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Sections S1 and S2 constitute an extended version of the
sections on identifiability and identifiability relationships in
the Methods part of the main text. They include additional
information and examples, and explicit derivations that were
abbreviated in the main text.

Section S3 provides additional details and data for the opti-
mization of experimental design in KEGG pathways.

S1 Identifiability
We want to consider a network of n interacting nodes whose
abundances or magnitudes, x, evolve in time according to a set
of (unknown) differential equations

ẋ = f(x,p). (1)

We assume that we can experimentally manipulate the sys-
tem with p different types of perturbations, each of which is
represented by one of the p entries of parameter vector p. We
shall only consider binary perturbations that can either be fully
switched on or off. To keep notation simple and without loss
of generality, we thus define f(x,p), such that the k-th type of
perturbation changes parameter pk from its unperturbed state
pk = 0 to a perturbed state pk = 1.

One of the main assumptions about the observed system
is that its temporal dynamics eventually relaxes into differ-
ent constant states depending on the performed perturbation.
These states are thought to represent stable fixed points, ϕ(p),
of Equation 1, where stability arises because the real parts
of the eigenvalue of the n × n Jacobian matrix, Jij(x,p) =
∂fi(x,p)/∂xj , evaluated at these fixed points, x = ϕ(p), are
all negative within the experimentally accessible perturbation
space (no bifurcation points). This implies that J(ϕ(p),p) is
invertible, for which case the implicit function theorem states
that ϕ(p) is unique and continuously differentiable, and

∂ϕk

∂pl
= −

[
J−1S

]
kl
, (2)

where n×p sensitivity matrix entry, Sij = ∂fi(x,p)/∂pj , quan-
tifies the effect of the j-th perturbation type on node i. Drop-
ping functions’ arguments is shorthand for the evaluation at
the unperturbed state, x = ϕ(0) and p = 0.

A linear response approximation
A perturbation experiment consists of q perturbations, each of
which involves a single or a combination of perturbation types,
represented by binary vector p. These vectors shall form the
p × q design matrix P . After each perturbation the system
is allowed sufficient time until the newly established steady
states, ϕ(p), can be measured. Let their differences to the un-
perturbed steady state form the columns of the n × q global
response matrix R. The central approximation is to assume
that perturbations are sufficiently mild, such that the steady

state function becomes nearly linear within the relevant pa-
rameter domain,

ϕk(p)− ϕk(0) ≈
p∑
l=1

∂ϕk

∂pl
pl. (3)

Replacing the partial derivative with the help of Equation 2
and writing the equation for all q perturbations yields

R ≈ −J−1S P. (4)

Note that this equation holds exactly and independent of per-
turbation strength for a linear system

ẋ = Jx+ Sp,

which can be seen by considering its steady state

x0 = J−1S p.

The crux of Equation 4 is that it relates the known experi-
mental design matrix, P , and the measured global responses,
R, to quantities that we wish to infer, namely the nodes’ inter-
action strengths, J , and their sensitivity to perturbations, S.
Thus, as a next step we shall rewrite the equation to disentan-
gle the known and the unknown entries.

A dynamic system defined by rates f̃(x,p) = W f(x,p),
with any full rank n× n matrix W , has the same steady states
but different Jacobian and sensitivity matrices, namely W J
and W S, as the original system, defined by Equation 1. It is
thus impossible to uniquely infer J or S from observations of
the global response alone. However, some entries in matrices J
and S might be known a priori and thus further constrain the
problem. This is the case, when e.g. certain reactions rates are
known. Typically however, such values are hard to come by.
Rather, we assume prior knowledge about the network topol-
ogy. That is, we know the zero entries in J as they correspond
to non-existent edges. Likewise, we assume to know the tar-
gets of the different types of perturbations which imply zero
entries in S-rows corresponding to perturbations that that are
known to not directly affect the network node associated with
that row. In line with prior studies, we fix the diagonal of the
Jacobian matrix

Jii = −1.

