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Abstract 33 

Although long Nanopore reads are advantageous in de novo genome assembly, 34 

applying Nanopore reads in genomic studies is still hindered by their complex errors. 35 

Here, we developed NECAT, an error correction and de novo assembly tool designed 36 

to overcome complex errors in Nanopore reads. We proposed an adaptive read 37 

selection and two-step progressive method to quickly correct Nanopore reads to high 38 

accuracy. We introduced a two-stage assembler to utilize the full length of Nanopore 39 

reads. NECAT achieves superior performance in both error correction and de novo 40 

assembly of Nanopore reads. NECAT requires only 7,225 CPU hours to assemble a 41 

35X coverage human genome and achieves a 2.28-fold improvement in NG50. 42 

Furthermore, our assembly of the human WERI cell line showed an NG50 of 29 Mbp. 43 

The high-quality assembly of Nanopore reads can significantly reduce false positives 44 

in structure variation detection.  45 

 46 

 47 
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   Reconstructing the genome sequence of a species or individual in a population is 49 

one of the most important tasks in genomics1-3. Single-molecule sequencing (SMS) 50 

technologies, developed by Pacific Bioscience and Oxford Nanopore, yield long reads 51 

that can significantly increase the number of solvable repetitive genome regions and 52 

improve the contiguity of assembly4-7. However, SMS reads usually have high error 53 

rates8. The two strategies currently used for de-novo genome assembly from SMS 54 

reads are “correction then assembly” and “assembly then correction.” Assemblers, 55 

such as Falcon9, Canu10, and MECAT11, first correct SMS reads and then assemble 56 

the genome using corrected reads. Conversely, assemblers, such as miniasm12, Flye13 57 

and wtdbg214, assemble the genome using error-prone reads and then correct the 58 

assembled genome. Due to high computational cost of error correction, the 59 

“correction then assembly” approach is usually slower than “assembly then 60 

correction”. However, directly assembling the genome using error-prone SMS reads 61 

can increase assembly errors in the genome sequence, which affects the quality of 62 

reference genome and results in bias in downstream analysis, especially in 63 

complicated genome regions10, 15. On the other hand, the “correction then assembly” 64 

approach can provide highly continuous and accurate genome assemblies9-11. 65 

The recently released R9 flow cell from Oxford Nanopore technology can 66 

generate reads that are up to 1M in length and with read N50 >100 kb, which may 67 

significantly improve the contiguity of assembly compared with those of assemblies 68 

using PacBio SMRT reads5-7, 16. However, errors in Nanopore reads are more complex 69 

than those in PacBio reads17, 18 (see Results). Error correction tools in current 70 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.01.930107doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.01.930107


 5

assemblers were originally designed for PacBio SMRT reads and cannot correct 71 

Nanopore reads efficiently and effectively. For example, correcting 30X coverage 72 

human Nanopore reads using error correction tool in Canu requires 29K CPU hours16. 73 

Moreover, the average identity of reads corrected by Canu is only 92%, which is far 74 

less accurate than that of corrected PacBio SMRT reads. These high error rates in 75 

corrected Nanopore reads can introduce mis-assemblies. Furthermore, high-error-rate 76 

subsequences in Nanopore reads are usually trimmed during error correction, which 77 

reduces both the length of original reads and contiguity of final assembly. 78 

In this study, we developed NECAT, a novel error correction and de novo 79 

assembly tool designed to overcome the problem of complex errors in Nanopore reads. 80 

Unlike existing error correction tools that iteratively correct Nanopore reads, we 81 

developed a two-step progressive method for Nanopore-read correction. In the first 82 

step, NECAT corrects low error rate subsequences (LERS), while in the second step, 83 

it corrects high error rate subsequences (HERS), of the read. This progressive 84 

approach allows NECAT to quickly correct Nanopore reads, resulting in high 85 

accuracy of corrected reads. To fully take advantage of Nanopore-read length, we 86 

presented a two-stage assembler in NECAT. This assembler constructs contigs using 87 

corrected Nanopore reads, and then bridges the contigs using original raw reads. We 88 

also used an adaptive selection mechanism to choose high-quality supporting reads 89 

for each template read during error correction, and to select high-quality overlaps for 90 

each read during the read-overlap step. Our results indicate that NECAT achieves 91 

superior performance in error correction and de novo assembly of Nanopore reads.  92 
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Results  93 

Analysis of sequencing errors in Nanopore reads 94 

We analyzed sequencing errors in Nanopore reads of E. coli, S. cerevisiae, A. thaliana, 95 

D. melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens (NA12878) 96 

(Supplementary Note 1-5 and Supplementary Table 1-2). As shown in 97 

Supplementary Table 3, average error rates of Nanopore reads for these eight 98 

species ranged from 12% (for S. cerevisiae) to 20.1% (for A. thaliana). Although 99 

average error rates of Nanopore reads are similar to those of PacBio SMRT reads, 100 

error rates in Nanopore reads are more broadly distributed than those of PacBio 101 

SMRT reads. The error rates of raw reads in the eight datasets used in our study were 102 

broadly distributed between 7-50% and centralized between 10-30% (Figure 1A).  103 

Next, we analyzed sequencing errors in each Nanopore read. We partitioned each 104 

read into 500-bp long subsequences and counted the error rate of each subsequence. 105 

Our results show that the error rates in each read are also broadly distributed (Figure 106 

1B). Furthermore, on average, 3~23% of raw reads longer than 10 kb have high error 107 

rate subsequences (HERS) with error rates greater than 50% (Supplementary Table 108 

