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Abstract

Resting-state brain activity is characterized by the presence of neuronal
avalanches showing absence of characteristic size. Such evidence has been
interpreted in the context of criticality and associated with the normal func-
tioning of the brain. At criticality, a crucial role is played by long-range
power-law correlations. Thus, to verify the hypothesis that the brain operates
close to a critical point and consequently assess deviations from criticality
for diagnostic purposes, it is of primary importance to robustly and reliably
characterize correlations in resting-state brain activity. Recent works focused
on the analysis of narrow band electroencephalography (EEG) and mag-
netoencephalography (MEG) signal amplitude envelope, showing evidence
of long-range temporal correlations (LRTC) in neural oscillations. How-
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ever, this approach is not suitable for assessing long-range correlations in
broadband resting-state cortical signals. To overcome such limitation, here
we propose to characterize the correlations in the broadband brain activity
through the lens of neuronal avalanches. To this end, we consider resting-
state EEG and long-term MEG recordings, extract the corresponding neu-
ronal avalanche sequences, and study their temporal correlations. We demon-
strate that the broadband resting-state brain activity consistently exhibits
long-range power-law correlations in both EEG and MEG recordings, with
similar values of the scaling exponents. Importantly, although we observe
that avalanche size distribution depends on scale parameters, scaling expo-
nents characterizing long-range correlations are quite robust. In particular,
they are independent of the temporal binning (scale of analysis), indicating
that our analysis captures intrinsic characteristics of the underlying dynam-
ics. Because neuronal avalanches constitute a fundamental feature of neural
systems with universal characteristics, the proposed approach may serve as
a general, systems- and experiment-independent procedure to infer the exis-
tence of underlying long-range correlations in extended neural systems, and
identify pathological behaviors in the complex spatio-temporal interplay of
cortical rhythms.
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1. Introduction

The existence of long-range temporal correlations (LRTC) in resting-state
cortical activity is widely recognized as a necessary ingredient for the normal
functioning of the brain [1, 2, 3, 4, 5]. Recent works have shown in addi-
tion that spontaneous activity in neural systems is organized in neuronal
avalanches, spatio-temporal cascades of activity that exhibit scale-invariant,
power-law size distributions in both experiments [6, 7, 8, 9, 10, 11, 12, 13,
14, 15] and models [16, 17, 18, 19, 20, 21]. The concurrent emergence of
LRTC and power-laws suggests that healthy neural systems may operate at
criticality. This idea is further supported by the robustness of the observed
scaling features, which are independent of the scale and details of the par-
ticular system, and their alterations with diseases [22]. In particular, the
correlation properties of the resting state activity appear to change in the
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presence of brain pathology [4, 5|, which indicates that reliable characteriza-
tion and monitoring of correlations may represent a powerful, non-invasive
diagnostic tool.

The detection and characterization of correlations in stochastic time se-
ries is a problem of wide interest, from geophysics to biology and economics,
and generally is not a straightforward task, due to the presence of statistical
noise, non-stationarities, and trends in the data. A number of statistical
tools have been recently developed to deal with such issues and accurately
assess spatio-temporal correlations. Among these, the Detrended Fluctua-
tion Analysis (DFA) has proven especially effective in quantifying long-range
power-law correlations embedded in non-stationary signals with polynomial
trends and bursting dynamics [23, 24, 25, 26]. The DFA is an extension of
the fluctuation analysis (FA) for determining the exponent that characterizes
the scaling behavior of the fluctuations in a given signal. Unlike the FA, DFA
is not affected by non-stationarities, and is therefore particularly suitable for
studying LRTC in biological and physiological systems [27], as testified by
its wide range of application, from the analysis of DNA sequences to cardiac
dynamics [23, 28, 27, 29].

In the context of brain dynamics, DFA has been mostly used to asses
LRTC in the amplitude envelope of ongoing neuronal oscillations [2, 30, 31],
and corresponding alterations with diseases [5, 32, 33, 34, 35]. Specifically,
Linkenkaer-Hansen et al [2] have shown that a and [ oscillations exhibit
long-range power-law correlations on time scales of hundreds of seconds dur-
ing the resting-state, with scaling exponents significantly higher than the
ones measured in band-pass filtered white noise [2]. Similar results, includ-
ing LRTC in ¢ and 6 waves, have been reported in several following studies
[4, 36, 31], and significant changes in the scaling exponent estimated via DFA
have been observed in patients affected by Alzheimer disease [5], epilepsy
(33, 34], or major depressive disorders [35].

