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Abstract  

Benchmarking is a crucial step in evaluating virtual screening methods for drug discovery.  One major issue 

that arises among benchmarking datasets is a lack of a standardized format for representing the protein 

and ligand structures used to benchmark the virtual screening method. To address this, we introduce the 

Directory of Useful Benchmarking Sets (DUBS) framework, as a simple and flexible tool to rapidly created 

benchmarking sets using the protein databank. DUBS uses a simple input text based format along with 

the  Lemon data mining framework to efficiently access and organize data to protein databank and output 

commonly used inputs for virtual screening software. The simple input format used by DUBS allows users 

to define their own benchmarking datasets and access the corresponding information directly from the 

software package. Currently, it only takes DUBS less than 2 minutes to create a benchmark using this 

format. Since DUBS uses a simple python script, users can easily modify to create more complex 

benchmarks. We hope that DUBS will be a useful community resource to provide a standardized 

representation for benchmarking datasets in virtual screening. 
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Introduction  

Small molecule protein docking is one of many essential tools applied in virtual screening pipelines for 

drug discovery.1–3  The docking protocol produces a 3D small molecule ligand pose inside the binding cavity 

of a protein, which is representative of the ligand conformation that is co-crystalized with the protein 

target. Energetics of binding site interactions of this pose are calculated to determine if the small molecule 

binds to the protein target, as well as, to estimate the binding affinity between the small molecule and 

the target. These calculations are used to virtually screen large libraries of synthetically feasible molecules 

to identify potential hits for specific targets.4 

The virtual screening community has developed several benchmarking datasets to evaluate how 

well different docking methods perform at these vital tasks.5–13 One of the popular benchmarking set is 

the Astex Diverse Benchmark5 that is used to evaluate how well a given methodology can reproduce the 

crystal pose of a small molecule ligand in the bound (holo) form of a protein . Similarly, the PDBBind14 and 

related CASF11,15 datasets assess the ability of a docking method to produce and select a crystal-like pose 

for the small molecule ligand, and how well the methodology can rank the binding affinity of the small 

molecule. The most common metric used to identify a crystal-like pose is a root mean square deviation 

(RMSD)  within 2.0Å of the true crystal pose16,17. The Directory of Useful Decoys (DUD)8 and Directory of 

Useful Decoys Enhanced (DUD-E)9 datasets provide decoy ligands which may not bind to the associated 

target proteins to evaluate docking methods that can distinguish binders from non-binders. Furthermore, 

the Pinc is Not Cognate (PINC)12 benchmark is designed to evaluate how well a methodology can ‘cross 

dock’ a given ligand. Cross docking refers to a process where a ligand is docked using the holo structure 

of a target protein crystalized with a different ligand. Similarly, the Holo-Apo Set 2 (HAP2)13 benchmark is 

designed to measure the performance of methods to reproduce the crystal structure of a bound ligand 

using the apo (or unbound) form of the target protein. In addition to benchmarking sets derived from 
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known protein structures, the docking community has produced ‘challenge sets’ designed to rigorously 

validate a docking methodology in a blind manner. Two of these datasets are the Community Structure 

Activity Resource (CSAR)18–21 and the Drug Design Data Resource (D3R)22–24 using the data donated from 

the virtual screening community. Given the importance of these benchmarking sets as shown in the above 

works, it is clear that their continued development is important to improving and validating virtual 

screening pipelines. 

The performance of any new virtual screening or docking methodology is tested on at least a few 

of the above benchmarks to gauge advancement in the field. Unfortunately, there are as many ways to 

format the input structure files for docking as there are benchmarking sets since the input file format 

specifications are not followed diligently. For example, the DUD8 and DUD-E9 benchmarks remove the 

element type for atoms specified for the target proteins (a required component of the PDB file format as 

per http://www.wwpdb.org/documentation/file-format.php). Additionally, the PINC12 benchmark only 

provides files in the MOL2 format where the protein atom names have been removed, causing difficulties 

when converting these files back to the PDB format. Finally, no reference inputs are provided for the Astex 

and HAP2 benchmarks and need to be rederived for any new method comparison. To support these 

benchmarking sets, the developers must support odd corner cases and other issues related to formatting 

which takes additional development time better spent improving their scientific methodology. The 

differences in structure of the target, decoys, and ligands results in errors associated with high quality 

evaluation of screening methods.25 In general, attempts to use a non-standard version of these 

benchmarks may lead to differences in reported performance compared to prior publications. To alleviate 

these issues, we have created the Directory of Useful Benchmarking Sets (DUBS) which aims to provide a 

framework for curated and standardized version of past and future benchmarking sets.  