Thus, for the i-th row of J we can define index lists µ̄i and µ̂i,
with

|µ̄i|+ |µ̂i| = n, (5)

identifying its known and unknown entries. The first corre-
spond to missing edges or the self loop and the second to edges
going into node i. Analogously, for the i-th row of S we define
index lists ν̄i and ν̂i, with

|ν̄i|+ |ν̂i| = p, (6)
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Figure S1: Three perturbations (yellow squares) are performed
on a toy network (A). Network topology and perturbation targets
determine the index lists from Equation 5 and Equation 6. Here
they are depicted for i = 3 (B). A graphical representation of
Equation 4 demonstrates the definition of various matrix partitions
(C and D).

to report its unknown and known entries. These describe the
perturbations that do not target or respectively target node i,
see Figure S1B.

To see whether prior knowledge about J and S entries could
render other entries determinable, we first rewrite Equation 4
as n linear equation systems

RT ji = −PT si, i = 1, 2, . . . n, (7)

one for each column in JT and ST , denoted as ji and si. Then,
we collect the known and unknown ji-entries into vectors j̄i
and ĵi following the indexing by µ̄i and µ̂i. In the same man-
ner, si is split into the known vector s̄i and unknown vector
ŝi according to ν̄i and ν̂i. To rewrite Equation 7 as a linear
system of the unknown variables, we first partition its terms
into known and unknown parts

RT ji = R̄i j̄i + R̂i ĵi and PT si = P̄i s̄i + P̂i ŝi,

where q × |µ̄i| matrix R̄i and q × |µ̂i| matrix R̂i consist of
those columns of RT that are selected by µ̄i and µ̂i, respec-
tively. Analogously, q × |ν̄i| matrix P̄i and q × |ν̂i| matrix P̂i
are formed from the columns of PT selected by ν̄i and ν̂i, re-
spectively. These vector and matrix partitions are illustrated
in Figure S1C. Introducing abbreviations

xi =
[
ĵi
ŝi

]
and ki =

[
R̄i P̄i

] [j̄i
s̄i

]
,

an equivalent reformulation of Equation 7 reads[
R̂i P̂i

]
xi = −ki, i = 1, 2, . . . n. (8)

The point of such algebraic acrobatics is that Equation 8 rep-
resents systems of linear equations, each in the

ui = |µ̂i|+ |ν̂i|

unknown parameters xi, compared to Equation 7 in which the
solution vector comprised unknown and known components. It
thus allows to study the identifiability of xi.

Identifiability conditions
Clearly, Equation 8 is underdetermined if

di = ui − rank(
[
R̂i P̂i

]
) > 0.

To analyse this solution space dimensionality, let n×|µ̂i|matrix
Ĵ−1
i consist of the columns of

(
J−1
)T

that are selected by µi.
Similarly, |ν̄i| × n matrix S̄i and ν̂i × n matrix Ŝi shall be
formed by taking rows of ST according to indices in ν̄i and
ν̂i, as shown in Figure S1D. Also, we have Ii denote the i-
dimensional identity matrix and 0i,j the i× j zero-matrix. We
use these definitions and Equation 4 to write

R̂i = −PTST Ĵ−1
i and PTST =

[
P̂i P̄i

][Ŝi
S̄i

]
,

and arrive at[
R̂i P̂i

]
= −

[
P̂i P̄i

]
Ψi, with (9)

Ψi =
[
ŜiĴ
−1
i I|ν̂i|

S̄iĴ
−1
i 0|ν̄i|,|ν̂i|

]
. (10)

Note that
[
P̂i P̄i

]
is nothing but a rearrangement of the

columns of PT and therefore

rank(
[
P̂i P̄i

]
) = rank(P ) = p.

Claiming P to have rank p assumes that throughout the exper-
iment every type of perturbation was applied in a non-trivial
combination. This is not a limiting constraint as it is for ex-
ample satisfied for a perturbation scheme in which each type
of perturbation is applied once individually, which is the case
for the examples discussed here.

