
Semi-supervised segmentation and genome annotation
Rachel C.W. Chan1,2, Matthew McNeil1,2, Eric G. Roberts2, Mickaël Mendez1,2,

Maxwell W. Libbrecht3, and Michael M. Hoffman1,2,4

1University of Toronto, 2Princess Margaret Cancer Centre, 3Simon Fraser University, 4Vector Institute

Abstract
Segmentation and genome annotation methods automatically discover joint signal patterns in whole
genome datasets. Previously, researchers trained these algorithms in a fully unsupervised way, with no
prior knowledge of the functions of particular regions. Adding information provided by expert-created
annotations to supervise training could improve the annotations created by these methods. We implemented
semi-supervised learning using virtual evidence in the annotation method Segway. Additionally, we defined
a positionally tolerant precision and recall metric for scoring genome annotations based on the proximity of
each annotation feature to the truth set. We demonstrate semi-supervised Segway’s ability to learn patterns
corresponding to provided transcription start sites on a specified supervision label, and subsequently recover
other transcription start sites in unseen data on the same supervision label.

1 Introduction
The rapid evolution of high-throughput DNA sequencing in the past decade has resulted in a huge number
of whole-genome datasets. In multitudes of samples and tissue-types, there exist datasets which measure
histone modification, DNA methylation, transcription factor binding, and other physical and chemical
properties. To make sense of data at this scale, genomics researchers use computational methods to identify
patterns which shed light on the underlying genomic activity.

For this purpose, a class of methods known as segmentation and genome annotation (SAGA) methods
have become popular. The Segway1,2 and ChromHMM3,4 methods provide two examples of such methods.
Most SAGA methods, including ChromHMM, only learn in an unsupervised mode, meaning they discover
genomic signal patterns without any prior information about known categories of genomic elements. Likewise,
currently researchers use Segway primarily as an unsupervised annotation method.

For many use cases, one could guide a SAGA method to better performance by providing supervision
information during training. For example, we have high-quality data on experimentally verified genes,
promoters, and enhancers. This information might prove useful by influencing the patterns Segway learns in
these cases, or by directing it to find other regions of the same pattern. This semi-supervised learning task
differs from both unsupervised and fully supervised learning in that we provide both labeled and unlabeled
training data to the model.

We implemented semi-supervised learning in Segway’s graphical model using virtual evidence. Virtual
evidence provides a way of specifying prior information (“priors”) about a set of probabilistic events in a
Bayesian model5 by encoding the prior information into binary dummy observed nodes. One specifies that
the probability of the dummy node given some explanation equals the probability of the evidence for the
explanation. For example, we might have a prior belief in a hypothesis that a specific genomic position
has a particular behavior, or chromatin state. Using virtual evidence, we can include in the model our
belief in the position’s behavior. To do this, we specify a probability representing the credibility of our
evidence towards our hypothesis. When we supply virtual evidence for at least some parts of the training
data, virtual evidence provides a framework for semi-supervised learning.

2 Methods
2.1 Transcription start site prediction

Detection of transcription start sites (TSSs) in the genome is a well-studied problem in computational
genomics.6–8 Accurate prediction of TSSs and promoters can guide the discovery and verification of
previously-unknown genes. It can also identify candidate genomic regions for further experimental search.9

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://orcid.org/0000-0003-1009-6379
https://orcid.org/0000-0002-2821-6204
https://orcid.org/0000-0001-5398-358X
https://orcid.org/0000-0003-4634-1268
https://orcid.org/0000-0003-2502-0262
https://orcid.org/0000-0002-4517-1562
https://doi.org/10.1101/2020.01.30.926923

Toward the goal of accurate genome and TSS annotation, researchers have developed many algorithms
to predict TSSs from genomic sequence10–14 and to identify genes from RNA-seq data.15–17 No existing
methods, however, predict TSSs on histone modification and DNase data alone. Histone modifications and
DNase have characteristic patterns of signal in the regions surrounding distinct regulatory elements, such as
surrounding TSS.18,19 cap-analysis gene expression (CAGE) provides information on the 5′ ends of capped
RNA transcripts.20 This distinguishes it from RNA-seq, which only provides random tags along the length
of steady-state expressed RNA.21 As such, RNA-seq only provides information on steady-state transcript
expression instead of transcription initiation. RNA-seq therefore has limited application in the study of
TSS regulation.

We used FANTOM5 CAGE data in conjunction with histone modification and DNase data in cell types
with all three types of data available. Given that CAGE provides information on the specific locations of
TSSs, this approach could lead to better understanding the relationship between histone modifications and
transcription initiation. We trained on histone modification and DNase data while using CAGE data as
supervision labels, and predicted the locations of TSSs on only histone modification and DNase data. We
leveraged an existing TSS reference database, intersected with CAGE data, to create a cell type-specific
TSS set for derivation of supervision labels and for scoring the model on test data. We created methods to
evaluate TSS prediction within the context of uncertainty in determining which TSSs are active in some
cell type.

Despite some uncertainty in determining which promoters have activity in specific cell types, promoters
remain one of the most straightforward genomic regulatory elements to validate. For this task, we can
leverage multiple comprehensive databases of gene features.22–25 In comparison, enhancer prediction has
proven considerably more difficult.26–28 This difficulty arises, in part, from enhancers’ location distal from
the genes whose transcription they modify.29–33 In addition, unlike promoters, researchers have not yet
created comprehensive catalogues of enhancers—there likely exist many yet to be discovered.