Although oscillations in specific frequency bands are usually identified
with particular physiologic states, brain activity is a broadband phenomenon
that likely results from a constant interplay between different brain rhythms,
which may compete or temporally coexist and interact with each other [37,
38, 39]. For instance, mutual exclusion or coexistence of fast/local and
slow /non-local rhythms may depend on the particular function to be per-
formed, and requires specific cross-talk that may play a crucial part in the
emergent physiologic states and associated cortical activity. Therefore, a
significant piece of information useful to precisely discriminate between nor-
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mal and pathological behavior, may be encoded in the complex, broadband
spatio-temporal cortical dynamics.

To exploit such information, here we propose an alternative strategy to
study LRTC in the broadband activity of neural systems, which combines the
universality of neuronal avalanches with the effectiveness of DFA in quanti-
fying long-range power-law correlations. Our approach consists of two steps:
First, identifying avalanches and calculating their sizes; second, applying
DFA to the previously obtained sequences of avalanche sizes. In the hypoth-
esis that neural systems operate close to criticality, long-range correlations in
the avalanche sequences would reflect underlying properties of neural activity
embedded in the recorded signals.

We test this strategy on EEG and long-term MEG recordings (40 min) of
the resting-state of the human brain. We first analyze neuronal avalanches
in both data sets, and study how the size distribution depends on the scale
parameters used to identify the avalanches in the recorded spatio-temporal
activity. Then, we systematically investigate LRTC in the avalanche se-
quence, and their sensitivity to avalanche scale parameters.

2. Data acquisition and pre-processing

2.1. Resting-state MEG

Ongoing brain activity was recorded from 3 healthy female participants
in the MEG core facility at the NIMH (Bethesda, MD, USA) for a duration
of 40 min (eyes closed). All experiments were carried out in accordance with
NIH guidelines for human subjects. The sampling rate was 600 Hz, and the
data were band-pass filtered between 1 and 150 Hz. Power-line interferences
were removed using a 60 Hz notch filter designed in Matlab (Mathworks).
The sensor array consisted of 275 axial first-order gradiometers. Two dys-
functional sensors were removed, leaving 273 sensors in the analysis. Analysis
was performed directly on the axial gradiometer waveforms.

2.2. Resting-state FEG

Resting-state EEG was recorded from 6 right handed healthy volunteers.
Participants had no history of neurological or psychiatric diseases and had
normal or corrected-to-normal vision. All gave written informed consent,
and were paid for their participation. The study was approved by a local
ethics committee (Ben-Gurion University) and is in accordance with the eth-
ical standards of the Declaration of Helsinki. EEG was recorded using the
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g.Tec Hlamp system (g.Tec, Austria) with 64 gel-based electrodes. (AgCl
electrolyte gel). Electrodes were positioned according to the standard 10/20
system with linked ears reference. Impedances of all electrodes were kept
below 5 k). Data were pre-processed using a combination of the EEGLAB
Matlab toolbox [40] routines and custom code. After high-pass filtering (cut-
off 1 Hz), a customized adaptive filter was applied to suppress line-noise.
This was followed by Artifact Subspace Reconstruction [41], re-referencing
to the mean, and low-pass filtering (cutoff 60 Hz). Subsequently, an ICA
(Independent Component Analysis) algorithm was applied to the data [42].
The resulting IC’s were evaluated automatically for artifacts by combining
spatial, spectral and temporal analysis of IC’s. IC’s identified as containing
ocular, muscular or cardiac artifacts were removed from data.

3. Neuronal Avalanches in Resting-state Brain Activity

We consider resting state-brain activity from EEG (6 healthy subjects, 62
sensors) and long-term MEG (3 healthy subjects, 273 sensors) recordings. To
identify neuronal avalanches, we analyze the recorded activity over the entire
sensor array, and search for spatio-temporal cascades of activity. To this end,
we select positive and negative deflections at each sensor signal by applying
a threshold h at n standard deviations (SD), i.e. h = £nSD. Such procedure
is illustrated in Fig. la for a threshold h = £3SD. In each excursion beyond
the threshold, we then identify a single event at the most extreme value —
i.e. maximum for positive excursions and minimum for negative excursions.
This signal discretization maintains most of the strong correlations found in
the continuous MEG signals recorded from different brain regions, as shown
in [11].