From
[
P̂i P̄i

]
having full (column) rank follows that

rank([R̂i P̂i]) = rank (Ψi)

= rank([ŜiĴ−1
i I|ν̂i|]) + rank([S̄iĴ−1

i 0|ν̄i|,|ν̂i|])

= |ν̂i|+ rank
(
S̄iĴ
−1
i

)
,

so that the solution subspace has dimensionality

di = |µ̂i| − rank
(
S̄iĴ
−1
i

)
.

From the dimensionality of matrix product S̄iĴ−1
i we can con-

clude that di ≥ max(0, n−|µ̄i|−|ν̄i|). Thus, to fully determine
xi we need to provide at least as many elements of prior knowl-
edge as there are nodes in the network, which agrees with our
earlier observation that we can transform the rate equations
with an arbitrary n × n matrix without altering the steady
states.

If indeed di > 0, there is a ui × di matrix Vi whose columns
form a basis of the kernel of

[
R̂i P̂i

]
, so that, given x̃i, a

specific solution to Equation 8, any

xi = Viw + x̃i, ∀w ∈ Rdi (11)

is also a solution of Equation 8. But even though the equation
system is then underdetermined, not all network parameters
are necessarily unidentifiable. Rather,

[xi]j identifiable ⇐⇒ eTj Vi = 0

⇐⇒ ∃w ∈ Rq :
[
R̂i P̂i

]T
w = ej ,

(12)
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where ej is the j-th standard basis vector of according length.
We shall use Equation 9 to reformulate this identifiability con-
dition. To this end, recall the earlier assertion about the full
(column) rank of

[
P̂i P̄i

]
, from which follows that

∀ w̃ ∈ Rp, ∃w ∈ Rq : w̃T = wT
[
P̂i P̄i

]
,

so that we can write

[xi]j identifiable ⇐⇒ ∃ w̃ ∈ Rp : w̃T Ψi = eTj .

Next, let w̃1 and w̄2 consist of the first |ν̂i| and the last |ν̄i|
components of w̃, such that w̃T = [w̃T1 w̃T2 ]. Accordingly,
standard base vector ej is split into its first |µ̂i| and last |ν̂i|
components, eTj = [fTj gTj ]. This allows to rewrite the previ-
ous equation as

w̃1 = gj , and

w̃T2
(
S̄iĴ
−1
i

)
= fTj − g

T
j

(
ŜiĴ
−1
i

)
.

Recall that [xi]j denotes unknown interaction strengths for j ≤
|ν̂i| ⇐⇒ gj = 0 and thus

[ĵi]j identifiable ⇐⇒ rank
([

S̄iĴ
−1
i

fTj

])
= rank(S̄iĴ−1

i )

⇐⇒ 1 + rank(S̄iĴ−1
i\j ) = rank(S̄iĴ−1

i ), (13)

where Ĵ−1
i\j is matrix Ĵ−1

i with the j-th column removed. For
the unknown sensitivity coefficients, where j > |ν̂i| ⇐⇒ fj =
0, we find the identifiability conditions

[ŝi]j identifiable

⇐⇒ rank
([

S̄i
Ŝji

]
Ĵ−1
i

)
= rank(S̄iĴ−1

i ), (14)

where Ŝji denotes the j-th row of matrix Ŝi.

Structural identifiability
The identifiability conditions in equations 13 and 14 relate the
identifiability of the unknown parameters to a discussion of the
rank of matrix product S̄iĴ−1

i . The product however depends
on the unknown parameters themselves, so that its rank can-
not be directly computed. Here we show that a reasonable
assumption make this possible nevertheless and allows to ex-
press the identifiability conditions as a very intuitive maximum
flow problem.