We aim to develop a predictive method that can be used for predicting many different types of genomic
elements. Promoter prediction makes an excellent baseline task for the development of this method. One
could then apply it to similar tasks with less straightforward performance evaluation, such as including
enhancers and insulators.34

2.2 Segway’s graphical model

Segway uses a dynamic Bayesian network which models a segment label at each genomic position t ∈
{0, . . . , T} as a hidden discrete random variable Qt ∈ {0, . . . , ζ}, and models signal datasets i ∈ {0, . . . , I}
as observed continuous random variables X(i)

t . For each (position, dataset) pair (t, i), Segway also has an
indicator “presence” random variable X̊t

(i)
to account for missing signal data.

The value of the presence variable affects the strength of the relationship between Qt and X
(i)
t through

a conditional dependence structure. Specifically, the value of X̊t
(i)

determines the conditional dependence
relationship between Qt and X

(i)
t by the following rules: X(i)

t and Qt are conditionally independent if
X̊t

(i)
= 0, and not conditionally independent otherwise. Using notation from Lauritzen [35], we denote

two conditionally independent random variables � and © given some condition 4 as � ⊥⊥ © | 4.
Correspondingly, we can express the presence variable conditional independence rules as

X
(i)
t ⊥⊥ Qt | X̊t

(i)
= 0 and (1)

X
(i)
t 6⊥⊥ Qt | X̊t

(i)
≥ 1. (2)

For example, if position t has missing data from signal dataset i, then X̊t
(i)

= 0, which implies no dependence
between Qt and X

(i)
t . In other words, X̊t

(i)
= 0 means P (Qt|X(i)

t) = P (Qt). As a result, the information at
X

(i)
t is not used by the rest of the model.
The presence structure proves particularly useful when running Segway at a resolution coarser than

1 bp. The structure takes into account how many positions in a resolution-length window have data defined,

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

Xt

Qt

Vt

V̊t X̊t

.

XT

QT

VT

V̊T X̊T

X0

Q0

V0

V̊0 X̊0

Figure 1: An abridged model of Segway with virtual evidence. The binary virtual evidence child Vt
specifies the uncertainty in evidence for its parent Qt taking on a particular value qt by defining the
conditional probability vector P (Vt = 1|Qt = qt). As with the signal variable Xt and associated presence
variable X̊t, the influence of Vt is deterministically controlled by the associated presence variable V̊t. The
value of V̊t is the number of positions with priors specified in its corresponding resolution-length window.
Node shape: discrete (square) or continuous (circle). Node color: hidden (white) or observed (grey). Solid
arcs represent conditional dependence between random variables; dashed arcs indicate that the child is
deterministically weighted by the parent.

and weights the contribution of the resulting downsampled window accordingly by replacing P (X
(i)
t) in the

likelihood function with (P (X
(i)
t))

X̊t
(i)

. This is a generalization of the behavior at resolution 1, where X̊t

(i)

takes on values 0 or 1.
To represent different behaviors using labels, Segway learns mixture models withK Gaussian components.

Variance parameters are tied across signal datasets, in the sense that all labels share the same variances for
a particular dataset. For each (dataset, label) pair (i, q), this results in K mean parameters µikq. But for
each dataset i, all labels share the same K variance parameters σ2

ik. When K = 1, Segway uses a simple
Gaussian model with one Gaussian per label.

During training, Segway uses expectation-maximization (EM)36 to estimate parameters of its mixture
models. During the subsequent annotation task, Segway partitions the genome into non-overlapping segments,
and uses the labels learned to assign one label to each resulting segment. Segway assigns labels such that
regions with the same label share similar properties in the observed data and may correspond to functions
such as “promoter” or “enhancer”. Segway can learn with EM over the entirety of specified training regions,
or use minibatch training on a random fixed percentage thereof.

2.3 Virtual evidence in Segway

Graphical model structure. To add semi-supervised learning into Segway, we augmented its graphical
model with virtual evidence. Specifically, we added an observed binary virtual evidence node Vt at
each position t which has the hidden segment label Qt as its parent (Figure 1), and always has value
unity, Vt ≡ 1. The virtual evidence node specifies our prior belief in the value of Qt given only some
uncertain evidence. It is a dummy node that propagates the uncertainty ε in evidence for some value
of Qt, represented by P (evidence|explanation) = P (Vt = 1|Qt = value) = ε. For example, specifying
P (Vt = 1|Qt = 2) = 0.3 means that we have uncertain evidence that Qt has a value of 2 with probability 0.30.
Since Vt = 1, we can use Bayes’ theorem to compute the posterior probability P (explanation|evidence) ∝
P (evidence|explanation)P (explanation).37

Our virtual evidence graphical model structure allows us to specify a vector of priors at each position t.
This vector has one value for each realization Qt = qt, where qt ∈ {0, . . . , ζ}. The vector corresponds to

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

the probability that Vt = 1 given each realization of Qt, P (Vt = 1|Qt = qt). And we defined Vt to have the
realization 1 always.