In Fig. 1b, we show a two second segment of the event raster extracted
from the MEG of one subject after applying the discretization procedure to
each of the sensor signals. We observe that events cluster in time across
subgroups of sensors (Fig. 1c). A similar spatio-temporal structure can be
observed in rasters of events extracted from EEG recordings (Section 2.2).
The raster of events is binned at a given temporal resolutions §t, which is a
multiple of the sampling time 7" (T},,¢5: 1.67 ms; T..,: 4 ms), and we define
an avalanche a; as a continuous sequence of time bins in which there is at
least an event on any sensor, ending with at least a time bin with no events
(Fig. 1c) [6]. The same identification procedure and definition of avalanches
is used in both the MEG and the EEG analysis. We then define the size of
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an avalanche, s;, as the number of events in the corresponding sequence of
time bins.

3.1. Awalanches in resting-state MEG

We first analyze the distribution P(s) of avalanche sizes from resting-state
MEG recordings. We fix the time bin 6t = 27},., = 3.3 ms, and study how
P(s) depends on the value of the threshold h used to discretize sensor signals
(Fig. 1). The distributions for a range of h values are shown in Fig. 2a. They
generally show a power-law behavior, P(s) oc s~7, which is independent of
the threshold h. The power-law regime is followed by an exponential cutoff
that is instead controlled by A, and shift from higher to smaller size s for
increasing h values. Such behavior indicates that the threshold on the signal
may introduce a characteristic avalanche size s* oc h™?, thus suggesting that
the distribution of avalanche sizes corresponding to different h’s may follow
the general scaling form P(s) = s~7 f(h™"s), where 7 is the power-law scaling
exponent, f(h™?s) is a scaling function, and 3 an exponent that expresses
the dependence of the cutoff on h.

We then use such assumption to determine the scaling exponents 7 and
B by plotting s7P(s) versus h=?s for the different h values (inset of Fig.
2a). We found that the distributions collapse onto a single curve f(h=?s) for
7 =1.15 and § = 1.5. The value of the exponent 7 obtained from the data
collapse is slightly smaller than those reported in previous works, where 7 has
been estimated via maximum likelihood over the entire range of avalanche
sizes [11]. The observed difference could be due to the deviation from an
optimal data collapse along the scaling regime (inset of Fig. 2a). Indeed,
least square or maximum likelihood estimates of the power-law exponent 7
provide values that are slightly higher and closer to those reported in other
experiments [11], as we shall discuss hereinafter.

Next, we keep the threshold h fixed (h = 3SD) and examine the size
distribution varying the bin size §t, which controls the temporal scale of the
analysis. We observe that the size distribution follows a similar functional
behavior for all §t values, namely a power-law followed by an exponential
cutoff (Fig.2b). However, the power-law exponent 7 depends on dt, and
tends to decrease for increasing ot values. Indeed, a larger bin size dt tends to
merge small events into larger ones, leading to an increase in the probability
to observe larger avalanches and thus to a smaller scaling exponent 7. We
find that the exponent goes from 7 = 1.52 £ 0.02 for 6t = T,,, = 1.67
ms, to 7 = 1.25 £ 0.02 for 6t = 57},,, = 8.3 ms (exponents are estimated
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Figure 1: Definition of neuronal avalanches in human brain activity recordings. (a) Single
sensor MEG signal of neuronal resting state activity of the human brain. The most extreme
point in each excursion beyond a threshold of h = £3 SD (horizontal lines) is treated as a
discrete event in the signal. In this way, the continuous signal at each sensor is mapped to
a point process. (b) Raster of discrete events obtained following the procedure depicted in
(a) across all MEG sensors (n = 273) over an approximately 2 s second segment of recording
(single subject). (c) An avalanche a; is defined as a sequence of temporal windows ¢¢ with
at least one event in any of the sensors, preceded and followed by at least one window
with no events in any of the sensors. The same procedure is used to detect avalanches in
EEG recordings of resting state activity.
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Figure 2: Distributions of avalanche sizes in the MEG of the resting state (pool data, 3
subjects) for different values of the threshold h (6t = 2T},¢ = 3.3 ms), and different bin
sizes 0t (h = 3.0SD). The distributions generally exhibit a power-law regime followed by an
exponential cutoff. (a) Distributions evaluated using different h’s follow a similar power-
law behavior, with an exponential cutoff that is controlled by h. Inset: Data for different
h’s collapse onto a single function when one plots h~%s versus s™ P(s), with 7 = 1.15 and
B = 1.5. The dashed line in the main panel is a power-law with exponent 1.15. (b) The
power-law exponent 7 depends on the bin size 0t used to define the avalanches. §t ranges
between 17,4 = 1.67 ms to 51},., = 8.3 ms. For increasing values of dt, the probability
for large (small) avalanches increases (decreases) and, correspondingly, 7 tends to decrease.
The black and blue dashed lines are power-laws with exponents 1.52 and 1.25, respectively.