For DUBS, we chose to base our benchmarking framework on the highly standardized and widely 

accepted Macro Molecular Transmission Format (MMTF)26 for input as these files are already curated by 
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the RCSB organization and provide a standard way of representing atomic coordinates, inter residue 

bonding, intra residue bonding, and other important crystallographic information. Using MMTF data 

structures, the entire protein data bank data takes less than 10 gigabytes of space27, allowing users to 

easily keep a copy of the PDB on their local hard drive.  Furthermore, this is small enough to fit into random 

access memory on modern day workstations, enabling incredibly quick processing times as compared to 

other formats. Our recently published Lemon framework28 will be used for rapid processing by creating 

simple Python scripts for generating suitable inputs for docking software evaluation. These files are 

written using the Chemfiles29 input/output library which supports reading/writing a variety of formats in 

a highly standards compliant manner. We have chosen to use the PDB file format for protein input as this 

format is standard for use in the docking community, and the SDF file format as a preference for small 

molecule input as this format allows for the storage of formal charge instead of partial charge. We did not 

want to include the partial charges as such parameters can bias the performance of a virtual screening 

methodology,30–32 and therefore should be handled with care for each docking simulation. Similar to the 

input file types, DUBS can output ligands (and proteins) in a variety of formats using the Chemfiles29 

input/output library. These file formats include SDF, Tinker XYZ, PDB, CML, ARC, CSSR, GRO, MOL2, CIF, 

MMTF, and SMI. DUBS can be used to standardize existing benchmarking datasets as well as rapidly create 

user defined new benchmarks for virtual screening applications. 

Methods  

DUBS is designed to work using a specific input format that can incorporate variability in different types 

of information to develop user defined benchmarking sets. An overview of the DUBS pipeline is given in 

Figure 1a where an input file formatted in this specific manner is parsed using the provided python script 

that will be referred to as the parser, henceforth. Currently, the input format for DUBS is designed using 
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seven tags that is used by the parser to identify different types of information in the input file. This 

information is stored in nine dictionaries, which keep track of alignment of each benchmark protein to a 

reference protein (optional), and pairing of ligands to their respective protein. To better describe the input 

format and options, an example ‘block’ of the input format used for DUBS is shown in Listing 1 for 

hivproteasea2 from the PINC benchmarking set and the program options for each tag is provided in Listing 

2 for developing new benchmarking sets. The input files for several existing benchmarks, such as, PDBbind, 

Astex, PINC, HAP2, DUD-E, etc. are provided on https://github.com/chopralab/lemon/tree/dubs/ and as 

Supporting Information files.  

 Some benchmarking sets such as PINC and HAP2 require the use of protein alignment as they are 

designed to evaluate docking performance on non-native protein conformations. To address this need, a 

customized version of the TM-align algorithm33 is implemented in the Lemon framework28 to allow for 

fast and accurate alignment between crystal structures of the same target protein. Briefly, this algorithm 

matches residues between the reference and non-reference crystal structures and attempts to find the 

affine transformation which minimizes the distance between the alpha carbons of the matched residues. 

In contrast to the original algorithm, the Lemon implementation incorporates the chain name of the 

residues in addition to their standardized residue ID. Additionally, this algorithm makes use of an 

optimized version of the Kabsch algorithm34 to improve performance time. 

In the input file format used by DUBS, the first tag is the reference protein tag, denoted 

“@<reference>”. This tag informs the parser that information on the reference protein will be read in on 

the next line. This line must contain the PDB ID of the reference protein and the file path of a MMTF or 

other Chemfiles-supported format for that protein separated by a single space. The line may also include 

a PDB chemical ID for the ligand bound to the reference protein so that it can be removed before 

alignment. This ligand code needs to be put after the file path, separate by a single space. It should be 

noted that only one reference protein is allowed per reference tag and the reference MMTF or other 
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Chemfiles format file must be stored locally . The parser then saves the reference PDB ID and path as a 

key-value pair in the file path dictionary and the ligand to be removed in a separate dictionary with the 

reference PDB ID as the key. If a reference file is used, but the PDBID of the reference is not known, place 

a * followed by a unique number in place of the PDBID (i.e. *1, *2, *3, etc.). This will allow for proper 

storage of the file path and corresponding alignment information for the protein in the appropriate 

dictionaries.  

