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 68 

ABSTRACT  69 

 To answer the increasing need for detecting and validating protein biomarkers in 70 

clinical specimens, proteomic techniques are required that support the fast, reproducible and 71 

quantitative analysis of large clinical sample cohorts. Targeted mass spectrometry 72 

techniques, specifically SRM, PRM and the massively parallel SWATH/DIA technique have 73 

emerged as a powerful method for biomarker research. For optimal performance, they 74 

require prior knowledge about the fragment ion spectra of targeted peptides. In this report, 75 

we describe a mass spectrometric (MS) pipeline and spectral resource to support data-76 

independent acquisition (DIA) and parallel reaction monitoring (PRM) based biomarker 77 

studies. To build the spectral resource we integrated common open-source MS 78 

computational tools to assemble an open source computational workflow based on Docker. 79 

It was then applied to generate a comprehensive DIA pan-human library (DPHL) from 1,096 80 

data dependent acquisition (DDA) MS raw files, and it comprises 242,476 unique peptide 81 

sequences from 14,782 protein groups and 10,943 SwissProt-annotated proteins expressed 82 

in 16 types of cancer samples. In particular, tissue specimens from patients with prostate 83 

cancer, cervical cancer, colorectal cancer, hepatocellular carcinoma, gastric cancer, lung 84 

adenocarcinoma, squamous cell lung carcinoma, diseased thyroid, glioblastoma multiforme, 85 

sarcoma and diffuse large B-cell lymphoma (DLBCL), as well as plasma samples from a 86 

range of hematologic malignancies were collected from multiple clinics in China, the 87 

Netherlands and Singapore and included in the resource. This extensive spectral resource 88 

was then applied to a prostate cancer cohort of 17 patients, consisting of 8 patients with 89 

prostate cancer (PCa) and 9 with benign prostate hyperplasia (BPH), respectively. Data 90 

analysis of DIA data from these samples identified differential expressions of FASN, TPP1 91 

and SPON2 in prostate tumors. Thereafter, PRM validation was applied to a larger PCa 92 

cohort of 57 patients and the differential expressions of FASN, TPP1 and SPON2 in prostate 93 

tumors were validated. As a second application, the DPHL spectral resource was applied to 94 

a patient cohort consisting of samples from 19 DLBCL patients and 18 healthy individuals. 95 

Differential expressions of CRP, CD44 and SAA1 between DLBCL cases and healthy 96 

controls were detected by DIA-MS and confirmed by PRM. These data demonstrate that the 97 

DPHL supported that DIA-PRM MS pipeline enables robust protein biomarker discoveries. 98 

 99 

Keywords: Data-independent acquisition; parallel reaction monitoring; spectral library; 100 

prostate cancer; diffuse large B cell lymphoma 101 
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INTRODUCTION 104 

 The recent development of high throughput genomic sequencing techniques, as well 105 

as methods for the global expression analysis of biomolecules has enabled identification of a 106 

number of oncological biomarkers from clinical samples, and advanced the field of cancer 107 

precision medicine [1-4]. Novel diagnostic/prognostic protein markers for colorectal [5, 6], 108 

breast [7], ovarian [8] and gastric tumors [9] have been identified through shotgun 109 

proteomics [10], and plasma proteomes were reported for 1500 obese patients [11]. 110 

Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry 111 

(SWATH-MS) is a data independent acquisition technique that combines the multiplexing 112 

ability of shotgun proteomics with the high-precision data analysis of selected reaction 113 

monitoring (SRM), and can quantify proteomes using single-shot MS/MS analysis [12, 13]. 114 

The SWATH/DIA data sets are analyzed through spectral libraries using software tools like 115 

OpenSWATH [14, 15], DIA-Umpire [16], Group-DIA [17], Skyline [18], Spectronaut [19]. Most 116 

of these tools generate comparable results [15] and requires a prior spectral libraries. A pan-117 

human spectral library (PHL) that was designed to aid in SWATH data processing has been 118 

developed to analyze SWATH maps generated by TripleTOF MS [20] by using open-source 119 

computational programs [1, 14], then the error rates of peptide and protein identification in 120 

large-scale DIA analyses has been statistically controlled [21]. The development of these 121 

tools has extended the application of SWATH-MS to diverse clinical samples including 122 

plasma [22], and the prostate [23] and liver [24] cancer tissues. 123 

 Despite these advances, the implementation of DIA-MS on widely used Orbitrap 124 

instruments is currently limited due to the lack of non-commercial tools to build spectral 125 

libraries. Theoretically one could build a spectral library based on the established protocol for 126 

TripleTOF data [1], however in practice an optimal and robust pipeline for Orbitrap data is 127 

missing, as we have implemented in this work. Further, it has been demonstrated that the 128 

library from TripleTOF led to fewer protein identifications than that from Orbitrap [25]. 129 

Moreover, there is no bioinformatics pipeline to couple DIA-MS and PRM-MS for validation, 130 

and a comprehensive human spectral library resource for Orbitrap data is yet to be 131 

established. Spectronaut has been developed to support the generation of DIA spectral 132 

libraries and analysis of DIA data sets against these libraries [19], however, it is only 133 

commercially available. Parallel computing is only available for OpenSWATH software tools 134 

till now. To extend the application of large-scale DIA-MS on Orbitrap instruments, an open-135 

source workflow is in great need to build a pan-human spectral library for DIA files generated 136 

for cancer biomarker discovery. Further, the open-source workflow and the spectral library 137 

are essential to validate the candidate protein biomarkers by PRM that is a more recently 138 

developed technique with higher sensitivity and specificity than SWATH/ DIA, albeit with 139 

limited throughput [26].  140 

 Here, we developed an open-source computational pipeline to build spectral libraries 141 

from Orbitrap spectral data, and generated a comprehensive DIA Pan-Human Library (DPHL) 142 

from 16 different human cancer types. In addition, we have also provided a Docker resource 143 

to integrate this pipeline to the data-dependent acquisition (DDA) spectral scans, which 144 

allows an easy and automatic expansion of the library by incorporating more MS data 145 

generated from ongoing studies. Finally, to validate its applicability in DIA and PRM, we 146 

applied the DPHL to identify differentially expressed proteins in the samples from a prostate 147 

cancer and a DLBCL cohort. 148 

 149 

RESULTS AND DISCUSSION 150 

Shotgun proteomics data of tumor tissues and plasma samples 151 

 To build a DIA spectral library for Orbitrap data which can also be used for PRM 152 