over the size range [1,40] for 6t = 1.67 ms, [1,50] otherwise, i.e. excluding the
exponential cutoff) (Fig.2b). These values are in line with previous estimates
on resting-state MEG data [11].

3.2. Awalanches in resting-state EEG

The analysis of the size distribution P(s) gives similar results for the neu-
ronal avalanches in the resting EEG. The distribution P(s) shows a power-law
behavior with an exponential cutoff, independently of the particular values of
the bin size and threshold used to identify the avalanches (Fig. 3). However,
we find that its scaling exponent 7 is slightly larger than in MEG recordings.
Moreover, unlike our observations in the resting MEG, 7 appears to be more
sensitive to the choice of data discretization thresholds h (Fig. 3a). Indeed,
data do not collapse in the full range of threshold values, as found in the
resting MEG, but only asymptotically for A > 3.4SD. Our analysis shows
that 7 is close to 1.5 (1.53 £0.04) for h = 2.8SD and increases for increasing
h values, while the exponential cutoff shift to smaller size s (Fig. 3a). For
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Figure 3: Distributions of avalanche sizes in the EEG of the resting state (pool data, 6
subjects) for (a) different values of the threshold h (6t = 2T, = 8 ms), and (b) different
bin sizes 0t (h = 3.0SD). The distributions generally exhibit a power-law regime followed
by an exponential cutoff, as observed in the MEG (Fig. 2). (a) The power-law exponent 7
depends on the threshold h, in particular for small A’s, and tends to increase for increasing
threshold values. The exponential cutoff is controlled by &, and with increasing h values,
shifts to smaller avalanche sizes s. Inset: Data for h > 3.4 collapse onto a single function
when one plots h=?s versus s”P(s), with 7 = 1.85 and 3 = 1.5. The dashed line in
the main panel is a power-law with exponent 1.85 (b) The power-law exponent 7 also
depends on the bin size 0t used to define the avalanches, as already observed for MEG
avalanches. 6t ranges between 17c.; = 4 ms to 5T,y = 20 ms. For increasing values of
dt, the probability for large (small) avalanches increases (decreases) and, correspondingly,
the exponent 7 tends to decrease. The black and blue dashed lines are power-laws with
exponents 1.7 and 1.36, respectively.

h > 3.4SD, the distributions approximately collapse onto a unique function
f(h=Ps) satisfying the relation P(s) = s~ f(h™"s) (Section 3), with 7 = 1.85
and 5 = 1.5 (inset of Fig. 3a).

We also analyze how the scaling exponent 7 depends on the bin size 0t
(Fig. 3b). We find that 7 tends to decrease for increasing bin sizes, as
already observed for avalanches in the resting-state MEG (Fig. 2b). For a
threshold A = 3SD, the power-law exponent goes from 7 = 1.70 4+ 0.04 for
0t = 1Ty = 4 ms, to 7 = 1.36 £ 0.02 for 6t = 5T,., = 20 ms. Exponents
are estimated considering sizes in the range s < 20. The reported values are
slightly higher than those found in the resting MEG for the same range of
parameters, namely h = 3SD and dt comprised between one and five times
the sampling interval (Fig. 3).
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4. Long-range correlations in resting-state brain activity