First, we rewrite the identity J−1J = In as

[J−1]kl =
∑
m 6=l

[J−1]km [J ]ml − δkl,

with δkl being the Kronecker delta (recall that Jll = −1). We
can view this equation as a recurrence relation and repeatedly
replace the [J−1]km terms in the sum. The sum contains non-
vanishing terms for each edge that leaves node l. Therefore,
each replacement leads to the next downstream node, so that
eventually one arrives at

[J−1]kl = l�k [J−1]kk, with

l�k =
∑

ω ∈Ωl→k

|ω|−1∏
m=1

[J ]ωm+1 ωm ,

where the set Ωl→k contains elements, ω, for every path from
node l to node k, each of which lists the nodes along that path.
Strictly speaking, these elements are walks rather than paths

because some nodes will appear multiple times if loops exist
between l and k. With loops, Ωl→k even contains an infinite
number of walks of unbounded lengths. But as the real part
of all eigenvalues of J are assumed negative, the associated
products of interaction strengths will eventually converge to
zero with increasing walk length. Here however, we can safely
ignore these subtleties.

To simplify our notation, we want to expand the network
by considering perturbations ν̄i as additional nodes, each with
edges that are directed towards that perturbation’s targets.
Furthermore, letting the interaction strength associated with
these new edges be given by the appropriate entries in S we
can rewrite the matrix product[

S̄iĴ
−1
i

]
kl

= ν̄ik� µ̂il [J−1]µ̂il µ̂il

where µ̂il and ν̄il denote the l-th entry in µ̂i and ν̄i, respec-
tively. As every finite-dimensional matrix has a rank decom-
position, we can further write

S̄iĴ
−1
i = Υi Yi, (15)

where |ν̄i| × rank(S̄iĴ−1
i ) matrix Υi and rank(S̄iĴ−1

i ) × |µ̂i|
matrix Yi have full rank. Finding such a decomposition there-
fore reveals the rank of S̄iĴ−1

i . To this end, we propose

[Υi]kn = ν̄ik�yin, and [Yi]nl = yin� µ̂il [J−1]µ̂il µ̂il
,

where yin denotes the n-th component of a certain node set
yi. In order for Equation 15 to hold, it must be possible to
split each path from any perturbation ν̄il to any node µ̂il into
a section that leads from the perturbation to a node in yi and
a subsequent section that leads from this node to µ̂il. For
an extended graph that includes an additional source node,
with outgoing edges to each perturbation in ν̄i, and an addi-
tional sink node, with incoming edges from all nodes in µ̂i (see
Figure S2A), yi thus constitutes a vertex cut whose removal
disconnects the graph and separates the source and the sink
node into distinct connected components. Next, we want to
show that if yi is a minimum vertex cut, the rank of S̄iĴ−1

i
equals the size of yi. Because Equation 15 is a rank decompo-
sition this is equivalent to showing that the according matrices
Υi and Yi have full rank. To do so we apply Menger’s theo-
rem (Menger, 1927), which states that the minimal size of yi
equals the maximum number of vertex-disjoint paths from the
source to the sink node. This also implies that each of these
vertex-disjoint paths goes through a different node of the ver-
tex cut yi. Recall that entries in Υi constitute sums over paths
from perturbation to vertex cut nodes, so that we could write