assay generation, we obtained shotgun proteomics data from two laboratories in China and 153 

the Netherlands that use Q Exactive HF mass spectrometers and consistent experimental 154 
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conditions (see Materials and Methods section). A total of 1,096 raw MS data files were 155 

collected from a range of samples that included tissue biopsies from prostate cancer, 156 

cervical cancer, colorectal cancer, hepatocellular carcinoma, gastric cancer, lung 157 

adenocarcinoma, squamous cell lung carcinoma, thyroid diseases, glioblastoma multiforme, 158 

sarcoma and DLBCL. Further, blood plasma samples from acute myelocytic leukemia (AML), 159 

acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), 160 

multiple myeloma (MM), myelodysplastic syndrome (MDS) and DLBCL patients, and the 161 

human chronic myelogenous leukemia cell line K562 were also analyzed and the data were 162 

included in the library. The sample types and their DDA files are summarized in Figure 1A 163 

and Supplementary Table S1A. Comparison of DDA files acquired from the Guo lab and the 164 

Jimenez lab is provided in Supplementary Note 1.  165 

Open-source computational pipeline for building DIA/PRM spectral library 166 

 The conventional OpenMS and OpenSWATH pipeline [14] requires sophisticated 167 

installation which relies on multiple existing software packages. A Docker image largely 168 

facilitate the installation process. We developed an open-source Docker image with all the 169 

pre-installed pipelines and its dependent packages to democratize the generation of 170 

DIA/PRM spectral libraries. The workflow of this computational pipeline is shown in Figure 171 

1B. Briefly, the DDA files were first centroided and converted to mzXML using MSconvert 172 

from ProteoWizard [27], and pFind [28] was used to identify the relevant peptides and 173 

proteins in the protein database. The shotgun data from each tissue type was processed 174 

separately. We wrote two scripts – pFindextract.R and addRT.py – to extract the retention 175 

time (RT), peptide sequence, charge state, protein name and identification score for each 176 

peptide precursor. Spectrast version 5.0 [29] was used to generate consensus spectra of 177 

peptides for each tissue type to build the library, spectrast2spectrast_irt.py [30] was used for 178 

RT calibration, and spectrast2tsv.py [14] for selecting the top six fragments for each peptide 179 

precursor. Decoy assays were generated using OpenSwathDecoyGenerator from 180 

OpenSWATH software [14]. 181 

 For both, library building and SWATH/DIA analysis, the peptide samples were usually 182 

spiked with a synthetic iRT peptides mixture (SiRT) [31] to calibrate the retention time, and 183 

the SWATH library building workflow [1] was also applied to these samples. For the samples 184 

without SiRT spike-in, we employed tools to identify the conserved high-abundance peptides 185 

with common internal retention time (CiRT) [30]. The peptides of each tissue type had to 186 

fulfill the following criteria to be considered as CiRTs peptides: (1) proteotypic, (2) amino 187 

acid sequences with no modification, (3) signal intensities above the 3rd quartile of all 188 

quantified peptide precursors, (4) charge +2 or +3, and (5) uniformly distributed retention 189 

time across the entire LC gradient. Following these criteria, we implemented codes dividing 190 

the LC gradient window into 20 bins, and selecting one peptide for each bin. Thereby we 191 

selected 20 CiRT peptides for each tissue type. The CiRT of the different tissue types are 192 

shown in Supplementary Table S2. The TraML format of the CiRT peptides are provided in 193 

Supplementary File S1. The CiRT peptides can either be used synergistically with 194 

exogenous SiRT standards or as an alternative RT standard in the respective samples. We 195 

expect these CiRT peptides to be of wide use in future DIA experiments for these clinical 196 

tissue samples. 197 

 Since the current version of the pFind software does not support the quantification of 198 

identified peptides, CiRT peptides were selected from a representative DDA data set which 199 

was analyzed by MaxQuant (version 1.6.2) [32]. We then wrote the generate_CiRT script to 200 

analyze the peptides.txt files from the MaxQuant search results, and generated the tissue-201 

specific CiRTs. The latter was used to replace SiRTs in the command 202 

spectrast2spectrast_irt.py [30]. For RT calibration, we used the spectrast2spectrast_irt.py 203 

converter script on the SiRT or CiRT peptides. Similarly, spectrast was then used to build a 204 

consensus library, and spectrast2tsv.py and OpenSwathDecoyGenerator [14] to append 205 
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decoy assays into the library. The computational pipeline is illustrated and explained in more 206 

detail in Supplementary Note 2. 207 

Build and characterization of the DPHL library 208 

 We first characterized the content of the newly-generated DPHL library in terms of 209 

the peptide and proteins identifications and compared it to the PHL library for SWATH [20]. 210 

The DPHL library includes 359,627 transition groups (peptide precursors), 242,476 unique 211 

peptide sequences, 14,782 protein groups, and 10,943 proteotypic SwissProt proteins 212 

(Figure 2A). And DPHL contains 2842 protein groups and 1173 proteotpyic SwissProt 213 

proteins identified from a single peptide. The two libraries share 9,241 unique proteins, 214 

which represent 84.4% of the DPHL and 89.5% of the PHL contents, respectively (Figure 215 

2A). The DPHL library includes more transition groups, unique peptide sequences and 216 

protein groups compared to the PHL SWATH library (Figure 2A). Proteins in DPHL are of 217 

higher sequence coverage (Supplementary Figure S1), enabling better measurement of 218 

specific domains of proteins. 219 

 We then counted the number of peptide precursors, unique peptide sequences, and 220 

protein groups for each of the 16 sample types (Figure 2B) and found that the solid tissues, 221 

but not the plasma samples, shared a large number of proteins. The leukemia samples had 222 

the highest number of peptides and proteins due to the higher number of DDA files (n = 160) 223 

available. The plasma samples had, as expected, the lowest number of peptides and 224 

proteins due to the dominance of high abundance proteins. Cumulative plots of peptides and 225 

proteins of the 16 types of cancer (tissue, plasma and cell line) are shown in Supplementary 226 

Figure S1a and Supplementary Figure S1b. There was a significant increase in the number 227 

of transition groups when DDA data was added from different tissue types (Supplementary 228 

Figure S2A), while the increase in the number of proteins was relatively less (Supplementary 229 

Figure S2B). We further investigated the increase of peptide precursors and proteins in two 230 

well sampled tissue type and found that this DPHL library is not yet complete, probably due 231 

to semi-tryptic peptides and missed cleavages due to biological heterogeneity 232 