3). Overall, Nanopore reads produced by ultra-long library preparation techniques 109 

have a higher percentage of reads with HERS than those produced by normal library 110 

preparation techniques (23% vs. 3-11%). Additionally, the percentage of raw reads 111 

with HERS increased as read length increased (Figure 1C). Especially, in reads 112 

produced by ultra-long reads library preparation techniques, up to 45% of raw reads 113 

longer than 45 kb have HERS (Figure 1C). The HERS in Nanopore reads usually 114 
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force the error correction tool to break long reads into shorter fragments, which 115 

eliminates the advantage of using long Nanopore reads for de novo assembly. 116 

Furthermore, error rates of Nanopore reads sampled from different genome 117 

locations shared the same distribution except for those of A. thaliana, which showed 118 

slight variations among genome locations (Supplemental Figure 1). These results 119 

indicate that Nanopore sequencing errors did not show genome-location bias. 120 

Therefore, a Nanopore dataset can contain both low and high error rate reads from the 121 

same location in a genome.  122 

In summary, our analysis indicates that, unlike PacBio reads, Nanopore reads 123 

can contain HERS (especially in ultra-long raw reads), and show broad error rate 124 

distribution among reads and read subsequences. 125 

Adaptive selection of supporting reads for error correction 126 

To correct a Nanopore read, we first collected supporting reads that overlap with 127 

it, then constructed the corrected read using a consensus of 128 

multiple-sequence-alignment of overlapped reads. An overlapping-error-rate 129 

threshold is usually set to select supporting reads. Due to broad distribution of 130 

sequencing-error rates among Nanopore reads, it is difficult to select supporting reads 131 

using a single global overlapping-error-rate threshold. Setting a low 132 

overlapping-error-rate threshold, such as 0.3 used for PacBio reads, does not generate 133 

enough supporting reads to correct Nanopore reads with high error rates (>20%); 134 

consequently, numerous Nanopore reads cannot be corrected. Conversely, setting a 135 

high overlapping-error-rate threshold (such as 0.6) to correct the majority of 136 
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Nanopore reads results in markedly increasing of false supporting reads, which 137 

increases computational cost and reduce the accuracy of corrected reads. Furthermore, 138 

high overlapping-error-rate threshold can increase the number of high-error-rate 139 

supporting reads for low-error-rate template reads. This results in correcting 140 

low-error-rate template with high-error-rate supporting reads, which greatly reduces 141 

the accuracy of corrected low-error-rate reads.  142 

To overcome the broad error-rate distribution of Nanopore reads, we used two 143 

overlapping-error-rate thresholds to select supporting reads after filtering via DDF 144 

scoring11 and k-mer chaining19 (Online Methods). First, we used a global 145 

overlapping-error-rate threshold to maintain the overall quality of supporting reads. 146 

Then, for each template read, we set an individual overlapping-error-rate threshold. 147 

The candidate reads were filtered if their alignment error rates were greater than either 148 

global or individual overlapping-error-rate thresholds. For low-error-template reads, 149 

the individual overlapping-error-rate threshold is less than the global threshold. 150 

Conversely, for high-error-rate template reads, the individual overlapping-error-rate 151 

threshold is greater than the global threshold. Using both global and individual 152 

overlapping-error-rate thresholds, we were able to maintain the quality of supporting 153 

reads for both low and high-error-rate template reads, thereby improving the accuracy 154 

of corrected reads. High-error-rate template reads that did not have enough supporting 155 

reads were discarded without correction.  156 

Progressive error correction of Nanopore reads 157 
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The supporting reads for error correction are selected according to average error rate 158 

of each template read. Since error rates for subsequences of each Nanopore read are 159 

also broadly distributed (Figure 2A), overlapping error rate between supporting reads 160 

and HERS can exceed the global threshold 0.5, which can affect the accuracy of 161 

corrected subsequences. Therefore, we developed a progressive method for correcting 162 

error prone Nanopore reads in two steps (Online Methods). We first corrected 163 

low-error-rate subsequences in a template read (Figure 2B). Then, we corrected 164 

high-error-rate subsequences (Figure 2C). In the first step, both corrected and 165 

uncorrected subsequences were outputted as a corrected read for the next step. After 166 

the first step, we corrected most Nanopore reads to high accuracy. This allowed us to 167 

obtain increased number of low-error supporting reads for high-error subsequences in 168 

the second step, thereby helping to correct high-error subsequences. After the second 169 

step, we outputted only the corrected subsequences. If a subsequence in a template 170 

read could not be corrected in the second step, it had either a high error rate or low 171 

coverage. Thus, one template read could be broken into multiple corrected reads. 172 

Usually, twelve supporting reads are enough for error correction. Performing 173 

local alignments of supporting reads to template is computationally expensive, 174 

especially for long template reads. Although we selected 200 supporting reads for 175 

each template read, it is unnecessary to align all these supporting reads when there are 176 

enough reads available for error correction. Thus, we used a coverage count array 177 

(CCA) to record the number of supporting reads that covered each base of the 178 

template read. For template read covered by a sufficient number of support reads, we 179 
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did not perform local alignment of supporting reads to this region anymore (Online 180 

Methods).   181 

Progressive assembly of Nanopore reads 182 

The long length of Nanopore reads is a significant advantage for de novo genome 183 

assembly. However, HERS inside long Nanopore reads usually fail to be corrected, 184 

leading to the splitting of long Nanopore reads into several shorter corrected reads. 185 

Using only corrected reads for genome assembly abolishes the advantage presented 186 

by the long length of Nanopore reads. In this study, we developed a two-step 187 

progressive genome assembler for Nanopore reads. In the first step, we generated 188 

high quality contigs using corrected reads (Figure 2D). In the second step, we bridged 189 

the contigs using original Nanopore reads to generate final scaffolds (Figure 2E). The 190 

lost contiguity in contigs, caused by HERSs in raw reads, is thereby filled in the 191 

second step of the process. Therefore, genome contiguity is improved by maximizing 192 

the usage of all raw reads. Our two-step assembly process is similar to process using 193 

SMS reads for scaffolding20. 194 

    Meanwhile, even after error correction, sequencing error rates of corrected 195 

Nanopore reads (1.5-9%) are still higher than those of corrected PacBio reads (less 196 

than 1%). Moreover, the error rates of corrected reads also show a relatively broad 197 

distribution (Supplementary Note 6 and Supplementary Table 4). To obtain high 198 

quality contigs, we needed to select high-quality overlaps between corrected reads 199 

because low-quality overlaps increase the difficulty of assembly and introduce errors 200 

into assembly results. Similar to the process used for selecting supporting reads for 201 

error correction, we employed both global and individual thresholds to overcome the 202 

broad-error-rate distribution for the filtering of low-quality overlaps (Online 203 

Methods). 204 
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Performance of NECAT error correction 205 