Υi = Ῡi + Υ̂i,

where Ῡi only contains the vertex-disjoint paths and Υ̂i the
sums over the remaining paths. As each of these vertex dis-
joint paths ends in a different vertex cut node, any column in
Ῡi can contain no more than a single non-zero entry. Further-
more, as a consequence of Menger’s theorem there are exactly
|yi| non-zero columns. Because these paths are indeed vertex
disjoint also no row in Ῡi has more than a single non-zero entry.
Thus, the non-zero columns are independent, showing that Ῡi
has full rank. The crucial assumption we want to make now is
that the values of the interaction strengths lie outside a specific
algebraic variety, which would render Ῡi + Υ̂i rank deficient.
This would for example be the case if for a given vertex disjoint
path there also is an alternative path whose associated product
of interaction strengths has the same magnitude as that of the
vertex disjoint path but opposite sign, making their sum van-
ish. This effect corresponds to a perfectly self-compensating
perturbation. Most biological networks cannot fine-tune their
interactions to such a degree that they could achieve perfect
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Figure S2: A maximum flow problem determines the identifiability of interaction strengths and perturbation sensitivities when recon-
structing a network from perturbation data. Here, this is illustrated for the toy model from Figure S1A. To inquire about the identifiability
of either edges going into node 3, or the sensitivity of node 3 to perturbations, we construct a flow network (A) with unit edge and node
capacities, as described in the text. We highlight in red a path carrying the maximal flow of one. While this max-flow path is not unique, no
other combination of paths could yield a larger flow. The interaction strength between a given node and node 3 is identifiable if and only if
the maximum flow is reduced after removing that node’s edge to the sink node (B). Yet here, we can always find alternative max-flow paths
that re-establish a unit-flow after removal of the according edges. Thus the respective edges are non-identifiable. Similarly, the sensitivity
of node 3 to perturbation 3 is identifiable if and only if a specific extension of the flow network (C) does not increase the maximum flow.
But here the maximum flow is indeed increased by one, which again reveals non-identifiability. Such flow representations also provide an
intuitive understanding on how alterations in the network or perturbation setting affect identifiability. For example, it is obvious that if
the toy model would not contain an edge from node 3 to 4, the edge from 2 to 3 would become identifiable.

self-compensation, which justifies the non-cancellation assump-
tion.

The same line of reasoning will demonstrate a full rank for
matrix Yi as well, which implies that indeed

rank(S̄iĴ−1
i ) = |yi|,

where yi is a minimum vertex cut between source and sink
node. This equation has the crucial benefit that |yi| does
not depend on unknown matrix entries. Rather, the size
of the minimum vertex cut is equal to the defined maxi-
mum flow from source to sink node with all nodes having
unit capacity (Ahuja et al., 1993), as detailed in Figure S2A.
The resulting maximum flow problem can be solved in only
O
(
n1/2

∑n
i
(|µ̂i|+ |ν̂i|)

)
, as shown in Theorem 6.3 in (Even

and Even, 2012). More importantly though, it allows to ex-
press the algebraic identifiability conditions in terms of network
properties and thus allows to intuitively understand the rela-
tionship between network topology, perturbation targets and
identifiability. To clarify this, recall Equation 13, the condition
for the identifiability of network edges µ̂i. We can now restate
it as follows. Interaction strength [ĵi]j is identifiable if and
only if the removal of the edge from node µ̂ij to the sink node
reduces the maximum flow of the network, see Figure S2B.
Similarly, the condition for identifiability of sensitivitiy [ŝi]j ,
as expressed by Equation 14 is fulfilled when the maximum
flow does not increase when an additional edge connects the
source node with perturbation node ν̂ij , see Figure S2B.

In summary, a reasonable non-cancellation assumption al-
lows to map the analysis of identifiability from an algebraic
description, that required a specification of unknown matrix
entries, to a maximum-flow problem that only depends on the
network topology and perturbation targets. In addition, such a
graphic representation provides a overview on how network and
perturbation modifications relate to changes in identifiability,
as explained in Figure S2. This enables a straightforward op-
timization of experimental design, as discussed further below.

S2 Identifiability relationships
Network inference typically is an underdetermined problem for
which the number of measurements falls short on the number of
unknown interaction terms (De Smet and Marchal, 2010; Gross
et al., 2019), resulting in many non-identifiable parameters. To
tackle this problem, we could construct identifiable models by
fixing certain parameters to some constant values. Clearly, the
remaining, inferred parameter values will then disagree with
those that would have been obtained from a fully-determining
experiment. Nevertheless, such effective models are useful as
they allow for meaningful comparisons of the inferred parame-
ters between perturbation experiments on similar systems, e.g.
when studying the same signalling pathway in different cell

lines (Bosdriesz et al., 2018). To derive such a determined sys-
tem requires to study the relationship between non-identifiable
parameters in the sense that we ask which parameters need to
be fixed in order to render which other parameters identifi-
able. Even though the dimensionality of the solution space,
di, is known, this question is not trivial, because even groups
with di or fewer parameters might already be linearly depen-
dent and fixing them will therefore not effectively reduce the
degrees of freedom of the equation system.