(Supplementary Figure S2C, S2D), awaiting for future expansion with more spectral data. 233 

 Next, we analyzed the biological content of the DPHL library. To investigate the 234 

biological coverage of this DPHL, we did GO (Gene Ontology) enrichment analysis using R 235 

package clusterProfiler, as shown in Supplementary Figure S3, demonstrating that our 236 

DPHL covers proteins with diverse molecular functions.  237 

 The kinases were next characterized using KinMap [33], an online tool that links the 238 

biochemical, structural and disease association data of individual kinases to the human 239 

kinome tree. A total of 340 kinases (63.2% out of 538 known protein kinases) identified in 240 

DPHL were plotted in the KinMap tree. As shown in Supplementary Figure S4, DPHL covers 241 

all the major branches of the kinome tree. More characteristics of the kinases in DPHL are 242 

show in Supplementary Figure S5. Transcription factors (TFs) are special proteins that bind 243 

target DNA sequence to regulate and control gene transcription. TFs are extremely 244 

important to disease genesis, development and disease progression. We matched our DPHL 245 

library to the 1639 TFs from the Human Transcription Factors database [34], and found that 246 

the DPHL covers 33.0% of the known TFs (Supplementary Figure S6). 247 

 248 

Application of the DPHL library to prostate cancer tissue samples 249 

 Next we apply the DPHL library to analyze representative clinical sample cohorts. 250 

First, we procured prostate tissue samples from 17 patients, consisting of 8 prostate cancers 251 

(PCa) and 9 cases of benign prostate hyperplasia (BPH) (Supplementary Table S3), and 252 

analyzed them by QE-HF MS operated in DIA mode. The peptides were separated on a 60 253 

min LC gradient. Two additional technical replicates were randomly selected for each patient 254 

group. Twenty-four DIA files were thus acquired, 4,785 protein groups, 4,391 SwissProt 255 
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proteins and 3,723 proteotypic proteins were identified from 37,581 peptide precursors that 256 

were searched against the DPHL library using the CiRT strategy (Figure 3A). Figure 3B 257 

shows that proteins were identified at a high degree of reproducibility across the samples 258 

tested. The SiRT and CiRT strategies achieved comparable performance (Figure 3C). T-259 

SNE[35] plots show that PCa and BPH were clearly distinguished by the data analyzed by 260 

both, the CiRT and SiRT strategies (Figure 3D).  261 

 Of the 3,723 identified proteins, 1,555 (1,451 up, 104 down) showed significant 262 

differential abundance (Benjamini-Hochberg (BH) adjusted p-values <0.05 and intensity fold-263 

change higher than 2 or lower than 0.5) using CiRT compare to 2,109 (1,954 up and 155 264 

down) proteins using SiRT (see Supplementary Table S3E-S3F). And we used Random 265 

forest to select the top 400 most important proteins contributing to the separation of benign 266 

and malignant samples, followed by metascape [36] and DAVID [37] for pathway enrichment 267 

analysis. We then identified four representative biomarker candidates based on their 268 

molecular functions, including fatty acid synthase (P49327, FASN), tripeptidyl-peptidase 1 269 

(O14773, TPP1), and spondin-2 (Q9BUD6, SPON2). FASN, TPP1 and SPON2 were 270 

significantly regulated. FASN overexpression has been reported to be associated with poor 271 

prognosis in prostate cancers [38]. TPP1 regulates single-stranded telomere DNA binding 272 

and telomere recruitment, thus maintaining telomere stability [39-41]. Since genomic 273 

instability drives prostate cancer progression from androgen-dependence to castration 274 

resistance [42], TPP1 is a promising biomarker [43]. SPON2 is a cell adhesion protein which 275 

plays a role in tumor progression and metastasis, and was reported as a serum biomarker 276 

[44-46]. The boxplots and ROC curves of these proteins are shown in Figure 3E.  277 

 278 

Application to diffuse large B cell lymphoma (DLBCL) plasma samples 279 

 Plasma is widely used in clinical diagnosis for its convenient access. Here we applied 280 

the DIA mass spectrometry and the DPHL resource to analyze the plasma samples from 281 

DLBCL patients. The plasma samples were procured from 19 DLBCL patients and 18 282 

healthy individuals (Supplementary Table S5). Each unfractionated and un-depleted plasma 283 

sample was trypsinized and the resulting peptides were separated on a 20 min LC gradient 284 

and measured by DIA-MS on a QE-HF instrument. A total of 7,333 peptide precursors were 285 

identified by searching the data against the DPHL plasma subset library using the CiRT 286 

strategy with high technical reproducibility (R2 = 0.96, Figure 4A). We identified 507 protein 287 

groups and 304 proteotypic proteins. More detailed information per sample was show in 288 

Supplementary Figure S7. The DLBCL samples were clearly distinguished from the healthy 289 

control samples by t-SNE analysis of the quantified proteome (Figure 4B), indicating that our 290 

workflow can distinguish DLBCL patients from healthy individuals based on their plasma 291 

proteomes. 292 

 After comparing the DLBCL/healthy (or normal) plasma proteomes using t-test with 293 

same criteria as the prostate cohort, we identified 24 differential proteins (18 up and 6 down, 294 

Supplementary Table S5D), from which we choose three biomarker candidates (Figure 4C) 295 

which were closely associated to DLBCL among these 24 proteins based on literature, 296 

including C-reactive protein (CRP), CD44 and serum amyloid A1 (SAA-1). CRP is an 297 

indicator of the inflammatory response and has prognostic value in various solid tumors, 298 

including DLBCL [47]. The hyaluronic acid receptor CD44 and SAA-1 have been previously 299 

identified as prognostic biomarkers for DLBCL [48] [49]. The boxplots and ROC curves of 300 

these proteins are shown in Figure 4D. Taken together, our workflow can identify potential 301 

prognostic biomarkers of DLBCL. 302 

 303 

DPHL-assisted protein validation using PRM 304 
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 We then validated the candidate biomarkers using PRM, a highly specific and 305 

sensitive analytical method that can systematically and precisely quantify well-defined sets 306 

of peptides in complex samples. The DPHL spectra were used to develop PRM assays 307 

using Skyline [18].  308 

Validation in prostate samples. To validate the DIA results of the prostrate samples, we 309 

included another independent cohort, thereby increasing the total number of samples to 73 310 

from 57 patients (Supplementary Table S4). The two best flying peptides were selected for 311 

each protein to measure the abundance of FASN, TPP1 and SPON2 (Figure 5). As shown in 312 