We assessed the performance of NECAT error correction using Nanopore raw reads 206 

of seven species: E.coli, S. cerevisiae, D. melanogaster, A. thaliana, C. reinhardtii, O. 207 

sativa, and S. pennellii with respect to correction speed, corrected data size, accuracy 208 

and continuity of corrected reads, as well as the number of reads with HERS in 209 

corrected reads (Supplementary Note 6). As shown in Table 1, NECAT correction 210 

speeds were 2.1-16.5 times faster than those of Canu for Nanopore reads of these 211 

seven species. The sizes of corrected reads for E.coli, S. cerevisiae, D. melanogaster, 212 

A. thaliana, C. reinhardtii, O. sativa, and S. pennellii were 102.2%, 83.4%, 90.6%, 213 

92.5%, 100.3%, 100.7% and 91.2% of their raw reads, respectively, while Canu only 214 

corrected the longest 40X raw reads and obtained 15.9%, 39.8%, 57.7%, 84.1%, 215 

31.1%, 24.0%, and 28.3% corrected reads from their raw reads, respectively.  216 

NECAT was able to obtain high-accuracy corrected reads. After the first step, 217 

average error rates for E.coli, S. cerevisiae, D. melanogaster, A. thaliana, C. 218 

reinhardtii, O. sativa, and S. pennellii datasets were 4.27%, 3.08%, 7.03%, 11.35%, 219 

4.40%, 6.45%, and 9.23% respectively; these were less than the average error rates of 220 

reads corrected by Canu, which were 7.06%, 3.13%, 8.15%, 12.05, 5.35%, 7.99%, 221 

and 9.69% respectively. After the second step, average error rates for seven datasets 222 

were further reduced to 2.23%, 1.53%, 4.89%, 9.01%, 1.99%, 4.66%, and 6.45%, 223 

respectively. 224 

The maximum overlapping error rate between corrected reads is usually set to 10% 225 

during assembly. Thus, the higher the percentage of corrected reads having less than 5% 226 
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error, the more reads can be used for assembly. As shown in Table 1, the percentages 227 

of NECAT’s corrected reads having error rate less than 5% error for seven data sets 228 

were 99.34%, 95.04%, 72.03%, 45.85%, 95.18%, 74.62%, and 63.04% respectively, 229 

which were significantly higher than those of reads corrected by Canu.  230 

The progressive correction strategy in NECAT also allowed us to correct more 231 

HERS and maintain the contiguity of reads. N50s for NECAT-corrected reads of the 232 

seven datasets were 105.1%, 90.5%, 98.0%, 100.9%, 103.7%, 100.4%, and 96.3%, 233 

respectively, of N50s for their corresponding raw reads, indicating that NECAT could 234 

preserve the contiguity of raw reads. Conversely, N50s for the reads corrected by 235 

Canu were 91.9%, 30.4%, 85.8%, 91.8%, 99.0%, 97.7% and 87.3% of the 236 

corresponding raw reads, which was less than those of NECAT-corrected reads. 237 

Another evidence that progressive correction strategy in NECAT can improve the 238 

correction of HERS is that the number of reads with HERS has been reduced. After 239 

two-step correction using NECAT, the numbers of reads containing HERS in the 240 

seven corrected datasets were 1, 268, 3,481, 7,158, 278, 3,511, and 5,445 respectively, 241 

while Canu-corrected datasets had 1, 4,820, 6,523, 8,722, 726, 4,413 and 5,511 reads 242 

containing HERS. These results indicate that NECAT outperformed Canu in 243 

correcting sequencing errors in Nanopore raw reads.  244 

Performance of NECAT de novo assembler 245 

We compared NECAT to two widely used correct-then-assemble pipelines, Canu and 246 

Canu+smartdenovo, for de novo assembly of Nanopore reads (Supplementary Note 247 

7). We assembled genomes of E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C. 248 
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reinhardtii, O. sativa and S. pennellii using the longest 40X reads of each dataset, and 249 

assembled 35X Nanopore data for the human NA12878 genome using NECAT only. 250 

As shown in Table 2, NECAT was 8.3-258.2 times faster than Canu, while showing 251 

8.8-577.5 times speedup during the assembly step. Canu employs a high overlapping 252 

threshold (14.4%) in its overlapIncore tool for Nanopore reads (a low threshold of 6% 253 

is used for assembling PacBio reads), which may greatly increase the time cost of 254 

local alignments. The Canu+smartdenovo pipeline replaces the assembly step of Canu 255 

with smartdenovo, which significantly reduces running time. NECAT was still 256 

3.2-57.0 times faster than Canu+smartdenovo on seven datasets. The high accuracy of 257 

corrected reads outputted by NECAT allowed us to use a more rapid overlapping 258 

approach. 259 

We then assessed the quality of assembled contigs with respect to assembly size, 260 

NG50, number of contigs, and average number of contigs > 200 bps per chromosome 261 

(ctg/chr). For E. coli, all three pipelines recovered the complete genome in just one 262 

contig. For S. cerevisiae, NECAT outperformed Canu and Canu+smartdenovo with 263 

101% assembly performance and a near perfect contiguity with only 19 contigs. For A. 264 

thaliana, NECAT reported 136 contigs and an NG50 of 48% assembly performance, 265 

which was similar to that of Canu+smartdenovo (47% assembly performance) and 266 

markedly better than that of Canu (28% assembly performance). For D. melanogaster, 267 

NECAT reported 277 contigs and obtained the best NG50 performance (71% 268 

assembly performance) compared with those of Canu (14% assembly performance) 269 

and Canu+smartdenovo (57% assembly performance). For C. reinhardtii, NECAT 270 
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reported 54 contigs and the best NG50 performance (79% assembly performance). 271 

For O. sativa, NECAT reported 120 contigs and the best NG50 performance (31% 272 

assembly performance), which was markedly better than those of Canu (16% 273 

assembly performance) and Canu+smartdenovo (12% assembly performance). For S. 274 

pennellii, NECAT reported 1344 contigs and the best NG50 performance (190% 275 

assembly performance), which was 1.90 and 2.88 times greater than those of 276 

Canu+smartdenovo (100% assembly performance) and Canu (66% assembly 277 

performance). For human NA12878, NECAT report 1494 contigs and 16.93 Mbp 278 

NG50 (30% assembly performance), which was 2.43 times longer than that reported 279 

by Canu. Furthermore, NECAT assembled the human NA12878 genome in only 4.7 280 

days on a single 64-threaded computer.  281 

We next assessed the effect of contig-bridging in NECAT assembly. As shown 282 

in Table 3, the number of contigs was significantly reduced in the assembly of A. 283 

thaliana, D. melanogaster, C. reinhardtii, O. sativa, S. pennellii and H. sapiens 284 

genomes after contig-bridging of raw reads. For D. melanogaster and S. pennellii 285 

contig-bridging also significantly increased the N50 of assembly. These results 286 

indicate that contig-bridging can significantly improve the contiguity of assembly.  287 