With no specified priors for a particular position, the vector of used priors defaults to the uniform
priors P (Vt = 1|Qt = qt) = 1/(ζ + 1). With partially specified priors, we infer uniform probability for
the remaining qt values. For example, if we only have pre-existing beliefs for Qt = 0 with ζ = 3, then
P (Vt = 1|Qt ∈ {1, 2, 3}) = 1−P (Vt=1|Qt=0)

3
.

Downsampling virtual evidence to lower resolution. To perform inference at a resolution coarser
than 1 bp, we partition the genome into resolution-length windows. We then downsample virtual evidence
by averaging the priors of positions which have specified priors in each resolution-length window. Using a
similar presence structure as described for X(i)

t , we define the discrete observed presence variable V̊t
(i)

which
counts the number of positions in a resolution-length window which have specified priors. In an identical
manner to X̊t

(i)
, V̊t

(i)
weights the strength of the averaged priors’ contribution to the graphical model by

replacing P (Vt) in the likelihood function with (P (Vt))
V̊t .

2.4 Experimental setup

To demonstrate the utility of virtual evidence in Segway, we applied it predicting TSSs in the leukemia
cell line K56238 (Figure 2a). We trained Segway on ENCODE Project Consortium39 GRCh3840/hg38
DNase-seq data and ChIP-seq datasets for H3K27ac, H3K4me3, H3K36me3, and H3K27me3 (Table S1).
With H3K27me3 and H3K36me3, we generally expect depletion at TSSs whereas with H3K4me3 and
H3K27ac, we generally expect enrichment at active TSSs.41–45 We used a 3-component Gaussian mixture
model for each label to enable Segway to learn more complex signal distributions.

We ran Segway with and without virtual evidence, and compared the performance of each case. In
both cases, we used a resolution of 1 bp, a total of 10 labels with 10 random starts, and trained for 40
EM iterations. We used the same random seed for both the unsupervised control and Segway with virtual
evidence.

To account for the cell-type–specific nature of transcription, we combined information from K562 CAGE
with a cell-type–agnostic TSS database to form a K562-specific set of TSS (“K562 TSS”). For a CAGE
experiment with some total number of tags sequenced (“total tag count”), De Hoon et al. [46] define the
tags per million (TPM) of a feature as

TPM = 106 tag count
total tag count

. (3)

To create a large window around each TSS on which to train, we increased the size of + strand K562 TSS47
features with high CAGE support (TPM ≥ 2.5) by 10 000 bp on both sides. We trained Segway on these
expanded regions on chromosome 21 (1.0% of the total set of expanded regions across all chromosomes)
and annotated on all chromosomes.

We chose to train only on + strand K562 TSS. ChIP-seq and DNase-seq do not report properties which
are strand-specific. Promoters, however, may have distinct histone modification patterns upstream and
downstream.48 Training on promoters from both strands would require a more complex transition model
that could switch transition structures depending on the direction of the promoter. As a first attempt at
promoter prediction, we avoided this complexity by training only on the + strand.

To evaluate Segway’s performance, we defined positionally tolerant precision and recall metrics for
scoring genome annotations based on the proximity of each annotation feature to the truth set. We evaluated
each of unsupervised Segway and Segway with virtual evidence using positionally tolerant precision and
recall on the truth set. To do this, we computed positionally tolerant precision and recall based on Segway’s
annotation performance on chromosomes 1–20, 22, and X.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

Ground truth and priors. We formed our ground truth and prior values by combining CAGE
data22,23,49,50 with the refTSS database.47 CAGE captures and extracts the 5′ ends of capped RNA tran-
scripts. Thus, its output fragments, known as CAGE tags, correspond to transcript starts. We call the 5′

end of an aligned CAGE read a “CAGE tag starting site”.
The refTSS database contains human transcription start sites, formed by integrating multiple TSS

annotations and resources, such as FANTOM5, DBTSS,51 ENCODE CAGE,52 and ENCODE RAMPAGE.53
First, we normalized the CAGE tag counts of all biological replicates available in K562 by converting the tag
counts of each replicate to TPM. Second, to get cell-type–specific TSSs from the cell-type–agnostic refTSS,
we overlapped refTSS with the K562 CAGE tag starting sites of each of these biological replicates. For
the resulting K562 TSS features, we summed the overlapping normalized tag counts from the overlapping
features (Figure 2b). Third, we then averaged the summed normalized tag counts of all K562 TSS features
by dividing by the total number of replicates. To compute our priors, we removed K562 TSS features
with TPM < 2.5. As 74.2% of K562 TSS features have TPM < 2.5, this creates a highly stringent set of
high-confidence active TSSs.

For every K562 TSS feature, we derived a prior probability of transcriptional activity from an affine
transformation of the feature’s expression level. The base confidence hyperparameter β0 expresses our
confidence in the whole set of K562 TSS features with TPM ≥ 2.5. The relative confidence hyperparameter β1

expresses how much our confidence increases with increased expression, measured in TPM per feature base
pair. For any K562 TSS feature with TPM ≥ 2.5 and length `, we computed its prior probability as

prior = tanh

(
β0 + β1

TPM
`

)
. (4)

Dividing by feature length indicates that we have more confidence in a small feature with a high TPM,
than a large feature with the same TPM. Finally, we apply a hyperbolic tangent transformation. Since all
inputs are positive, this ensures that the resulting value’s range varies between 0 and 1.