Figure 3E and Figure 5, the PRM well confirmed the DIA results. As a representative 313 

example, the peak areas of protein TPP1 (O14773) across all samples are shown in 314 

Supplementary Figure S8. 315 

Validation in plasma samples. The putative DLBCL biomarkers P02741 (CRP) and P0DJI8 316 

(SAA1) that were identified from the DIA dataset were selected for PRM validation. Skyline 317 

was used to visualize characteristic peptides for CRP and SAA1. One of the best flying 318 

peptides were selected for CRP and SAA1 to measure the abundance of each protein, 319 

respectively (Supplementary Figure S9). The peak groups of the fragment ions were 320 

manually curated. As shown in Figure S9, both proteins are highly upregulated in DLBCL 321 

patients compared to healthy individuals, confirming the results obtained by DIA (Figure 4D). 322 

As an example, the peak areas of peptide ESDTSYVSLK (m/z 564.77) of CRP (P02741) 323 

across all samples are shown in Supplementary Figures S10. 324 

 325 

CONCLUSION 326 

 In this study, we have developed an open-source platform consisting of a 327 

computational pipeline to generate spectral libraries for DIA and PRM analyses on Orbitrap 328 

instruments. We also reported a reference spectral library, which can be used to identify and 329 

validate protein biomarkers in clinical samples using DIA-MS. With over 370,000 peptide 330 

precursors and more than 10,000 proteotypic SwissProt proteins, the DPHL library is the 331 

most comprehensive SWATH/DIA library built to date, and allows convenient partitioning into 332 

tissue- and disease-specific sub-libraries. Additionally, the DPHL is specifically designed for 333 

protein measurement of clinical samples including tissues and plasma, while the PHL is 334 

mainly for cell lines and synthetic peptides. Using this approach, we were able to analyze 335 

proteomes of 20 human tissue and 40 plasma proteomes per MS instrument per day. We 336 

will continue to generate additional DDA files from more types of human tumors with the 337 

ambition of incorporating internal and external data to create a comprehensive resource 338 

reflecting tumor heterogeneity that enables biomarker discovery as a mission of the Human 339 

Proteome Organization Cancer HPP project [50]. By appending these results to the DPHL, 340 

we can increase the human proteome coverage. The DPHL is not only applicable to open-341 

source SWATH/DIA analysis tools like OpenSWATH, but also to other tools including 342 

Spectronaut and Skyline. 343 

 344 

MATERIALS AND METHODS 345 

All chemicals were from Sigma unless otherwise stated. All HPLC/MS grade reagents for 346 

mass spectrometry were from Thermo Fisher. 347 

Clinical samples  348 

 Formalin-fixed paraffin-embedded (FFPE), fresh or fresh frozen (FF) tissue biopsies 349 

from prostate cancer, cervical cancer, colorectal cancer, hepatocellular carcinoma, gastric 350 

cancer, lung adenocarcinoma, squamous cell lung carcinoma, thyroid diseases, 351 

glioblastoma multiforme, sarcoma, and DLBCL were analyzed in this study. Human plasma 352 

samples from a range of types of leukemia, lymphoma, plasma cell disorders, anemia, and 353 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.02.03.931329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931329


8 / 21 

 

DLBCL were also included. The human chronic myelocytic leukemia cell line, K562, was 354 

present in the dataset. The details about the samples are described in Supplementary Table 355 

S1a. Ethics approvals for this study were obtained from the Ethics Committee or Institutional 356 

Review Board of each participating institution. 357 

Chinese cancer tissue cohorts 358 

 Prostate cancer FFPE samples were acquired from the Second Affiliated Hospital of 359 

Zhejiang University School of Medicine.  The first cohort included 3 PCa patients and 3 360 

patients with BPH was used for DPHL library building. The second cohort containing 8 PCa 361 

patients and 9 BPH patients was selected for DIA-MS proteotyping. For each patient, four 362 

tissue biopsies (punch 1×1×5 mm3) from the same region were procured for the subsequent 363 

PCT-SWATH/DIA workflow for targeted quantitative proteomics profiling. Besides the 364 

second cohort, a third cohort included 53 patients (16 BPH and 57 PCa) was also included 365 

for PRM validation. PRM and DIA analyses were performed in technical duplicate. 366 

Information about samples of patient used for DIA and PRM measurements are described in 367 

Supplementary Table S3 and Supplementary Table S4. 368 

 The colorectal tissue cohort (CRC) was acquired from histologically confirmed tumors 369 

at the First Affiliated Hospital of Zhejiang University School of Medicine and the Second 370 

Affiliated Hospital of Zhejiang University School of Medicine. Among the 15 donors, 8 371 

patients were diagnosed with colorectal adenocarcinoma, 1 patient with mucinous 372 

adenocarcinoma, 3 patients with adenoma, 2 patients with polyps and 1 with benign tissue at 373 

the edge of colorectal tumors. FF tissue samples were snap frozen and stored in liquid 374 

nitrogen immediately after surgery and were transported to the proteomics lab within 24h. 375 

The colorectal tissue cohort of 15 donors consisted of FFPE and fresh frozen (FF) tissue 376 

samples. These samples (1.5x1.5x5 mm3 in size) were punched from pathologically 377 

confirmed tissue area by Manual Tissue Arrayer MTA-1 (Beecher, US). FF tissue samples 378 

were snap frozen and stored in liquid nitrogen immediately after surgery and were 379 

transported to the proteomics lab within 24h. 380 

 The hepatocellular carcinoma (HCC) cohort and lung adenocarcinoma cohort were 381 

collected from Union hospital, Tongji Medical College, Huazhong University of Science and 382 

Technology. Sixty-six tissue samples (benign and tumor) from 33 HCC patients were 383 

collected within one hour after hepatectomy, then snap frozen and stored at -80 °C. Sixteen 384 

tissue samples (matched benign and tumor pairs) from 8 lung adenocarcinoma patients 385 

were collected within one hour after pneumonectomy, then snap frozen and stored at -80°C.  386 

 The cervical cancer cohort was collected from Tongji Hospital, Tongji Medical 387 

College, Huazhong University of Science and Technology. Thirteen FFPE cancerous and 388 

benign tissues were obtained from patients with operable cervical cancer.  389 

Chinese cancer plasma cohorts 390 

 Pooled plasma for building the plasma library was created by mixing plasma (10ul for 391 

each patients) from 20 patients from Union Hospital, Tongji Medical College, Huazhong 392 