Take as example a case where the first two rows of kernel
matrix Vi from Equation 11, are linearly dependent, that is
αV 1

i = V 2
i . Then [xi]1 and [xi]2 are linearly dependent as

well, [xi]2 = V 2
i v = αV 1

i v = α [xi]1, which implies that [xi]2
becomes identifiable if [xi]1 is known, and vice versa, even if
di > 1 (x̃i was dropped to simplify notation). Moreover, prior
knowledge on both [xi]1 and [xi]2 would overdetermine this lin-
ear subsystem and not further reduce the degrees of freedom
for the remaining unknown parameters. Examining such pa-
rameter dependencies is a direct generalization of the original
identifiability condition in Equation 12. There, identifiability
of an unknown parameter relied on a Vi-row being zero, that is,
on a one-row submatrix being rank deficient. Now, we inspect
not only single but groups of Vi-rows for rank deficiency. But
which groups of rows should we consider to achieve an effective
description of dependency? To answer this question let us first
generalize the previous example.

We were asking if the j-th xi component becomes identifi-
able if a set of other xi components is known. With I denoting
the set of indices of these other components, let us recall Equa-
tion 11 and name their homogenous parts

x̂Ii = V ji v and x̄Ii = V Ii v,

where V ji is the j-th row of Vi, and V Ii the matrix that gathers
all Vi rows with indices in I. We can then put down a formal
identifiability statement

∃ I ⊆ {1, . . . ,ui} \ j, ∃ w ∈ R|I| : V ji = wT V Ii

⇐⇒ x̂Ii = wT V Ii v = wT x̄Ii .
(16)

In other words, if the j-th Vi-row lies within the row-space of
the set of Vi-rows with indices I, the j-th unknown parameter
can be expressed as a linear combination of the set of param-
eters with indices I. This means that knowledge of the set
of parameters with indices I then implies identifiability of the
j-th parameter. However, this statement does not imply the
uniqueness of I. On the contrary, if the j-th Vi-row lies within
the I-associated rowspace, it will also do so if additional Vi
rows are added to the set. Similarly, there could be a linearly
dependent subset of Vi-rows that all lie within the I associated
row-space. This would allow for multiple row-combinations to
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span the I-associated rowspace and thus implicate the identifi-
ability statement. Both cases show, that various combinations
of additionally fixed parameters can imply the identifiability of
a certain other parameter.

A comprehensive description of this combinatorial space
arises from a mathematical structure that has been termed ma-
troid (Whitney, 1935). Matroids are a generalized description
of linear independence in vector spaces. Here we are concerned
with representable matroids, which are those that specify lin-
ear (in-)dependence of any combination of columns of a matrix.
Amongst their various equivalent definitions, the one that re-
lates directly to our problem is the definition in terms of cyclic
flats (also called circuit closures) and their ranks (Oxley, 2006).
To specify these we need to define a few terms. First, let E be
the ground set of matroid M, that is, the set of indices enu-
merating the columns of the associated matrix. Furthermore,
define a circuit as a dependent set (of columns) whose proper
subsets are all independent. The set of circuits can be enumer-
ated with an incremental polynomial-time algorithm (Boros
et al., 2003). Finally, we define a flat as a subset of E, with the
associated submatrix having rank r, such the addition of any
other element to the set would increase the rank. With this we
can define Cr, a cyclic flat of rank r, as a flat that is the union
of a set of circuits with rank r. We show in the next section
how to obtain cyclic flats from circuits and vice versa.