To form our ground truth, we filtered the K562 TSS set and kept only features with TPM ≥ 0.5. We
used a threshold of TPM ≥ 0.5 as 49.3% of K562 TSS features have TPM < 0.5. In comparison to using
a threshold of TPM ≥ 2.5, this created a stringent set of active TSSs, yet still retains at least half of all
K562 TSS to score against.

Here, we used base confidence β0 = 1.50 and relative confidence β1 = 0.02 bp/TPM. We chose our
base confidence to encapsulate the intuition that features with TPM at least 2.5 are highly likely active
TSSs, since tanh(1.50) ≈ 0.90. We chose our relative confidence because 99.6% of those features had
length-normalized TPM values above the threshold of 50TPM/bp. We specified a relative confidence of the
reciprocal of this threshold, 1/(50TPM/bp) = 0.02 bp/TPM.

We expanded by 200 bp on both sides each + strand K562 TSS feature with TPM ≥ 2.5. We merged any
expanded TSS features which overlapped, setting the merged region’s prior to the average of the overlapping
features. We used these expanded and merged regions as supervision regions, with the arbitrarily chosen
label 0 as our supervision label.

Positionally tolerant precision and recall metrics for genomic predictions. To evaluate our
method, we developed positionally tolerant metrics similar to precision and recall. These metrics measure
an annotation’s performance once in an environment where we do not need (or cannot obtain) base pair
accuracy. Biologists using annotations from SAGA methods do not need complete positional exactness
when investigating some labeled region. Moreover, many epigenomic assays, including ChIP-seq, provide
only inexact information on the location of regulatory elements. To account for these circumstances, we
define positionally tolerant precision and recall, which one can apply to compare any predicted annotation
with a ground truth annotation.

These metrics are not true precision and recall metrics as they use different numerators from each other.
Instead, the positionally tolerant metrics provide a way of quantifying performance that satisfies much of

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

a

Segway train

Segway annotate

annotation

evaluation

priors

K562 TSS

ground truth

intersect

FANTOM5
CAGE

refTSS
TSS

train data

ENCODE
histone marks
+ DNase

test data

b

K562 CAGE Replicate 1 (total tag count: 3 million tags)

+ K562 CAGE Replicate 2 (total tag count: 4 million tags)

refTSS

= K562 TSS

Position (bp)

N
o
rm

a
liz

e
d

 t
a
g

co
u
n
t

(T
P
M

)

3.0

3.25

3.125

0.0

0.5

0.25

0.0

0.0

0.0

3.33

2.75

3.04

ch
r8:100

104
107

111
114

116
120

125

÷ # of replicates

Figure 2: Experimental workflow and intersection of refTSS database with K562 CAGE
replicates. (a) Experimental workflow, starting from genomic databases and ending with evaluation of
Segway annotation. Boxed nodes indicate data objects. Boxed nodes with multiple rows of text: 1st row
indicates data source; other rows describe data. Unboxed nodes indicate actions performed upon the
incoming data nodes, resulting in the outgoing nodes. (b) Toy example illustrating intersection of refTSS
database with 2 CAGE replicates to create K562 TSS. First, we normalize the CAGE tag count of each
replicate by converting its tag counts to TPM. Next, for each refTSS feature with support from either
replicate, we sum the normalized tag counts of the replicate features overlapping it, then divide this value
by the total number of replicates. This creates a K562-specific subset of refTSS (“K562 TSS”) with
corresponding averaged normalized tag count information.

the intuition that one might get from standard precision and recall. Since the positionally tolerant metrics
are not true precision and recall metrics, various invariants with respect to conventional precision and recall
may not hold in these definitions.54,55

The positionally tolerant metrics summarize extended overlap between two sets of closed, non-overlapping
intervals: a prediction set Ŷ and a ground truth set Y . They arise from a number of comparisons between a
single prediction interval ŷ = [a1, a2], and a single ground truth interval y = [b1, b2], with a1, a2, b1, b2 ∈ N0.
We define the distance between these intervals d(ŷ, y) to be the smallest distance between any point in each
interval to any point in the other,

d(ŷ, y) = min
ai∈ŷ,bi∈y

|ai − bi|. (5)

For a single closed interval ŷ = [a1, a2] and the whole ground truth set Y , we define the interval–to–
interval-set distance as

D(ŷ, Y) = min
y∈Y

d(ŷ, y). (6)

D(ŷ, Y) gives the shortest absolute distance from interval ŷ to any interval in the set Y .
To represent a tolerance for considering an interval proximate to an interval set, we define a radius r ∈ N0.

We can then define positionally tolerant precision and recall by computing the fraction of intervals in each

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

a

n=2

Annotations closer
than 500 bp

n=1

n=3

500

b

500

n=2

Annotations closer
than 500 bp

n=1

n=3

Figure 3: Toy example demonstrating positionally tolerant precision and recall with a radius
of 500 bp. (a) Computation of positionally tolerant precision. The test annotation has 2 features, so we
perform 2 comparisons to compute the positionally tolerant precision. To compute the positionally tolerant
precision, we first find the number of annotations with distance to closest TSS less than or equal to 500 bp.
The 2 annotations have closest distances 50 bp and 600 bp. Only 1 of these distances is less than or equal
to 500 bp, so the positionally tolerant precision is accordingly P500 = 1