University of Science and Technology. Each of the 20 patients had one of the following 393 

hematologic malignancies: acute myelocytic leukemia (AML), acute lymphoblastic leukemia 394 

(ALL), chronic myelocytic leukemia (CML), multiple myeloma (MM), myelodysplastic 395 

syndrome (MDS) and diffuse large B cell lymphoma (DLBCL). The validation cohort 396 

consisted of two groups: 18 clinically healthy volunteers from the Second Affiliated Hospital, 397 

Zhejiang University School of Medicine; and 19 patients diagnosed with DLBCL from Union 398 

Hospital, Tongji Medical College.  399 

Dutch cancer tissue cohorts 400 

 The glioblastoma, DLBCL, AML, ALL, cervical, pancreatic and gastric cancer cohorts 401 

were collected at Amsterdam UMC/VU medical center, Amsterdam. mirVana aceton 402 

precipitations of 19 glioblastoma cancer tissues were pooled by EGFR status (10 wild-type 403 
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EGFR and 9 mutant (vIII) EGFR samples). Similarly, mirVana aceton precipitations of 27 404 

DLBCL lymphoma patients were pooled by origin (12 samples of neck origin and 17 of non-405 

neck origin). For AML, 2 pools of 2 patient samples each were prepared. For ALL, 14 406 

individual primary ALL cell samples were used, 9 glucocorticoid (GC) resistant and 5 GC 407 

sensitive. Cervical cancer tissue lysates of 16 patients were prepared and pooled by subtype 408 

(9 SCC and 7 AdCa samples). For pancreatic cancer, individual tissue lysates of 20 patients 409 

were used. For gastric cancer, tissues in the form of FFPE material of 10 patients were 410 

pooled by tumor percentage (7 with over 50% and 3 with 50% or lower).  411 

 The lung cancer cohort was acquired from Amsterdam UMC/VU medical center, 412 

Amsterdam and Antoni van Leeuwenhoek hospital/Netherlands Cancer Institute, Amsterdam. 413 

Tumor resection samples in the form of FFPE material were collected from 10 lung 414 

adenocarcinoma, 10 squamous cell lung carcinoma and 3 large cell lung carcinoma patients 415 

and pooled per subtype. 416 

 The soft tissue sarcoma cohort was acquired from Antoni van Leeuwenhoek 417 

hospital/Netherlands Cancer Institute, Amsterdam. 7 sarcoma and 9 sarcoma metastasis 418 

tissues were pooled, respectively. 419 

 Prostate and bladder cancer cohorts were acquired from Amsterdam UMC/VU 420 

medical center, Amsterdam and Erasmus University Medical Center, Rotterdam. 18 prostate 421 

cancer tissues and 9 control tissues in the form of FFPE material were pooled, respectively. 422 

In addition, 22 fresh frozen prostate cancer tissues were combined to 2 pools of 11 samples 423 

each. 10 bladder cancer tissues in the form of FFPE material were pooled in 2 pools of 5 424 

samples each. 425 

 The CRC and triple-negative breast cancer (TNBC) cohorts were collected at 426 

Erasmus University Medical Center, Rotterdam. For CRC, 2 pools were made per CMS 427 

subtype (CMS1, 2, 3 and 4), whereby each pool contained tissue lysates of 5 patients. For 428 

TNBC, 2 pools of 23 and 24 patient tissues each were used. 429 

Singapore thyroid cancer cohort  430 

 The thyroid tissue cohort was kindly provided by National Cancer Centre, Singapore. 431 

105 FFPE thyroid tissue punches from 63 patients were included in this study. The cohort is 432 

composed of 5 patients with normal thyroid, 28 with multinodular goiter, 10 with follicular 433 

thyroid adenoma, 5 with follicular thyroid carcinoma and 15 with papillary thyroid carcinoma.  434 

 435 

Pre-treatment and de-crosslinking of FFPE tissue samples  436 

 About 1 mg of FFPE tissue was first dewaxed three times by heptane, then 437 

rehydrated in a gradient of 100%, 90%, 75% ethanol. The partly rehydrated samples were 438 

then transferred into microtubes (PBI, MA, USA) and soaked in 0.1% formic acid (FA) for 439 

complete rehydration and acidic hydrolysis for 30 min, under shaking at 600 rpm, 30℃. The 440 

thus treated FFPE samples were washed using 0.1 M Tris-HCl (pH 10.0) by gentle shaking 441 

and spinning down. The supernatant was discarded. 15 µL of 0.1 M Tris-HCl (pH 10.0) was 442 

added to cover tissues and the suspension was boiled at 95 °C for 30 min for basic 443 

hydrolysis under gentle shaking. Subsequently the sample was fast cooled to 4°C, topped 444 

with 25 µL of lysis buffer containing 6M urea and 2M thiourea, 0.1mM NH4HCO3 (pH 8.5), 445 

and subjected to PCT-assisted tissue lysis and digestion.  446 

 447 

PCT-assisted tissue lysis and digestion 448 

 About 1mg of de-crosslinked FFPE tissue or pre-washed FF tissue was mixed with 449 

35µL lysis buffer containing 6M urea and 2M thiourea, 0.1mM NH4HCO3 (pH 8.5) in 450 

microtubes and capped with micropestles (PBI, MA, USA). Alternatively, if the proteins were 451 
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extracted for later 1D SDS-page separation, 1% SDS in Milli-Q water was used instead of 452 

urea/thiourea lysis buffer. Tissues were lysed in a barocycler NEP2320-45k (Pressure 453 

BioSciences Inc.) at the PCT scheme of 30s high pressure at 45kpsi plus 10s ambient 454 

pressure, oscillating for 90 cycles at 30°C. Extracted proteins were reduced and alkylated by 455 

incubating with 10mM Tris(2-carboxyethyl) phosphine (TCEP) and 20mM iodoacetamide 456 

(IAA) at 25 °C for 30 min, in darkness, by gently vortexing at 800 rpm in a thermomixer. 457 

Afterwards, proteins were digested by Lys-C (Hualishi Beijing; enzyme-to-substrate ratio, 458 

1:40) using the PCT scheme of 50 s high pressure at 20 kpsi plus 10 s ambient pressure, 459 

oscillating for 45 cycles at 30°C. This was followed by a tryptic digestion step followed 460 

(Hualishi Beijing; enzyme-to-substrate ratio, 1:50) using the PCT scheme of 50 s high 461 

pressure at 20kpsi plus 10s ambient pressure, oscillating for 90 cycles at 30°C. Finally, 15 462 