We have shown that resting-state brain activity is consistently organized
in neuronal avalanches, distributed clusters of neuronal activity whose sizes
are power-law distributed. To identify avalanches in the MEG and EEG
recordings we used a discretization procedure first, and then binned the re-
sulting discrete raster of events. Although the power-law exponent of the size
distribution slightly depends on the parameters involved in the identification
procedure, the general functional behavior of the distribution, i.e. power-law
with an exponential cutoff, does not, indicating the fundamental character of
the spatio-temporal organization captured by avalanche analysis [6]. More-
over, the signal discretization procedure illustrated in Section 3 retains the
correlations present in the signal [11], and therefore makes avalanches suit-
able to investigate the underlying properties of resting state activity.

Building upon this fundamental results, in the following we consider the
sequences of avalanches previously obtained and investigate LRTC using
DFA. The DFA [23] is designed to quantify long-range power-law correlations
in non-stationary signals with polynomial trends and intermittent bursting
dynamics [24, 25, 26]. It consists of the following steps: (i) Given a se-
quence of N avalanche sizes s;(i = 1,..., N) calculate the integrated signal
I(k) = F [ (s(i)— < 5 >), where < s > is the mean of s; and k = 1,..., N;
(ii) Divide the integrated signal (k) into boxes of equal length n and, in each
box, fit I(k) with a first order polynomial I,,(k), which represents the trend
in that box; (ili) For each n, detrend (k) by subtracting the local trend,
I,,(k), in each box and calculate the root-mean-square (r.m.s.) fluctuation

F(n) = \/Z,ivzl[l(k) — I,,(k)]?/N; (iv) Repeat this calculation over a broad
range of box lengths n and obtain a functional relation between F'(n) and
n. For a power-law correlated time series, the average r.m.s. fluctuation
function F'(n) and the box size n are connected by a power-law relation,
that is F'(n) o< n® The exponent « is a parameter which quantifies the
long-range power-law correlation properties of the signal. Values of av < 0.5
indicate the presence of anti-correlations in the sequence s;, a = 0.5 absence
of correlations, and a > 0.5 indicates the presence of positive correlations in
S;.

In Fig. 4 we show the fluctuation function F'(n) as function of n for
avalanche sequences from MEG recordings. We observe that F'(n) o n®, with
the scaling exponent o consistently larger than 0.5, indicating the presence of
long-range power-law correlations among avalanches, and thus in the resting-
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state brain activity. Importantly, we find that, for a given fixed value of the
threshold h, « is very robust and independent of the bin size dt. In Fig. 4a
we show the fluctuation function for avalanche sequences with A = 3SD, for
which we find o ~ 0.72 for all bin sizes (o = 0.716 £ 0.004 for ot = 1.67
ms; o = 0.7206 + 0.006 for 6t = 8.3 ms). This indicates that, although
the temporal binning influences the scaling behavior of the avalanche size
distribution, it does not alter the property of the correlations.

Next, we examine the behavior of the fluctuation function for avalanche
sequences obtained for a fixed bin size 6t = 3.3 ms and different thresholds h.
We find that the exponent « is always significantly larger than 0.5, indicating
that the discretization procedure does not affect the nature of correlations,
and that LRTC in avalanche sequence reflect the underlying properties of
the signal. The scaling exponent « slightly depends on h, and decreases
for increasing h values (o = 0.7360 £ 0.0056 for h = 2.8SD; o = 0.6694 +
0.0114 for h = 4.4 SD). Such behavior is reminiscent of what is observed
in other natural stochastic processes, as earthquake triggering, where large
events are Poissonian but trigger a number of smaller and correlated in time
successive events [43]. This suggests that larger values of A may tend to
select extreme events which are less correlated than smaller ones. However,
for the range of thresholds analyzed, we find that the scaling exponent is
always significantly larger than 0.5, namely a ~ 0.70 £ 0.03. Moreover, we
observe that differences in the exponent values tend to be less relevant for
h > 3.25SD, (a = 0.6950 £+ 0.0100 for h = 3.6SD; a = 0.6773 4+ 0.008 for
h = 4.08D; a = 0.6694 + 0.0114 for h = 4.4SD) (Fig. 4b).