The second tag is the aligned protein tag, denoted “@<align_prot>”. This tag informs the parser 

about the information on proteins that will be aligned to the reference protein and are read on multiple 

subsequent lines. These lines should contain the PDB IDs of any proteins planned for alignment and the 

PBD chemical ID of any ligands that need to be removed before alignment, separated by a single space. It 

should be noted that a corresponding file is not needed for these proteins. Each of these PDB IDs is stored 

in a list in the alignment protein dictionary with the reference PDB ID as the key. The ligands that will be 

removed are stored in a separate dictionary with the PDB ID of the corresponding protein as the key. As 

an example, this tag was used in the input file for the PINC dataset (Listing 1). If no PDBIDs are provided 

but the tag is present (Listing 2), DUBS will not perform alignment and the docking benchmark will be a 

cognate set where the ligand will be docking to its co-crystal. 

The third tag and fourth tags are the small molecule (sm) and non-small molecule ligand alignment 

tags, denoted “@<align_sm_ligand>” and “@<align_non_sm_ligand >” respectively. These tags inform 

the parser that information on various proteins and their respective ligands will be read in on the 

subsequent lines. These lines should contain any number of paired proteins and ligands corresponding to 

the protein separated by a single space with only one pair per line (see Listing 1). For small molecule 

ligands, the PDB ID of the protein should be listed first on the line followed by the PDB chemical ID of the 

ligand, separated by a space. After parsing, each of these PDB ID’s are stored in a list in the reference 

dictionary with the reference PDB ID as the key. The small molecule ligand PDB chemical IDs are stored in 
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the small molecule ligand dictionary with their respective protein’s PDB ID as the key. For non-small 

molecule ligands, the subsequent lines after the tag should contain any number of paired proteins and 

non-small molecule ligands. The PDB ID of the protein should be listed on the first line followed by a space 

and then the residue code, chain ID, and residue number of the non-small molecule ligand. The PDB 

chemical ID code, chain ID, and residue number are separated by a dash “-” character (Listing 2).  After 

parsing, each of the PDB ID’s are stored in the same list in the reference dictionary as the small molecule 

ligands, with the reference PDB ID as the key. The residue code, chain ID, and residue number are stored 

in the non-small molecule ligand dictionary with their corresponding PDB ID as the key. 

The fifth is the end tag, denoted “@<end>”. This tag informs the parser that no additional 

information will be read and stored for the current reference protein until the next reference tag is 

detected. This allows for comments to be written in the file outside of each block of information at the 

user's discretion. The sixth and seventh tags are no alignment small molecule and non-small molecule 

ligands tags, denoted by “@<no_align_sm_ligands>” and “@<no_align_non_sm_ligands>” respectively. 

These tags are used when no reference protein is used. In the input file, the subsequent lines should have 

the same format as their respective @<align_...> counterparts. If the alignment features of DUBS are to 

be used, the alignment tabs must appear between the reference tag and the end tag. The protein and 

ligand alignment tags used in between do not need to be in any order or even present at all if they are not 

needed. For cases where a reference protein is not used, simply put any ligands after their respective no 

alignment tags. If there are any user comments that need to be added in the input file, they must come 

before the first tag is used, or between an end tag and a reference tag. After parsing the input data and 

storing it in the appropriate dictionaries, the Lemon framework28 is used to perform alignment and scoring 

on the benchmarking data to produce standardized docking output files. 

The DUBS software is available in Python 3.6 and gcc 6.3.0. It is freely available for installation via 

the Python Package Infrastructure (PyPI). All standardized formatted benchmarking sets are available for 
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download directly from GitHub (https://github.com/chopralab/lemon/tree/dubs/). The source code for 

the Lemon framework API and documentation are available on GitHub at 

https://chopralab.github.io/lemon/latest/.  

Results and Discussion  

We showcase the ability of DUBS to reproduce and standardize previously published benchmarking sets. 