µL of 10% trifluoroacetic acid (TFA) was added to each tryptic digest to quench the 463 

enzymatic reaction (final concentration of 1% TFA). Peptides were purified by BioPureSPN 464 

Midi C18 columns (The Nest Group Inc., Southborough, MA) according to the 465 

manufacturer’s protocol. Peptide eluates were then dried under vacuum (LABCONCO 466 

CentriVap, Kansas, MO). Dry peptides were dissolved in 20 µL of water containing 0.1% FA 467 

and 2% ACN (acetonitrile) (all MS grade). Peptide concentration was measured using 468 

ScanDrop2 (AnalytikJena, Beijing, China) at A280. 469 

 470 

1D SDS-PAGE separation at protein level for building DDA library 471 

 SDS-PAGE separation and peptide preparation in Jimenez lab, the Netherlands: 472 

Tissues were lysed in 1x reducing NuPAGE LDS sample buffer (Invitrogen, Carlsbad, CA), 473 

sonicated in a Branson cup-type digital sonifier, centrifuged, and heated for 5 minutes at 474 

95°C. Protein lysates were separated on precast 4-12% gradient gels using the NuPAGE 475 

SDS-PAGE system (Invitrogen, Carlsbad, CA). Following electrophoresis, gels were fixed in 476 

50% ethanol/3% phosphoric acid solution and stained with Coomassie R-250. Subsequently, 477 

gel lanes were cut into 10 bands and each band was cut into ~1 mm3 cubes. The gel cubes 478 

from each band were transferred into a well of a 96-well filter plate (Eppendorf, Hamburg, 479 

Germany) and were washed in 50 mM NH4HCO3 and 2x 50 mM NH4HCO3/50% ACN. 480 

Subsequently, gel cubes were reduced for 60 min in 10 mM dithiothreitol (DTT) at 56°C and 481 

alkylated for 45 min in 50 mM IAA (both Sigma, St Louis, MO) in the dark, at room 482 

temperature. After washing in 50 mM NH4HCO3 and 2x 50 mM NH4HCO3 /50% ACN, the gel 483 

cubes were dried for 10 min in a vacuum centrifuge at 60°C and subsequently incubated in 484 

50 µl 6.25 ng/µL sequence-grade trypsin (Promega, Madison, WI) in 50 mM NH4HCO3 at 485 

room temperature overnight. Peptides from each gel band were extracted once using 150 µL 486 

1% FA, and twice using 150 µL 5% FA/50%ACN and were pooled in a 96-deep-well plate 487 

and centrifuged to dryness at 60°C in a vacuum centrifuge and stored at -20°C. Dried 488 

peptide extracts were dissolved in 25µL loading solvent (0.5% TFA in 4% ACN) containing 489 

2.5 injection equivalent (IE) iRT retention time peptide standard (Biognosys, Schlieren, CH). 490 

5 µL of peptide extract containing 0.5 IE iRT peptides was injected into the nanoLC system. 491 

 SDS-PAGE separation and peptide preparation in Guo lab, China: About 200-300 µg 492 

of protein was mixed with 3× SDS sample loading buffer (GenScript Biotech, China) 493 

supplemented with 150 mM DTT, and the mixture was boiled at 95°C for 5 min.1D gel 494 

electrophoresis was performed using 4-12% gradient SDS-PAGE after which the gel was 495 

removed, washed first with distilled water and then with the fixing buffer (50% (v/v) ethanol in 496 

water with 5% (v/v) acetic acid) at room temperature for 15 min with gentle agitation to 497 

remove excessive SDS. The fixed and washed gel was stained in Coomassie blue for 498 

around 1 h with gentle agitation, and then de-stained until the background was clear and 499 

protein bands were visible. The gel was rehydrated in distilled water at room temperature for 500 

30 min with gentle agitation. Ten protein bands to cover each lane were cut out and further 501 

cut into ca 1 × 1 mm2 pieces, followed by reduction with 10 mM TCEP in 25mM NH4HCO3 at 502 

25°C for 1 h, alkylation with 55 mM IAA in 25 mM NH4HCO3 solution at 25°C in the dark for 503 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.02.03.931329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931329


11 / 21 

 

30 min, and sequential digestion with trypsin at a concentration of 12.5 ng/mL at 37°C 504 

overnight (1st digestion for 4hrs and 2nd digestion for 12hrs). Tryptic-digested peptides from 505 

gel pieces were extracted three times using 50% ACN/5% FA and dried under vacuum. Dry 506 

peptides were purified by Pierce C18 Spin Tips (Thermo Fisher, USA). 507 

Preparation and fractionation of plasma protein samples  508 

 Venous blood of each patient was collected in EDTA and anticoagulation proceeded 509 

for 9 hours.  Plasma samples obtained by centrifugation were transferred to a new set of 1.5 510 

mL Eppendorf tubes and stored at 4°C. Samples were cold-transported from the hospital to 511 

the proteomics lab within 36 h at 4°C. Samples were centrifuged again at 300g for 5min at 512 

4°C to remove cells and the supernatants were further centrifuged at 2500g for 15min at 4°C 513 

to remove cell debris and platelets. The final supernatants were stored at -80°C for further 514 

protein extraction and in solution digestion.  515 

 To remove very high abundant plasma proteins in this study, whole plasma peptides 516 

were further extensively fractionated by several methods such as SDS-PAGE separation, 517 

antibody-depletion of high abundant proteins and exosome isolation.  518 

 For SDS-PAGE fractionation, the entire gel was cut into 12 thin gel rows, of which 519 

four rows with heavily stained protein bands (3 adjacent bands between 45-75 kD, and a 520 

band between 25 and 35 kD) were picked out for depletion of high abundant proteins. Each 521 

of the other 8 rows was subjected to in-gel digestion as described above. We also used High 522 

Select Top 14 Abundant Protein Depletion Resin spin columns (Thermo Scientific, A36370) 523 

to deplete high abundance proteins in plasma samples according to the manufacturer’s 524 

instructions; and further fractionated and digested the depleted plasma proteins by 1D SDS-525 

PAGE.  526 

 To obtain the enriched exosome fraction, an aliquot of 200 µL plasma was taken 527 

after centrifuging venous blood for 10 min at 3000 g, 4°C. The exosome pellet was collected 528 

after ultracentrifugation at 160,000g, 4°C for 12h and resuspended in cold phosphate-529 

buffered saline for washing. Resuspended exosomes were further centrifuged at 100,000g, 530 