2
. (b) Computation of positionally

tolerant recall on the same test annotation and ground truth TSS set as (a). The ground truth TSS set has
3 features, resulting in 3 comparisons. This is 1 more than for the positionally tolerant precision
computation, since the test annotation only has 2 features. To compute the positionally tolerant recall, we
find the number of TSSs with distance to closest annotation less than or equal to 500 bp. The 3
annotations have closest distances 50 bp, 200 bp, and 600 bp. Since 2 of these distances are less than or
equal to 500 bp, the positionally tolerant recall is accordingly R500 = 2

3
.

set which are proximate to the other set. With radius r, the positionally tolerant precision Pr between these
sets is then

Pr =
|{ŷ ∈ Ŷ : D(ŷ, Y) ≤ r}|

|Ŷ |
(7)

and the positionally tolerant recall Rr is

Rr =
|{y ∈ Y : D(y, Ŷ) ≤ r}|

|Y |
. (8)

When r = 0 and we decompose each interval into a sequence of contiguous intervals, each with length 1 bp,
positionally tolerant precision and recall become equivalent to non-tolerant pointwise precision and recall.

Pr represents the fraction of prediction segments which have interval–to–interval-set distance to the
ground truth less than or equal to r. Similarly, Rr represents the fraction of ground truth segments which
have interval–to–interval-set distance to the prediction less than or equal to r.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

Table 1: Comparison of two modes of identifying TSSs: virtual evidence and an unsupervised
control.

Supervision labela Evaluated labelb Precisionc P500 Recallc R500

Unsupervised None 3 0.44 0.72
7 0.33 0.81

Virtual evidence 0 0 0.69 0.76

a Label on which TSSs were supervised, if applicable.
b Label with the highest precision and recall in identifying TSSs on unseen data. For the unsupervised
control, we reported the top 2 performing labels.
c Positionally tolerant, with radius 500 bp. Test set: the human genome except chromosome 21. Bold: best
performance for the mode.

Applied to the TSS prediction problem (Figure 3), we can rewrite the formulas as

Pr =
number of annotations with distance to closest TSS ≤ r

total number of annotations
and (9)

Rr =
number of TSSs with distance to closest annotation ≤ r

total number of TSSs
. (10)

We can choose the radius r to increase or decrease positional specificity. Histone modification ChIP-seq
signals surrounding TSSs are generally enriched at a scale of 2000 bp or greater.42,56–58 We chose a radius
of 500 bp here to allow for positional specificity on a comparable resolution while preventing excessive
permissiveness in classification.

3 Results
3.1 Virtual evidence improved performance relative to an unsupervised model

We assessed Segway’s ability to predict TSSs on either strand both with and without virtual evidence
during training (Table 1). We used our ground truth of K562 TSS features with TPM ≥ 0.5 located on all
chromosomes except training chromosome 21. As expected, virtual evidence caused the supervision label
(label 0) to capture the most TSSs. In comparison, the unsupervised control happened to place most TSSs
on label 3. We considered label 3 the top-performing label for the unsupervised control, as it had a higher
harmonic mean of positionally tolerant precision and recall (0.55), compared to the next top-performing
label, label 7 (harmonic mean 0.47). Virtual evidence’s placement of most TSSs on a different label from
the unsupervised control demonstrated that virtual evidence successfully influences the labels that Segway
discovers.

Virtual evidence directs particular labels towards patterns found in the supervision region. It then finds
other, similar regions in data unseen at training. Using virtual evidence, Segway obtained a 24% increase in
precision and 4% increase in recall from the unsupervised control (Table 1).

To understand the comparative performance between Segway with virtual evidence and its unsupervised
control, we examined a region around the HMBS gene59 (Figure 4). HMBS expresses a protein involved in
the synthesis of heme. As K562’s biological source is human blood, we expect to see transcriptional activity
at this gene. At the HMBS TSS, we found that both Segway with virtual evidence and its unsupervised
control were able to correctly identify the region as a TSS.

Additionally, we examined the region around the DAB1 gene (Figure 5). The unsupervised control
incorrectly identified a TSS within the DAB1 gene, but not at the DAB1 TSS. As expected, this non-TSS
region has no refTSS or GENCODE support. In comparison, Segway with virtual evidence did not identify
this region as a TSS, contributing to an increase in precision compared to the unsupervised control.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

DNaseI

H3K27ac

H3K27me3

H3K36me3

H3K4me3

Unsupervised
Virtual evidence

refTSS
K562 TSS

GENCODE

Figure 4: UCSC Genome Browser60 display of the HMBS locus. Both virtual evidence (supervised
label 0) and the unsupervised control (label 3) captured the K562 TSS peak. We show the basic gene
annotation set from GENCODE25 version 32. Below it, we show the refTSS database and cross-referenced
K562 TSS set. Finally, we show the corresponding signal data for DNase-seq and H3K27ac, H3K27me3,
H3K36me3, and H3K4me3 ChIP-seq (Table S1). The maximum viewable value for each signal track is its
99.95th percentile value across the whole genome, the minimum range which permits visualization of all
signal data without clipping.

As a baseline for evaluation, we used a positionally tolerant precision and recall radius of 500 bp, chosen
based on the patterns of enrichment of histone modification ChIP-seq signal surrounding TSSs. To better
understand the effect of varying the radius, we also computed the positionally tolerant precision and
recall using radii ranging from 1bp to 500 bp (Table S2). Increasing the radius from 1bp to 50 bp led to a
disproportionate gain in recall, compared to the relatively incremental increase obtained by going from
50 bp to 100 bp or 100 bp to 200 bp and onward.