We further compared NECAT assembler with widely used assemble-then-correct 288 

assemblers: Miniasm, Smartdenovo, Wtdbg2, and Flye (Supplementary Text 1 and 289 

Note 7). NECAT has similar time costs as those assemble-then-correct assemblers, 290 

but obtains better assembly results, especially for complex genomes (Supplementary 291 

Text 1). We also validated our assemblies by comparing them to reference genomes. 292 
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The quality of NECAT-generated assemblies were comparable to those of the other 293 

correct-then-assemble pipelines and better than assemble-then-correct assemblers 294 

(Supplementary Text 2).  295 

De novo genome assembly of retinoblastoma cell line WERI 296 

To further evaluate the performance of NECAT in large-genome assembly, we 297 

sequenced a cell line called WERI, which is derived from human retinoblastoma21. 298 

We generated 210 Gb (82 folds) of raw reads from three flowcells using Nanopore 299 

PromethION. The WERI genome assembled by NECAT has an N50 of 29M. To the 300 

best of our knowledge, this is the best N50 value for the assembly of human genome 301 

using the general library of the Nanopore sequencing platform. 302 

We aligned the WERI assembly to human reference genome hg38 using 303 

MUMmer (v4.0)22. The dotplot figure shows that the WERI assembly is structurally 304 

consistent with reference genome except for minor structural variations 305 

(Supplementary Note 8 and Supplementary Figure 2) and the tiling figure shows 306 

the continuity of the assembly (Figure 3). We also used bowtie223 to align an Illumina 307 

dataset for the WERI cell line onto a WERI assembly and hg38 human reference 308 

genome. The mapping rate of the WERI assembly (99.1%) was better than that of 309 

hg38 human reference genome (98.0%).  310 

We then identified and validated structural variants (SVs) in the WERI assembly. 311 

We detected 11,725 SVs (≥10 bp) in the WERI assembly by aligning it to hg38 312 

human reference genome using Nummer (v4.0). We also detected SVs from raw 313 

Nanopore long reads and Illumina short reads for the WERI cell line using Sniffles24 314 
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and LUMPY25, respectively (Supplementary Note 8). 7210 SVs are commonly 315 

detected using WERI assembly and raw Nanopore reads, while only 1117 SVs are 316 

commonly detected using WERI assembly and NGS (Supplementary Figure 3 and 317 

Supplementary Table 5).  Furthermore, 90% of unique small SVs (<1000 bp) 318 

detected using Nanopore raw reads were able to be found in the WERI assembly, 319 

indicating that the assembly can reduce false positives for small SVs (<1000 bp) 320 

(Supplementary Table 5).  321 

Next, we examined genes associated with the identified SVs. We found 2843 322 

annotated genes associated with 7210 SVs identified using both WERI assembly and 323 

raw Nanopore reads. 209 of 2843 genes are reported in Phenolyzer26 and are 324 

associated with retinoblastoma (Supplementary Table 6). Among 66 genes, the gene 325 

PRKCB, which is scored as high as 0.8901 in Phenolyzer26, was reported to be 326 

involved in retinoblastoma protein phosphorylation27. Among the 209 genes, there are 327 

eight genes (AATF, PRKCB, PRMT2, FRK, PIK3R1, CUX1, RAC2, IGF1) with a 328 

Phenolyzer score greater than 0.5, and six of eight genes are associated with 329 

retinoblastoma as reported in PubMed. These results indicate that NECAT can 330 

provide high quality assembly for reliable identification of SVs.  331 

Discussion 332 

Currently, applying Nanopore reads in genomic studies is difficult because of the 333 

complex errors within these reads. In this study, our analyses have shown that 334 

Nanopore reads contain high-error rate subsequences, and errors are broadly 335 

distributed among Nanopore reads and in subsequences of a read. This broad error 336 
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distribution complicates selection of supporting reads during the error-correcting 337 

process. In traditional error-correction methods, the threshold used to select 338 

supporting reads can be set too strict or too lenient; the former cannot select enough 339 

supporting reads for correction, while the latter generates too many low-quality reads 340 

that affect the accuracy of corrected reads. Furthermore, traditional error correction 341 

methods cannot correct the high-error-subsequences in Nanopore reads and generally 342 

break Nanopore reads into multiple short corrected reads.   343 

In this study, we developed NECAT, which includes novel methods such as 344 

progressive error correction, adaptive supporting reads and alignment selection, and 345 

two-stage assembly, to overcome the errors characteristic of Nanopore reads. The 346 

novel error-correction tool in NECAT, which is 2.1-16.5 times faster than that of 347 

Canu, can correct Nanopore reads to high accuracy, while maintaining the contiguity 348 

of Nanopore reads. The novel assembly tool in NECAT is at least 1.4 times faster 349 

than other assembly pipelines with enhanced or comparable assembly performance. 350 

The high performance shown by NECAT suggests that the high error rate of 351 

Nanopore reads can be overcome by the development of new algorithms with respect 352 

to error characteristics.  353 

Structural variations identified via raw Nanopore reads usually have a high 354 

false-positive rate. Here, we show that these false positives can be reduced 355 

considerably by using a high-quality assembly of Nanopore reads for detection of 356 

structure variation. Our results show that NECAT is a useful tool for error correction 357 

and assembly of Nanopore reads, and for detection of structure variation.  358 
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 359 

 360 

 361 

Data sources. We used nine datasets to evaluate the performance of NECAT. Among 362 

these datasets, those for Saccharomyces cerevisiae, Oryza sativa and Homo sapiens 363 

