis_sp._NIES_3708 NZ_AP014815.1 GCF_001548095.1 0.0159 0.0066 0.0023 0.0000 0.8533 0.1995 3883409 32.28 3376 

Geminocystis_sp._NIES_3709 NZ_AP014821.1 GCF_001548115.1 0.0174 0.0071 0.0043 0.0005 0.8448 0.3198 4150181 33.34 3587 

Fischerella_sp_NIES_3754 NZ_AP017305.1 GCF_001548455.1 0.0127 0.0037 0.0004 0.0006 0.6563 0.1869 5821603 40.99 4584 

Leptolyngbya_sp._O_77 NZ_AP017367.1 GCF_001548395.1 0.0143 0.0061 0.0002 0.0008 0.6679 0.2720 5480261 55.93 4291 

Calothrix_sp._NIES_2100 NZ_AP018178.1 GCF_002368195.1 0.0105 0.0043 0.0013 0.0004 0.6439 0.2308 9909373 41.41 7574 

Calothrix_sp._NIES_3974 NZ_AP018254.1 GCF_002368395.1 0.0138 0.0030 0.0006 0.0025 0.6759 0.2685 5985875 41.53 4529 

Calothrix_sp._NIES_4071 NZ_AP018255.1 GCF_002368455.1 0.0100 0.0022 0.0011 0.0010 0.6799 0.1937 11064963 39.05 9858 

Aulosira_laxa_NIES_50 NZ_AP018307.1 GCF_002368055.1 0.0105 0.0045 0.0009 0.0005 0.6713 0.2562 8460156 40.68 7124 

Synechococcus_sp._WH_8109 NZ_CP006882.1 GCF_000161795.2 0.0124 0.0081 0.0003 0.0015 0.7262 0.1098 2111515 60.09 2232 

Nodularia_spumigena_CCY9414 NZ_CP007203.1 GCF_000340565.2 0.0126 0.0043 0.0018 0.0023 0.6469 0.3625 5462271 41.19 4566 

Calothrix_sp._336_3 NZ_CP011382.1 GCF_000734895.2 0.0114 0.0040 0.0006 0.0012 0.6534 0.2009 6283267 41.04 5232 

Anabaena_sp._WA102 NZ_CP011456.1 GCF_001277295.1 0.0173 0.0057 0.0023 0.0018 0.7350 0.3991 5705437 38.39 4927 

Synechococcus_sp._WH_8020 NZ_CP011941.1 GCF_001040845.1 0.0162 0.0088 0.0009 0.0042 0.6027 0.0675 2661166 53.12 2725 

Nostoc_piscinale_CENA21 NZ_CP012036.1 GCF_001298445.1 0.0112 0.0041 0.0007 0.0012 0.6662 0.1581 7094556 40.54 5232 

Microcystis_aeruginosa_NIES_2481 NZ_CP012375.1 GCF_001704955.2 0.0146 0.0065 0.0001 0.0012 0.6534 0.3254 4293006 42.91 3966 

Arthrospira_platensis_YZ NZ_CP013008.1 GCF_001611905.1 0.0146 0.0043 0.0034 0.0037 0.6396 0.5223 6520772 44.19 5551 

Moorea_producens_PAL_8_15_08_1 NZ_CP017599.1 GCF_001767235.1 0.0132 0.0025 0.0023 0.0009 0.5947 0.3972 9673108 43.52 6792 

Moorea_producens_JHB NZ_CP017708.1 GCF_001854205.1 0.0136 0.0040 0.0030 0.0022 0.5959 0.3742 9373345 43.55 6690 

Synechococcus_lividus_PCC_6715 NZ_CP018092.1 GCF_002754935.1 0.0049 0.0018 0.0000 0.0000 0.6114 0.2759 2659739 53.51 2227 

Prochlorococcus_sp_RS01 NZ_CP018345.1 GCF_001989435.1 0.0177 0.0049 0.0085 0.0006 0.8123 0.0646 1657699 31.38 1793 

Synechococcus_sp._WH_8103 NZ_LN847356.1 GCF_001182765.1 0.0172 0.0120 0.0007 0.0015 0.7394 0.2345 2429688 59.47 2492 
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Supplementary File 2. Figure S1.
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Supplementary File 2. Figure S3. 
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Supplementary File 4. Table S2.  

  Phylum (n = 91) Clade 97 (n = 18) Clade 132 (n = 22) Clade 162 (n = 11) Clade 172 (n = 8) 

Metrics: Slope P-value Regression P-value Regression P-value Regression P-value Regression P-value 

SCC 0.14 0.003 0.28 0.023 0.38 0.130 0.22 0.283 0.55 0.062 

SCC_SW 0.10 0.013 -0.26 0.008 -0.70 0.016 0.13 0.359 0.36 0.175 

SCC_RY 0.23 0.000 0.62 0.000 0.38 0.206 0.02 0.505 0.45 0.121 

SCC_KM 0.05 0.158 -0.28 0.007 -0.11 0.337 -0.87 0.006 0.16 0.330 

GS 0.09 0.042 0.20 0.096 0.64 0.028 0.53 0.094 0.64 0.038 

BB -0.15 0.004 -0.25 0.053 0.52 0.067 -0.14 0.640 0.02 0.477 

           

Genome parameters:           

Genome size -0.23 0.081 -0.53 0.044 0.46 0.304 -0.90 0.090 -1.36 0.036 

%GC -0.07 0.362 -0.50 0.026 -2.82 0.001 -0.68 0.180 -0.68 0.185 

No. of genes -0.19 0.148 -0.56 0.027 0.36 0.337 -0.59 0.195 -1.52 0.018 

Positive trend           

Negative trend           
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Supplementary File 5. Figure S3. 
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Supplementary File 6. Table S3. 

  Phylum Subclade   97 Subclade 132 Subclade 162 
Subclade 

172 
  

Mood's Median test p-value (Phylum vs. 
Subclade) 

Metric / 
Parameter 

n Median n Median n Median n Median n Median 
  

Subclade 
97 

Subclade 
132 

Subclade 
162 

Subclade 
172 

SCC 91 1.24E-02 18 1.64E-02 22 1.14E-02 11 1.47E-02 8 1.35E-02   3.9E-01   3.6E-01 3.3E-01 

SCCSW 91 4.48E-03 18 6.59E-03 22 4.29E-03 11 6.51E-03 8 4.65E-03   2.6E-01   3.4E-01 3.1E-01 

SCCRY 91 7.35E-04 18 9.12E-04 22 8.19E-04 11 5.46E-04 8 1.35E-03   3.9E-01 4.6E-01   3.3E-01 

SCCKM 91 1.00E-03 18 1.59E-03 22 5.96E-04 11 5.93E-04 8 8.04E-04   3.9E-01       

GS 91 6.68E-01 18 7.48E-01 22 6.60E-01 11 6.79E-01 8 7.71E-01   3.9E-01   3.6E-01 3.3E-01 

Biobit 91 2.04E-01 18 9.63E-02 22 2.45E-01 11 2.03E-01 8 2.04E-01     4.0E-01   3.3E-01 

%GC 91 4.23E+01 18 5.16E+01 22 4.10E+01 11 4.02E+01 8 3.62E+01   3.9E-01       

No. of 
genes 

91 4336 18 2284.5 22 5570.5 11 4371 8 3506.5 
    4.0E-01 3.6E-01   

Genome 
Size 

91 4934270 18 2168210 22 6524400 11 4934270 8 4132140 
    4.0E-01 3.6E-01   

Not necessary, as the subclade median is lower than the phylum median           
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