3.2 Virtual evidence’s performance improved regardless of choice of expression threshold

There exists no comprehensive, fully experimentally verified ground truth for TSSs active in some cell type.
This is because there exists no universally agreed-upon definition of what it means for a TSS to be active.
One possible definition identifies TSS activity based on RNA-seq or global run-on sequencing (GRO-seq)61
expression, which measure the gene expression levels of RNA transcripts.62 Another definition identifies
TSS activity based on histone modification expression at the gene locus.63,64 For our analyses, we considered
a TSS active in some cell type if it has high CAGE expression in that cell type.65

By defining a TSS as active if it has high CAGE expression, we still had to decide on a threshold
between “high” and “low” expression.66 We could not simply split a set of CAGE tag pileups based on zero
or non-zero expression, as regions of low (but non-zero) expression may embody outliers not representative
of the bulk sequencing population. This makes the ideal splitting threshold unclear.

To alleviate the need to choose a single threshold for high CAGE expression, we evaluated Segway’s per-
formance on multiple differently-thresholded ground truths. Specifically, we varied the expression threshold
used to create the ground truth, and reported Segway’s performance when scored on each thresholded set (Fig-
ure 6). This procedure resulted in a curve that effectively reverses the classical precision-recall (PR) curve. To
create a PR curve, one varies the classification threshold of a classifier, with fixed ground truth, and plots the
precision and recall corresponding to each threshold. Here, instead, we varied the “classification threshold” of

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

DNaseI

H3K27ac

H3K27me3

H3K36me3

H3K4me3

Unsupervised
Virtual evidence

refTSS
K562 TSS

GENCODE

Figure 5: UCSC Genome Browser60 display of the DAB1 locus. The unsupervised control (label 3)
incorrectly labels as TSS a region with no refTSS or GENCODE support. In comparison, virtual evidence
(supervised label 0) does not label this region as TSS, contributing to an increase in precision (Table 1).
Meaning of tracks is identical to Figure 4.

TPM>0

TPM≥0.25

0.5

1

2

2.5

5
10

20

TPM>0

TPM≥0.25

0.5

1

2
2.551020

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positionally tolerant precision P500

P
o

s
iti

o
n

a
lly

 t
o

le
ra

n
t

re
c
a

ll
R

5
0

0

Unsupervised (label 3)

Virtual evidence (label 0)

Figure 6: Reverse-PR curve computed with
respect to positionally tolerant precision and
recall, with a radius of 500 bp. Each curve
represents Segway’s performance scored on differently
thresholded truth sets. Arrows indicate TPM
thresholds. Higher proximity of each curve to the
point (1,1) indicates better performance. Pink circles:
unsupervised Segway; green triangles: Segway with
virtual evidence.

the ground truth (the expression threshold required
to call an example positive), with fixed classifier.
We then plotted the precision and recall corre-
sponding to each threshold. Consequently, we mea-
sured the distance of each performance curve to the
point (1,1), representing perfect positionally toler-
ant precision and recall. Over a wide range of ex-
pression thresholds, virtual evidence’s performance
consistently exceeded that of the unsupervised con-
trol (Figure 6).

3.3 Virtual evidence’s performance re-
mained stable under varying prior equation
hyperparameters

To understand the impact of hyperparameter choice
on the prior equation (Eqn 4), we trained Seg-
way with varying base and relative confidences
and reported each combination’s performance (Ta-
ble S3). Specifically, we varied the base confidence
(from 0.85 to 1.50) and relative confidence (from
0.004 bp/TPM to 0.2 bp/TPM) in the prior equa-
tion. We then recomputed the prior probabilities,
and re-ran and re-evaluated Segway for each hyper-
parameter variation. We used a positionally tolerant
radius of 500 bp and evaluated on our ground truth
of K562 TSS features with TPM ≥ 0.5 located on
all chromosomes except chromosome 21. The virtual
evidence model’s performance remained stable even
with varying prior equation parameters.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

4 Discussion
Using virtual evidence, Segway learns from provided information on the function of particular regions. Our
implementation’s flexibility opens the door to new applications, such as incorporating partial annotations
on multiple classes of regions by specifying prior beliefs on several labels simultaneously. For problems
where we have no comprehensive, high-confidence ground truth, this ability may improve identifying regions
for further biological investigation.

4.1 Related work and differences

One can compare Segway with virtual evidence to ModHMM,67 a supra-Bayesian68 SAGA method which
attempts to overcome some of the limitations of unsupervised SAGA methods. As a supra-Bayesian model,
ModHMM uses a hidden Markov model, trained on the outputs of multiple heuristic classifiers, to annotate
the genome with chromatin states. This provides an approach quite different from Segway with virtual
evidence. Segway with virtual evidence incorporates supervision data directly into Segway’s graphical model
through dummy virtual evidence nodes. By using only the results of heuristic classifiers to annotate the
chromatin state of a region, ModHMM’s supra-Bayesian approach might not capture all nuances of the
input data. Moreover, ModHMM trains its hidden states with a fixed transition matrix structure. This
necessitates establishing relationships between pre-defined desired chromatin states. Similarly, ModHMM
does not train its classifiers on real data, but instead defined them based on heuristics regarding input
feature patterns at or around regulatory elements. Also, ModHMM requires input data from a fixed set of
assays and histone modifications. Segway and other standard SAGA methods offer far more flexibility and
generality of application.