(the WERI human retinoblastoma cell line) were generated using our in-house 364 

sequencing, while the other four were obtained from public websites. The details on 365 

the data used in this study are reported in Supplementary Notes 1-4. 366 

 367 

 368 

Accession codes. All processed files for assembly and analysis code used in this 369 

study are available from http://www.tgsbioinformatics.com/necat. All source codes 370 

for NECAT are available from https://github.com/xiaochuanle/NECAT. 371 

 372 
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ONLINE METHODS 402 

The architecture of NECAT. The NECAT pipeline was designed as a 403 

high-performance assembler for Nanopore reads. To overcome the high-error-rate of 404 

Nanopore reads, we developed several novel methods, including progressive error 405 

correction, adaptive supporting reads and alignment selection, and two-step assembly. 406 

The NECAT pipeline contains four modules (Supplementary Figure 4): preprocessing, 407 

correction, trimming, and assembly. The preprocessing module filters short and 408 

ill-formed reads. The correction module uses a progressive strategy to correct 409 

Nanopore reads in two steps. The trimming module removes low-quality 410 

subsequences from corrected reads. The assembly module builds a string graph to 411 

assemble the genome in two steps. These four modules can be run in series to finish 412 

assembly, or can be operated independently. Currently, NECAT is the most efficient 413 

assembler for large genomes from Nanopore reads. NECAT also significantly 414 

improved the contiguity of the assembled genome.  415 

Progressive error correction of Nanopore reads. The broad distribution of 416 

sequencing-error-rates among Nanopore reads, and within a single Nanopore raw read, 417 

is the reason for why traditional iterative error-correction methods usually fail with 418 

Nanopore data. In this study, we develop a novel method for correcting Nanopore 419 

reads. Our progressive error correction method involves two steps. First, we correct 420 

the low-error-rate subsequences (LERS) in a read. Then, we correct the 421 

high-error-rate subsequences (HERS) in that read using a more sensitive approach. 422 

Both steps include the same four sub-steps: i) selection of candidate reads, ii) 423 
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determination of alignment-quality threshold, iii) selection of matched reads, and iv) 424 

correction of the read. The sub-steps i, ii, and iv are the same for both steps. We use 425 

different methods to select matched reads for each template to be corrected in 426 

sub-step iii of the two steps. In first step, we use a strict selection method to choose 427 

matched reads for the low-error-rate portions of template read. In second step, we use 428 

a lenient method to choose matched reads for the high-error-rate portions of template 429 

read.   430 

Selection of candidate reads. For each read to be corrected, we select candidate 431 

reads that have overlap with that read. For each pair of reads, we first use the distance 432 

difference factor (DDF11) to select a seed k-mer pair with the highest score, which 433 

serves as a reliable start position for local alignment. However, the wide distribution 434 

of error rates decreases the sensitivity of the DDF score for two k-mer pairs that are 435 

far apart; this may introduce false positives (Supplementary Figure 5A). To remove 436 

false positives, we gather all k-mer pairs that support the seed k-pair during DDF 437 

scoring. We sort all k-mer pairs, including the seed k-mer pair, with respect to their 438 

positions and then chain them together19. The chaining process examines the relative 439 

positions of k-mer pairs and helps to filter out false positives (Supplementary Figure 440 

5B). We then update the DDF score of the seed k-mer pair with remaining k-mer pairs, 441 

which further improves the sensitivity of candidate selection. We record the positions 442 

of the first and last k-mer pairs in the chain as the approximate mapped positions of 443 

candidate read. These two positions, together with the DDF score of the seed k-mer 444 

pair, are used for further filtering of redundant candidates and identifying HERS. 445 
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Determination of individual alignment-quality threshold for each template read. 446 

We select high-quality supporting reads that are used for the correction of each 447 

template read. However, broad error rate distribution makes it difficult to use a single 448 

global threshold for selection of supporting reads. Besides setting a global 449 

overlapping-error-rate threshold to 0.5, we also compute a local individual 450 

overlapping-error-rate threshold for each template read. For each template read, we 451 

use 50 candidate reads with top DDF scores for local alignments. If a local alignment 452 

contains more than 60% of template or candidate read length, we record the alignment, 453 

and the difference between template and candidate read. If we have ݊(0 ≤ n ≤ 50) 454 

recorded alignments and their differences are ݀1, ݀2,… , ݀݊ , We compute their 455 

average difference ݀0 = ∑ ݀݅݊݅=1 /݊  and standard deviationܦ = ඥ∑ (݀௜ − ݀଴)ଶ௡௜ୀଵ . 456 

Then, we set the alignment quality threshold as	݀ = ݀଴ −  This threshold provides 457 .ܦ5

a lower alignment quality bound for low error template reads. 458 

Selection of matched reads. For each read template, we select 200 candidate reads 459 

with top DDF scores for local alignment. We use different alignment methods in first 460 

and second steps. In the first step, we use blockwise alignment algorithm for aligning 461 

supporting reads to the template read. We perform local alignment from the seed 462 

k-mer pair in both directions. Thus, we first obtain two semi-global alignments, and 463 

then the two alignments are merged into one. Starting from the seed k-mer pair, we 464 

partition both template and candidate reads into equal-sized blocks 500 bp in length. 465 

We then use the Edlib algorithm28 to successively align each pair of blocks. The 466 

aligning process terminates if the alignment error between a pair of blocks is greater 467 
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than 50%, or if the alignment algorithm reaches the end of a template or candidate 468 

read. Because blockwise alignment terminates when either block from template or 469 

candidate has a high error rate, we can only obtain alignment between low-error-rate 470 

subsequences in this step.  471 

In the second step, we use multiple alignment methods to obtain long 472 

alignments between templates and candidate reads. We first use the blockwise 473 

approach to align candidate reads to a template. If blockwise alignment terminates 474 

early due to presence of a high-error-rate region inside the template or candidate read, 475 

we use the DALIGN algorithm29 to re-align the candidate read to template. However, 476 

alignments produced via DALIGN, running with a large difference threshold of 0.5, 477 

are usually too coarse. To refine the alignment result of DALIGN, we then use the 478 

Edlib algorithm to perform a global alignment on the mapped subsequences output by 479 