The same analysis performed on sequences of avalanches from EEG record-
ings confirms the presence of LRTC in broadband resting-state brain activity
(Fig.5). In particular, we observe that the scaling exponent « is significantly
larger than 0.5 and, for fixed values of the threshold h, is independent of the
bin size used to detect neuronal avalanches (a = 0.6651 £ 0.0073 for 6t = 4
ms; o = 0.6467 £ 0.0088 for ot = 20 ms) (Fig.5a). Furthermore, the scaling
behavior of the fluctuation function F(n) appears to be also independent of
the threshold h, the power-law exponent « being consistently in the range
[0.66,0.68] (v = 0.6806 £ 0.0061 for h = 2.6SD; a = 0.6652 + 0.0073 for
h = 3.0SD; a = 0.6820 £ 0.0069 for h = 3.4SD; a = 0.6721 4+ 0.0183 for
h = 4.0SD) (Fig.5b). We notice that the scaling exponent a tends to be
smaller for EEG than MEG recordings, while EEG avalanches generally ex-
hibited a larger power-law exponent 7 in the size distribution (Section 3).
This seems to indicate that a and 7 are anti-correlated. However, further
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Figure 4: Detrended fluctuation analysis for sequences of MEG avalanche sizes extracted
using different values of the parameters h (a) and 6t (b). The rms fluctuation function
F(n) is obtained averaging over all subjects. Loglog plots of F(n) versus the time scale of
analysis n, where n is the number of consecutive avalanche sizes, show power-law relations
F(n) « n®. (a) The scaling exponents are significantly larger than 0.5, which indicates
presence of positive (persistent) long-range correlations in avalanche sizes, and are inde-
pendent of the bin size §t chosen to identify neuronal avalanches. The threshold h is fixed
and equal 3SD. (b) The exponent « is slightly dependent of the threshold h, and fluctuates
in the interval 0.7 £+ 0.03 (b). 6t = 3.3 ms for all curves.

investigations are needed to confirm such preliminary evidence.

The results of the DFA on the sequences of neuronal avalanches consis-
tently show the presence of LRTC both in broadband MEG and EEG record-
ings of the resting-state brain activity, with a scaling exponent o ~ 0.7 for
the fluctuation function F'(n). Crucially, such an exponent is independent
of the parameter dt, which controls the temporal binning used to identify
avalanche sequences in the recordings, and thus the scale of observation of
the spatio-temporal dynamics. This indicates that coarse-graining does not
affect correlation properties, namely they are scale invariant as in systems
at criticality, and thus the presented results capture intrinsic features of the
broadband resting-state activity in the human brain.

5. Conclusions

We have shown that the broadband resting brain activity from MEG and
EEG can be effectively described as sequences of spatio-temporal clusters of
events, i.e. neuronal avalanches, and that such characterization can be used
to efficiently extract relevant information about the underlying dynamics. In
both our MEG and EEG recordings, neuronal avalanches exhibited similar
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Figure 5: Detrended fluctuation analysis for sequences of EEG avalanche sizes extracted
using different values of the parameters h (6t = 4 ms) (a) and dt (h = 3SD) (b). The rms
fluctuation function F'(n) is obtained averaging over all subjects. Loglog plots of F(n)
versus the time scale of analysis n, show power-law relations F(n) « n®, as observed
for MEG avalanches (Fig. 4). The scaling exponent « is significantly larger than 0.5
for all values of the parameters, indicating presence of positive (persistent) long-range
correlations also in EEG avalanche sizes. « is close to 0.7, as in the resting MEG (Fig.
4), and is independent of both the bin size §t and threshold h chosen to identify neuronal
avalanches. .

features, with a power-law behavior in the size distribution characterized by
a similar value of the scaling exponent 7. We first studied the dependence of
this exponent on the scale parameters of the avalanche identification proce-
dure, namely the discretization threshold h and the bin size ¢, and showed
that, both in the MEG and EEG recordings, its value decreases for increas-
ing bin sizes. This effect is due to the merging of smaller avalanches into
larger ones, as pointed out in [6]. On the other hand, our results showed
that the power-law exponent is weakly dependent of the threshold A, and
distributions approximately collapse onto a unique function for a range of h
values.