Let us now consider Mi, the matroid whose groundset εi
covers the ui columns of (Vi)T . Each element in εi is thus
associated with an unknown parameter. The key inside is that
Mi’s set of circuits fully characterizes the identifiability re-
lationships between the non-identifiable parameters. This is
because the circuit dependency implies that any parameter
represented by a given circuit element is identifiable when the
remaining circuit elements are known. Additionally, this set
of remaining parameters is guaranteed to be minimal because
they are linearly independent. The enumeration of the circuits
with the aforementioned algorithm requires a dependence or-
acle that indicates whether a column subset is dependent or
not. For this, we first consider another matroid M′i, which
is associated with the ui columns of Ψi, as defined in Equa-
tion 10. Because Vi spans the kernel of matrix Ψi, M′i is dual
to Mi (Whitney, 1935). This implicates that the rank of the
(Vi)T column-subset I relates to that of the complementary
columns Ĩ = εi \ I of Ψi as follows

rankMi
(I) = rankM′

i
(Ĩ) + |I| − (ui − di).

To investigate the dual rank, we note that we can establish the
column subset of Ψi by a right multiplication with the ui×|Ĩ|
matrix P, which is an identity matrix where columns that cor-
respond to missing indices in Ĩ are removed. Furthermore, we
subdivide elements in Ĩ into sets Ĩ1 and Ĩ2 based on whether
they are less than or equal to |µ̂i| or not, which allows to define
matrices P1 and P2 by the partitioning

P =
[
P1 0|µ̂i|,|Ĩ2|

0|ν̂i|,|Ĩ1| P2

]
. (17)

Then,

rankM′
i
(Ĩ) = rank(Ψi P)

= rank
([

ŜiĴ
−1
i P1 P2

S̄iĴ
−1
i P1 0|ν̄i|,|Ĩ2|

])
= |Ĩ2|+ rank

([
P̃T2 Ŝi
S̄i

]
Ĵ−1
i P1

)
, (18)

where P̃2 is the identity matrix without the columns that ap-
pear in P2. Left-multiplication by P̃T2 thus selects rows that
correspond to missing indices in Ĩ2. The crucial point of this
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Figure S3: In this toy network (A), nodes 4 and 5 are associated
with non-identifiable parameters. These can take values from cer-
tain linear sub-spaces whose hierarchy is represented by the lattices
of cyclic flats of rank r (B). Each cyclic flat consists of the anno-
tated elements in addition to elements from its preceding cyclic
flats. To achieve identifiability requires to set certain parameters
to a constant value. A preference to which parameters this should
be is represented here as a ranked list (arrow indicates direction
of increasing preference). The matroid formalism identifies the
smallest and most preferred set of parameters that, when set to a
constant value, render the network model fully identifiable. Here
these are marked by red stars.

calculation is that we arrived at a matrix product that has
the same form as the one discussed in the previous section.
Therefore, the dual rank can be evaluated independently of the
unknown entries in J and S because the last term in the previ-
ous equation equals to the maximum flow through the associ-
ated network, with connections from the source and to the sink
nodes that are chosen according to Ĩ, as shown. This allows to
construct the oracle and identify the set of circuits. Therefore
the identifiability relationships between unknown parameters
can be inferred from information about network topology and
perturbation targets alone.

Instead of listing the set of circuits, we propose cyclic flats
as an equivalent but more concise representation of the iden-
tifiability relationships. They form a geometric lattice when
ordered by inclusion (a cyclic flat precedes another if it is its
proper subset) and can thus be graphically represented as a
compact hierarchical structure. We demonstrate this for the
example network shown in Figure S3. The depicted lattice
makes the identifiability relationships evident. All elements
of a cyclic flat with rank r become identifiable if at least r
independent flat elements are fixed. A set of elements is in-
dependent if fixing any combination if its elements does not
render any of its other element identifiable. Let us clarify this
at an example where we are interested in determining the pa-
rameters that need to be fixed in order to make J43 identifiable.
Following the previous rules, Figure S3 reveals that this could
be achieved by fixing either S41 alone, or the parameter pairs
J45∪S43 or J41∪S42. In the latter two cases S53 would become
identifiable as well.