DALIGN to get a more correct alignment. 480 

Performing a local alignment of supporting reads to template is 481 

computationally expensive, especially for long-template reads. Usually only dozens of 482 

alignments are enough for error correction. Thus, it is unnecessary to align all 200 483 

candidate reads if we have enough supporting reads for error correction. Here, we use 484 

a coverage count array (CCA), which is an integer array possessing the same length as 485 

that of template read, to record the number of candidate reads that cover each base of 486 

the template read. Prior to aligning a candidate read to the template read, we examine 487 

the values of CCA elements between the mapped positions for the approximate start 488 

and end of candidate read on a template. If all these values are greater than a user set 489 
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threshold C, we would know that the corresponding region in template read has been 490 

covered by enough candidate reads and there is no need to perform the local 491 

alignment of this candidate read. If the alignment difference is less than the alignment 492 

quality threshold d, we would increase every value of CCA between the start and end 493 

template mapped positions by one. We use a default value of 12 for threshold C.  494 

Correction of Nanopore reads. After selecting matched candidate reads, we use the 495 

FALCON-sense consensus algorithm9 to correct each subsequence of the template 496 

read that is covered by enough candidate reads. In the first step, we replace these 497 

subsequences with corrected subsequences. Then, we output the whole template, 498 

including corrected subsequences and uncorrected subsequences, as a corrected read 499 

for the next step. HERS are corrected in the next step. In the second step, we only 500 

output corrected subsequences, meaning that one template may produce more than 501 

one corrected read. If a subsequence in a template read cannot be corrected in the 502 

second step, it either has too high of an error rate or low coverage.  503 

Trimming of low-quality subsequences. Long Nanopore reads may still contain 504 

HERS even after error correction, which can greatly affect the quality of assembly. 505 

Thus, low-quality subsequences need to be trimmed before assembly. We only select 506 

40X coverage longest corrected reads for trimming and future assembly. First, we 507 

perform pairwise alignment on selected Nanopore reads using the trimming module of 508 

MECAT11. Because even corrected Nanopore reads may have a relatively high error 509 

rate, we use the sensitive DALIGN algorithm to replace the original diff algorithm in 510 

the MECAT trimming module before performing local alignments. After pairwise 511 
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alignment, we gather high-quality overlaps with more than 90% identity for each read. 512 

If every residue of a read is covered by at least one overlap, the read is designated as a 513 

complete read. On the other hand, if there are subsequences without overlap coverage 514 

in a read, we trim it to its longest covered subsequence, which is called a trimmed 515 

read.  516 

 After trimming, the reads are usually subjected to another pairwise alignment. 517 

Our experiments show that less than 10% of corrected reads are trimmed, therefore, it 518 

is unnecessary to pairwise align 90% of untrimmed reads. Thus, we store complete 519 

reads and trimmed reads separately after trimming. Pairwise alignments are only 520 

performed between complete reads and trimmed reads, and between trimmed reads. 521 

The results of these pairwise alignment, together with complete reads, trimmed reads, 522 

and results of original pairwise alignments between complete reads, are fed into the 523 

assembly module.  524 

De novo assembly of Nanopore reads. Although the long length of Nanopore reads 525 

helps improve genome assembly, the relatively high error rate of these reads renders 526 

genome assembly difficult. Here, we developed a new assembly tool that is 527 

particularly useful for Nanopore reads because it can overcome the high error rate of 528 

these reads. Our assembly module in NECAT consists of three steps: filtering of 529 

low-quality read overlaps, contig assembly, and contig bridging. We use multiple 530 

quality-control measures to filter out low-quality overlaps between Nanopore reads. 531 

Then, we construct a directed string graph and solve the graph to generate contigs. 532 

Finally, we bridge the contigs using original reads to generate the final scaffolds.  533 
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Filtering of low-quality read overlaps. Low-quality overlaps complicate assembly 534 

and introduce errors into assembly results. In NECAT, we use multiple thresholds to 535 

control the identity, overhang, and coverage of overlaps in order to filter out 536 

low-quality overlaps. For each read, we determine the coverage of each base 537 

according to its overlaps. Then, we calculate the minimum coverage ( ܿ௠௜௡ ), 538 

maximum coverage (ܿ௠௔௫) of bases, as well as the difference between minimum 539 

coverage and maximum coverage (ܿௗ௜௙௙). If its	ܿ௠௜௡ is less than predefined threshold, 540 

min_coverage, or ܿ௠௔௫	is larger than predefined threshold, max_coverage, or ܿௗ௜௙௙	is 541 

larger than predefined threshold, max_diff_coverage, the read and its overlaps are 542 

removed. The details on coverage threshold settings are provided in Supplementary 543 

Note 9. Because of broad error distribution among different reads, we use both global 544 

and local threshold, instead of a single global threshold, for quality control of overlap 545 

identity and overhang. For a high-quality read, the average quality of its overlaps 546 

needs to be higher than global average; therefore, we set the local threshold to filter 547 

out overlaps having relatively low quality. For a low-quality read, the average quality 548 

of its overlaps needs to be lower than global average; we then use the global threshold 549 

to filter out low-quality overlaps for that read. This strategy allows us to filter out 550 

overlaps with relatively low quality for each read, and to maintain the overall quality 551 

of all the overlaps. Details on setting global and local thresholds for overlap identity 552 

and overhang are provided in Supplemental Note 9.  553 

Contig assembly. Next, we construct a directed string graph and remove transitive 554 

edges using Mayer’s algorithm30. We mark the best out-edge and the best in-edge of 555 
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each node based on overlap lengths of the edges. The edges that are not marked as 556 

best out-edge or best in-edge are removed31. We also remove ambiguous edges (tips, 557 

bubbles, and spurious links) in the graph. We then identify linear paths from the graph 558 

and generate contigs. When there is a branch, we break the path to generate multiple 559 

contigs. This strategy can reduce the possibility of mis-assembly.  560 

Contig bridging. During error correction, long reads with high-error subsequences 561 

are cut into multiple shorter reads, which eventually leads to discontinuity of contigs. 562 

It is possible to relink contigs using long raw reads20. First, we align the long raw 563 

reads to contigs. Two contigs may have an overlap that is of low quality; this overlap 564 

is filtered before construction of a string graph. A raw read can either fill the gap 565 

between two contigs, which is then called a gap read, or overlap with the overlap of 566 

two contigs, which is then called an overlap read. For each raw read, we record the 567 

gap or overlap length between the mapped positions on the ends of the two contigs. 568 