Like Segway with virtual evidence, DECRES69 uses a supervised model to identify promoters genome-
wide. DECRES, however, uses a multi-layer perceptron. This makes interpreting the trained model more
challenging than the generative probabilistic model of Segway.70

Sethi et al. [71] supervise on STARR-seq,72 DNase-seq, and histone modification data to predict
promoters and enhancers across the genome. They do this by combining a shape-based approach with a
linear support vector machine. This approach does not generalize, as one cannot use it to perform non-binary
classification. In comparison, Segway annotates the genome with a user-defined number of chromatin states,
which can be any integer greater or equal to 2.

4.2 Future work

Given semi-supervised Segway’s success at predicting promoters, future work could explore its ability to
predict rarer and more difficult-to-find elements, such as insulators and enhancers.56,73 Future work could
also explore the use of other probability functions to compute priors. For example, one could model the
noise distribution of CAGE tags and use the probability of non-spurious tags as the prior for TSS. While
the tanh function squashes input values between 0 and 1, its output also tends slowly towards 1 given
increasing input. This may be undesirable in some situations—for example, when high values require more
differentiation in probability. In these cases, one might wish to use a function which grows linearly or faster.
Other work could explore the use of multiple supervision labels simultaneously. For example, one could use
virtual evidence to supervise on multiple types of gene regulatory regions at once.

5 Availability
Segway with virtual evidence (version > 3.0) is available at https://segway.hoffmanlab.org. The version
of the Segway source with which we ran our experiments is available at https://doi.org/10.5281/
zenodo.3630670. Our code (pre-processing and evaluation scripts), and experimental outputs are available
at https://doi.org/10.5281/zenodo.3627261.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://segway.hoffmanlab.org
https://doi.org/10.5281/zenodo.3630670
https://doi.org/10.5281/zenodo.3630670
https://doi.org/10.5281/zenodo.3627261
https://doi.org/10.1101/2020.01.30.926923

6 Acknowledgments
We thank Jeffrey A. Bilmes (University of Washington) for his contributions to this work. We thank
Carl Virtanen and Zhibin Lu (University Health Network High-Performance Computing Centre and
Bioinformatics Core) for technical assistance and Quaid Morris for comments on the manuscript. This
work was supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian
Institutes of Health Research, the Ontario Ministry of Research, Innovation and Science, and the Princess
Margaret Cancer Foundation.

References

[1] Hoffman et al. 2012. Nat Methods 9:473.
[2] Chan et al. 2017. Bioinformatics 34:669.
[3] Ernst et al. 2011. Nature 473:43.
[4] Ernst et al. 2012. Nat Methods 9:215.
[5] Pearl. 1988. Morgan Kaufmann.
[6] Kondrakhin et al. 1995. Bioinformatics 11:477.
[7] Fickett et al. 1997. Genome Res 7:861.
[8] Singh et al. 2015. Nucleosides, Nucleotides and

Nucleic Acids 34:449.
[9] Pertea et al. 2018. Genome Biol 19:208.

[10] Knudsen. 1999. Bioinformatics 15:356.
[11] Solovyev et al. 2003. Nucleic Acids Res 31:3540.
[12] Khodabandelou et al. 2018. bioRxiv :330308.
[13] Oubounyt et al. 2019. Front Genet 10:286.
[14] Umarov et al. 2019. Bioinformatics 35:2730.
[15] Roberts et al. 2011. Bioinformatics 27:2325.
[16] Lomsadze et al. 2014. Nucleic Acids Res

42:e119.
[17] Hoff et al. 2015. Bioinformatics 32:767.
[18] Pundhir et al. 2016. Nucleic Acids Res 44:4037.
[19] Sheffield et al. 2013. Genome Res 23:777.
[20] Shiraki et al. 2003. Proc Natl Acad Sci USA

100:15776.
[21] Kawaji et al. 2014. Genome Res 24:708.
[22] Abugessaisa et al. 2017. Sci Data 4:170107.
[23] Forrest et al. 2014. Nature 507:462.
[24] Pruitt et al. 2013. Nucleic Acids Res 42:D756.
[25] Harrow et al. 2012. Genome Res 22:1760.
[26] Fernandez et al. 2012. Nucleic Acids Res

40:e77.
[27] Erwin et al. 2014. PLOS Comput Biol

10:e1003677.
[28] He et al. 2017. Proc Natl Acad Sci USA

114:E1633.
[29] Blackwood et al. 1998. Science 281:60.
[30] Dekker. 2008. Science 319:1793.
[31] Bulger et al. 2011. Cell 144:327.
[32] Sanyal et al. 2012. Nature 489:109.
[33] Dao et al. 2017. Nat Genet 49:1073.
[34] Raab et al. 2010. Nat Rev Genet 11:439.
[35] Lauritzen. 1996. Oxford University Press.
[36] Dempster et al. 1977. J R Stat Soc Series B

Stat Methodol 39:1.