When the goal is to achieve a fully identifiable network
model, as discussed before, there typically are preferences as
to which non-identifiable parameters should be fixed. For ex-
ample, if there is noisy external data on parameter values we
would rather fix those parameters values in which we have high
confidence. Or, if we are to construct the aforementioned effec-
tive signalling models for the comparison of different cell lines,
we would want to fix those parameters, which we expect to be
equal between different cell lines and infer those parameters for
which cell line differences are expected (Bosdriesz et al., 2018).
Thus, in these scenarios fixing of each parameter is associated
with a certain preference (weight) and our goal is to find a min-
imum number of parameters that need to be fixed such that
their sum of weights is maximal. In fact, matroids owe their
striking appearance in combinatorial optimization because this
problem is solvable with the Greedy Algorithm (Oxley, 2003;
Gale, 1968): Amongst the set of non-identifiable parameters in
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Figure S4: Performance of different experimental design strategies on 78 human KEGG pathways with up to 15 nodes (A). The single-
target and exhaustive strategies show identical performance. The difference between the identifiability AUC between non-random to
random strategies negatively correlates (Spearman correlation coefficient r) with the isolation score (B). Here, all human KEGG pathways
are considered.

εi, sequentially select the parameters with highest weight, that
have not yet become identifiable from fixing the so-far selected
set. Thus, instead of providing numerical weights for unknown
parameters it is sufficient to rank them. We depict examples
of such ordered lists in Figure S3 and show the resulting fully
identifiable maximum-weight-model.

Circuits and circuit closures
As both, the set of circuits and the circuit closures combined
with their ranks, are an equivalent definition of a matroid
they imply each other. Recall that circuits that contain a
given network parameter describe the minimal sets of network
parameters that need to be fixed to render that parameter
identifiable. The flat of closures conveniently display these
circuits as follows. By definition, any circuit is a r+ 1-element
subset, S, of some cyclic flat Cr with rank r. Thus, to obtain
all circuits containing a certain parameter, consider all such
subsets of cyclic flats that include this parameter. Yet S is
only a circuit if none of its subsets S ⊂ S is dependent, in
which case there is another circuit C ⊆ S. Since the lattice of
cyclic flats is ordered by inclusion, C is a subset of a cyclic flat
that precedes Cr in the lattice. Therefore, S is only a circuit
if no cyclic flat preceding to Cr contains a circuit that is a
proper subset of S.

We mentioned that circuits can be enumerated in incremen-
tal polynomial-time (Boros et al., 2003). In a next step, we
generated circuit closures from the set of circuits. To this end,
we first order circuits by size and iterate through that list. For
each circuit of a given rank we identify circuits of up to its
size whose intersection is equal or larger to its rank. Their
union forms a circuit closure. Next, one continues the cir-
cuit iteration while skipping circuits that have already been
assigned to a circuit closure. Eventually, this generates the
entire ensemble of circuit closures. Find an implementation
in the function circuits2cyclic flats which is part of the
identifiability module of the IdentiFlow package available
at github.com/GrossTor/IdentiFlow.

S3 Perturbation experiments for KEGG
pathways

KEGG data (Kanehisa et al., 2019) was retrieved using the
KEGG API. We retrieved KGML files for human pathways
and from them build network representations based on their
’relation elements’. For each such representation we computed
the size of its largest connected component. The pathway was
filtered out if it was smaller than five.

The performance of the exhaustive strategy could be ob-
served for small pathways Figure S4 A. In addition, we further
confirmed our hypothesis that the isolation score is predictive

with respect to the performance of the design strategies Fig-
ure S4 B.
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