For each pair of contigs, the raw reads connecting them are grouped as those 569 

connecting in same orientation or those connecting in different orientations. In each 570 

orientation group, we cluster the raw reads based on their gap/overlap lengths. If the 571 

difference between the gap/overlap lengths of two raw reads is less than threshold 572 

(default value is 1000 bp), we assign them into same cluster. And we assigned a score 573 

to each raw read, which is the sum of the products of identity and length of overlaps 574 

between the raw read and the pair of contigs. The read cluster with the largest sum of 575 

scores is chosen as the link for the contig pair.  576 
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After identifying links between contig pairs, we create a string graph in which 577 

contigs are nodes and links between the contigs are edges. The weight of each edge is 578 

set to the link score. We simplify the graph again by removing transitive edges. Then, 579 

we traverse the graph and identify linear paths as final contigs. A raw read from the 580 

link is selected to fill the gap between contigs.  581 

Error distribution analysis. We analyzed error distribution in Nanopore datasets for 582 

E. coli, S. cerevisiae, A. thaliana, D. melanogaster, C. reinhardtii, O. sativa and S. 583 

pennellii. Our results indicate that the sequencing error rate of Nanopore reads was 584 

high at 10-30%, which helped us refine our algorithm for the NECAT platform and 585 

provide insights into why the existing correction algorithms are not suitable for the 586 

correction of Nanopore reads. Details are provided in Supplementary Note 5. 587 

Evaluation. We compared our error correction tool with those provided in Canu. We 588 

also systematically evaluated the assembly tools provided in NECAT by comparing 589 

them with those of Canu and Canu+smartdenovo. Details of these comparisons are 590 

reported in Supplementary Notes 6-7,10.  591 

  592 
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Figure 1 
Error characteristics of eight Nanopore raw read datasets. (A) Error rate distribution 
of raw reads. (B) Error rates of subsequences in a Nanopore read (upper) and 
illustration of a high error subsequence in the read (bottom). (C) Plot of percentage of 
raw reads with high error rate subsequences (HERS, error rate more than 50% in 500 
bp windows) against read length. 
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Figure 2 
Illustration of progressive error correction and two-stage assembly methods of 
NECAT. (A) Input raw reads. (B) Error correction of low error rate subsequences. 
Only low error rate subsequences have supporting reads. (C) Error correction of high 
error rate subsequences. (D) Contig assembling using corrected reads. (E) Contig 
bridging using raw Nanopore reads. (F) Output final contigs.  
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Figure 3 
Continuity analysis of the assembly of WERI cell line using Nanopore reads. Human 
chromosomes are painted with assembled contigs using the ColoredChromosomes 
package. Alternating shades indicate adjacent contigs (each vertical transition from 
gray to black represents a contig boundary or alignment breakpoint). 
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Table 1. Performance comparison of Nanopore read error correction 

Datasets Pipeline 
Size(g)/Time(h) 

/Speed(g/h) 

Error 

rate(%) 
<=5%(%) N50 N75 

Read number 

with HERS 

E.coli 

raw reads 1.38/--/-- 17.8 0.01 41,074 35,484 121 

Canu 0.22/1.63/0.14 7.06 20.45 37,747 32,127 1 

NECAT 1.41/0.76/1.86 2.23 (4.27) 99.34(80.51) 43,140 37,502 1 

S. cerevisiae 

raw reads 5.48/--/-- 12 1.61 34,668 28,152 7,589 

Canu 2.18/30.83/0.071 3.13 87.3 10,554 4,567 4,820 

NECAT 4.57/3.90/1.17 1.53 (3.08) 95.04(88.09) 31,364 24,480 268 

D. 

melanogaster 

raw reads 8.30/--/-- 16.2 2.3 17,730 13,621 12,438 

Canu 4.79/18.10/0.26 8.15 57.57 15,220 10,658 6,523 

NECAT 7.52/4.20/1.79 4.89 (7.03) 72.03(64.18) 17,369 13,104 3,481 

A. thaliana 

raw reads 3.08/--/-- 20.1 1.57 23,386 16,253 14,483 

Canu 2.59/12.07/0.22 12.0 8.09 21,472 13,133 8,722 

NECAT 2.85/1.33/2.14 9.01(11.35) 45.85(25.67) 23,600 15,944 7,158 

C. reinhardtii 

raw reads 14.84/--/-- 15 1.16 54,409 46,812 4,231 

Canu 4.61/59.40/0.078 5.35 76.05 53,891 45,934 726 

NECAT 14.89/11.53/1.29 1.99(4.40) 95.18(82.13) 56,427 48,708 278 

O. sativa 

raw reads 63.40/--/-- 15.6 0.49 56,325 50,847 24,205 

Canu 15.23/43.20/0.35 7.99 44.42 55,010 49,612 4,413 

NECAT 63.83/18.95/3.37 4.66(6.45) 74.62 (51.49) 56,573 51,141 3,511 

S. pennellii 

raw reads 132.74/--/-- 18.49 1.7 24,801 22,226 127,808 

Canu 37.53/88.8/0.42 9.69 34.04 21,653 19,364 5,511 

NECAT 121.07/137.77/0.88 6.45（9.23） 63.04 (38.77) 23,810 21,480 5,445 

Size is the total number of base pairs in corrected reads. Time is the time of error correction, and 

the speed is the Size/Time. Error rate denotes the mean error rate of raw reads and corrected reads; 

<=5% denotes the percentage of reads with less than 5% error rate in total corrected read, values 

are the bracket are results of NECAT after the first correction; N50 and N75 are the length of read 

that reached the 50% and 75% of the total length of all reads; Read number with HERS denotes 

the number of reads that with at least one HERS (more than 50% error in the 500bp window). The 

reads that were used in evaluating the last three metrices (N50, N75 and Read number with HERS) 

of NECAT were corrected from longest 40x of raw dataset that were selected by Canu for 

correction by default, see Supplementary Note 6 for details. 
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Table 2.The quality and performance of long-read assembly with NECAT 