[37] Korb et al. 2010. CRC Press.
[38] Lozzio et al. 1975. Blood 45:321.
[39] ENCODE Project Consortium. 2012. Nature

489:57.
[40] Schneider et al. 2017. Genome Res 27:849.
[41] Rothbart et al. 2014. Biochim Biophys Acta

Gene Regul Mech 1839:627.
[42] Nie et al. 2013. PLOS One 8:e60002.
[43] Kouzarides. 2007. Cell 128:693.
[44] Calo et al. 2013. Mol Cell 49:825.
[45] Karlić et al. 2010. Proc Natl Acad Sci USA

107:2926.
[46] De Hoon et al. 2009. Pan Stanford.
[47] Abugessaisa et al. 2019. J Mol Biol.
[48] Bornelöv et al. 2015. BMC Genomics 16:300.
[49] Lizio et al. 2015. Genome Biol 16:22.
[50] Lizio et al. 2016. Nucleic Acids Res 45:D737.
[51] Yamashita et al. 2009. Nucleic Acids Res

38:D98.
[52] Djebali et al. 2012. Nature 489:101.
[53] Batut et al. 2013. Genome Res 23:169.
[54] Davis et al. 2006. ICML p. 233.
[55] Powers. 2011. J Mach Learn Technol 2:37.
[56] Barski et al. 2007. Cell 129:823.
[57] Wang et al. 2008. Nat Genet 40:897.
[58] Asp et al. 2011. Proc Natl Acad Sci USA

108:E149.
[59] Lam et al. 2001. Clin Chem 47:343.
[60] Karolchik et al. 2003. Nucleic Acids Res 31:51.
[61] Danko et al. 2015. Nat Methods 12:433.
[62] Core et al. 2008. Science 322:1845.
[63] Zhang et al. 2015. EMBO Rep 16:1467.
[64] Heintzman et al. 2009. Nature 459:108.
[65] Carninci et al. 2006. Nat Genet 38:626.
[66] Balwierz et al. 2009. Genome Biol 10:R79.
[67] Benner et al. 2019. RECOMB p. 35.
[68] Roback et al. 2001. Commun Stat Simul Com-

put 30:447.
[69] Li et al. 2018. BMC Bioinf 19:202.
[70] Samek et al. 2017. arXiv :1708.08296.
[71] Sethi et al. 2018. bioRxiv :385237.
[72] Arnold et al. 2013. Science 339:1074.
[73] Bell et al. 2001. Science 291:447.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://orcid.org/0000-0002-7372-8778
https://orcid.org/0000-0002-2174-846X
https://orcid.org/0000-0001-6281-1413
https://orcid.org/0000-0002-2760-6999
https://doi.org/10.1101/2020.01.30.926923

7 Supplementary Material

Table S1: Datasets used for TSS prediction. All datasets describe the K562 cell line and use the
GRCh38/hg38 assembly. All datasets are available at https://www.encodeproject.org/experiments/.
Replicates are biological.

Assay ENCODE accession ID Processing Replicates

ChIP-seq: H3K27ac ENCFF779QTH fold change over control 2
ChIP-seq: H3K4me3 ENCFF712XRE fold change over control 2
ChIP-seq: H3K36me3 ENCFF440XMD fold change over control 2
ChIP-seq: H3K27me3 ENCFF928NWQ fold change over control 2

DNase-seq ENCFF868NHV read-depth normalized signal 1

Table S2: Comparison of performance of virtual evidence against its unsupervised control
Positionally tolerant precision and recall computed with varying radii on the human genome except
chromosome 21. Bold: positionally tolerant precision and recall with the radius r = 500 bp used elsewhere
in this work.

Evaluated label Radius r (bp) Precision Pr Recall Rr

Unsupervised 3 0 0.33 0.57
50 0.36 0.63
100 0.37 0.65
200 0.40 0.68
300 0.42 0.70
400 0.43 0.71
500 0.44 0.72

Virtual evidence 0 0 0.42 0.61
50 0.46 0.69
100 0.50 0.72
200 0.58 0.75
300 0.63 0.76
400 0.66 0.76
500 0.69 0.76

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://www.encodeproject.org/experiments/
https://doi.org/10.1101/2020.01.30.926923

Table S3: Performance of Segway with virtual evidence under varied prior equation
hyperparameters. Positionally tolerant precision and recall computed with the radius r = 500 bp. We
evaluated each case on our ground truth of K562 TSS features with TPM ≥ 0.5 located on all
chromosomes except chromosome 21.

Base confidence β0
Relative confidence β1

(bp/TPM)
Supervision labela
Precision P500 Recall R500

Baseline

1.50 50 0.688 0.763

Varying relative confidence

0.2 0.688 0.763
0.1 0.688 0.763
0.04 0.688 0.763
0.01 0.688 0.763
0.004 0.688 0.763

Varying base confidence

1.25 0.688 0.763
1.00 0.692 0.763
0.85 0.693 0.762

a Performance of supervision label 0.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.30.926923doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.30.926923

	1 Introduction
	2 Methods
	2.1 Transcription start site prediction
	2.2 Segway's graphical model
	2.3 Virtual evidence in Segway
	2.4 Experimental setup

	3 Results
	3.1 Virtual evidence improved performance relative to an unsupervised model
	3.2 Virtual evidence's performance improved regardless of choice of expression threshold
	3.3 Virtual evidence's performance remained stable under varying prior equation hyperparameters

	4 Discussion
	4.1 Related work and differences
	4.2 Future work

	5 Availability
	6 Acknowledgments
	7 Supplementary Material