4°C for 70 min. The pellet was collected and redissolved in 150 µL of 2% SDS. The 531 

exosome fraction in 2% SDS was subjected to PCT-assisted sample lysis, undergoing 60 532 

cycles at 20°C, with 45 k p.s.i. for 50s and atmosphere pressure for 10 s. After lysis, the 533 

exosome protein mixture was precipitated with 80% cold acetone at -20°C for 3h and the 534 

suspension was centrifuged at 12,500 g, 4°C for 15 min to collect the protein pellet. The 535 

protein pellet was redissolved with 200 µL of 1% SDS, followed by SDS-PAGE separation 536 

and subsequent in-gel digestion. Each exosome protein sample was cut into three fractions 537 

and digested as described above.  538 

 539 

Strong cation-exchange (SCX) fractionation at peptide level for building DDA library 540 

 The SCX solid phase extraction (SPE) cartridge (Thermo Scientific, # 60108-421) 541 

was conditioned first according to the manufacturer’s protocol. For SCX fractionation, about 542 

1mg peptides were dissolved in 1 mL of 5 mM KH2PO4/25%ACN (pH = 3.0), then the 543 

peptide solution was loaded onto the well-conditioned SCX SPE cartridge. The cartridge was 544 

then rinsed with 5mM KH2PO4/25%ACN (pH = 3.0). Finally, six peptide fractions were 545 

collected by eluting the cartridge with 1.5 mL increments of increasing KCl concentration in 546 

5mM KH2PO4/25%ACN, i.e. 50 mM, 100 mM, 150 mM, 250 mM, 350 mM, and 500 mM. 547 

Each fraction was collected and vacuumed to dryness. Dry peptides and precipitated salts 548 

were redissolved in 200µL of 0.1% TFA and subjected to further C18 desalting by 549 

BioPureSPN Midi SPE (Nest Group, Cat # HEM S18V).  550 

 551 

DDA data acquisition in Jimenez lab 552 
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 547 DDA raw data files were generated at Jimenez lab. All peptides were prepared 553 

via SDS-PAGE fractionation and in-gel digestion. Peptides were separated by an Ultimate 554 

3000 nanoLC-MS/MS system (Dionex LC-Packings, Amsterdam, The Netherlands) 555 

equipped with a 40 cm × 75 μm ID fused silica column custom packed with 1.9 μm 120Å 556 

ReproSil Pur C18 aqua (Dr Maisch GMBH, Ammerbuch-Entringen, Germany). After injection, 557 

peptides were trapped at 10μL/min on a 10mm × 100 μm ID trap column packed with 5 μm 558 

120Å ReproSil Pur C18 aqua in 0.1% formic acid. Peptides were separated at 300 nL/min in 559 

a 10–40% linear gradient (buffer A: 0.1% formic acid (Fischer Scientific), buffer B: 80% ACN, 560 

0.1% formic acid) in 90 min (130 min inject-to-inject). Eluting peptides were ionized at a 561 

potential of +2 kV into a Q Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). 562 

Intact masses were measured at resolution 70,000 (at m/z 200) in the orbitrap using an AGC 563 

target value of 3E6 charges and an S-lens setting of 60. The top 10 peptide signals (charge-564 

states 2+ and higher) were submitted to MS/MS in the HCD (higher-energy collision) cell 565 

(1.6 amu isolation width, 25% normalized collision energy). MS/MS spectra were acquired at 566 

resolution 17,500 (at m/z 200) in the orbitrap using an AGC target value of 1E6 charges, a 567 

max injection time (IT) of 80ms and an underfill ratio of 0.1%. Dynamic exclusion was 568 

applied with a repeat count of 1 and an exclusion time of 30 s. 569 

 570 

DDA Data acquisition in Guo Lab  571 

 549 DDA raw data files were generated at Guo lab. Biognosys-11 iRT peptides 572 

(Biognosys, Schlieren, CH) were spiked into peptide samples at the final concentration of 573 

10% prior to MS injection for RT calibration. Peptides were separated by Ultimate 3000 574 

nanoLC-MS/MS system (Dionex LC-Packings, USA) equipped with a 15 cm × 75μm ID 575 

fused silica column packed with 1.9μm 100Å C18. After injection, peptides were trapped at 6 576 

μL/min on a 20 mm × 75 μm ID trap column packed with 3 μm 100 Å C18 aqua in 0.1% 577 

formic acid. Peptides were separated along a 120min 3–25% linear LC gradient (buffer A: 578 

2% ACN, 0.1% formic acid (Fisher Scientific), buffer B: 98% ACN, 0.1% formic acid) at the 579 

flowrate of 300 nL/min (148 min inject-to-inject). Eluting peptides were ionized at a potential 580 

of +1.8 kV into a Q-Exactive HF mass spectrometer (Thermo Fisher, Bremen, Germany). 581 

Intact masses were measured at resolution 60,000 (at m/z 200) in the orbitrap using an AGC 582 

target value of 3E6 charges and a S-lens setting of 50. The top 20 peptide signals (charge-583 

states 2+ and higher) were submitted to MS/MS in the HCD (higher-energy collision) cell 584 

(1.6 amu isolation width, 27% normalized collision energy). MS/MS spectra were acquired at 585 

resolution 30,000 (at m/z 200) in the orbitrap using an AGC target value of 1E5 charges, a 586 

max IT of 80ms and an underfill ratio of 0.1%. Dynamic exclusion was applied with a repeat 587 

count of 1 and an exclusion time of 30 s. 588 

 589 

DIA data acquisition in Guo lab 590 

 The LC configuration for DIA data acquisition is as the same as for DDA data 591 

acquisition with slight modifications. Biognosys-11 iRT peptides (Biognosys, Schlieren, CH) 592 

were spiked into peptide samples at the final concentration of 10% prior to MS injection for 593 

RT calibration. Peptides were separated at 300 nL/min in a 3–25% linear gradient (buffer A: 594 

2% CAN, 0.1% formic acid (Fischer Scientific), buffer B: 98% ACN, 0.1% formic acid) in 45 595 

min (68 min inject-to-inject). Eluting peptides were ionized at a potential of +1.8 kV into a Q-596 

Exactive HF mass spectrometer (Thermo Fisher, Bremen, Germany). A full MS scan was 597 

acquired analyzing 390-1010 m/z at resolution 60,000 (at m/z 200) in the orbitrap using an 598 