Genome Pipeline 
Assembly 
Size 

Contig 
NG50 
(AP) 

ctg/ 
chr 

Correct 
time 

Contig 
time 

Total 
time 

E. coli 

Ref. 4641652 1 4,641,652(100%) 1 — — — 
Canu 4601040 1 4,601,040(99%) 1 26.1 698.1 724.2 
Canu+Smartdenovo 4630399 1 4,630,399(100%) 1 26.1 8 34.1 

NECAT 4594537 1 4,594,537(99%) 1 1.6 1.2 2.8 

S. cerevisiae 

S228C 12157105 17 924,431(100%) 1 — — — 
Canu 12709122 26 814,250(88%) 2 493.3 1029.9 1523.2 
Canu+Smartdenovo 12404242 19 814,745(88%) 1 493.3 38.4 531.7 
NECAT 12341147 19 936,684(101%) 1 4.4 4.9 9.3 

A. thaliana 

TAIR10 119668634 7 23,459,830(100%) 1 — — — 
Canu 113408765 288 6,522,919(28%) 41 193.1 1229.9 1423 
Canu+Smartdenovo 115555194 44 11,070,615(47%) 6 193.1 125.9 319 
NECAT 122855840 136 11,157,362(48%) 19 19.8 28.0 47.9 

D. 
melanogaste
r 

dm6 143726002 1870 25,286,936(100%) 234 — — — 
Canu 146764973 499 3,508,917(14%) 62 289.6 1259.2 1548.8 
Canu+Smartdenovo 135835365 162 14,456,187(57%) 20 289.6 294.4 584 
NECAT 142774092 277 18,072,166(71%) 35 37.7 32.7 70.4 

C. 
reinhardtii 

Ref. v3.0 111098438 53 7,783,580(100%) 3 — — — 
Canu 116421921 93 4,563,858(59%) 6 950.4 17369.6 18320 
Canu+Smartdenovo 109704543 46 4,498,347(58%) 3 950.4 816 1766.4 
NECAT 113388358 54 6,168,830(79%) 3 54.8 47.0 101.8 

O. sativa  
Ref.v4.0 382778125 15 30,828,668(100%) 1 — — — 
Canu 383923158 385 5,041,373(16%) 26 2768.0 16800.0 19568.0 
Canu+Smartdenovo 366402510 229 3,586,246(12%) 15 2768.0 1926.3 4694.3 
NECAT 373120604 120 9,650,275(31%) 8 186.9 330.3 517.2 

S. pennellii 
Ref. v1.0 915596307 899 2,521,711(100%) 69 — — — 
Canu 961827720 2010 1,663,626(66%) 155 5733.1 15398.4 21131.5 
Canu+Smartdenovo 915596307 899 2,521,711(100%) 69 5733.1 2510.2 8243.4 
NECAT 991792915 1344 4,801,589(190%) 103 799.6 1740.7 2540.3 

Human 
N12878 

Ref38 3006872676 25 159,345,973(100%) 1 — — — 
Canu 2759020457 2337 6,636,211(4%) 102 60,000 60,000 
NECAT 2798424597 1494 16,151,971(10%) 65 3,947.7 3,276.8 7,224.5 

Assembly size is the total number of base pairs in all contigs generated by assemblers. NG50 indicates that 50% of reference 

genome size was contained in contigs having length ≥N. Assembly performance (AP) is defined as obtained contig NG50 divided 

by NG50 of reference assembly. The genome sizes of E. coli, S. cerevisiae W303, A. thalianaCol-0, D. melanogaster ISO1, C. 

reinhardtii, O. sativa, S. pennellii and human were 4,641,652, 12,157,105, 119,668,634, 143,726,002, 111,098,438, 

382,778,125, 915,596,307, and 3,006,872,676, respectively. Ctg/Chr is the average number of contigs per chromosome in the 

assembly. All the pipelines were tested on the same computer with 2.0 GHz CPU and 3T GB RAM of memory. For the first five 

datasets, we ran all the pipelines on our computer with 32 threads; the correction and contig computational time of the pipelines 

were recorded. For O.sativa, S. pennellii and the human dataset, we ran all pipelines on our computer with 64 threads, and 

correction and contig computational time were recorded. The S. pennellii assemblies by Canu and Canu+Smartdenovo are 

acquired from https://www.plabipd.de/portal/solanum-pennellii, NG50 of which were longer than those generated by us. The 

human assembly and running time of canu are acquired from public paper. 
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Table 3 

Performance of de novo assemblies before and after the bridging step of NECAT. 

 

Species Stats Count 
Assembly 

Size 
Max Min N25 L25 N50 L50 N75 L75 

E. coli Before 1 4587234 4587234 4587234 4587234 1 4587234 1 4587234 1 

After 1 4594537 4594537 4594537 4594537 1 4594537 1 4594537 1 

S. cerevisiae Before 20 12344710 1529545 37657 1087952 3 816246 6 581125 10 

After 19 12341147 1529022 37657 1087471 3 936684 6 676549 10 

A. thaliana Before 150 122876764 14555777 4312 14075240 3 11149925 5 6575909 8 

After 136 122855840 14566553 4312 14083693 3 11157362 5 7804579 8 

D. 

melanogaster 

Before 320 143000842 14922625 1303 12854107 3 9612127 6 2092117 14 

After 277 142774092 21505040 1303 21396663 2 18072166 4 2925305 9 

C. reinhardtii Before 64 113293301 8997060 4161 6803426 4 5455837 9 3263676 16 

After 54 113388358 9014332 4161 6812997 4 6168830 8 3374959 15 

O. sativa 

Japonica 

Group 

Before 167 372698321 22007406 3978 11903975 7 6099041 18 3370103 38 

After 118 373827003 22086005 7816 13530842 6 10323607 14 5860244 25 

S. pennellii Before 1604 991874379 22857416 508 5921037 27 3465614 82 1668679 186 

After 1344 991792915 22878582 508 6804220 22 4325703 67 2075284 151 

Human Before 2151 2791598215 50857421 500 26709700 19 15339800 55 7002196 124 

After 1494 2798424597 73247802 500 31103549 15 16933776 47 8828295 102 

 

Count is the total number of contigs in assembly. Assembly size is the total number of base pairs 

in assembly. N25/N50/N75 indicate that 25%/50%/75% of the assembly size is contained in the 

contigs of length ≥N. The L25/L50/L75 are the number of contigs under the N25/N50/N75, 

respectively.  
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