We then used the avalanche representation of resting-state brain activity
— i.e. the sequence of avalanches extracted from the recordings — to assess
long-range temporal correlations by means of DFA. Our analysis consistently
showed the presence of power-law LRTC in both MEG and EEG recordings,
with exponent o ~ 0.7. LRTC in EEG recordings tend to be characterized
by scaling exponents slightly smaller than those measured in MEG data. On
the contrary, we observed that EEG avalanche size distributions generally
exhibit a larger power-law exponent 7 as compared to MEG avalanches.
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These results may represent a preliminary indication that o and 7 are anti-
correlated, which needs further validation.

Remarkably, despite the observed dependence of avalanche size distribu-
tion on parameters, the exponent characterizing LRTC is quite robust. In
particular, such exponent is independent of the temporal binning, indicating
that correlation features are independent of the scale of analysis, and there-
fore that our approach captures intrinsic characteristics of the underlying
dynamics. Furthermore, the signal discretization involved in the identifica-
tion of avalanches does not crucially influence the correlations present across
sensor signals [11], as demonstrated by the weak (MEG) or no (EEG) depen-
dence of the scaling exponent « on the threshold h.

Overall these results show that the proposed approach is a valuable, ef-
fective, and broadly applicable strategy to study LRTC in neural systems.
Unlike previous studies on LRTC in brain activity [2, 4, 5, 31], our ap-
proach does not focus on specific neural oscillations, but considers the in-
trinsic broadband nature of the resting-state brain activity and its complex
spatio-temporal organization. The reported values of the LRTC scaling ex-
ponent are in the range of those observed for neural oscillations [2, 4, 5, 31].
Specifically, they are very close to the exponents characterizing oscillations
in the o band (= 0.7) [2, 5, 31|, suggesting that broadband correlation prop-
erties are mostly controlled by the dominant frequency band, e.g. alpha
in the resting state. Importantly, this approach overcomes the limitations
connected to the use of Hilbert transform in previous studies on neural os-
cillations, and is suitable to be extended to narrow band avalanches.

The study of temporal correlations in neuronal avalanches generally con-
stitutes a powerful tool to understand emergent collective neural dynamics
and assess presence of underlying criticality. Indeed, power-law behavior in
avalanche size and duration distributions do not necessarily imply critical-
ity, and could also arise, for instance, from the superposition of independent
Poisson processes with a common temporal envelope [44]. However, in such a
case the system would not show long-range correlations. Thus, our analysis of
LRTC becomes crucial to properly identify genuine critical behavior in neural
systems. Previous studies on cortical dynamics at a much smaller scale have
shown that the temporal organization of avalanches of different sizes is far
from being random, and carries a wealth of information about the deep level
of self-organization in neural activity [45, 46]. For instance, detailed studies
(47, 45, 48] in terms of conditional probabilities have shown the importance
of the E/I balance in the emergent neural dynamics, and its connection with
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the up/down state dynamics: During the up-states the sizes of successive
avalanches are correlated, and typically an avalanche tend to be followed
by a close-in-time smaller avalanche; conversely, avalanches separated by a
longer time delay, i.e. of the order of the duration of a down-state, tend
to have a reversed relationship, with the second avalanche larger than the
first one. The outcome of this emergent organization of avalanches in time is
the observation of brain modes in the global activity [49]: Large avalanches
tend to occur at slow frequency (# rhythm), whereas smaller avalanches oc-
cur at higher frequency (8/v frequency). In this scenario, the observation
of nested oscillations is fully coherent with scale-free scaling properties of
neuronal avalanches [9]. On the other hand, altering the E/I ratio disrupts
such relation between avalanche sizes, and the activity can be potentially
abnormal with growing avalanche sizes also at short timescales [45, 48].

The analysis presented here aims at exploiting the universal character of
neuronal avalanches and the information they carry about the underlying
dynamics, and provides a general approach for investigating LRTC in neural
systems. The robustness of the observed scaling behavior in the rms fluctua-
tion function and the versatility of the proposed scheme — which is suitable
for both broad- and narrow-band signals —, make this approach a valuable
tool to investigate alterations of LRTC in neurological diseases. Moreover,
the prospect of establishing a specific relationship between avalanche size
and broadband LRTC scaling exponents may greatly simplify the problem of
characterizing neuronal avalanche dynamics across systems and conditions,
and reliably assessing significant differences among them.
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