AGC target value of 3E6 charges and maximum IT 80ms. After the MS scan, 24 MS/MS 599 

scans were acquired, each with a 30,000 resolution at m/z 200, AGC target 1E6 charges, 600 

normalized collision energy was 27%, with the default charge state set to 2, maximum IT set 601 

to auto. The cycle of 24 MS/MS scans (center of isolation window) with three kinds of wide 602 

isolation window are as follows (m/z):  410, 430, 450, 470, 490, 510, 530, 550, 570, 590, 610, 603 
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630, 650, 670, 690, 710, 730, 750, 770, 790, 820, 860, 910, 970. The entire cycle of MS and 604 

MS/MS scans acquisition took roughly 3s and was repeated throughout the LC/MS/MS 605 

analysis. 606 

 607 

DIA Data analysis using OpenSWATH and TRIC 608 

 Briefly, DIA raw data files were converted in profile mode to mzXML using msconvert 609 

and analyzed using OpenSWATH (2.0.0) [14] as described [13].  Retention time extraction 610 

window was 600 seconds, and m/z extraction was performed with 0.03Da tolerance. 611 

Retention time was then calibrated using both SiRT and CiRT peptides. Peptide precursors 612 

that were identified by OpenSWATH and pyprophet with d_score >0.01 were used as inputs 613 

for TRIC [51]. For each protein, the median MS2 intensity value of peptide precursor 614 

fragments which were detected to belong to the protein was used to represent the protein 615 

abundance.  616 

 617 

Terms for protein identifications 618 

In this paper, the term “protein group” indicates a group of proteins sharing identified 619 

peptides appeared in all the protein members. Proteins identified from SwissProt protein 620 

sequence database (i.e. one manually inspected protein sequence per gene symbol, 621 

excluding isoforms, splicing variants and theoretical protein sequences) are called 622 

“SwissProt proteins”. The proteotypic protein refers to a protein which is identified by 623 

proteotypic peptides which only appear in one SwissProt protein sequence. 624 

 625 

Validation of representative proteins using parallel reaction monitoring (PRM)  626 

 PRM quantification strategy was used to further validate proteins that were measured 627 

by DIA quantification above. Biognosys-11 iRT peptides (Biognosys, Schlieren, CH) were 628 

spiked into peptide samples at the final concentration of 10% prior to MS injection for RT 629 

calibration. Peptides were separated at 300 nL/min along a 60min 7–35% linear LC gradient 630 

(buffer A: 20% ACN, 0.1% formic acid; buffer B: 20% ACN, 0.1% formic acid). The Orbitrap 631 

Fusion Lumos Tribrid mass spectrometer was operated in the MS/MS mode with time-632 

scheduled acquisition for 100 peptides in a +/- 5 min retention time window. The individual 633 

isolation window was set at 1.2 Th. The full MS mode was measured at resolution 60,000 at 634 

m/z 200 in the Orbitrap, with AGC target value of 4E5 and maximum IT of 50ms. Target ions 635 

were submitted to MS/MS in the HCD cell (1.2 amu isolation width, 30% normalized collision 636 

energy). MS/MS spectra were acquired at resolution 30,000 (at m/z 200) in the Orbitrap 637 

using AGC target value of 1E5, a max IT of 100ms. 638 

 639 

AVAILABILITY 640 

Computational pipeline as a Docker container and DPHL as .tsv flat file initiative is available 641 

in the OneDrive website (https://westlakeu-642 

my.sharepoint.com/:f:/g/personal/zhutiansheng_westlake_edu_cn/En-CNWLzaAxCja-L8Jze-643 

6cBLHi7FTeIJNLnNcRMQacH5g?e=WOKizE) 644 

 645 

ACCESSION NUMBERS 646 

All the DDA files, DIA-MS Data files, original peptides, and protein results are deposited in 647 

iProX; the Project ID is IPX0001400000 and can be accessed via 648 

http://www.iprox.org/page/PSV023.html;?url=1542762994917ZL13. All data and codes will 649 

be publicly released upon publication. 650 
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SUPPLEMENTARY DATA 652 

Supplementary Data are available at NAR online. 653 
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 TABLE AND FIGURES LEGENDS  797 

 798 

Figure 1. Workflow for building the DPHL. (A) Schematic representation of DDA shotgun 799 

proteomics data acquisition. Numbers in parentheses indicate the number of DDA files per 800 

tissue type.  B-E. Computational pipeline for building DIA spectral library. (B) Protein 801 

identification and iRT detection from DDA raw files using pFind. (C) SiRT detection and 802 

calibration. (D) CiRT detection and calibration. (E) Generation of the DPHL library. Details of 803 

the commands are presented in Supplementary Note 1.  804 

805 
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 806 

 807 

Figure 2. Comparison of DPHL and PHL. (A) Venn diagram showing the comparison of 808 

transition groups, unique peptide sequences, protein groups, and proteins in DPHL and PHL. 809 

(B) Visualization of set intersections using R package UpSet. (C) The bar plots display the 810 

number of transition groups (peptide precursors), unique peptide sequences, protein groups, 811 

proteotypic SwissProt proteins in DPHL library for each sample type. 812 

 813 
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  815 

Figure 3. Prostate cancer proteome using 60-min gradient DIA. (A) Peptide and protein 816 

identification using SiRT and CiRT. (B) Technical reproducibility of proteome matrix using 817 

CiRT and SiRT. (C) Comparison of quantified peptide precursors using the SiRT and CiRT 818 

methods. (D) 2D plane t-SNE plot of disease classes, color coded by sample type using 819 

CiRT and SiRT. (E) Boxplots and ROC curves showing the significantly dysregulated 820 

proteins; p-values are shown under each protein name.  821 

822 
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  823 

Figure 4. DIA analysis of plasma samples from DLBCL patients and healthy subjects. 824 

(A) 2D plane t-SNE plot showing the proteomes are separated. (B) Volcano plot showing 825 

significantly down-regulated (blue) and up-regulated (red) proteins in the 37 plasma samples. 826 

(C) Technical reproducibility for protein quantification of four plasma samples from DLBCL 827 

patients and healthy subjects. (D) Each box shows the expression of a protein biomarker 828 

candidate. Left panel: boxplots show the expression difference with P values computed 829 

using Student’s t test adjusted by the Benjamini-Hochberg method. Right panel: ROC curves 830 

of the respective dysregulated protein.  831 
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  833 

Figure 5. PRM validation of eight peptides in 73 prostate samples. In each box, the left 834 

panel shows the log2 intensity of eight representative peptides across 73 prostate samples, 835 

while the right panel depicts a representative peak group for the respective peptide. P values 836 

are computed using Student’s t test.  837 
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