The input file described above was created for six well established benchmarking sets that derive from 

the protein databank (see Listing S2-S7). We measured the amount of time required to generate these 

benchmarking sets when the Hadoop copy of the protein databank was stored in RAM and using a single 

CPU core. We generated the benchmarking inputs 50 times for each benchmarked to calculate a mean 

and standard deviation for each calculation. We measured the total time taken by the application as well 

as the ‘user’ and ‘system’ time, which represent the time spent by the application itself and the time taken 

accessing hardware/allocating memory, respectively. These results are shown in Figure 1b and indicate 

that DUBS is able to quickly produce a benchmarking set in less than two minutes. The most 

computationally expensive benchmark to generate is the PDBBind Refined set simply due to the number 

of ligands required to written as output files the software. The next most computationally expensive 

benchmark is PINC due to a large number of alignments that are required for the benchmark to be 

generated as there are 949 ligands as well as 60 proteins that needs to be aligned. It should be noted that 

the application took a greater proportion on its time in ‘user’ mode for this benchmark than in ‘system’ 

mode, compared to the PDBBind Refined set. These results show that DUBS can quickly recreate known 

benchmarking sets from the protein data bank. 

In addition to the previously published benchmarks, we wanted to show how easy it is to create 

new benchmarking sets using the Lemon framework and DUBS. For this example benchmarking set, we 
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created a simple script to identify all the small molecules in the PDB which interact with a Heme group 

(see original Lemon publication28 for details). This script identified 1974 complexes that matches this 

criterion and created a DUBS input file without reference alignment. Of these complexes, 904 of them 

have unique small molecule ligands and we selected the complex with the lowest crystal structure 

resolution as representative of the small molecule/Heme protein complex. All steps in this methodology 

took less than 10 minutes, showing the power of the Lemon and DUBS pipeline. Depending on the user 

several other complex but standardized benchmarking sets can be created using DUBS for future virtual 

screening applications.  

Conclusion  

In the work, we have presented a new software package, DUBS, for the creation of standards compliant 

benchmarking sets. DUBS uses a simple, flat text file as input to create docking input files for existing and 

new benchmarking sets for use in virtual screening within five minutes on modern hardware. Using this 

file format, we have reproduced 6 popular benchmarking sets and created an example of a new 

benchmarking set that can be used to evaluate how well docking methods can reproduce the binding 

mode of a compound in the presence of a Heme group. We believe that the DUBS framework will enable 

users to create new customizable and standardized benchmarking sets rapidly to foster a new era of useful 

virtual screening pipelines. 
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Figures  

 

Figure 1. Overview of the DUBS software package is given in (a) where a flat text file is used to describe a 

given benchmarking set. A detailed description of this text file and the output of the dubs.py python script 

is given in the methods section. Timing results for the creation of five benchmark sets are shown in (b) 

with the number of proteins indicated. 
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hivproteasea2 
@<reference> 
1MTB pinc_reference_files/hivproteasea2/1MTB.mmtf HPH 
@<align_prot> 
4HVP 2NC 
2FGV NTB 
1MTR PI6 
2AID THK 
@<align_sm_ligands> 
3MXD K53 
2FGU NTB 
3EM3 478 
3EM6 017 
3OY4 017 
3EKV 478 
@<end> 
 

Listing 1. This is an example of the input format used for DUBS. This example is hivproteasea2 from the 

PINC benchmarking set. 

 

a DUBS input format when a reference protein is used  

Comments go here 
@<reference>1 
PDB_ID3 reference_file_path3 PBD_chemical_ID4 
@<align_prot>2 
PDB_ID3 PBD_chemical_ID3 
@<align_sm_ligands>2 
PDB_ID3 PDB_chemcial_ID3 
@<align_non_sm_ligands>2 
PDB_ID3 residue_code-chain_ID-residue_number3 
@<end>1 
Additional comments here 
 

b DUBS input format when a reference protein is not used 

Comments go here 
@<no_align_sm_ligands>2 
PDB_ID3 PDB_chemical_ID3 
@<no_align_non_sm_ligands>2 

PDB_ID3 residue_code-chain_ID-residue_number3 
@<end>2 
Additional comments here 

 
Listing 2. Showing required and optional formatting arguments for both input files (a) involving a 

reference protein and (b) not involving a reference protein. Denoted are required tags (1), optional tags 

(2), required tag elements (3), and optional tag elements (4). 
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